CN102160167B - 静电吸盘组件 - Google Patents
静电吸盘组件 Download PDFInfo
- Publication number
- CN102160167B CN102160167B CN200980136614XA CN200980136614A CN102160167B CN 102160167 B CN102160167 B CN 102160167B CN 200980136614X A CN200980136614X A CN 200980136614XA CN 200980136614 A CN200980136614 A CN 200980136614A CN 102160167 B CN102160167 B CN 102160167B
- Authority
- CN
- China
- Prior art keywords
- puck
- plate
- electrostatic chuck
- cooling plate
- chuck assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 claims description 107
- 238000004891 communication Methods 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000005382 thermal cycling Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 44
- 239000011156 metal matrix composite Substances 0.000 abstract description 22
- 230000000930 thermomechanical effect Effects 0.000 abstract description 11
- 239000007789 gas Substances 0.000 description 76
- 239000000758 substrate Substances 0.000 description 64
- 239000010410 layer Substances 0.000 description 34
- 239000012530 fluid Substances 0.000 description 28
- 238000012546 transfer Methods 0.000 description 25
- 239000004020 conductor Substances 0.000 description 19
- 238000012545 processing Methods 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 230000035882 stress Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 230000008878 coupling Effects 0.000 description 12
- 238000010168 coupling process Methods 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 9
- 239000002826 coolant Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 239000003989 dielectric material Substances 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000009429 electrical wiring Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 206010010144 Completed suicide Diseases 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/15—Devices for holding work using magnetic or electric force acting directly on the work
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68785—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N13/00—Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Mechanical Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Drying Of Semiconductors (AREA)
Abstract
本发明的实施方式提供具有成本效益的静电吸盘组件,所述静电吸盘组件能够在超高真空环境中在宽温度范围内操作,同时使静电吸盘组件内部的热机械应力最小化。在一个实施方式中,所述静电吸盘组件包含介电主体,所述介电主体具有夹持电极,所述夹持电极包含金属基质复合材料,所述材料的热膨胀系数(CTE)与所述介电主体的CTE匹配。
Description
发明背景
发明领域
本发明的实施方式大体上是关于用在制造微电子装置的处理腔室中的基板支撑件,更具体而言,是关于用在等离子体处理腔室中的静电吸盘。
现有技术的描述
在用于不同应用,例如,物理气相沉积、蚀刻或化学气相沉积的处理腔室中处理基板的期间,静电吸盘广泛用于固持基板,例如,半导体晶片。静电吸盘通常包含一或更多个电极,所述电极嵌入单一吸盘主体内部,所述主体包含介电或半导体陶瓷材料,以在整个主体上产生静电夹钳场(electrostaticclamping field)。举例来说,半导体陶瓷材料,例如,掺有金属氧化物的氮化铝、氮化硼或氧化铝,可用来产生Johnsen-Rahbek(迥斯热背)型或非库仑型的静电夹钳场。
在单极电极吸盘中,吸盘包含单一电极,且相对于基板施加电压来电偏压所述单一电极。将等离子体引入处理腔室,以在吸盘和基板中感应生成相反的静电电荷,而产生吸引静电力,所述吸引静电力可将基板静电固持至吸盘上。在双极电极吸盘中,吸盘包含两个电极,以相对彼此的方式电偏压所述两个电极,以提供静电力,所述静电力将基板固持至吸盘。不同于单极电极吸盘,双极吸盘不需要等离子体存在以产生静电夹钳力。
静电吸盘提供数个胜过机械夹钳装置和真空吸盘的优点。举例来说,静电吸盘减少因机械夹钳的应力所造成的裂痕,允许暴露较大面积的基板以用于处理(排除极小部分或未排除边缘),并且所述静电吸盘可用在低压或高真空环境中。此外,静电吸盘可更均匀地将基板固持于夹持表面,以允许更大程度地控制基板温度。此控制可进一步使用传热气体来增强,所述传热气体在吸盘与基板之间提供热耦合。
用在集成电路制造中的不同工艺可能需要高温和宽温度范围,以用于基板处理。这类温度范围可从约20℃至约150℃,对某些工艺可能高达300℃至500℃或更高。因此常期望能有可在宽温度范围下操作的静电吸盘。
为了利用静电吸盘的优点,静电吸盘通常形成基板支撑组件的一部分,所述基板支撑组件亦包含不同部件以用于加热和冷却基板,以及用于将功率传递至夹持电极。另外,基板支撑组件亦可包含用于提供基板偏压与提供等离子体功率的部件。结果,静电吸盘的陶瓷主体可包含额外电极和其它部件,举几个例子,例如,加热元件、气体槽道(channel)和冷却剂槽道。同样地,静电吸盘可附接至支撑部件,所述支撑部件由金属制成。
不过,要将金属部件附接至陶瓷吸盘主体或将金属部件(例如,电极)嵌入陶瓷吸盘主体内部是有困难的,因为陶瓷和金属的热膨胀系数(CTE)差异会导致产生热机械应力,热机械应力在热循环期间可能导致陶瓷断裂或剥落(chip)。此外,CTE的差异可能随温度增加,导致高温下产生更大的热机械应力。为了补偿这些应力,陶瓷吸盘主体可制造得较厚,以提供较大强度并防止断裂,但此做法常会增加吸盘主体的成本。
此外,气体导管(conduit)与电接线(electrical line)常通过接口(interface)或馈通件(feedthrough)耦合至静电吸盘,所述接口(interface)或馈通件(feedthrough)提供真空密封。馈通件可藉由聚合物O形环加以密封。不过,聚合物O形环在高温下常丧失顺应性(compliance)和回弹性,而可能导致真空密封失效。同样地,由于CTE差异导致热机械应力而造成的任何陶瓷吸盘断裂可能导致密封失效以及真空泄漏。
在某些应用中,可能需要施加偏压至基板及/或藉由在静电吸盘的电极上耦合射频(RF)功率来产生等离子体。射频功率的传输效率部分取决于吸盘主体的各种性质,例如,介于电极与基板之间的介电层的厚度与介电常数。举例来说,对于以宽范围频率(例如,介于约50kHz至约60MHz之间)施加射频功率的应用而言,可能需要一种静电吸盘,所述静电吸盘可以具有成本效益的方式针对宽带率范围的有效射频功率传输进行最佳化。
因此,需要一种具成本效益且可在高真空环境中在高温和宽温度范围下操作而不失效的静电吸盘。此外,亦需要一种具成本效益且可在宽带率范围内有效耦合射频功率的静电吸盘。
发明概述
本发明的实施方式提供一种具成本效益的静电吸盘,所述静电吸盘能:在高真空环境中于宽温度范围内操作,并在宽带率范围内有效耦合射频功率,以用于基板偏压及/或等离子体形成。
在一个实施方式中,静电吸盘组件包含支撑基底(support base)和定位盘(puck),所述定位盘包含前表面(frontside surface)、电绝缘定位盘基底、一或更多个夹持电极,所述夹持电极配置在所述前表面上,其中所述一或更多个夹持电极包含导电金属基质复合材料(metal matrix composite material);以及介电层,所述介电层配置在所述前表面上并且所述介电层覆盖所述一或更多个夹持电极。
在另一实施方式中,静电吸盘组件包含支撑外壳;一定位盘,所述定位盘具有电绝缘上部定位盘板,所述上部定位盘板具有一或更多个夹持电极与一或更多个加热元件;下部定位盘板,所述下部定位盘板在接合区域内接合至所述上部定位盘板,所述接合区域包含凸起部分;以及间隙,所述间隙在所述接合区域的外侧将所述上部定位盘板与所述下部定位盘板分隔开;一或更多个O形环,所述O形环配置在所述下部定位盘板与所述支撑外壳之间;以及冷却板,所述冷却板包含一或更多个冷却槽道,且所述冷却板配置在所述接合区域与所述一或更多个O形环之间,其中所述冷却板耦合至所述下部定位盘板并且所述冷却板与所述下部定位盘板热连通。
在又另一实施方式中,静电吸盘组件包含折箱组件(bellows assembly);定位盘,所述定位盘具有前表面、一或更多个夹持电极及数个定位盘螺栓孔;冷却板,所述冷却板包含一或更多个中心开口,每一开口具有中心开口容积;一或更多个外部阶梯和内部阶梯,每个阶梯各自具有支撑表面用来支撑所述定位盘;以及一或更多个排气孔,所述排气孔形成在所述冷却板中,所述一或更多个排气孔各自形成在所述冷却板中,每一排气孔包含槽道,以在第一孔与第二孔之间提供流体连通,所述第一孔形成在所述中心开口容积的侧壁中,所述第二孔配置在所述冷却板的表面上;以及间隙,所述间隙配置在所述定位盘与所述冷却板之间,其中所述定位盘可从所述冷却板拆离。
附图简要说明
参照某些绘示于附图中的实施方式来提供于上文扼要总结的本发明更具体叙述,以详细了解本发明的上述特征结构。不过,须注意附图仅绘示此发明的典型实施方式,因此不应视为对本发明范围的限制,因为本发明可容许其它等效实施方式。
图1为根据本发明一个实施方式的等离子体处理腔室的概略剖面图。
图2绘示图1所示静电吸盘组件的一个实施方式的分解图。
图3A为根据本发明一个实施方式的图1所示静电吸盘组件的概略剖面图。
图3B为根据本发明一个实施方式的图3A所示静电吸盘组件的概略剖面详图。
图4A为根据本发明另一实施方式的图1所示静电吸盘组件的概略剖面图。
图4B为根据本发明一个实施方式的图4A所示静电吸盘组件的概略剖面详图。
图5A为根据本发明另一实施方式的图1所示静电吸盘组件的概略剖面图。
图5B为根据本发明一个实施方式的图5A所示静电吸盘组件的概略剖面图。
图6A为根据本发明另一实施方式的图1所示静电吸盘组件的透视图。
图6B为根据本发明一实施方式的图6A所示静电吸盘组件的概略剖面图。
图6C为根据本发明一实施方式的图6B所示排气孔的概略剖面详图。
图6D为根据本发明另一实施方式的图6B所示螺栓孔的概略剖面详图。
图6E绘示图6A所示静电吸盘组件的一个实施方式的分解图。
为了帮助了解,已尽可能地使用相同元件符号来标明各图中共享的相同元件。预期一个实施方式的特征结构可在无需进一步详述的情况下并入其它实施方式中。
具体描述
本发明大体上提供一种坚固、具成本效益的静电吸盘,所述静电吸盘能够在超高真空环境中于宽温度范围内操作。本发明的实施方式包含静电吸盘组件,所述静电吸盘组件提供用于基板偏压及/或等离子体形成的有效射频耦合。
图1为根据本发明一个实施方式的等离子体处理腔室的概略剖面图。在一个实施方式中,所述等离子体处理腔室为溅射蚀刻处理腔室。不过,举例来说,其它类型的处理腔室,例如,物理气相沉积(亦即,溅射)腔室,亦可用来实行本发明。
腔室100为真空腔室,所述真空腔室适于在基板处理期间于腔室内容积120内部维持次大气压(sub-atmospheric pressure)。腔室100包含腔室主体106,所述腔室主体106由圆顶104覆盖,圆顶104圈出处理容积119,所述处理容积119位于腔室内容积120的上半部。腔室100亦可包含一或更多个屏蔽件(shield)105,所述屏蔽件105划界不同腔室部件,以防止这类部件和离子化工艺材料间发生不必要的反应。腔室主体106和圆顶104可以金属制成,例如,铝。
在腔室内容积120内部配置有静电吸盘组件124,所述静电吸盘组件124用于支撑并夹持基板“S”,例如,半导体晶片。静电吸盘组件124包含定位盘(puck)150,在所述定位盘(puck)150上搁放基板“S”;冷却板151;以及支撑基底152。支撑基底152包含支撑外壳149、折箱组件110和中空支撑轴112。支撑轴112耦合至升降机构113,所述升降机构113提供静电吸盘组件124在上部处理位置(如图1所示)与下部传送位置(未示出)之间的垂直移动。折箱组件110绕支撑轴112配置,并且所述折箱组件110耦合在支撑基底152与腔室100的底表面126之间,以提供挠性密封,所述挠性密封允许静电吸盘组件124垂直运动,同时防止真空从腔室100内部损失。折箱组件110亦包含下部折箱凸缘164,所述下部折箱凸缘164与O形环165接触,O形环165接触底表面126以帮助防止腔室真空损失。
定位盘150包含电绝缘定位盘基底162,所述电绝缘定位盘基底162具有两个夹持电极159,所述夹持电极159嵌入所述电绝缘定位盘基底162中,且两个夹持电极159电气连接至夹持功率源140,例如,直流功率源。在另一实例中,定位盘150可包含一个夹持电极159或超过两个的夹持电极159,以用于夹持基板。对两个电极的实例而言,夹持电极159可各自为薄半圆或“D”形板,且每一夹持电极159各自附接至直流功率源的一个接头。对单一电极而言,夹持电极159可为薄盘,所述薄盘附接至直流功率源的一个接头(另一直流接头附接至接地电位)。不过,一或更多个夹持电极159可具有任何适当形状,所述形状可包含环形、楔形、带状等。夹持电极159可以任何适当的导电材料制成,例如,金属或金属合金。
两个夹持电极159通过一或更多个RF匹配(RF match)116耦合至射频(RF)等离子体功率源117A与射频偏压功率源117B。射频等离子体功率源117A提供功率以形成等离子体102,而射频偏压功率源117B施加射频偏压至基板“S”。在另一实施方式中,射频功率源并未耦合至静电吸盘组件124。
定位盘150包含第一凸缘153和第二凸缘155。第一凸缘153可用来支撑边缘环(未示出),以在基板蚀刻期间降低边缘效应,而第二凸缘155可用来将定位盘150耦合至支撑基底152。在另一实施方式中,定位盘150仅包含第一凸缘153而无第二凸缘155。
定位盘150亦包含数个突出(protrusion)或台面(mesa)157,所述突出(protrusion)或台面(mesa)157支撑基板“S”,且在所述台面157之间为气体沟槽158,所述气体沟槽158与气源141流体连通。气源141提供传热气体在基板“S”背侧与定位盘150之间流动,以帮助调节定位盘150与基板“S”之间的热传速率。在一个实例中,传热气体可包含惰性气体,例如,氩。传热气体可透过一或更多个孔(未示出)输送至气体沟槽158,所述一或更多个孔在定位盘150中与一或更多个气体沟槽158流体连通。定位盘150亦可具有外部周围环161,所述外部周围环161在接近边缘处接触基板“S”,且所述外部周围环161可帮助控制从基板“S”后方逸出的传热气体量。
基板“S”的温度调节进一步受到多个冷却槽道160的帮助,所述冷却槽道160配置在冷却板151中,且冷却槽道160耦合至流体源142并与流体源142流体连通,流体源142提供冷却剂流体,例如,水,但也可使用任何适当的冷却剂流体、气体或液体。在另一实施方式中,定位盘150亦可包含加热元件(见图5A的502),所述加热元件配置在夹持电极159与冷却板151之间。此外,定位盘150、冷却板151及/或静电吸盘组件124的其它部件的温度可使用一或更多个温度传感器(未示出)来监控,例如,热电耦等,且温度传感器耦合至一或更多个温度监视器。在一个实例中,定位盘150耦合至至少一个热电耦,所述热电耦用于温度监控。
静电吸盘组件124包含冷却板151,所述冷却板151使用螺栓(未示出)或其它适合的紧固装置耦合至定位盘150。冷却板151可在定位盘150内部部分凹陷,以提供与定位盘150和基板”S”更佳的热耦合。亦可在定位盘150与冷却板151之间设置导热材料,以进一步改善定位盘150与冷却板151之间的热耦合。在另一实施方式中,使用接合剂接合冷却板151和定位盘150。
定位盘150使用多个螺栓(未示出)来耦合至支撑基底152的支撑外壳149,所述螺栓围绕着定位盘150的第二凸缘155配置。一或更多个O形环154位于定位盘150与支撑外壳149之间的O形环沟槽(见图5A)内,以提供介于腔室内容积120与静电吸盘组件124内部的内容积156之间的真空密封。内容积156包含开放空间,所述开放空间在支撑外壳149内部以及中空支撑轴112内部用于设置导管与接线,且内容积156与腔室100外部的大气压力流体连通。在本实施方式中,定位盘150可从支撑外壳149拆离,以便可在不更换支撑外壳149和支撑基底152的情况下更换定位盘150。在另一实施方式中,定位盘150和支撑外壳149接合在一起以形成整合单元。
支撑轴112和折箱组件110耦合至支撑外壳149以形成支撑基底152。在一个实施方式中,将支撑轴112和折箱组件110焊接至支撑外壳149。在另一实施方式中,支撑轴112和折箱组件110可形成分开的组件,所述组件以螺栓拴紧至支撑外壳149。在又另一实施方式中,静电吸盘组件124可经调适,以便支撑轴112和折箱组件110直接耦合至冷却板151,而不使用支撑外壳149。
基板升降件130(substrate lift)包含升降销109,所述升降销109装配在平台108上,所述平台108连接至轴111,轴111耦合至第二升降机构132,所述第二升降机构132用于举起与降下基板升降件130,以便基板“S”可放置在定位盘150上或从定位盘150移除。静电吸盘组件124包含通孔(见图2的204),以容纳升降销109。折箱组件131耦合在基板升降件130与底表面126之间,以提供挠性密封,所述挠性密封在基板升降件130的垂直运动期间维持腔室真空。
腔室100耦合至真空系统114并与真空系统114流体连通,真空系统114包含节流阀(未示出)和真空泵(未示出),所述节流阀和真空泵用于排空腔室100。腔室100内的压力可藉由调整节流阀及/或真空泵而获得调节。腔室100亦耦合至工艺气源118并与工艺气源118流体连通,工艺气源118可供应一或更多种工艺气体,例如,氩,给腔室100以用于蚀刻处理。
为了产生用于溅射蚀刻基板“S”的等离子体102,夹持电极159通过一或更多个射频匹配116耦合至射频等离子体功率源117A和射频偏压功率源117B,以在腔室100内部形成等离子体102以及施加偏压至基板“S”。夹持电极159作用如射频阴极,所述射频阴极与腔室主体106和圆顶104电绝缘,且腔室主体106和圆顶104两者连接至地115。工艺气体,例如,氩,从工艺气源118引入腔室100,并调整气体压力至用于等离子体点燃的预设值(presetvalue)。当射频功率从射频等离子体功率源117A输送至夹持电极159时,通过电容耦合在处理容积119中点燃等离子体102。射频匹配116可调整或预设,以改善从射频等离子体功率源117A至等离子体102的功率传递效率。射频偏压功率源117B施加偏压至夹持电极159,使得等离子体102中的正电荷离子加速至基板“S”的表面,并溅射蚀刻基板表面。
射频等离子体功率源117A和射频偏压功率源117B可以位于约.5MHz至约60MHz的范围内,或更优选地,以接近约2MHz和约13.56MHz的频率提供功率。较低频率可用于驱动偏压从而提供离子能量,而较高频率可用于驱动等离子体102。
图2绘示图1所示静电吸盘组件124的一个实施方式的分解图。为了清楚起见,并未示出电接线和流体运送导管,所述电接线和流体运送导管在支撑轴112中通过轴通孔210。支撑外壳149包含凸缘202,所述凸缘202具有凸缘通孔203,所述凸缘通孔203与升降销孔204对准,以便升降销109可从定位盘150的前表面206举起或降下基板。O形环154配置在凸缘202上的O形环沟槽(未示出)内,以便在定位盘150耦合至支撑外壳149时,可形成真空密封。
外部周围环161可划界出所述前表面206,并且所述前表面206可包含数个凸起的楔形台面157,所述凸起的楔形台面157由相交气体沟槽158所定义,气体沟槽158如上述般分配传热气体。气体沟槽158包含径向槽道214,所述径向槽道214与圆形槽道212相交。气体沟槽158可包含数个槽道,所述槽道以直角相交,以形成网格状图案。或者,径向图案可与网格(grid pattern)和圆形图案(circular pattern)结合,但其它几何形状亦可用于气体沟槽158的图案。
一或更多个台面157可包含正方形或矩形块、圆锥、楔形、角锥、柱、圆柱墩(cylindrical mound)、或其它不同尺寸的突出或上述形状的组合,所述台面157配置在相交气体沟槽158之间,所述台面157从定位盘150向上延伸并支撑基板。在一个实施方式中,台面157的高度范围可从约50微米至约700微米,且台面157的宽度(或直径)范围可从约500微米至约5000微米。在另一实例中,定位盘150可包含前表面206,所述前表面206具有数个形成在所述前表面206中的气体沟槽158(例如,径向槽道214),且不包含台面157。
定位盘基底162可包含氧化铝、氮化铝、氧化硅、碳化硅、氮化硅、氧化钛、氧化锆的其中至少一种物质,尽管亦可使用其它材料。定位盘基底162可为单一整块的陶瓷,所述陶瓷藉由热压和烧结陶瓷粉末,然后切削所述烧结体以形成定位盘150的最终形状而制成。
图3A为根据本发明一个实施方式的图1所示静电吸盘组件124的概略剖面详图。两个夹持电极159在定位盘150的前表面206上部分嵌入电绝缘的定位盘基底162。为了清楚起见,并未示出基板“S”。在此上下文中,“部分嵌入”意指夹持电极159未完全被定位盘基底162的材料环绕或包围,且每一夹持电极159的一个侧形成部分的前表面206,所述部分的前表面206可以介电材料涂布。在另一实施方式中,可使用一个夹持电极159。在尚有另一实施方式中,定位盘150可包含超过两个的夹持电极159。
定位盘基底162提供用于使夹持电极159彼此电绝缘以及和基板“S”电绝缘的装置,亦提供用于夹持电极159和定位盘150的其它部件的导热路径与机械支撑。定位盘基底162具有厚度“D”,所述厚度“D”介于夹持电极159与冷却板151之间。
用于夹持电极159的材料可适当选择,以便电极材料的热膨胀系数(CTE)实质上与电绝缘定位盘基底162材料的CTE匹配,以使CTE差异最小化,并避免在热循环期间产生热机械应力,所述热机械应力可能损坏定位盘150。在一个实施方式中,将导电金属基质复合(MMC)材料用于夹持电极159。MMC材料包含金属基质和补强材料(reinforcing material),补强材料嵌入并分散在基质各处。金属基质可包含单一金属、二或更多种金属、或金属合金。可使用的金属包含,但不受限于,铝(Al)、镁(Mg)、钛(Ti)、钴(Co)、钴镍合金(CoNi)、镍(Ni)、铬(Cr)、金(Au)、银(Ag)或上述物质的不同组合。补强材料可选择为提供MMC所需的结构强度,且补强材料亦可选择为提供MMC的其它性质,例如,导热性和CTE所需的值。可使用的补强材料的实例包含硅(Si)、碳(C)、或碳化硅(SiC),但亦可使用其它材料。
用于夹持电极159的MMC材料较佳地选择为提供所需的导电性,且在静电吸盘组件124的操作温度范围间提供实质上匹配定位盘基底162材料的CTE。在一个实施方式中,温度范围可从约摄氏20°至约摄氏400°。在一个实施方式中,匹配CTE包含选择MMC材料,使得MMC材料包含至少一种材料,所述材料同样用在定位盘基底162材料中。在一个实施方式中,定位盘基底162包含氧化铝(Al2O3)。在一个实施方式中,MMC材料包含铝(Al)和硅(Si)。在一个实施方式中,MMC成分包含约13wt%的铝(重量百分比组成)和约87wt%的硅。在另一实施方式中,MMC成分包含约50wt%的铝和约50wt%的硅。在尚有另一实施方式中,MMC成分包含约30wt%的铝和约70wt%的硅。在另一实施方式中,举例来说,MMC可包含至少三种材料,例如,碳硅化铝(AlSiC)或碳硅化钛(TiSiC)。
MMC的组成材料和成分百分比可选择为提供满足所需设计目标的工程材料。举例来说,藉由适当选择MMC材料以密切匹配夹持电极159和定位盘基底162的CTE,定位盘基底162内部的热机械应力会降低,这样可允许使用质量较小或较薄的定位盘基底162,因为基底厚度TP有部分是由防止定位盘基底162在正规温度循环期间产生裂痕或断裂所需的结构强度来决定。减少定位盘基底162的厚度可降低定位盘150的成本。此外,MMC材料在使用上可比用于某些应用的其它材料更为价廉。举例来说,当定位盘基底162包含Al2O3时,钼可用于夹持电极159,因为钼所具有的CTE可提供Al2O3的CTE可接受的匹配,但钼显然在使用上比提供等效或更接近的CTE匹配的MMC材料更为昂贵。
参照图3A,每一夹持电极159的电极底表面300接合至定位盘基底162。可使用扩散接合做为接合方法,但亦可使用其它接合方法。在一个实施方式中,将近乎50微米厚的铝箔(未示出)放置在电极底表面300与定位盘基底162之间,并施加压力与热以形成扩散接合,所述扩散接合介于铝箔与铝硅MMC夹持电极159之间以及铝箔与Al2O3定位盘基底162之间。在另一实施方式中,夹持电极159使用直接扩散接合直接与定位盘基底162接合,直接扩散接合不需要使用中间层材料,例如,铝箔。
在接合夹持电极159与定位盘基底162之后,夹持电极159和定位盘基底162可切削以在前表面206形成台面157、气体沟槽158、外部周围环161及/或其它定位盘150的特征结构,尽管亦可在电极接合前,切削出某些前文所提及的特征结构。在一个实施方式中,台面157和气体沟槽158是在前表面206上形成于夹持电极159中,如图3A所示,且台面高度MH的范围从约200微米至约1000微米。每一台面157亦可具有小突出或凸块(未示出),以最小化台面157与基板之间的总接触面积。
图3B为根据本发明一个实施方式的图3A所示静电吸盘组件124的概略剖面详图。定位盘基底162使夹持电极159彼此电气隔离。为了产生基板的静电夹持作用,夹持电极159亦与基板电气隔离。在一个实施方式中,夹持电极159与形成在夹持电极159上的特征结构在前表面206上经过表面处理或涂布,以在夹持电极159与基板(未示出)之间提供电绝缘的介电层301。在另一实施方式中,介电层301包含介电材料,所述介电材料的CTE实质上与用于夹持电极159的MMC材料的CTE相匹配,且介电材料经过适当选择,以提供至夹持电极159和定位盘基底162的良好黏着。在一个实施方式中,介电层301包含材料,所述材料的CTE实质上匹配定位盘基底162的CTE。
介电材料共形地沉积在夹持电极159上,以形成薄而均匀的介电层301,或在夹持电极159以及形成在夹持电极159上的特征结构,例如,台面157和气体沟槽158上方形成涂层。涂布的介电材料如同毯覆涂层覆盖在定位盘150的前表面206上的夹持电极159和部分的定位盘基底162。在另一实施方式中,介电层301包含二或更多层,每一层以毯覆涂层相继沉积。
介电层301可包含氮化硼、氧化铝(Al2O3)、类钻碳(DLC)、DLC基质复合材料、或上述物质的组合的其中一种物质,尽管可使用其它类型的介电材料。在另一实施方式中,介电层301提供硬度,所述硬度介于约10Gpa(千兆帕斯卡)至约25Gpa之间。在一个实施方式中,介电层301所具有的静摩擦系数的范围从约0.15至约5.0。在另一实施方式中,介电层301所具有的静摩擦系数的范围从约0.05至约0.2。介电层301可藉由电弧喷涂、化学气相沉积(CVD)、溅射或等离子体辅助CVD来沉积,但亦可使用其它沉积方法。
介电层301具有厚度“d”,所述厚度“d”范围可从约10微米至约1000微米,但可使用其它厚度。在一个实施方式中,厚度“d”的范围从约200微米至约800微米。在另一实施方式中,厚度“d”的范围从约1微米至约10微米。电极厚度TE可经过适当选择,以提供足够厚度来用于切削出特征结构,例如,台面157和气体沟槽158,以及用于在沉积介电层301后,提供所需的台面高度MH。在一个实施方式中,电极厚度TE大于约500微米。
在一个实施方式中,夹持电极159耦合至射频等离子体功率源117A,以驱动等离子体102(见图1)。为了有效驱动等离子体102,需要使引导朝向等离子体102的顺向射频能量(forward RF energy)350的传输最大化,并使远离等离子体102的方向的反向射频能量(backward RF energy)351的传输最小化。定位盘基底162在夹持电极159下方具有厚度“D”。优先朝等离子体102传输射频能量可藉由相对于定位盘基底162降低通过介电层301的射频传输的电容阻抗而获得帮助。举例来说,藉由减少厚度比“d”/“D”,顺向射频能量350可增加,而反向射频能量351则减少。对固定的厚度比“d”/“D”而言,可藉由相对于定位盘基底162材料的介电常数增加介电层301的介电常数来达成类似的射频传输效果,因为电容阻抗可能与传输媒介的介电常数成反向相关。在一个实施方式中,定位盘基底162具有厚度“D”,所述厚度“D”远大于介电层301的厚度“d”。
在夹持电极159上方施用介电层301的一个优点在于可更容易控制膜层性质。举例来说,定位盘基底162可使用烧结工艺制造,烧结工艺可能导致在整个定位盘基底162中的介电常数变异。使用沉积介电层301覆盖住在前表面206上的夹持电极159可提供层厚度和介电常数的较小变异,转而可在顺向射频能量350的传输上提供较大控制。此外,使用独立的介电层301覆盖夹持电极159允许选择介电层301的材料与厚度,使得定位盘设计可进行“微调(tuned)”,而得以采用具成本效益的方式在宽范围的频率内提供有效的射频功率输送。在一个实施方式中,静电吸盘组件124可在约0.5MHz至约60MHz的频率范围内以最小射频功率损耗有效地输送射频(RF)功率。
图4A为根据本发明另一实施方式的图3A所示静电吸盘组件的概略剖面详图。如上文所述,两个夹持电极159部分嵌入定位盘基底162。夹持电极159和定位盘基底162形成定位盘150的前表面206。将介电材料沉积至夹持电极159和定位盘基底162上,以在前表面206上形成介电层301。介电层301的厚度经过适当选择,以便于在介电层301中切削出特征结构,例如,台面157和气体沟槽158。
图4B为根据本发明一个实施方式的图4A所示静电吸盘组件的概略剖面详图。选择介电层301的最大厚度“dMAX”,使得在介电层301中切削出特征结构之后,介电层301所需的最小厚度“dMIN”保持覆盖住前表面206上的夹持电极159和定位盘基底162。在一个实施方式中,最小厚度“dMIN”的范围从约10微米至约300微米。已在此处叙述可用于介电层301的介电材料与沉积技术。
图5A为根据本发明另一实施方式的图1所示静电吸盘组件的概略剖面详图。定位盘150包含前表面206、上部定位盘板550A和下部定位盘板550B,上部定位盘板550A和下部定位盘板550B在凸起部分503处接合在一起,凸起部分503配置于接合区域504中,所述接合区域504位在定位盘150中心上。上部定位盘板550A包含夹持电极159和一或更多个加热元件502,所述一或更多个加热元件502电气连接至加热器功率源501,以用于加热上部定位盘板550A。下部定位盘板550B耦合至冷却板505,并且所述下部定位盘板550B与所述冷却板505热连通,冷却板505具有一或更多个冷却槽道506,所述一或更多个冷却槽道506与流体源142流体连通。冷却板505配置为近接一或更多个O形环154,O形环154位于下部定位盘板550B与支撑外壳149之间,以提供腔室内容积120与静电吸盘组件124内部的内容积156之间的真空密封。下部定位盘板550B及/或支撑外壳149可包含用于O形环154的O形环沟槽508。
上部定位盘板550A可包含此处所述用于定位盘基底162的电绝缘材料。在一个实施方式中,上部定位盘板550A包含一或更多种导热材料,以便加热元件502所产生的热可更有效地输送至基板。下部定位盘板550B和上部定位盘板550A可包含相同材料。在一个实施方式中,下部定位盘板550B包含的材料与用于上部定位盘板550A的材料相异。在一个实施方式中,下部定位盘板550B包含金属基质复合材料。在一个方面中,所述金属基质复合材料包含铝和硅。在一个方面中,上部定位盘板550A包含氮化铝,且下部定位盘板550B包含碳硅化铝的复合材料。在尚有另一方面中,下部定位盘板550B包含金属或金属合金。
参照图5A,当上部定位盘板550A和下部定位盘板550B接合在一起以形成定位盘150时,会形成间隙“G”,所述间隙“G”具有厚度“TG”。在一个实施方式中,使用扩散接合作为接合方法,但亦可使用其它接合方法。在一个实施方式中,上部定位盘板550A和下部定位盘板550B所包含的材料含有铝,且凸起部分503包含铝箔“中间层”,所述“中间层”放置在接合区域504中,所述接合区域504介于上部定位盘板550A与下部定位盘板550B之间,并施加压力和热以形成扩散接合,所述扩散接合介于铝箔与上部定位盘板550A之间以及介于铝箔与下部定位盘板550B之间。在另一实施方式中,扩散接合可使用其它中间层材料形成,这些材料是依据用于上部定位盘板550A和下部定位盘板550B的材料来选择。在另一实施方式中,上部定位盘板550A可使用直接扩散接合(direct diffusion bonding)直接接合至下部定位盘板550B,其中并未使用中间层来形成接合。
凸起部分503可包含中间层材料、或黏着剂、或一部分的上部定位盘板550A,及/或一部分的下部定位盘板550B或上述物质的组合。凸起部分503形成间隙“G”,所述间隙“G”具有厚度“TG”。在一个实施方式中,厚度“TG”的范围从约20微米至约1000微米。间隙“G”使上部定位盘板550A与下部定位盘板550B之间的接触面积最小化,从而使因任何存在于上部定位盘板550A与下部定位盘板550B间的温度差或CTE差所造成的热机械应力减至最小。上部定位盘板550A和下部定位盘板550B能在热循环期间独立地在接合区域504(见图5B)外侧自由膨胀或收缩。
此外,接合区域504可藉由限制从已加热的上部定位盘板550A至未加热的下部定位盘板550B的导热路径而使得接合区域504的作用如同热扼流器(thermal choke)。在一真空环境中,除非设置传导媒介,否则热传递可主要为辐射方式。由于在基板处理期间,定位盘150可能配置在真空环境中,加热元件502所产生的热可藉由通过接合区域504的传导作用而比藉由整个间隙“G”的辐射作用更能有效地传递。因此,藉由调整接合区域504的尺寸,可控制从上部定位盘板550A流动至下部定位盘板550B的热通量,且接合区域504作用如同热扼流器。为了提供有效的基板加热,较佳限制从上部定位盘板550A传导出且通过接合区域504的热能的量。另一方面,跨越整个接合区域504的大温度差可能导致在接合区域504处产生令人无法接受的热机械应力。因此,接合区域504的面积较佳地经过选择,以在不让接合区域504处产生无法接受的热机械应力的情况下提供有效的基板加热。
由接合区域504所形成的热扼流器亦可帮助引导以及加长导热路径(thermal conduction path),以使一或更多个O形环154上的热应力减至最小,所述O形环154用来形成真空密封。举例来说,导热路径“ABC”可始于上部定位盘板550A中的点“A”、继续通过接合区域504至下部定位盘板550B中的点“B”、继续通过冷却板505、并接着终止在接近O形环154的点“C”。藉由增加O形环154离接合区域504的距离,从上部定位盘板550A中的任何点到O形环154的导热路径的长度亦随之增加,由于沿着导热路径“ABC”可能发生传导以及辐射热损耗,导致从点“A”至点“C”的显著的温度下降。此外,冷却板505是放置在接合区域504与O形环154之间,以帮助保持O形环154冷却。
图5B为根据本发明一个实施方式的图5A所示静电吸盘组件的概略剖面图。接合区域504包含凸起部分503,凸起部分503配置在环形区域中,所述环形区域具有内部半径R1和外部半径R2。中心区域507位于内部半径R1内部,并且中心区域507可包含气体导管与电接线(未示出)。冷却板505为环形,并且冷却板505具有宽度“W”,以及冷却板505位于半径距离R3且距离接合区域504为d23=R3-R2处。O形环154邻接冷却板505并位于半径距离R4处,而可被冷却板505冷却。较佳地,半径距离R4选择大数值,以提供从上部定位盘板550A至一或更多个O形环154的长导热路径“ABC”,从而帮助一或更多个O形环154保持冷却。在一个实施方式中,一或更多个O形环154的位置近接下部定位盘板550B的下部板周围552。此外,半径距离R3较佳地经过选择,使得冷却板505近接一或更多个O形环154。
藉由调整接合区域504的内部半径R1和外部半径R2,以及藉由调整半径距离R3和R4,通过接合区域504的热通量和O形环154的温度可受控用于上部定位盘板550A的操作温度范围。在一个实施方式中,上部定位盘板550A的操作温度范围从约250摄氏度(℃)至约450摄氏度(℃)。
导热路径示于图5B。热从上部定位盘板550A中的点“A”传导至位于接合区域504的外部半径R2处的周长附近的点“B”,并接着至下部定位盘板550B,然后至下部定位盘板550B中的点“C”。从点“A”到点“C”的虚线箭头指示热无法直接从点“A”传导至点“C”,因为间隙“G”将这两个点分隔开来,如图5A所示。
图6A为根据本发明又另一实施方式的图1所示静电吸盘组件124的透视图。静电吸盘组件124包含定位盘150、冷却板601及折箱组件110,折箱组件110包含支撑轴112。定位盘150耦合至冷却板601,且冷却板601耦合至折箱组件110。静电吸盘组件124经调适,使静电吸盘组件124可拆卸,以便定位盘150可从冷却板601拆离,且冷却板601可从折箱组件110拆离(见图6E)。
定位盘150包含电绝缘定位盘基底162及前表面206,前表面206包含气体沟槽158、台面157、外部周围环161、升降销孔204和第一凸缘153,第一凸缘153可支撑边缘环(未示出)。此处叙述用于定位盘150特征结构的上述特征结构和材料的不同实施方式。定位盘150亦包含定位盘螺栓孔602,所述定位盘螺栓孔602容纳螺栓(见图6B),所述螺栓用于将定位盘150紧固至冷却板601。虽然在图6A中仅示出三个定位盘螺栓孔602,但可使用任何数目的定位盘螺栓孔602,且所述定位盘螺栓孔602各自可配置在定位盘150上的任何位置。每一定位盘螺栓孔602亦可包含扩孔(counterbore)(图6D),使得每一螺栓头与定位盘150的表面齐平或从定位盘150的表面凹下。
图6B为根据本发明一实施方式的图6A所示静电吸盘组件的概略剖面图。在图6B中已加上基板“S”且未示出台面157,以阐明气流图案。利用外部周围环161和台面157将基板“S”支撑在定位盘150的前表面206上。冷却板601藉由板装配螺栓615装配至折箱组件110,螺栓615通过冷却板601中的孔,并且螺栓615容纳在螺纹孔,所述螺纹孔配置于折箱装配凸缘614中。虽然在图6B的剖面中仅示出两个板装配螺栓615,可使用任何数目的板装配螺栓615来将冷却板601紧固至折箱装配凸缘614。定位盘150藉由定位盘装配螺栓616装配至冷却板601,所述定位盘装配螺栓616位在定位盘螺栓孔602中。
折箱组件110包含折箱装配凸缘614、支撑轴112、折箱焊接件611、上部折箱凸缘613和下部折箱凸缘164。支撑轴112和上部折箱凸缘613连接至折箱装配凸缘614,且折箱焊接件611连接至上部折箱凸缘613以及下部折箱凸缘164。所使用的连接方法(例如,焊接、铜焊)经过适当选择以及控制,使得当静电吸盘组件124装配至腔室100(见图1)时,在内容积156(内容积156可为大气压力)与腔室内容积120(在基板处理期间为次大气压)之间形成真空密封。下部折箱凸缘164使用数个螺栓(未示出)装配至腔室100的底部,且O形环165配置在下部折箱凸缘164与腔室100的底表面126之间,以使腔室内容积120与静电吸盘组件124的内容积156隔离开来。下部折箱凸缘164并未连接至支撑轴112,所以支撑轴112可相对于下部折箱凸缘164自由移动。
折箱装配凸缘614包含凸缘O形环沟槽623,所述凸缘O形环沟槽623用于O形环619,O形环619提供真空密封,以便腔室内容积120不与静电吸盘组件124的内容积156流体连通。在另一实施方式中,仅冷却板601具有O形环沟槽,且折箱装配凸缘614不具有凸缘O形环沟槽623。在又另一实施方式中,使用多于一个的凸缘O形环沟槽623和O形环619,以提供真空密封。
冷却板601包含一或更多个板608、数个冷却槽道160、二或更多个冷却剂流体导管628和气体导管604。冷却槽道160形成一或更多个冷却回路(cooling loop)或环路(circuit),并且与流体源142流体连通,所述流体源142提供冷却剂流体。冷却槽道160可具有正方形、矩形、圆形或其它形状的截面。二或更多个冷却剂流体导管628耦合至板608,并且所述冷却剂流体导管628与冷却槽道160流体连通。冷却剂流体导管628从冷却板601延伸,并通过支撑轴112的中空内部空间。冷却剂流体导管628使用任何适当的密封耦合装置631耦合至流体源142。
在一个实施方式中,冷却剂流体导管628包含管的末端,所述管经过成环(looped)且成形(shaped)以形成冷却槽道160。将成形的管接合(例如,藉由焊接或铜焊)至板608,以将所述管热耦合至板608。在另一实施方式中,冷却槽道160包含槽道,所述槽道形成(例如,藉由切削)在板608中。板608可包含任何导热材料,例如,铝、铜、黄铜、不锈钢或其它适当材料。
气体导管604提供从气源141输送传热气体603至基板“S”的背表面606的装置。气体导管604耦合至冷却板601,使得腔室内容积120保持与静电吸盘组件124的内容积156隔离开来。在一个实施方式中,气体导管604包含管,所述管焊接或铜焊至板608,以形成板608与管外表面之间的真空密封。气体导管604从冷却板601延伸通过支撑轴112,并使用任何适当的气体管线耦合装置633耦合至气源141。
冷却板601亦包含一或更多个中心开口639、数个第一螺栓孔634、第二螺栓孔637和升降销孔635,所述升降销孔635延伸通过冷却板601。一或更多个中心开口639包含接近冷却板601中心的孔,以便来自定位盘150的电接线及/或其它元件(例如,热电耦)可通过冷却板601和静电吸盘组件124的支撑轴112。第一螺栓孔634容纳板装配螺栓615,且第一螺栓孔634可包含扩孔,使得每一个板装配螺栓615与板608的表面636齐平或从板608的表面636凹下。冷却板601的升降销孔635与定位盘150的升降销孔204对准,以便升降销109(见图1)可在不接触定位盘150或冷却板601的情况下移动通过所述孔。冷却板601的第二螺栓孔637允许定位盘150使用定位盘装配螺栓616紧固至冷却板601。
冷却板601包含凸起部分,所述凸起部分从冷却板601的表面636向上延伸。所述凸起部分包含一或更多个外部阶梯609和内部阶梯610,且各自具有顶表面638,所述顶表面638用来支撑定位盘150。一或更多个外部阶梯609配置为接近冷却板601的周围(periphery),且内部阶梯610相对于所述一或更多个外部阶梯609而位于内侧。在一个实施方式中,外部阶梯609包含一凸起环形环,所述凸起环形环设置为接近冷却板601的周围,且内部阶梯610包含多个凸起环形环,所述凸起环形环环绕每个中心开口639、升降销孔635和第二螺栓孔637(见图6E)。
每一个外部阶梯609和内部阶梯610具有阶梯高度HS,所述阶梯高度HS范围从约30微米至约1000微米。在一个实施方式中,阶梯高度HS的范围从约200微米至约400微米。当定位盘150装配至冷却板601时,气体传导间隙632形成在定位盘150与冷却板601之间。气体传导间隙632具有均匀的间隙高度,且所述间隙高度几乎等于阶梯高度HS。
如在下文更详细叙述,气体传导间隙632藉由限制零件之间的接触来帮助使定位盘150与冷却板601之间的热机械应力最小化。气体传导间隙632亦使用传热气体603来达成定位盘150与冷却板601之间的热耦合。定位盘150与冷却板601之间的热耦合可藉由一或更多个方式来调整,所述方式可包含改变压力、流速及/或用于传热气体603的气体类型。传热气体603从气体导管604传导至气体传导间隙632以及至在定位盘150中的数个气孔605,并从气孔605流至气体沟槽158,所述气体沟槽158输送气体至基板“S”的背表面606。
参照图6B,定位盘150包含加热元件502和两个夹持电极159。在其它实施方式中,定位盘150可包含一个夹持电极159或多于两个的夹持电极159。定位盘150亦包含一或更多个气孔605,所述气孔605延伸通过定位盘150,以便传热气体603可从气体传导间隙632流到气体沟槽158。在一个实施方式中,气孔605的直径可近乎等于或小于气体沟槽158的宽度。气孔605亦可配置在任何位置,并以任何图案分布在前表面206上。
加热元件502电气连接至第一对馈通导体(feedthrough conductor)625,第一对馈通导体625在电连接640B处电气连接至加热器功率导体629。加热器功率导体629接着在电连接640A处连接至加热器功率源501。同样地,夹持电极159通过第二对馈通导体625与夹持功率导体630电气连接至夹持功率源140。加热器功率导体629和夹持功率导体630可包含电绝缘接线,所述电绝缘接线部分绕经支撑轴112内部。馈通导体625的长度经过放大以利于清楚显示,且电连接640B可位于支撑轴112内部。在另一实施方式中,除了夹持功率源140之外,一或更多个射频功率源也电气连接至夹持电极159。
馈通导体625包含导电元件(例如,金属杆及/或接线),所述导电元件形成部分的真空馈通件(vacuum feedthrough)622。真空馈通件622亦包含馈通凸缘621,所述馈通凸缘621在中心开口639上方藉由数个螺栓(未示出)而装配至冷却板601。馈通O形环620提供馈通凸缘621与冷却板601之间的真空密封。真空馈通件622经调适,以便真空密封亦形成在每一个馈通导体625与馈通凸缘621之间,从而允许馈通导体625通过馈通凸缘621,同时使内容积156与中心开口639的容积隔离开来。此外,当导体通过凸缘,真空馈通件622保持馈通导体625彼此电气隔离,并与馈通凸缘621(馈通凸缘621可以金属制成)电气隔离。
在其它实施方式中,真空馈通件622可包含少于或多于四个的馈通导体625,举例来说,取决于定位盘150中的夹持电极159和加热元件502的数目。在又另一实施方式中,冷却板601包含多于一个的中心开口639,且真空馈通件622装配在每一个中心开口639中。举例来说,第二中心开口639和真空馈通件622可用于一或更多个温度传感器(例如,热电耦),所述温度传感器耦合至定位盘150。真空馈通件622可针对特定应用而设计,或可使用商业上可购得的馈通件以减少部件成本。
内部阶梯610和外部阶梯609的顶表面638接触定位盘150,但所述顶表面638可不与定位盘150形成流体密封,因为定位盘150仅是以定位盘装配螺栓616的力量按压紧靠顶表面638。因此,传热气体603可能“泄漏”至阶梯顶表面638与定位盘150之间,并且所述传热气体603可能流入腔室内容积120。举例来说,传热气体603亦可流入升降销孔635、第二螺栓孔637和中心开口639,接着再进入腔室内容积120。不过,泄漏至中心开口639中的传热气体603无法流过真空馈通件622的馈通O形环620。因此,在基板处理期间,传热气体603在中心开口639内的压力可增加到超过腔室内容积120中的气体压力的值。气体压力的增加和载流馈通导体625的存在,可能导致中心开口639内发生电弧。为了防止这类电弧,排气孔627形成在冷却板601内部,以便中心开口639内的气体可排放至腔室内容积120。
图6C为根据本发明一实施方式的图6B所示排气孔627的详图。排气孔627包含排气孔槽道641,所述排气孔槽道641将第一孔643连接至第二孔644,以便中心开口639的中心开口容积645与腔室内容积120流体连通,所述第一孔643在中心开口639的侧壁642中,所述第二孔644位于冷却板601的底表面607。第二孔644配置在O形环619的外部直径的外侧,以便第二孔644配置在冷却板601的表面上,所述冷却板601与腔室内容积120流体连通。排气孔627可包含任何槽道配置,所述槽道配置提供中心开口容积645与腔室内容积120之间的流体连通,使得各容积的压力可均等化。在另一实施方式中,冷却板601包含多于一个的中心开口639,且每一个中心开口639具有排气孔627。
中心开口容积645和气体传导间隙632在静电吸盘组件124内部可包含至少两个压力区域。第一压力区域包含中心开口容积645,且藉由排气孔627使所述中心开口容积645的压力近乎等于腔室内容积120的压力。第二压力区域包含气体传导间隙632,所述气体传导间隙632所具有的压力部分由传热气体603的气体压力以及通过定位盘150中的气孔605的流导(flow conductance)来决定,所述传热气体603由气体导管604供应。
参照图6B,使用定位盘装配螺栓616将定位盘150紧固至冷却板601,定位盘装配螺栓616通过第二螺栓孔637并且定位盘装配螺栓616螺纹旋入冷却板601中。随着定位盘150和冷却板601经历基板处理期间的温度循环,定位盘150和冷却板601会膨胀与收缩。定位盘150和冷却板601可以不同材料制成,并且定位盘150和冷却板601可具有不同的CTE,且因此每个零件的尺寸膨胀与收缩亦可能不同。为了防止因CTE不匹配造成过多机械应力而可损坏定位盘150及/或冷却板601,允许定位盘150和冷却板601相对彼此移动。如上文所述,定位盘150仅搁放在内部阶梯610与外部阶梯609之上,所以定位盘150可“自由”地在阶梯的顶表面638上移动。运动的自由度受限于定位盘装配螺栓616,因此冷却板601经调适以允许定位盘装配螺栓616在近乎平行于顶表面638的方向上微动,以提供定位盘150相对于顶表面638的所需移动,从而防止定位盘150中产生不受欢迎的机械应力。冷却板601亦经调适,以藉由定位盘装配螺栓616使定位盘150在温度循环期间保持对准并牢牢地紧固至冷却板601。
在一个实施方式中,每一个定位盘装配螺栓616螺纹旋入插件617中,所述插件617位于插件凹部(insert recess)618。插件凹部618经过调适,以允许插件617和定位盘装配螺栓616在近乎平行于顶表面638的方向上微动。第二螺栓孔637的孔直径经过适当选择,以允许定位盘装配螺栓616在所述孔内部微动。在一个实施方式中,插件凹部618可包含狭槽,所述狭槽沿着冷却板601的半径对齐。在另一实施方式中,插件617为浮动插件,所述浮动插件被插件凹部618抓住。
上述实施方式允许将相对薄的定位盘150用于静电吸盘组件124。使用传热气体603将定位盘150热耦合至冷却板601可防止定位盘150内部骤变的温度梯度与不受欢迎的热应力。此外,定位盘150独立于冷却板601以近乎平行顶表面638的方向膨胀和收缩的能力可减少定位盘150内部的机械应力,且由于定位盘150由冷却板601支撑,定位盘150具有最小负载。热机械应力减少与最小负载允许降低定位盘150所需的材料强度,且因此定位盘150可制作得更薄以降低成本。
图6D绘示根据本发明另一实施方式的图6B所示螺栓孔的详图。定位盘螺栓孔602包含螺栓通孔651、第一扩孔649和第二扩孔650,所述螺栓通孔651、第一扩孔649和第二扩孔650形成在电绝缘定位盘基底162中。定位盘装配螺栓616包含螺栓头646,所述螺栓头646位于第一扩孔649内部,且第二扩孔650带有螺纹,以容纳插塞(plug)647,所述插塞647具有插塞螺纹648。插塞647以电绝缘材料制成,以将定位盘装配螺栓616与定位盘150的前表面206电气隔离开来。在一个实施方式中,插塞647是用和定位盘基底162相同的材料制成。插塞647经过调适,以便所述插塞647可移除与重新安装,而使定位盘装配螺栓616得以进出。在另一实施方式中,插塞647和第二扩孔650不带螺纹,并使用其它装置来移除以及再安装插塞647。当施加电偏压至静电吸盘组件124时,可将电绝缘插塞647用于定位盘螺栓孔602。
图6E绘示图6A和6B所示静电吸盘组件的一个实施方式的分解图。为了清楚起见,已省略基板“S”、电线、导管、螺栓和真空馈通件622。折箱组件110包含折箱装配凸缘614和支撑轴112,支撑轴112具有支撑轴孔653,其中导管和电绕线通过支撑轴孔653(见图6B)。折箱凸缘614包含数个装配凸缘孔652,所述装配凸缘孔652带有螺纹,并且所述装配凸缘孔652容纳板装配螺栓615,所述板装配螺栓615位于第一螺栓孔634中。虽然仅示出四个装配凸缘孔652,折箱凸缘614可具有任何数目的装配凸缘孔652,以匹配第一螺栓孔634的数目。
冷却板601具有中心开口639,所述中心开口639具有环绕的内部阶梯610及顶表面638。示出额外的内部阶梯610用于升降销孔635和第二螺栓孔637。环形外部阶梯609围绕着冷却板601的周围延伸。板表面636形成气体传导间隙632(见图6B)的一个侧,且当定位盘150装配至冷却板601时,定位盘150形成所述间隙的另一侧。
虽然以上内容已针对本发明的数个实施方式,但可在不偏离本发明基本范围的情况下做出本发明的其它及进一步实施方式,且本发明范围当由后附权利要求书决定。
Claims (4)
1.一种静电吸盘组件,所述静电吸盘组件包含:
支撑外壳;
定位盘,所述定位盘包含:
电绝缘上部定位盘板,所述上部定位盘板具有一或更多个夹持电极和一或更多个加热元件;
下部定位盘板,所述下部定位盘板在接合区域内接合至所述上部定位盘板,所述接合区域包含凸起部分;以及
间隙,所述间隙在所述接合区域外侧将所述上部定位盘板与所述下部定位盘板分隔开;
一或更多个O形环,所述O形环配置在所述下部定位盘板与所述支撑外壳之间;以及
冷却板,所述冷却板包含一或更多个冷却槽道,并且所述冷却板配置在所述接合区域与所述一或更多个O形环之间,所述冷却板耦合至所述下部定位盘板并且所述冷却板与所述下部定位盘板热连通。
2.如权利要求1所述的静电吸盘组件,其中所述一或更多个O形环的位置近接所述下部定位盘板的周围,且所述冷却板的位置近接所述一或更多个O形环。
3.如权利要求1所述的静电吸盘组件,其中所述间隙厚度介于20微米至1000微米之间。
4.如权利要求1所述的静电吸盘组件,其中所述上部定位盘板和所述下部定位盘板在热循环期间能独立地在所述接合区域外侧自由膨胀与收缩。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8828908P | 2008-08-12 | 2008-08-12 | |
US61/088,289 | 2008-08-12 | ||
PCT/US2009/052917 WO2010019430A2 (en) | 2008-08-12 | 2009-08-06 | Electrostatic chuck assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102160167A CN102160167A (zh) | 2011-08-17 |
CN102160167B true CN102160167B (zh) | 2013-12-04 |
Family
ID=41669579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980136614XA Active CN102160167B (zh) | 2008-08-12 | 2009-08-06 | 静电吸盘组件 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8390980B2 (zh) |
EP (1) | EP2321846A4 (zh) |
JP (2) | JP2011530833A (zh) |
KR (1) | KR101582785B1 (zh) |
CN (1) | CN102160167B (zh) |
TW (1) | TWI473199B (zh) |
WO (1) | WO2010019430A2 (zh) |
Families Citing this family (268)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8226769B2 (en) * | 2006-04-27 | 2012-07-24 | Applied Materials, Inc. | Substrate support with electrostatic chuck having dual temperature zones |
KR100867191B1 (ko) * | 2006-11-02 | 2008-11-06 | 주식회사 유진테크 | 기판처리장치 및 기판처리방법 |
US20100247804A1 (en) * | 2009-03-24 | 2010-09-30 | Applied Materials, Inc. | Biasable cooling pedestal |
DE102009018434B4 (de) * | 2009-04-22 | 2023-11-30 | Ev Group Gmbh | Aufnahmeeinrichtung zur Aufnahme von Halbleitersubstraten |
US10896842B2 (en) * | 2009-10-20 | 2021-01-19 | Tokyo Electron Limited | Manufacturing method of sample table |
US8501631B2 (en) * | 2009-11-19 | 2013-08-06 | Lam Research Corporation | Plasma processing system control based on RF voltage |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
WO2011150311A1 (en) | 2010-05-28 | 2011-12-01 | Praxair Technology, Inc. | Substrate supports for semiconductor applications |
WO2012019017A2 (en) * | 2010-08-06 | 2012-02-09 | Applied Materials, Inc. | Electrostatic chuck and methods of use thereof |
US20120037068A1 (en) * | 2010-08-11 | 2012-02-16 | Applied Materials, Inc. | Composite substrates for direct heating and increased temperature uniformity |
US8580693B2 (en) * | 2010-08-27 | 2013-11-12 | Applied Materials, Inc. | Temperature enhanced electrostatic chucking in plasma processing apparatus |
US9969022B2 (en) * | 2010-09-28 | 2018-05-15 | Applied Materials, Inc. | Vacuum process chamber component and methods of making |
JP5129848B2 (ja) * | 2010-10-18 | 2013-01-30 | 東京エレクトロン株式会社 | 接合装置及び接合方法 |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US20120196242A1 (en) * | 2011-01-27 | 2012-08-02 | Applied Materials, Inc. | Substrate support with heater and rapid temperature change |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
JP5869899B2 (ja) * | 2011-04-01 | 2016-02-24 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法、基板処理方法及びサセプタカバー |
US20120281333A1 (en) * | 2011-05-06 | 2012-11-08 | Advanced Ion Beam Technology, Inc. | Temperature-controllable electrostatic chuck |
US9337067B2 (en) * | 2011-05-13 | 2016-05-10 | Novellus Systems, Inc. | High temperature electrostatic chuck with radial thermal chokes |
US10242890B2 (en) * | 2011-08-08 | 2019-03-26 | Applied Materials, Inc. | Substrate support with heater |
US8971009B2 (en) | 2011-09-30 | 2015-03-03 | Applied Materials, Inc. | Electrostatic chuck with temperature control |
TWI830183B (zh) * | 2011-10-05 | 2024-01-21 | 美商應用材料股份有限公司 | 包括對稱電漿處理腔室的電漿處理設備與用於此設備的蓋組件 |
US9076831B2 (en) * | 2011-11-04 | 2015-07-07 | Lam Research Corporation | Substrate clamping system and method for operating the same |
JP5973731B2 (ja) * | 2012-01-13 | 2016-08-23 | 東京エレクトロン株式会社 | プラズマ処理装置及びヒータの温度制御方法 |
CN109298602B (zh) | 2012-02-03 | 2021-10-15 | Asml荷兰有限公司 | 衬底保持器和光刻装置 |
US9034199B2 (en) | 2012-02-21 | 2015-05-19 | Applied Materials, Inc. | Ceramic article with reduced surface defect density and process for producing a ceramic article |
JP5905735B2 (ja) * | 2012-02-21 | 2016-04-20 | 東京エレクトロン株式会社 | 基板処理装置、基板処理方法及び基板温度の設定可能帯域の変更方法 |
US9320126B2 (en) | 2012-12-17 | 2016-04-19 | Lam Research Corporation | Determining a value of a variable on an RF transmission model |
US10128090B2 (en) | 2012-02-22 | 2018-11-13 | Lam Research Corporation | RF impedance model based fault detection |
US9114666B2 (en) | 2012-02-22 | 2015-08-25 | Lam Research Corporation | Methods and apparatus for controlling plasma in a plasma processing system |
US9842725B2 (en) | 2013-01-31 | 2017-12-12 | Lam Research Corporation | Using modeling to determine ion energy associated with a plasma system |
US9212099B2 (en) | 2012-02-22 | 2015-12-15 | Applied Materials, Inc. | Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics |
US9295148B2 (en) | 2012-12-14 | 2016-03-22 | Lam Research Corporation | Computation of statistics for statistical data decimation |
US9462672B2 (en) | 2012-02-22 | 2016-10-04 | Lam Research Corporation | Adjustment of power and frequency based on three or more states |
US10157729B2 (en) | 2012-02-22 | 2018-12-18 | Lam Research Corporation | Soft pulsing |
US9197196B2 (en) | 2012-02-22 | 2015-11-24 | Lam Research Corporation | State-based adjustment of power and frequency |
JP5903930B2 (ja) * | 2012-02-27 | 2016-04-13 | 日新イオン機器株式会社 | 基板搬送装置及び当該基板搬送装置を用いた半導体製造装置 |
TWI455244B (zh) * | 2012-03-19 | 2014-10-01 | Wistron Corp | 用於重工製程之夾持治具及設備 |
US9070536B2 (en) * | 2012-04-24 | 2015-06-30 | Applied Materials, Inc. | Plasma reactor electrostatic chuck with cooled process ring and heated workpiece support surface |
CN102632408B (zh) * | 2012-05-05 | 2014-05-28 | 山东大学 | 一种加速钻削过程中工件传热的热管夹具及方法 |
US9105492B2 (en) | 2012-05-08 | 2015-08-11 | LuxVue Technology Corporation | Compliant micro device transfer head |
US9034754B2 (en) | 2012-05-25 | 2015-05-19 | LuxVue Technology Corporation | Method of forming a micro device transfer head with silicon electrode |
US8415771B1 (en) * | 2012-05-25 | 2013-04-09 | LuxVue Technology Corporation | Micro device transfer head with silicon electrode |
US9404176B2 (en) | 2012-06-05 | 2016-08-02 | Applied Materials, Inc. | Substrate support with radio frequency (RF) return path |
JP5977592B2 (ja) | 2012-06-20 | 2016-08-24 | 東京応化工業株式会社 | 貼付装置 |
US9224626B2 (en) * | 2012-07-03 | 2015-12-29 | Watlow Electric Manufacturing Company | Composite substrate for layered heaters |
US8415767B1 (en) | 2012-07-06 | 2013-04-09 | LuxVue Technology Corporation | Compliant bipolar micro device transfer head with silicon electrodes |
US8415768B1 (en) | 2012-07-06 | 2013-04-09 | LuxVue Technology Corporation | Compliant monopolar micro device transfer head with silicon electrode |
US8569115B1 (en) | 2012-07-06 | 2013-10-29 | LuxVue Technology Corporation | Method of forming a compliant bipolar micro device transfer head with silicon electrodes |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US8791530B2 (en) | 2012-09-06 | 2014-07-29 | LuxVue Technology Corporation | Compliant micro device transfer head with integrated electrode leads |
JP5441021B1 (ja) * | 2012-09-12 | 2014-03-12 | Toto株式会社 | 静電チャック |
JP6389181B2 (ja) | 2012-09-19 | 2018-09-12 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 基板を結合する方法 |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US9916998B2 (en) | 2012-12-04 | 2018-03-13 | Applied Materials, Inc. | Substrate support assembly having a plasma resistant protective layer |
US9255001B2 (en) | 2012-12-10 | 2016-02-09 | LuxVue Technology Corporation | Micro device transfer head array with metal electrodes |
US9236815B2 (en) * | 2012-12-10 | 2016-01-12 | LuxVue Technology Corporation | Compliant micro device transfer head array with metal electrodes |
US10324121B2 (en) * | 2012-12-28 | 2019-06-18 | Axcelis Technologies, Inc. | Charge integration based electrostatic clamp health monitor |
CN103904014B (zh) * | 2012-12-31 | 2016-12-28 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 静电卡盘和反应腔室 |
US9155182B2 (en) | 2013-01-11 | 2015-10-06 | Lam Research Corporation | Tuning a parameter associated with plasma impedance |
TWI582256B (zh) * | 2013-02-04 | 2017-05-11 | 愛發科股份有限公司 | 薄型基板處理裝置 |
JP6022372B2 (ja) * | 2013-02-04 | 2016-11-09 | 株式会社アルバック | 薄型基板処理装置 |
JP6022373B2 (ja) * | 2013-02-04 | 2016-11-09 | 株式会社アルバック | 薄型基板処理装置 |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9669653B2 (en) * | 2013-03-14 | 2017-06-06 | Applied Materials, Inc. | Electrostatic chuck refurbishment |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
JP6075185B2 (ja) * | 2013-04-26 | 2017-02-08 | 住友電気工業株式会社 | 炭化珪素半導体装置の製造方法 |
JP6854643B2 (ja) | 2013-06-12 | 2021-04-07 | ロヒンニ リミテッド ライアビリティ カンパニー | 付着された光発生源を用いたキーボードバックライティング |
US9850568B2 (en) | 2013-06-20 | 2017-12-26 | Applied Materials, Inc. | Plasma erosion resistant rare-earth oxide based thin film coatings |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9245767B2 (en) * | 2013-09-12 | 2016-01-26 | Applied Materials, Inc. | Anneal module for semiconductor wafers |
JP6235293B2 (ja) * | 2013-10-02 | 2017-11-22 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置 |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
TW201518538A (zh) * | 2013-11-11 | 2015-05-16 | Applied Materials Inc | 像素化冷卻溫度控制的基板支撐組件 |
US10236202B2 (en) * | 2013-11-11 | 2019-03-19 | Diablo Capital, Inc. | System and method for adhering a semiconductive wafer to a mobile electrostatic carrier through a vacuum |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
CN105706351B (zh) * | 2013-11-22 | 2019-07-19 | 应用材料公司 | 用于静电卡盘表面的垫设计 |
CN104681380B (zh) * | 2013-11-29 | 2017-07-07 | 中微半导体设备(上海)有限公司 | 一种静电卡盘及其等离子体处理室 |
US10391526B2 (en) * | 2013-12-12 | 2019-08-27 | Lam Research Corporation | Electrostatic chuck cleaning fixture |
US9101038B2 (en) | 2013-12-20 | 2015-08-04 | Lam Research Corporation | Electrostatic chuck including declamping electrode and method of declamping |
US9594105B2 (en) | 2014-01-10 | 2017-03-14 | Lam Research Corporation | Cable power loss determination for virtual metrology |
JP6303592B2 (ja) * | 2014-02-25 | 2018-04-04 | 東京エレクトロン株式会社 | 基板処理装置 |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9355776B2 (en) | 2014-04-09 | 2016-05-31 | Applied Materials, Inc. | Capacitor assemblies for coupling radio frequency (RF) and direct current (DC) energy to one or more common electrodes |
US10950421B2 (en) | 2014-04-21 | 2021-03-16 | Lam Research Corporation | Using modeling for identifying a location of a fault in an RF transmission system for a plasma system |
JP6219227B2 (ja) * | 2014-05-12 | 2017-10-25 | 東京エレクトロン株式会社 | ヒータ給電機構及びステージの温度制御方法 |
US9530682B2 (en) * | 2014-05-12 | 2016-12-27 | Varian Semiconductor Equipment Associates, Inc. | System and apparatus for holding a substrate over wide temperature range |
JP6219229B2 (ja) * | 2014-05-19 | 2017-10-25 | 東京エレクトロン株式会社 | ヒータ給電機構 |
DE102014008030A1 (de) | 2014-05-28 | 2015-12-03 | Berliner Glas Kgaa Herbert Kubatz Gmbh & Co | Verfahren zur Herstellung einer elektrostatischen Haltevorrichtung |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
DE102014007903B4 (de) | 2014-05-28 | 2025-04-03 | ASML Netherlands B.V. | Elektrostatische Haltevorrichtung mit Noppen-Elektroden und Verfahren zu deren Herstellung |
DE102014008031B4 (de) * | 2014-05-28 | 2020-06-25 | Berliner Glas Kgaa Herbert Kubatz Gmbh & Co. | Elektrostatische Haltevorrichtung mit einer Keramik-Elektrode und Verfahren zur Herstellung einer solchen Haltevorrichtung |
DE102014008029B4 (de) | 2014-05-28 | 2023-05-17 | Asml Netherlands B.V. | Elektrostatische Haltevorrichtung mit einer Elektroden-Trägerscheibe und Verfahren zur Herstellung der Haltevorrichtung |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US10431435B2 (en) * | 2014-08-01 | 2019-10-01 | Applied Materials, Inc. | Wafer carrier with independent isolated heater zones |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US10325800B2 (en) * | 2014-08-26 | 2019-06-18 | Applied Materials, Inc. | High temperature electrostatic chucking with dielectric constant engineered in-situ charge trap materials |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10008404B2 (en) * | 2014-10-17 | 2018-06-26 | Applied Materials, Inc. | Electrostatic chuck assembly for high temperature processes |
US10002782B2 (en) | 2014-10-17 | 2018-06-19 | Lam Research Corporation | ESC assembly including an electrically conductive gasket for uniform RF power delivery therethrough |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10781518B2 (en) * | 2014-12-11 | 2020-09-22 | Applied Materials, Inc. | Gas cooled electrostatic chuck (ESC) having a gas channel formed therein and coupled to a gas box on both ends of the gas channel |
US9984911B2 (en) * | 2014-12-11 | 2018-05-29 | Applied Materials, Inc. | Electrostatic chuck design for high temperature RF applications |
JP6408903B2 (ja) * | 2014-12-25 | 2018-10-17 | 東京エレクトロン株式会社 | エッチング処理方法及びエッチング処理装置 |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US20160230269A1 (en) * | 2015-02-06 | 2016-08-11 | Applied Materials, Inc. | Radially outward pad design for electrostatic chuck surface |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US10237917B2 (en) * | 2015-03-09 | 2019-03-19 | Nuflare Technology, Inc. | Heater and apparatus for manufacturing semiconductor device using heater |
US10186444B2 (en) * | 2015-03-20 | 2019-01-22 | Applied Materials, Inc. | Gas flow for condensation reduction with a substrate processing chuck |
US10008399B2 (en) * | 2015-05-19 | 2018-06-26 | Applied Materials, Inc. | Electrostatic puck assembly with metal bonded backing plate for high temperature processes |
US9691645B2 (en) * | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
TWI703671B (zh) * | 2015-08-06 | 2020-09-01 | 美商應用材料股份有限公司 | 螺接式晶圓夾具熱管理系統及用於晶圓處理系統的方法 |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10950477B2 (en) | 2015-08-07 | 2021-03-16 | Applied Materials, Inc. | Ceramic heater and esc with enhanced wafer edge performance |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
WO2017033738A1 (ja) * | 2015-08-27 | 2017-03-02 | 住友大阪セメント株式会社 | 静電チャック装置 |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US9805963B2 (en) | 2015-10-05 | 2017-10-31 | Lam Research Corporation | Electrostatic chuck with thermal choke |
KR102615853B1 (ko) * | 2015-10-15 | 2023-12-21 | 어플라이드 머티어리얼스, 인코포레이티드 | 기판 캐리어 시스템 |
WO2017069238A1 (ja) * | 2015-10-21 | 2017-04-27 | 住友大阪セメント株式会社 | 静電チャック装置 |
JP2017092156A (ja) | 2015-11-03 | 2017-05-25 | ナショナル チュン−シャン インスティテュート オブ サイエンス アンド テクノロジー | 高密度のプラズマ及び高温の半導体製造プロセスに用いられる窒化アルミニウムの静電チャンク |
US10020218B2 (en) | 2015-11-17 | 2018-07-10 | Applied Materials, Inc. | Substrate support assembly with deposited surface features |
WO2017100136A1 (en) * | 2015-12-07 | 2017-06-15 | Applied Materials, Inc. | Method and apparatus for clamping and declamping substrates using electrostatic chucks |
WO2017100132A1 (en) * | 2015-12-10 | 2017-06-15 | Ioneer, Llc | Apparatus and method for determining parameters of process operation |
US10499461B2 (en) * | 2015-12-21 | 2019-12-03 | Intel Corporation | Thermal head with a thermal barrier for integrated circuit die processing |
JP6959697B2 (ja) | 2016-01-15 | 2021-11-05 | ロヒンニ リミテッド ライアビリティ カンパニー | 装置上のカバーを介してバックライトで照らす装置及び方法 |
KR20180112794A (ko) * | 2016-01-22 | 2018-10-12 | 어플라이드 머티어리얼스, 인코포레이티드 | 전도성 층들이 매립된 세라믹 샤워헤드 |
US10249526B2 (en) | 2016-03-04 | 2019-04-02 | Applied Materials, Inc. | Substrate support assembly for high temperature processes |
KR102377658B1 (ko) * | 2016-03-23 | 2022-03-24 | 엔지케이 인슐레이터 엘티디 | 코디어라이트질 소결체, 그 제법 및 복합 기판 |
US10340171B2 (en) | 2016-05-18 | 2019-07-02 | Lam Research Corporation | Permanent secondary erosion containment for electrostatic chuck bonds |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US11069553B2 (en) * | 2016-07-07 | 2021-07-20 | Lam Research Corporation | Electrostatic chuck with features for preventing electrical arcing and light-up and improving process uniformity |
WO2018013271A1 (en) * | 2016-07-13 | 2018-01-18 | Applied Materials, Inc. | An improved substrate support |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10784139B2 (en) * | 2016-12-16 | 2020-09-22 | Applied Materials, Inc. | Rotatable electrostatic chuck having backside gas supply |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10910195B2 (en) | 2017-01-05 | 2021-02-02 | Lam Research Corporation | Substrate support with improved process uniformity |
JP6829087B2 (ja) * | 2017-01-27 | 2021-02-10 | 京セラ株式会社 | 試料保持具 |
CN108701630A (zh) * | 2017-01-31 | 2018-10-23 | 应用材料公司 | 基板载体和处理基板的方法 |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11011355B2 (en) * | 2017-05-12 | 2021-05-18 | Lam Research Corporation | Temperature-tuned substrate support for substrate processing systems |
JP7176860B6 (ja) | 2017-05-17 | 2022-12-16 | アプライド マテリアルズ インコーポレイテッド | 前駆体の流れを改善する半導体処理チャンバ |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US11289355B2 (en) | 2017-06-02 | 2022-03-29 | Lam Research Corporation | Electrostatic chuck for use in semiconductor processing |
CN108987323B (zh) * | 2017-06-05 | 2020-03-31 | 北京北方华创微电子装备有限公司 | 一种承载装置及半导体加工设备 |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
TWI801390B (zh) * | 2017-06-19 | 2023-05-11 | 美商應用材料股份有限公司 | 用於高溫處理腔室的靜電吸座及其形成方法 |
US20180374736A1 (en) * | 2017-06-22 | 2018-12-27 | Applied Materials, Inc. | Electrostatic carrier for die bonding applications |
US20180374737A1 (en) * | 2017-06-23 | 2018-12-27 | Watlow Electric Manufacturing Company | High temperature heat plate pedestal |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US11469084B2 (en) | 2017-09-05 | 2022-10-11 | Lam Research Corporation | High temperature RF connection with integral thermal choke |
US11955362B2 (en) | 2017-09-13 | 2024-04-09 | Applied Materials, Inc. | Substrate support for reduced damage substrate backside |
JP2019057531A (ja) * | 2017-09-19 | 2019-04-11 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | ウエハ支持装置 |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
KR102441541B1 (ko) * | 2017-11-09 | 2022-09-08 | 주식회사 미코세라믹스 | 마운트, 상기 마운트를 포함하는 히터 및 상기 히터를 포함하는 증착 장치 |
CN107808848B (zh) * | 2017-11-28 | 2024-10-25 | 北京北方华创微电子装备有限公司 | 静电卡盘以及半导体设备 |
US11410857B2 (en) | 2017-11-30 | 2022-08-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Wafer holding pins and methods of using the same |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US11149345B2 (en) * | 2017-12-11 | 2021-10-19 | Applied Materials, Inc. | Cryogenically cooled rotatable electrostatic chuck |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
KR102655866B1 (ko) | 2018-01-31 | 2024-04-05 | 램 리써치 코포레이션 | 정전 척 (electrostatic chuck, ESC) 페데스탈 전압 분리 |
US20190244787A1 (en) * | 2018-02-02 | 2019-08-08 | Wei-Chuan Chou | Plasma etching reaction chamber |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
TWI766433B (zh) | 2018-02-28 | 2022-06-01 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US11086233B2 (en) * | 2018-03-20 | 2021-08-10 | Lam Research Corporation | Protective coating for electrostatic chucks |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10957572B2 (en) | 2018-05-02 | 2021-03-23 | Applied Materials, Inc. | Multi-zone gasket for substrate support assembly |
JP7090465B2 (ja) * | 2018-05-10 | 2022-06-24 | 東京エレクトロン株式会社 | 載置台及びプラズマ処理装置 |
JP2019201086A (ja) * | 2018-05-15 | 2019-11-21 | 東京エレクトロン株式会社 | 処理装置、部材及び温度制御方法 |
JP2021527962A (ja) | 2018-06-22 | 2021-10-14 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 半導体ウェハ処理におけるウェハ裏面損傷を最小化する方法 |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
WO2020020462A1 (en) * | 2018-07-26 | 2020-01-30 | Applied Materials, Inc. | Holding device for holding a carrier or a component in a vacuum chamber, use of a holding device for holding a carrier or a component in a vacuum chamber, apparatus for handling a carrier in a vacuum chamber, and vacuum deposition system |
US11183368B2 (en) | 2018-08-02 | 2021-11-23 | Lam Research Corporation | RF tuning systems including tuning circuits having impedances for setting and adjusting parameters of electrodes in electrostatic chucks |
KR20200023988A (ko) * | 2018-08-27 | 2020-03-06 | 삼성전자주식회사 | 정전 척 및 상기 정전 척을 탑재한 웨이퍼 식각 장치 |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
SG11202101496WA (en) * | 2018-10-26 | 2021-05-28 | Applied Materials Inc | High density carbon films for patterning applications |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11031273B2 (en) * | 2018-12-07 | 2021-06-08 | Applied Materials, Inc. | Physical vapor deposition (PVD) electrostatic chuck with improved thermal coupling for temperature sensitive processes |
KR102714796B1 (ko) * | 2018-12-11 | 2024-10-07 | 어플라이드 머티어리얼스, 인코포레이티드 | 극저온 정전 척 |
US11380571B2 (en) * | 2018-12-13 | 2022-07-05 | Xia Tai Xin Semiconductor (Qing Dao) Ltd. | Chuck assembly and method of securing electrostatic chuck |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
WO2020185467A1 (en) | 2019-03-08 | 2020-09-17 | Lam Research Corporation | Chuck for plasma processing chamber |
JP7269759B2 (ja) * | 2019-03-12 | 2023-05-09 | 新光電気工業株式会社 | 基板固定装置 |
EP3963402B1 (en) * | 2019-04-30 | 2024-12-25 | ASML Netherlands B.V. | Method for providing a wear-resistant material on a body, and composite body |
CN113994463A (zh) | 2019-05-16 | 2022-01-28 | 应用材料公司 | 用于使基板背侧损伤最小化的方法和设备 |
US11887878B2 (en) * | 2019-06-28 | 2024-01-30 | Applied Materials, Inc. | Detachable biasable electrostatic chuck for high temperature applications |
US20220262657A1 (en) * | 2019-08-02 | 2022-08-18 | Applied Materials, Inc. | Pedestal with multi-zone heating |
US12248254B2 (en) | 2019-10-08 | 2025-03-11 | Applied Materials, Inc. | Universal metrology file, protocol, and process for maskless lithography systems |
US20210175103A1 (en) * | 2019-12-06 | 2021-06-10 | Applied Materials, Inc. | In situ failure detection in semiconductor processing chambers |
CN111128845B (zh) * | 2019-12-16 | 2022-10-21 | 北京北方华创微电子装备有限公司 | 应用于薄膜沉积装置的托盘 |
JP2021118249A (ja) * | 2020-01-24 | 2021-08-10 | 東京エレクトロン株式会社 | プラズマ処理装置 |
KR102253957B1 (ko) * | 2020-01-31 | 2021-05-20 | 정홍흔 | 반도체 플라즈마 물리기상증착 장치 및 볼록형 서스 히터 |
CN111477569B (zh) * | 2020-04-10 | 2024-02-27 | 北京北方华创微电子装备有限公司 | 一种半导体设备中的加热装置及半导体设备 |
CN115668478A (zh) | 2020-05-11 | 2023-01-31 | 恩特格里斯公司 | 具有气流特征的静电夹盘及相关的方法 |
CN111607785A (zh) * | 2020-05-26 | 2020-09-01 | 北京北方华创微电子装备有限公司 | 一种加热装置及半导体加工设备 |
US20210381101A1 (en) * | 2020-06-03 | 2021-12-09 | Applied Materials, Inc. | Substrate processing system |
JP7515310B2 (ja) * | 2020-06-10 | 2024-07-12 | 東京エレクトロン株式会社 | 載置台、基板処理装置及び基板処理方法 |
US11602064B2 (en) | 2020-09-01 | 2023-03-07 | Applied Materials, Inc. | Dynamic electrical and fluid delivery system with indexing motion for batch processing chambers |
EP4233096A4 (en) * | 2020-10-20 | 2024-11-13 | LAM Research Corporation | LOW TEMPERATURE COLD EDGE ELECTROSTATIC CHUCK |
CN114695048A (zh) * | 2020-12-30 | 2022-07-01 | 中微半导体设备(上海)股份有限公司 | 下电极组件和包含下电极组件的等离子体处理装置 |
US11567417B2 (en) * | 2021-01-20 | 2023-01-31 | Applied Materials, Inc. | Anti-slippery stamp landing ring |
US11569114B2 (en) * | 2021-02-12 | 2023-01-31 | Applied Materials, Inc. | Semiconductor processing with cooled electrostatic chuck |
CN112582330A (zh) * | 2021-02-22 | 2021-03-30 | 北京中硅泰克精密技术有限公司 | 半导体工艺设备及其静电卡盘组件 |
US11699611B2 (en) | 2021-02-23 | 2023-07-11 | Applied Materials, Inc. | Forming mesas on an electrostatic chuck |
JP7632969B2 (ja) * | 2021-03-23 | 2025-02-19 | 日本特殊陶業株式会社 | 電極埋設部材、および基板保持部材 |
JP7685617B2 (ja) * | 2021-05-10 | 2025-05-29 | アプライド マテリアルズ インコーポレイテッド | 金属マトリックス複合材料を用いた高温サセプタ |
FI130020B (en) | 2021-05-10 | 2022-12-30 | Picosun Oy | Substrate processing apparatus and method |
TW202322266A (zh) * | 2021-10-04 | 2023-06-01 | 荷蘭商Asm Ip私人控股有限公司 | 模組化反應室總成 |
JP7698609B2 (ja) * | 2021-11-15 | 2025-06-25 | 日本碍子株式会社 | ウエハ載置台 |
US12014906B2 (en) * | 2021-11-19 | 2024-06-18 | Applied Materials, Inc. | High temperature detachable very high frequency (VHF) electrostatic chuck (ESC) for PVD chamber |
US20230162955A1 (en) * | 2021-11-24 | 2023-05-25 | Applied Materials, Inc. | Electrostatic chuck with detachable shaft |
JP7599451B2 (ja) * | 2022-04-26 | 2024-12-13 | 日本碍子株式会社 | ウエハ載置台 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081414A (en) * | 1998-05-01 | 2000-06-27 | Applied Materials, Inc. | Apparatus for improved biasing and retaining of a workpiece in a workpiece processing system |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5805408A (en) * | 1995-12-22 | 1998-09-08 | Lam Research Corporation | Electrostatic clamp with lip seal for clamping substrates |
US6108189A (en) * | 1996-04-26 | 2000-08-22 | Applied Materials, Inc. | Electrostatic chuck having improved gas conduits |
US5764471A (en) | 1996-05-08 | 1998-06-09 | Applied Materials, Inc. | Method and apparatus for balancing an electrostatic force produced by an electrostatic chuck |
US5903428A (en) | 1997-09-25 | 1999-05-11 | Applied Materials, Inc. | Hybrid Johnsen-Rahbek electrostatic chuck having highly resistive mesas separating the chuck from a wafer supported thereupon and method of fabricating same |
US5880924A (en) | 1997-12-01 | 1999-03-09 | Applied Materials, Inc. | Electrostatic chuck capable of rapidly dechucking a substrate |
US6067222A (en) | 1998-11-25 | 2000-05-23 | Applied Materials, Inc. | Substrate support apparatus and method for fabricating same |
JP2001102436A (ja) * | 1999-05-07 | 2001-04-13 | Applied Materials Inc | 静電チャック及びその製造方法 |
JP3805134B2 (ja) * | 1999-05-25 | 2006-08-02 | 東陶機器株式会社 | 絶縁性基板吸着用静電チャック |
JP2001223261A (ja) * | 2000-02-07 | 2001-08-17 | Hitachi Ltd | 静電チャック及び静電吸着装置 |
KR20010111058A (ko) * | 2000-06-09 | 2001-12-15 | 조셉 제이. 스위니 | 전체 영역 온도 제어 정전기 척 및 그 제조방법 |
US7479456B2 (en) * | 2004-08-26 | 2009-01-20 | Applied Materials, Inc. | Gasless high voltage high contact force wafer contact-cooling electrostatic chuck |
JP3623938B2 (ja) * | 2000-12-11 | 2005-02-23 | ジーイー・スペシャルティ・マテリアルズ・ジャパン株式会社 | 静電チャックの製造方法 |
US6483690B1 (en) | 2001-06-28 | 2002-11-19 | Lam Research Corporation | Ceramic electrostatic chuck assembly and method of making |
US6538872B1 (en) | 2001-11-05 | 2003-03-25 | Applied Materials, Inc. | Electrostatic chuck having heater and method |
JP3881908B2 (ja) * | 2002-02-26 | 2007-02-14 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置 |
KR20050005035A (ko) | 2003-07-01 | 2005-01-13 | 삼성전자주식회사 | 화학기상증착 공정용 반도체소자 제조설비 |
KR100505035B1 (ko) | 2003-11-17 | 2005-07-29 | 삼성전자주식회사 | 기판을 지지하기 위한 정전척 |
JP4349952B2 (ja) * | 2004-03-24 | 2009-10-21 | 京セラ株式会社 | ウェハ支持部材とその製造方法 |
JP4476701B2 (ja) * | 2004-06-02 | 2010-06-09 | 日本碍子株式会社 | 電極内蔵焼結体の製造方法 |
JP4476824B2 (ja) * | 2005-01-25 | 2010-06-09 | 太平洋セメント株式会社 | 静電チャックおよび露光装置 |
TW200726344A (en) * | 2005-12-30 | 2007-07-01 | Epistar Corp | Hybrid composite material substrate |
JP4052343B2 (ja) * | 2006-02-08 | 2008-02-27 | Toto株式会社 | 静電チャック |
JP4615464B2 (ja) * | 2006-03-16 | 2011-01-19 | 東京エレクトロン株式会社 | プラズマ処理装置用電極アッセンブリ及びプラズマ処理装置 |
US20070224451A1 (en) * | 2006-03-24 | 2007-09-27 | General Electric Company | Composition, coating, coated article, and method |
JP2008042140A (ja) * | 2006-08-10 | 2008-02-21 | Tokyo Electron Ltd | 静電チャック装置 |
US7672111B2 (en) * | 2006-09-22 | 2010-03-02 | Toto Ltd. | Electrostatic chuck and method for manufacturing same |
US8573836B2 (en) * | 2006-10-26 | 2013-11-05 | Tokyo Electron Limited | Apparatus and method for evaluating a substrate mounting device |
-
2009
- 2009-08-06 WO PCT/US2009/052917 patent/WO2010019430A2/en active Application Filing
- 2009-08-06 JP JP2011523047A patent/JP2011530833A/ja active Pending
- 2009-08-06 KR KR1020117005795A patent/KR101582785B1/ko active Active
- 2009-08-06 CN CN200980136614XA patent/CN102160167B/zh active Active
- 2009-08-06 EP EP09807085A patent/EP2321846A4/en not_active Withdrawn
- 2009-08-11 US US12/539,410 patent/US8390980B2/en active Active
- 2009-08-12 TW TW98127179A patent/TWI473199B/zh active
-
2013
- 2013-11-06 JP JP2013230258A patent/JP5538612B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081414A (en) * | 1998-05-01 | 2000-06-27 | Applied Materials, Inc. | Apparatus for improved biasing and retaining of a workpiece in a workpiece processing system |
Also Published As
Publication number | Publication date |
---|---|
JP5538612B2 (ja) | 2014-07-02 |
TW201027661A (en) | 2010-07-16 |
WO2010019430A3 (en) | 2010-05-14 |
EP2321846A4 (en) | 2012-03-14 |
CN102160167A (zh) | 2011-08-17 |
JP2014060421A (ja) | 2014-04-03 |
US8390980B2 (en) | 2013-03-05 |
WO2010019430A2 (en) | 2010-02-18 |
US20100039747A1 (en) | 2010-02-18 |
EP2321846A2 (en) | 2011-05-18 |
KR101582785B1 (ko) | 2016-01-07 |
TWI473199B (zh) | 2015-02-11 |
JP2011530833A (ja) | 2011-12-22 |
KR20110049867A (ko) | 2011-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102160167B (zh) | 静电吸盘组件 | |
US6853533B2 (en) | Full area temperature controlled electrostatic chuck and method of fabricating same | |
TWI720110B (zh) | 用於高功率電漿蝕刻處理的氣體分配板組件 | |
KR101892911B1 (ko) | 정전 척 및 정전 척의 사용 방법들 | |
TWI660453B (zh) | 用於高溫處理之靜電吸座組件 | |
US10079167B2 (en) | Electrostatic chucking device | |
CN108505010B (zh) | 用于沉积腔室的基板支撑夹盘冷却 | |
JP4805450B2 (ja) | 静電チャック及び真空チャンバ内の基板処理方法 | |
US8007591B2 (en) | Substrate holder having a fluid gap and method of fabricating the substrate holder | |
US6503368B1 (en) | Substrate support having bonded sections and method | |
US6535372B2 (en) | Controlled resistivity boron nitride electrostatic chuck apparatus for retaining a semiconductor wafer and method of fabricating the same | |
CN115410978B (zh) | 静电卡盘和半导体工艺设备 | |
US20250014875A1 (en) | Wafer placement table | |
TWI881416B (zh) | 用於靜電卡緊真空密封 | |
US12211671B2 (en) | Wafer placement table | |
US20250069865A1 (en) | Member for semiconductor manufacturing apparatus | |
TW202441691A (zh) | 半導體製造裝置用構件 | |
TW202412166A (zh) | 晶圓載置台 | |
TW202425204A (zh) | 晶圓載置台 | |
TW202410281A (zh) | 具有故障保護的高溫基板支撐組件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent for invention or patent application | ||
CB02 | Change of applicant information |
Address after: American California Applicant after: Applied Materials Inc. Address before: American California Applicant before: Applied Materials Inc. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |