[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a104429 -id:a104429
Displaying 1-10 of 39 results found. page 1 2 3 4
     Sort: relevance | references | number | modified | created      Format: long | short | data
A279199 Number of reducible ways to split 1, 2, 3, ..., 3n into n arithmetic progressions each with 3 terms: a(n) = A104429(n) - A202705(n). +20
10
0, 0, 1, 3, 9, 30, 117, 512, 2597, 14892, 99034, 721350, 5909324, 52578654, 516148082, 5422071091, 61889692290, 749456672155 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
REFERENCES
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
LINKS
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "L".
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
CROSSREFS
All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 15 2016
EXTENSIONS
Definition corrected by N. J. A. Sloane, Jan 09 2017 at the suggestion of Fausto A. C. Cariboni.
a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017
STATUS
approved
A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.
(Formerly M2322 N0917)
+10
311
1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is the unique sequence a satisfying a'(n)=a(a(n))+1 for all n in the set N of natural numbers, where a' denotes the ordered complement (in N) of a. - Clark Kimberling, Feb 17 2003
This sequence and A001950 may be defined as follows. Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
These are the numbers whose lazy Fibonacci representation (see A095791) includes 1; the complementary sequence (the upper Wythoff sequence, A001950) are the numbers whose lazy Fibonacci representation includes 2 but not 1.
a(n) is the unique monotonic sequence satisfying a(1)=1 and the condition "if n is in the sequence then n+(rank of n) is not in the sequence" (e.g. a(4)=6 so 6+4=10 and 10 is not in the sequence) - Benoit Cloitre, Mar 31 2006
Write A for A000201 and B for A001950 (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB,...,BBB,... appear in many complementary equations having solution A000201 (or equivalently, A001950). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Cumulative sum of A001468 terms. - Eric Angelini, Aug 19 2008
The lower Wythoff sequence also can be constructed by playing the so-called Mancala-game: n piles of total d(n) chips are standing in a row. The piles are numbered from left to right by 1, 2, 3, ... . The number of chips in a pile at the beginning of the game is equal to the number of the pile. One step of the game is described as follows: Distribute the pile on the very left one by one to the piles right of it. If chips are remaining, build piles out of one chip subsequently to the right. After f(n) steps the game ends in a constant row of piles. The lower Wythoff sequence is also given by n -> f(n). - Roland Schroeder (florola(AT)gmx.de), Jun 19 2010
With the exception of the first term, a(n) gives the number of iterations required to reverse the list {1,2,3,...,n} when using the mapping defined as follows: remove the first term of the list, z(1), and add 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list. See A183110 where this mapping is used and other references given. This appears to be essentially the Mancala-type game interpretation given by R. Schroeder above. - John W. Layman, Feb 03 2011
Also row numbers of A213676 starting with an even number of zeros. - Reinhard Zumkeller, Mar 10 2013
From Jianing Song, Aug 18 2022: (Start)
Numbers k such that {k*phi} > phi^(-2), where {} denotes the fractional part.
Proof: Write m = floor(k*phi).
If {k*phi} > phi^(-2), take s = m-k+1. From m < k*phi < m+1 we have k < (m-k+1)*phi < k + phi, so floor(s*phi) = k or k+1. If floor(s*phi) = k+1, then (see A003622) floor((k+1)*phi) = floor(floor(s*phi)*phi) = floor(s*phi^2)-1 = s+floor(s*phi)-1 = m+1, but actually we have (k+1)*phi > m+phi+phi^(-2) = m+2, a contradiction. Hence floor(s*phi) = k.
If floor(s*phi) = k, suppose otherwise that k*phi - m <= phi^(-2), then m < (k+1)*phi <= m+2, so floor((k+1)*phi) = m+1. Suppose that A035513(p,q) = k for p,q >= 1, then A035513(p,q+1) = floor((k+1)*phi) - 1 = m = A035513(s,1). But it is impossible for one number (m) to occur twice in A035513. (End)
The formula from Jianing Song above is a direct consequence of an old result by Carlitz et al. (1972). Their Theorem 11 states that (a(n)) consists of the numbers k such that {k*phi^(-2)} < phi^(-1). One has {k*phi^(-2)} = {k*(2-phi)} = {-k*phi}. Using that 1-phi^(-1) = phi^(-2), the Jianing Song formula follows. - Michel Dekking, Oct 14 2023
REFERENCES
Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.
LINKS
J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.
J.-P. Allouche, J. Shallit, and G. Skordev, Self-generating sets, integers with missing blocks and substitutions, Discrete Math. 292 (2005) 1-15.
Peter G. Anderson, The Fibonacci word as a 2-adic number and its continued fraction, Fibonacci Quarterly (2020) Vol. 58, No. 5, 21-24.
Joerg Arndt, Matters Computational (The Fxtbook), pp.756-757.
Shiri Artstein-Avidan, Aviezri S. Fraenkel, and Vera T. Sos, A two-parameter family of an extension of Beatty, Discr. Math. 308 (2008), 4578-4588.
Shiri Artstein-avidan, Aviezri S. Fraenkel, and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, Discrete Math., 308 (2008), 4578-4588.
E. J. Barbeau, J. Chew, and S. Tanny, A matrix dynamics approach to Golomb's recursion, Electronic J. Combinatorics, #4.1 16 1997.
M. Bunder and K. Tognetti, On the self matching properties of [j tau], Discrete Math., 241 (2001), 139-151.
L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Fibonacci representations, Fib. Quart., Vol. 10, No. 1 (1972), pp. 1-28.
L. Carlitz, R. Scoville, and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
B. Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.
J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
P. J. Downey and R. E. Griswold, On a family of nested recurrences, Fib. Quart., 22 (1984), 310-317.
Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, unpublished.
Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date [Cached copy, with permission]
Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18.
Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014.
A. S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. of Math. 21 (1969) 6-27. [History, references, generalization]
A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353-361 (the case a=1).
A. S. Fraenkel, Ratwyt, December 28 2011.
David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Article 07.1.5, 10 (2007) 1-13.
M. Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, 118 (2011), 497-507.
Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), #15.11.8.
Martin Griffiths, A difference property amongst certain pairs of Beatty sequences, The Mathematical Gazette (2018) Vol. 102, Issue 554, Article 102.36, 348-350.
H. Grossman, A set containing all integers, Amer. Math. Monthly, 69 (1962), 532-533.
A. J. Hildebrand, Junxian Li, Xiaomin Li, and Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
T. Karki, A. Lacroix, and M. Rigo, On the recognizability of self-generating sets, JIS 13 (2010) #10.2.2.
Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, 3 (2000), #00.2.8.
Clark Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008) 08.3.3.
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Clark Kimberling, Problem Proposals, The Fibonacci Quarterly, vol. 52 #5, 2015, p5-14.
Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
C. Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (edts.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337.[See A317208 for a link.]
U. Larsson and N. Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
A. J. Macfarlane, On the fibbinary numbers and the Wythoffarray, arXiv:2405.18128 [math.CO], 2024. See page 2.
R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
D. J. Newman, Problem 3117, Amer. Math. Monthly, 34 (1927), 158-159.
D. J. Newman, Problem 5252, Amer. Math. Monthly, 72 (1965), 1144-1145.
Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff’s game, pages 377-410 in "Games of No Chance 3, MSRI Publications Volume 56, 2009.
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
Michel Rigo, Invariant games and non-homogeneous Beatty sequences, Slides of a talk, Journée de Mathématiques Discrètes, 2015.
Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol 49, Number 2, May 2011.
Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
Jeffrey Shallit, Sumsets of Wythoff Sequences, Fibonacci Representation, and Beyond, arXiv:2006.04177 [math.CO], 2020.
Jeffrey Shallit, Frobenius Numbers and Automatic Sequences, arXiv:2103.10904 [math.NT], 2021.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
N. J. A. Sloane, Classic Sequences
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull. 19 (1976) pp. 473-482.
Richard Southwell and Jianwei Huang, Complex Networks from Simple Rewrite Systems, arXiv preprint arXiv:1205.0596 [cs.SI], 2012. - N. J. A. Sloane, Oct 13 2012
X. Sun, Wythoff's sequence and N-Heap Wythoff's conjectures, Discr. Math., 300 (2005), 180-195.
J. C. Turner, The alpha and the omega of the Wythoff pairs, Fib. Q., 27 (1989), 76-86.
Eric Weisstein's World of Mathematics, Beatty Sequence
Eric Weisstein's World of Mathematics, Golden Ratio
Eric Weisstein's World of Mathematics, Rabbit Constant
Eric Weisstein's World of Mathematics, Wythoff's Game
Eric Weisstein's World of Mathematics, Wythoff Array
FORMULA
Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.
Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in the sequence".
a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in the sequence, a(n+1) = a(n)+2 if n is in the sequence.
a(a(n)) = floor(n*phi^2) - 1 = A003622(n).
{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08 2003
{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).
a(n) = A001950(n) - n. - Philippe Deléham, May 02 2004
a(0) = 0; a(n) = n + Max_{k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004
a(Fibonacci(r-1)+j) = Fibonacci(r)+a(j) for 0 < j <= Fibonacci(r-2); 2 < r. - Paul Weisenhorn, Aug 18 2012
With 1 < k and A001950(k-1) < n <= A001950(k): a(n) = 2*n-k; A001950(n) = 3*n-k. - Paul Weisenhorn, Aug 21 2012
EXAMPLE
From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)
Example for n = 5; a(5) = 8;
(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):
[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
MAPLE
Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
MATHEMATICA
Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]
Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
PROG
(PARI) a(n)=floor(n*(sqrt(5)+1)/2)
(PARI) a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
(Maxima) makelist(floor(n*(1+sqrt(5))/2), n, 1, 60); /* Martin Ettl, Oct 17 2012 */
(Haskell)
a000201 n = a000201_list !! (n-1)
a000201_list = f [1..] [1..] where
f (x:xs) (y:ys) = y : f xs (delete (x + y) ys)
-- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
(Python)
def aupton(terms):
alst, aset = [None, 1], {1}
for n in range(1, terms):
an = alst[n] + (1 if n not in aset else 2)
alst.append(an); aset.add(an)
return alst[1:]
print(aupton(68)) # Michael S. Branicky, May 14 2021
(Python)
from math import isqrt
def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022
CROSSREFS
a(n) = least k such that s(k) = n, where s = A026242. Complement of A001950. See also A058066.
The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).
First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003
A185615 gives values n such that n divides A000201(n)^m for some integer m>0.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Bisections: A276854, A342279.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A001950 Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.
(Formerly M1332 N0509)
+10
253
2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Indices at which blocks (1;0) occur in infinite Fibonacci word; i.e., n such that A005614(n-2) = 0 and A005614(n-1) = 1. - Benoit Cloitre, Nov 15 2003
A000201 and this sequence may be defined as follows: Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
a(n) = n-th integer which is not equal to the floor of any multiple of phi, where phi = (1+sqrt(5))/2 = golden number. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), May 09 2007
Write A for A000201 and B for the present sequence (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB, ..., BBB, ... appear in many complementary equations having solution A000201 (or equivalently, the present sequence). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Apart from the initial 0 in A090909, is this the same as that sequence? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
If we define a base-phi integer as a positive number whose representation in the golden ratio base consists only of nonnegative powers of phi, and if these base-phi integers are ordered in increasing order (beginning 1, phi, ...), then it appears that the difference between the n-th and (n-1)-th base-phi integer is phi-1 if and only if n belongs to this sequence, and the difference is 1 otherwise. Further, if each base-phi integer is written in linear form as a + b*phi (for example, phi^2 is written as 1 + phi), then it appears that there are exactly two base-phi integers with b=n if and only if n belongs to this sequence, and exactly three base-phi integers with b=n otherwise. - Geoffrey Caveney, Apr 17 2014
Numbers with an odd number of trailing zeros in their Zeckendorf representation (A014417). - Amiram Eldar, Feb 26 2021
Numbers missing from A066096. - Philippe Deléham, Jan 19 2023
REFERENCES
Claude Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 324, Problem 2.
Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
Martin Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Jean-Paul Allouche and F. Michel Dekking, Generalized Beatty sequences and complementary triples, Moscow Journal of Combinatorics and Number Theory, Vol. 8, No. 4 (2019), pp. 325-341; arXiv preprint, arXiv:1809.03424 [math.NT], 2018-2019.
L. Carlitz, R. Scoville, and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.
H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, unpublished.
Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date [Cached copy, with permission]
Robbert Fokkink, The Pell Tower and Ostronometry, arXiv:2309.01644 [math.CO], 2023.
Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014
Aviezri S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, Vol. 89 (1982), pp. 353-361 (the case a=1).
Aviezri S. Fraenkel, The Raleigh game, INTEGERS: Electronic Journal of Combinatorial Number Theory 7.2 (2007): A13, 10 pages. See Table 1.
Aviezri S. Fraenkel, Ratwyt, December 28 2011.
Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math., Vol. 24, No. 2 (2010), pp. 570-588. - N. J. A. Sloane, May 06 2011
Martin Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, Vol. 118 (2011), pp. 497-507.
Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, Vol. 18 (2015), Article #15.11.8.
Martin Griffiths, A difference property amongst certain pairs of Beatty sequences, The Mathematical Gazette, Vol. 102, Issue 554 (2018), Article 102.36, pp. 348-350.
Tomi Kärki, Anne Lacroix, and Michel Rigo, On the recognizability of self-generating sets, JIS, Vol. 13 (2010), Article #10.2.2.
Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, Vol. 3 (2000), Article #00.2.8.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3.
Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
Clark Kimberling and Kenneth B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, Vol. 123, No. 2 (2016), pp. 267-273.
Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (eds.), Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. [See A317208 for a link.]
Urban Larsson and Nathan Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
A. J. Macfarlane, On the fibbinary numbers and the Wythoffarray, arXiv:2405.18128 [math.CO], 2024. See page 2.
D. J. Newman, Problem 5252, Amer. Math. Monthly, Vol. 72, No. 10 (1965), pp. 1144-1145.
Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff’s game, pages 377-410 in "Games of No Chance 3, MSRI Publications Volume 56, 2009.
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
Michel Rigo, Invariant games and non-homogeneous Beatty sequences, Slides of a talk, Journée de Mathématiques Discrètes, 2015.
Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol. 49, No. 2 (May 2011), pp. 151-154.
Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
Jeffrey Shallit, Sumsets of Wythoff Sequences, Fibonacci Representation, and Beyond, arXiv:2006.04177 [math.CO], 2020.
Jeffrey Shallit, Frobenius Numbers and Automatic Sequences, arXiv:2103.10904 [math.NT], 2021.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull., Vol. 19 (1976), pp. 473-482.
X. Sun, Wythoff's sequence and N-Heap Wythoff's conjectures, Discr. Math., Vol. 300 (2005), pp. 180-195.
J. C. Turner, The alpha and the omega of the Wythoff pairs, Fib. Q., Vol. 27 (1989), pp. 76-86.
Eric Weisstein's World of Mathematics, Beatty Sequence.
Eric Weisstein's World of Mathematics, Golden ratio.
Eric Weisstein's World of Mathematics, Wythoff's Game.
Eric Weisstein's World of Mathematics, Wythoff Array.
FORMULA
a(n) = n + floor(n*phi). In general, floor(n*phi^m) = Fibonacci(m-1)*n + floor(Fibonacci(m)*n*phi). - Benoit Cloitre, Mar 18 2003
a(n) = n + floor(n*phi) = n + A000201(n). - Paul Weisenhorn and Philippe Deléham
Append a 0 to the Zeckendorf expansion (cf. A035517) of n-th term of A000201.
a(n) = A003622(n) + 1. - Philippe Deléham, Apr 30 2004
a(n) = Min(m: A134409(m) = A006336(n)). - Reinhard Zumkeller, Oct 24 2007
If a'=A000201 is the ordered complement (in N) of {a(n)}, then a(Fib(r-2) + j) = Fib(r) + a(j) for 0 < j <= Fib(r-2), 3 < r; and a'(Fib(r-1) + j) = Fib(r) + a'(j) for 0 < j <= Fib(r-2), 2 < r. - Paul Weisenhorn, Aug 18 2012
With a(1)=2, a(2)=5, a'(1)=1, a'(2)=3 and 1 < k and a(k-1) < n <= a(k) one gets a(n)=3*n-k, a'(n)=2*n-k. - Paul Weisenhorn, Aug 21 2012
EXAMPLE
From Paul Weisenhorn, Aug 18 2012 and Aug 21 2012: (Start)
a(14) = floor(14*phi^2) = 36; a'(14) = floor(14*phi)=22;
with r=9 and j=1: a(13+1) = 34 + 2 = 36;
with r=8 and j=1: a'(13+1) = 21 + 1 = 22.
k=6 and a(5)=13 < n <= a(6)=15
a(14) = 3*14 - 6 = 36; a'(14) = 2*14 - 6 = 22;
a(15) = 3*15 - 6 = 39; a'(15) = 2*15 - 6 = 24. (End)
MAPLE
A001950 := proc(n)
floor(n*(3+sqrt(5))/2) ;
end proc:
seq(A001950(n), n=0..40) ; # R. J. Mathar, Jul 16 2024
MATHEMATICA
Table[Floor[N[n*(1+Sqrt[5])^2/4]], {n, 1, 75}]
Array[ Floor[ #*GoldenRatio^2] &, 60] (* Robert G. Wilson v, Apr 17 2010 *)
PROG
(PARI) a(n)=floor(n*(sqrt(5)+3)/2)
(PARI) A001950(n)=(sqrtint(n^2*5)+n*3)\2 \\ M. F. Hasler, Sep 17 2014
(Haskell)
a001950 n = a000201 n + n -- Reinhard Zumkeller, Mar 10 2013
(Magma) [Floor(n*((1+Sqrt(5))/2)^2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
(Python)
from math import isqrt
def A001950(n): return (n+isqrt(5*n**2)>>1)+n # Chai Wah Wu, Aug 10 2022
CROSSREFS
a(n) = greatest k such that s(k) = n, where s = A026242.
Complement of A000201 or A066096.
A002251 maps between A000201 and A001950, in that A002251(A000201(n)) = A001950(n), A002251(A001950(n)) = A000201(n).
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
First differences give (essentially) A076662.
Bisections: A001962, A001966.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Corrected by Michael Somos, Jun 07 2000
STATUS
approved
A104443 Square of P(n,t) read by antidiagonals. P(n,t) = number of ways to split [t*n] into n arithmetic progressions each with t terms. +10
20
1, 1, 1, 1, 3, 1, 1, 2, 15, 1, 1, 2, 5, 105, 1, 1, 2, 4, 15, 945, 1, 1, 2, 4, 11, 55, 10395, 1, 1, 2, 4, 10, 23, 232, 135135, 1, 1, 2, 4, 10, 21, 68, 1161, 2027025, 1, 1, 2, 4, 10, 20, 59, 161, 6643, 34459425, 1, 1, 2, 4, 10, 20, 57, 125, 488, 44566, 654729075, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 2, 2, 2, 2, 2, 2, 2, ...
1, 15, 5, 4, 4, 4, 4, 4, 4, ...
1, 105, 15, 11, 10, 10, 10, 10, 10, ...
1, 945, 55, 23, 21, 20, 20, 20, 20, ...
1, 10395, 232, 68, 59, 57, 56, 56, 56, ...
1, 135135, 1161, 161, 125, 119, 117, 116, 116, ...
1, 2027025, 6643, 488, 349, 329, 323, 321, 320, ...
1, 34459425, 44566, 1249, 848, 760, 745, 739, 737, ...
...
CROSSREFS
Cf. A104429-A104442. P(1, _)=P(_, 1) = A000012, P(_, 2) = A001147.
KEYWORD
nonn,tabl
AUTHOR
Jonas Wallgren, Mar 17 2005
EXTENSIONS
More terms from Alois P. Heinz, Nov 18 2020
STATUS
approved
A002849 Number of maximal collections of pairwise disjoint subsets {X,Y,Z} of {1, 2, ..., n}, each satisfying X + Y = Z.
(Formerly M0980 N0368)
+10
11
1, 1, 1, 2, 4, 6, 3, 10, 25, 12, 42, 8, 40, 204, 21, 135, 1002, 4228, 720, 5134, 29546, 4079, 35533, 3040, 28777, 281504, 20505, 212283, 2352469, 16907265, 1669221, 19424213, 167977344, 14708525, 191825926, 10567748, 149151774, 2102286756, 103372655, 1534969405 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
REFERENCES
R. K. Guy, "Sedlacek's Conjecture on Disjoint Solutions of x+y= z," in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, "Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics," in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Frank Niedermeyer, Table of n, a(n) for n = 1..44 (first 42 terms from Fausto A. C. Cariboni)
R. K. Guy, Letter to N. J. A. Sloane, Jun 24 1971: front, back [Annotated scanned copy, with permission]
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971. [Annotated scanned copy, with permission]
Richard K. Guy, The unity of combinatorics, in Proc. 25th Iran. Math. Conf., Tehran, (1994), Math. Appl. 329 (1994) 129-159, Kluwer Acad. Publ., Dordrecht, 1995.
Nigel Martin, Solving a conjecture of Sedlacek: maximal edge sets in the 3-uniform sumset hypergraphs, Discrete Mathematics, Volume 125, 1994, pp. 273-277.
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
EXAMPLE
For n = 3, the unique solution is 1 + 2 = 3.
For n = 12, there are 8 solutions:
1 5 6 | 1 5 6 | 2 5 7 | 1 6 7
2 8 10 | 3 7 10 | 3 6 9 | 4 5 9
4 7 11 | 2 9 11 | 1 10 11 | 3 8 11
3 9 12 | 4 8 12 | 4 8 12 | 2 10 12
--------+---------+---------+--------
2 4 6 | 2 6 8 | 3 4 7 | 3 5 8
1 9 10 | 4 5 9 | 1 8 9 | 2 7 9
3 8 11 | 3 7 10 | 5 6 11 | 4 6 10
5 7 12 | 1 11 12 | 2 10 12 | 1 11 12
PROG
(PARI) nxyz(v, t)=local(n, r, x2); r=0; if(t==0, return(1)); for(i3=3*t, #v, n=v[i3]; for(i1=1, i3-2, x2=n-v[i1]; if(x2<=v[i1], break); for(i2=i1+1, i3-1, if(v[i2]>=x2, if(v[i2]==x2, r+=nxyz(vector(i3-3, k, v[if(k<i1, k, if(k<i2-1, k+1, k+2))]), t-1)); break)))); r
a(n)=nxyz(vector(n, k, k), n\3-(n%12==6 || n%12==9)) \\ Franklin T. Adams-Watters
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Feb 10 2010, based on posting to the Sequence Fans Mailing List by Franklin T. Adams-Watters, R. K. Guy, R. H. Hardin, Alois P. Heinz, Andrew Weimholt, Max Alekseyev and others
a(32)-a(39) from Max Alekseyev, Feb 23 2012
Definition corrected by Max Alekseyev, Nov 16 2012, Jul 06 2023
a(40)-a(41) from Fausto A. C. Cariboni, Feb 04 2017
a(42) from Fausto A. C. Cariboni, Mar 12 2017
STATUS
approved
A108235 Number of partitions of {1,2,...,3n} into n triples (X,Y,Z) each satisfying X+Y=Z. +10
10
1, 1, 0, 0, 8, 21, 0, 0, 3040, 20505, 0, 0, 10567748, 103372655, 0, 0, 142664107305, 1836652173363, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
a(0)=1 by convention.
LINKS
Matthias Beck and Thomas Zaslavsky, Six Little Squares and How their Numbers Grow, Journal of Integer Sequences, 13 (2010), #10.6.2.
Christian Hercher and Frank Niedermeyer, Efficient Calculation the Number of Partitions of the Set {1,2,...,3n} into Subsets {x,y,z} Satisfying x+y=z, arXiv:2307.00303 [math.CO], 2023.
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
Wikipedia, Dancing Links
FORMULA
a(n) = 0 unless n == 0 or 1 (mod 4). For n == 0 or 1 (mod 4), a(n) = A002849(3n). See A002849 for references and further information.
EXAMPLE
For m = 1 the unique solution is 1 + 2 = 3.
For m = 4 there are 8 solutions:
1 5 6 | 1 5 6 | 2 5 7 | 1 6 7
2 8 10 | 3 7 10 | 3 6 9 | 4 5 9
4 7 11 | 2 9 11 | 1 10 11 | 3 8 11
3 9 12 | 4 8 12 | 4 8 12 | 2 10 12
--------+---------+---------+--------
2 4 6 | 2 6 8 | 3 4 7 | 3 5 8
1 9 10 | 4 5 9 | 1 8 9 | 2 7 9
3 8 11 | 3 7 10 | 5 6 11 | 4 6 10
5 7 12 | 1 11 12 | 2 10 12 | 1 11 12
.
The 8 solutions for m = 4, one per line:
(1, 5, 6), (2, 8, 10), (3, 9, 12), (4, 7, 11);
(1, 5, 6), (2, 9, 11), (3, 7, 10), (4, 8, 12);
(1, 10, 11), (2, 5, 7), (3, 6, 9), (4, 8, 12);
(1, 6, 7), (2, 10, 12), (3, 8, 11), (4, 5, 9);
(1, 9, 10), (2, 4, 6), (3, 8, 11), (5, 7, 12);
(1, 11, 12), (2, 6, 8), (3, 7, 10), (4, 5, 9);
(1, 8, 9), (2, 10, 12), (3, 4, 7), (5, 6, 11);
(1, 11, 12), (2, 7, 9), (3, 5, 8), (4, 6, 10).
MATHEMATICA
Table[Length[Select[Subsets[Select[Subsets[Range[3 n], {3}], #[[1]] + #[[2]] == #[[3]] &], {n}], Range[3 n] == Sort[Flatten[#]] &]], {n, 0,
5}] (* Suitable only for n<6. See Knuth's Dancing Links algorithm for n>5. *) (* Robert Price, Apr 03 2019 *)
PROG
(Sage) A = lambda n:sum(1 for t in DLXCPP([(a-1, b-1, a+b-1) for a in (1..3*n) for b in (1..min(3*n-a, a-1))])) # Tomas Boothby, Oct 11 2013
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Feb 10 2010, based on posting to the Sequence Fans Mailing List by Franklin T. Adams-Watters, R. K. Guy, R. H. Hardin, Alois P. Heinz, Andrew Weimholt and others.
EXTENSIONS
a(12) from R. H. Hardin, Feb 11 2010
a(12) confirmed and a(13) computed (using Knuth's dancing links algorithm) by Alois P. Heinz, Feb 11 2010
a(13) confirmed by Tomas Boothby, Oct 11 2013
a(16) from Frank Niedermeyer, Apr 19 2020
a(17)-a(19) from Frank Niedermeyer, May 02 2020
STATUS
approved
A202705 Number of irreducible ways to split 1, 2, 3, ..., 3n into n arithmetic progressions each with 3 terms. +10
10
1, 1, 1, 2, 6, 25, 115, 649, 4046, 29674, 228030, 1987700, 18402704, 188255116, 2030067605, 23829298479, 293949166112, 3909410101509 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
"Irreducible" means that there is no j such that the first j of the triples are a partition of 1, ..., 3j.
REFERENCES
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
LINKS
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "K".
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.] Gives a(0)-a(10).
FORMULA
G.f. = 1 - 1/g where g is g.f. for A104429.
a(n) = A279197(n) + 2*A279198(n) for n>0.
CROSSREFS
All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 26 2011
EXTENSIONS
a(11)-a(14) from Alois P. Heinz, Dec 28 2011
a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017
STATUS
approved
A279197 Number of self-conjugate inseparable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}). +10
10
1, 1, 2, 2, 11, 11, 55, 58, 486, 442, 4218, 3924, 45096, 42013, 538537, 505830, 7368091 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
In Richard Guy's letter, the term 50 is marked with a question mark. Peter Kagey has shown that the value should be 55. - N. J. A. Sloane, Feb 15 2017
From Peter Kagey, Feb 14 2017: (Start)
An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (See A202705.)
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
(End)
REFERENCES
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
LINKS
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "I".
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
EXAMPLE
Examples of solutions X,Y,Z for n=5:
2,4,3
5,7,6
1,15,8
9,11,10
12,14,13
and in his letter Richard Guy has drawn links pairing the first and fifth solutions, and the second and fourth solutions.
For n = 2 the a(2) = 1 solution is
[(2,6,4),(1,5,3)].
For n = 3 the a(3) = 2 solutions are
[(1,7,4),(3,9,6),(2,8,5)] and
[(2,4,3),(6,8,7),(1,9,5)].
CROSSREFS
All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 15 2016
EXTENSIONS
a(7) corrected and a(8)-a(13) added by Peter Kagey, Feb 14 2017
a(14)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
STATUS
approved
A282615 Number of self-conjugate separable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}). +10
10
0, 1, 1, 3, 4, 9, 20, 35, 102, 160, 736, 930, 5972, 6766, 59017, 61814, 671651 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (see A202705).
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |
LINKS
FORMULA
a(n) = A282616(n) - A279197(n).
a(n) = A279199(n) - A282618(n).
EXAMPLE
For n = 4 the a(4) = 3 solutions are:
(10,12,11),(7,9,8),(4,6,5),(1,3,2),
(10,12,11),(5,9,7),(4,8,6),(1,3,2), and
(8,12,10),(7,11,9),(2,6,4),(1,5,3).
CROSSREFS
All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
KEYWORD
nonn,more
AUTHOR
Peter Kagey, Feb 19 2017
EXTENSIONS
a(11)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
STATUS
approved
A104430 Number of ways to split 1, 2, 3, ..., 4n into n arithmetic progressions each with 4 terms. +10
7
1, 1, 2, 4, 11, 23, 68, 161, 488, 1249, 3771, 10388, 35725, 110449, 387057, 1411784, 5938390, 26054261, 129231034, 708657991 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Rémy Sigrist, C program
EXAMPLE
{{{1,2,3,4},{5,6,7,8},{9,10,11,12}}, {{1,2,3,4},{5,7,9,11},{6,8,10,12}}, {{1,3,5,7},{2,4,6,8},{9,10,11,12}}, {{1,4,7,10},{2,5,8,11},{3,6,9,12}}} are the 4 ways to split 1, 2, 3, ..., 12 into 3 arithmetic progressions each with 4 terms. Thus a(3)=4.
PROG
(C) See Links section.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jonas Wallgren, Mar 17 2005
EXTENSIONS
a(11)-a(17) from Alois P. Heinz, Dec 28 2011
a(0)=1 prepended by Alois P. Heinz, Nov 18 2020
a(18)-a(19) from Rémy Sigrist, Feb 07 2022
STATUS
approved
page 1 2 3 4

Search completed in 0.024 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 21:34 EDT 2024. Contains 375518 sequences. (Running on oeis4.)