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ABSTRACT

Generalizations of the Langford and Skolem problems are
considered. Chapter I deals with the relationships between
these two problems. and their solutions. Chapter II considers
the partitioning of the integers in the interval [1,n] into

triples satisfying
ax + by = ¢z

for arbitrary, fixed, positive integers a, b and ¢. Chapter III
considers other generalizations of the Langford and Skolem problems.
Except where references are given to the work of others, all con-
structions and theorems are either original or have been developed

in discussion with the supervisor, R.K. Guy.
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CHAPTER 1

I.1. INTRODUCTION

In this chapter we will discuss the problem of partitioning

the integers in the interval [1,7n] into triples satisfying

x4y =3z,

Hereafter, [1,n] will be used to denote the integers.1,2,...,n.

In I.2 we will outline the development of this partitioning
problem from other combinatorial problems. At each stage the re-
lationships between all problems under consideration will be shown.

In 1.3, we will consider solutions of the partitioning problem.
We will develop solutions from the problems discussed in I.2, when-
ever it is feasible, and we will offer some new solutions. Finally,
we shall address the question of how many solutions exist. In this
section @(n) denotes the number of partitions of [1l,n] and 4A(n) de-
notes the number of partitions of [l,n] associated with problems
discussed in I.2. It will be shown in I.2 that A(n) is also the
number of partitions of [1l,n] where every triple contains an ele-
ment less than or equal to %-. For partitions to exist, »n must be
a multiple of 3 and we write n = 3m.

Throughout this and the next chapter the m triples will be

written as

§
=t
1



(507:,311:,21:), 1x A £m.

{

Whenever convenient, we will order the triples so that



I.2 THE HISTORY OF x + y = 2z AND ITS RELATIONSHIP TO OTHER

FOMBINATORIAL TOPICS

The problem of partitioning sets into triples satisfying x +y = z
has occurred in many different problems under many guises. It has
occurred in arranging colored blocks [22]; interference-free misgsile
guidance codes [10], [26]; modified Nim games [42], [6]; and Steiner

triple systems [18], [20], [37].

I.2.1 Langford's Problem.

C.D. Langford [22] asked for a sequence of length 2n-2 containing
two copies of each integer 7 in [m-1], such that the two copies of 7
are separated by exactly ¢ terms. Such sequences we will-call Langford
sequences. He asked this problem after having watched his son try to
arrange colored blocks intoe linear patterns with rules, such as there

should be one block between the blue blocks, two between the red blocks,

etc. The sequence

41312432

illustrates the case m = 5. R.0. Davies [8] gave solutions (I.2.7)
for all permissible m. It will be shown later that such sequences
will only be possible when m is of the form 4k or 4k+l. We may now
consider the following modification; we require a sequence of length
2m, which contains two copies of each integer 7 in the interval [0,n],

such that the two copies of 7 are separated by exactly 7 terms. An



obvious solution is, if a Langford sequence exists then adjoin two

zeros$ to either the beginning or the end of the sequence:
4131243200 or 0041312432,

However, other solutions to this modified problem exist which cannot

be obtained from a Langford sequence:
753161357246200 4,

It will be shown later that m must again be of the form 4% or 4k+1

for a solution to exist.

I1.2.2 Nickerson's Problem.

R.S. Nickerson [29] asked for a sequence of length 27 consisting
of two copies of each integer 7 in [1,m] such that the two copies of
1 were separated by ¢-1 terms. Such sequences we will call Nickerson

sequences. The sequence
2423543115

illustrates the case m = 5. D.C.B. Marsh [25] obtained sclutions for
the permissible values of m (I.2.9).

These two problems, the modified Langford prcblem and the Nickerson
problem are, in fact, equivalent. For if we add one to each member of
any modified Langford sequence, we obtain a sequence with two copies
of each integer ¢ in [1,m] separated by -1 terms, i.e. a Nickerson
sequence. Similarly, if we subtract one from each member of a Nickerson

sequence we obtain a modified Langford sequence. For example, the



modified Langford sequences

{ .

4131243200; 1312432004; 7531613572462004
are respectively equivalent to the Nickerson sequences
5242354311; 2423543115; 8642724683573115.

I1.2.3 Skolem's Problem.
Th. Skolem [38] and Th. Bang [3] had earlier considered the
problem of partitioning the integers [1,2m] into m pairs (pi,qi)

such that

For example, if m = 5 then we may take (pi,qi) to be

Once more it will be shown that m must be of the form 4k or 4k+1
for a solution to exist (see I.2.8).

If we rank the members of a Nickerson sequence from 1 to 2m,
then the ranks corresponding to the pairs of occurrences of 7
partition the integers [1,2m] into pairs in which every difference
iy 1 £ 2 < m occurs just once. For example, in the Nickerson se-

-~

quence

sequence 2 42 354311 5
rank 12345678910



the ranks of 1 are 8 and 9, of 2 are 1 and 3, of 3 are 4 and 7, of

L are 2 and 6, and of 5 are 5 and 10, giving the pairs
(8,9) (1,3) (4,7) (2,6) (5,10)

which form a solution of Skolem's problem. Conversely, from a
sclution to the Skolem problem, we can obtain a solution to the
Nickerson problem. For if {(p;,qi)llsigm} is a solution to the

Skolem problem then form the sequence of integers in which the

by o

integer 2, 1 < Z & m has ranks p; and q; For example
(14,15) (4,6) (10,13) (3,7) (11,16) (2,8) (5,12) (1,9),

which is a solution to the Skolem problem for m = 8, gives the

Nickerson sequence

rank 12 3 4 5 6 7 8 9 10 11 12 13 14 15 15
sequence 8 6 4 2 7 2 4 6 9 3 5 7 3 1 1 5

Thus the Skolem and Nickerson problems are equivalent.

L.2.4

Skolem [38] considered the problem of whether the positive

integers could be partitioned in pairs (pi,qi) such that

qe = Bz = z

for all ©. Skolem discovered the partition
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7 123 4 5 b6 7 8 9101112 13 14 15 ...
1% 134 6 8 911 12 14 16 17 19 21 22 24 ...
q; 25710 13 15 18 20 23 26 28 31 34 36 39 ...

where p, =1, g, =2 and p. = mex{pj,qj|lsj<i} and g, = p+1, where
the "mex", or minimum excluded value, of a set is the least positive
integer which is not in the set; i.e. p; is the smallest positive

integer different from all previous pj and qj. Skolem was surprised

when he discovered that p; and q, were given by

p; = |ri] and q, = |71

where 1 = L(1+Y5), £he golden ratio, and bqj is the greatest
integer not greater than x. (A proof is given on p.9;

see also Bang [3]). These 'complementing' sequences, {pi} and
{qi}, had arisen before, in connexion with ancther problem, that
of Wythoff's game. This game, known as triaushidsi [12] to the
Chinese, is played by two people with two heaps of counters. The
players move alternately and each move consists of removing an
arbitrary positive number of counters from a single heap or equal
numbers from both heaps. The winner is the player who removes the
last gounter. R. Isaacs invented an isomorphic game, in which a
marker is placed on a lattice point (x,y) in the non-negative
quadrant. There are two players who move alternately and they

are allowed to move the marker to one of the following positions



o I

(-h,y) 0 <h <z (x,y=k) O <k gy; (whyy-h) 0 <h s min(x,y) .

The winner is the first player to reach the origin (0,0).

{

6
5 SR
4 A possible game
3 starting at (6,5).
N First player winning.
2 /C>
1S D
&
o

(0,0) 1 2 3 4 5 € 7
Figure 1. Isaacs' Game.

It can be easily seen that the two games are isomorphic, for
(x,y) can represent either the co-ordinates of the marker or the
numbers of counters left in the two heaps, and in each case the
moves are the same. Wythoff [42] showed that the P-positions (the
positions from which the previous player can force a win) of these
games are identical with (pi,qi) (see alsoUspensky [40], [41],
H.S.M. Coxeter [7], A.S. Fraenkel [11], [12] and Lambek and Moser
[21]). Wythoff noted that any two P-positions cannot have a num-
ber in common, since it is not possible to move from a P-position
to a P-position. Also, two numbers cannot have the same difference
in two different P-positions. The first P-posgition is (0,0) and
every other P-position may be constructed by Skolem's scheme, i.e.
(pi,qi) is a P-position where P; and q; are as before,

= mex{pj,qj|lsj<i} and q; = P; + 1. To justify the formulas

Py
p; = LT{._I and q; = |_T27Z_J we note that
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|52 (3+/5) | - [ (+5)] = 7.

Hence it will be sufficient to prove that substituting < = 0,1,2,...

produces exactly once any arbitrary integer. Let ¢ denote such
an integer. Let o and B be the smallest numbers (not necessarily

integers) which must be added to ¢ to obtain multiples of L(1+/5)

and %(3+Y5). Then

a = r(+/5) - ¢, (48]

B = % (3+/5) - ¢, (2)
where r, ¢ are integers and

0 < a < %(1+/5), (3)

0 < B < %(3+/5). (4)

Multiplying (1) by L(-1+/5) and (2) by %(3-/5) and adding, we

obtain
Lo(-1+V5) + L(3~-V/5) = » + ¢ - £ = an integer.
Multiplying (3) by L(-1+/5) and (4) by %(3—/§) and adding

0 < La(-1+/5) + LR(3-V5) < 2.

Hence r + 8 - t =1, i.e.
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Lo (-1+75) + 346(3-/5) = 1 = %(-1+/5) + %(3~/5)

hence
p

/5-1 3-/5) _
(d—l)rni—i + (B—l)f—i—i f 0

This is satisfied by o« = B = 1; but then (1) and (2) would imply
that #+1 is an integer multiple of the irrational numbers T and
2

T . Hence one of o and B must be greater and the other smaller

than unity. If @ <1 and B > 1 we have

£ = [br(14/5)]

and if ¢ > 1 and B < 1,
t = |%s(3+/5)].

Also ¢ cannot be written in the form [Ej(3+/§lj in the former

nor in the form Lﬁj(1+¢§2j in the latter case.

I.2.5

Let us return to the Nickerson sequences. We obtained a
solution to the Skolem problem by pairing the ranks of a given
integer in such a sequence. Now relabel the terms of the se-
quence from mt+l to 3m and consider the triple (i,pi,qi) where
p; and q; are the two labels of 7, Py < a;- By the definition of

the Nickerson sequence
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Hence we have a partition of [1,3m] into triples satisfying
x+ Yy = 3.

For example, let us label a Nickerson sequence of length 10

(m=5) :

24235 4 3 1 1 5
67 89 10 11 12 13 14 15

The triples thus formed are
(1,431, TZ,6,8), €3,9,12), (4,7,11), (5,10,18),

In I.3 we prove that such a partition exists if and only if m is

of the form 4%k or 4k+1l. Therefore all the previous problems
(Langford, modified Langford, Skolem and Nickerson) only have
solutions if m is of this form. Notice, however, that the two
problems, the Nickerson and the partitioning into triples, are

not equivalent. While any Nickerson sequence will produce a part-
ition of [1,3m] the partition so produced has T, £ M, but this

is not true for an arbitrary partition. For example, none
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of(the partitions in sections I.3.5 and I.3.6 on pp. 28-30 will

produce a Nickerson sequence.

are special cases of the partitioning problem.

Hence all the previous problems

More specifically,

[1,12] can be partitioned into triples in eight ways, six of which

arise from Nickerson sequences and two which do not.

are not associated with any Nickerson sequence for in the first x,

and in the second zy =

15 6
2 8 10
4 7 11
39 12

15 6
3710
29 11
4 8 12

2 4 6
1910
3811
57 12

2 5 7
3 6 9
110 11
4 8 12

8
1
5
2

4 7
8 9
6 11

10 12

5, each greater than m

ra

4, However

6 8
5 9
7 10
11 12

The partitions

are associated respectively with the Nickerson sequences

5 8
7 9
6 10
1. 12

11423243; 113423243 232431145 411342325 42324311 34232411,

If we do not consider sequences which are the reverse of others to

be eséentially different we have

Therefore there are only 3 Nickerson sequences of length 8 (m=4) .

The associated modified Langford sequences are

114232433 11342324; 23243114,

5
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00312132; 00231213; 12132003

4 i

which give the following Langford sequences

3123325 231213,

Since these are reflexions of one another there is essentially
only one Langford sequence of length 6 (m-1=3). The solutions

to the Skolem problem for m = 4 are

(1,2) (3,7) (4,6) (5,8); (1,2) (3,6) (4,8) (5,7); (1,3) (2,5) (4,8) (6,7)

together with those obtained from the reflected Nickerson sequences,

namely
(1,5) (2,3) (4,7) (6,8); (1,5) (2,4) (3,6) (7,8); (1,4) (2,6) (3,5) (7,8).

For n = 12 a good proportion of solutions are associated with these
other problems, but this proportion seems to decrease as n increases.

We will say more about this in I.3.19.

I.2.6

The problem of finding triples satisfying x + y = z arose in
another way; from attempts to find cyclic Steiner triple systems.
A Steiﬁer triple system on v elements is a set of triples whose
elements are taken from [1l,»] such that each pair of integers in
[1,v] occurs in exactly one triple. Such a system is called cyclic

if the triple (a+l,y+1l,z+1) is in the system Whenever it contains
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(x,4,2), with all addition done modulo v. TFor example

(1,3,4) (2,4,5) (3,5,6) (4,6,7) (5,7,1) (6,1,2) (7,2,3)
is a cyclic Steiner triple system for v = 7. If we let b be the
number of tripiles in a Steiner system then each triple (x,y,2)
has 3 pairs contained within it (x,y), (x,2), (y,z). The total

i 3 2
number of pairs is (2]. Hence
i.e.

Now, each element occurs in » triples but it must occur with each
of the v-1 other elements exactly once, and since each triple con-

tributes 2 pairs we have

2y = p=1
- 5s s 2B
5 5
Because » and b are both intepgers so are 2%—l*-and 2£2511<, therefore

v is of the form 6mtl or 6m+3. Below, we will show that cyclic
Steiner triples exist in the case 6mt+l where m is of the ferm 4k or
4k+l. It is well known (see [19] for example) that Steiner triples

exist if and only if v is of the form 6ém+l or 6m+3.
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Heffter [28] (see also chapter IIT for the discussion on
x +(y = 2z (mod n)) showed that the existence of a cyclic Steiner
triple system of order 6m+l is equivalent to a partition of [1,3m]
into triples such that either the sum of two members in a triple
equals the third or the sum of all three equals 6mt+l. This is
called Heffter's first difference problem. Observe that in a
cyclic Steiner triple system if p is the difference modulo v of
two elements in a triple then any other triple which has two ele-
ments differing by p modulo v is obtainable from the first triple
by repeatgd addition of ones modulo ». If this were not true then

there would exist two triples (z,y,3) and (x', ',a') such that two
Y Y

elements in each triple differ by p say
y -~ x = p (mod v) and y' - 2" =p (mod v)

with no other differences equal. By repeated addition of ones
modulo v to (m',y',z') we will obtain the triple (m,y,z") where
the differences z' - x and z' - y modulo v are different from z - z,
2 -y, £ -2 and y - 3 modulo v, hence z and 2" are different and
the pair (x,y) occurs in two different triples which contradicts
the f;ct that this is a Steiner triple system.
Note also that a triple in a eyclic Steiner system on 6mtl elements
cannot have two differences between its elements the same. For,

if (x,y,2z) is in the system and

x -y =y -2 = a (mod 6mtl)
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then

(z+(z-y) Jy+(2-y) ,2+(y-2)) = (22-y,%,y)
is also in the system. But this means
22 -y = 2,

(mod 6m+1)

Q

i.e. & -y =2-& E
which implies

2-y+y-2+2z-x=0 =3 (mod émtl)

'

which implies

a = 0 (mod 6&mtl)

which is impossible.

With this observation we may now show the equivalence between
Steiner triple systems and the partitioning of [1,3m] in Heffter's
first difference problem. Let us consider a 13-gon and the Steiner
triple system

U {(,i+1,i+4),(Z,2+2,2+7)}, mod 13.
15213



_

Figure 2. A cyclic Steiner triple system.

We may define an equivalence relation between the triples by calling two
triples equivalent if one is obtainable from the other by repeated
addition of ones. This is easily seen to be well defined. In this
example there are two equivalence classes, typical members of which

are (1,2,5) and (6,8,13). Let us consider them as vertices of a
triangle formed in the 13-gon. By the observation above, all the
differences are distinct and therefore the 'lengths' of the sides,

i.e. the absolute values of the numericallv least residues, mod 13, of
the vertex labels, which are at most 6, are distinct and hence we have a

partition of [1,6] into triples which have the desired properties, i.a.

2-1 =1 (mod 13), 5-2 = 3 (mod 13), 5-1 = 4 (mod 13)

2 (mod 13), 13-8 = 5 (mod 13), 6-13 = 6 (mod 13)

and 8-6

giving the triples

(1,3,4) (2,5,6)
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and

1+3 = 4 2+5+6 = 13,

Conversely, if we label the vertices of a 13-gon by 1 to 13
and consider the triples (1,3,4) and (2,5,6) to be the 'lengths'
of the sides of two triangles (see fig. 2) and then if we rotate
the triangles about the centre we may form new triples by the ver-
tices of the triangles. Every pair (a,b) 1 < a, b ¢ 13 will occur
in exactly one triple, for the absolute value of the numerically least
residue of their difference (which is at most 6) occurs as the length
of the side of exactly one triangle and therefore the pair «,b will
occur togéther as vertices of a triangle exactly once. In general
we form the equivalence classes on the cyclic Steiner triples and then take
the 'smallest' differences, i.e. the differences which are less than
or equal to 3m. Since these are all distinct we have a partition of
[1,3m] into triples and since they form triangles in a (6m+1)-gon
they have the desired properties, and vice versa.

Hence we have that any partition of [1,3m] into triples satisfying
Z+ Yy =2 o0orx+y+2=6m+ 1will give a cyclic Steiner triple system
on 67+l elements. Therefore, any partition of [1,3m] into triples sat-
isfying # + ¥ = 2 will give such a Steiner system; but the converse is
not true as shown by our example.

Heffter's second difference problem concerns cyclic Steiner triple
systems on 6m+3 elements. He showed that the existence of such systems
on 6m+3 elements is equivalent to partitioning [1,3m+1] \ {2m+1} into
triples satisfying either @ + y = z (mod 6m+3) or x + y + z = 6mt3,
General solutions to both Heffter's first and second problems were

given by R. Peltesohn [31].
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1.2.7

R.0. Davies [8] gave the following solution to Langford's

problem.

m-1 = 4k (k>2)

Sty BBz s sihe B, BTy v ils W5y Ay Boses 2Re3. TR,
A2, ... hk=b, Lk, k=3, 4k-5,...,2k+1, 4k-2, 2k-2, 2k-b4,...,2, 2k-1,
Gk-1, 2, byus.,2k-2, 2K+1, 2k+3,...,4k=-3, 2k-1, 4%k.

e.g. k=23, ml =12

8,6,10,3,1.11,1,3,6,8,12,9,7,10,4,2,5,11,2,4,7,9,5,12

m=-1 = 4k-1 (k>2)

Gliwli, GlmB, wes 28, GH-2; 2K-3; 2k=5,ssusls k=15 1 Bsuseslh=3, Tk,
2k+2, ... hk=b, 2k-1, 4k-3,...,2k+l, 4k=2, 2k-2, 2k-4,...,2, 2k-1,
By 2, Hoswnsdbedy Dhely PRSaes « I8,

e.g. k=3 m1 =11

8,6510,3,1,11,1,3,6,8,5,9,75;10,4,2,5,11,2,4,7,9



= 20 =

<

T:l8

Th. Skolem [38] gave the following solutions to his problem.

m = 4k (kz2) m = 4k+1 (kz2)
1. (4k+i,8k-7), 0 <7 g 2k-1 1.  (4k+244,8k+2-7), 0 ¢ © ¢ 2k-1
2. (2k+1,6k) 2. (2k+1,6k+2)
3. (2k,4k-1) 3. (2k+2,4k+1)
4, (Z,4k-1-7) 1 <7 < k-1 b, (2,4k+1-72) 1 <7 < k
5. (k,k+1) 5. (RFL,54+2)
6. (k+2+i,3k-1-7) 0 < 7 < k-3 6. (k+2+7,3k+1-7) 1 < 4 ¢ k=2
1. gives all the even differences 1. gives all the even differences

2,3. give the differences 4k-1, 2k-1  2,3. give the differences &4k+1, 2-1

5. gives the difference 1 5. gives the difference 1

6. gives the differences 3,5,...,2k-3 6. gives the differences 3,5,...,2k-3
4. gives the differences2k+l,...,4k-3 4. gives the differences 2k+1,. .. ,4k-1

e.g. n=3 m= 12 n=3 m=13

(12,243 C13,23) (34, 22) (15 ,21) (16,203 (17,195 (14,26)(15,25)(16,24) (17,23) (18,22)

(19,21)
(7,18)  (6,11) (7,20) 8,13)
(1,10) (2,9) (1,12) (2,11) (3,10)
(3,4) (4,5)

(5,8 (6,9)
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I.2.9

D.C.B., Marsh [25] gave the following solution to Nickerson's

problem.

n = 4k

Gy k=2, 4k=t,...,2, 4k-1, 2, &,..., 4k, 2k-1, 4k-3, 4k=5,...,2k+1,

k=3, Bk=5;50544,3, 4k-1, 2l By B5vswah-35 1, 1, 2k+1, 2k+3,...,4k-3.

n = 4k+1

bk, 6k=-2,...,2, 4k+1, 2, 4,..., 4k, &k-1, Ue=3aoweslkil, 1, 1, 283,

2k=5,...4,3, 4k+1, 2k-1, 3, 5,...,2k=3, 2k+1, 2B gnce « R
For example when k¥ = 3 we have

o= 12

12,00 ,8,6, 42112, 4,6, 8,90,15:5,9,7,8,21.5,%,1,1,72.9

n = 13

12,10,8,6,4,2,13,2,4,6,8,10,12,11,9,7,1,1,3,13,5,3,7,9,11
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§3, SOLUTIONS OF PARTITIONING [1,n] INTO TRIPLES SATISFYING x + y = z.

In order that a packing of [1,n] exists, the following conditions

must be satisfied. For all Z belonging to [1,m] where n = 3m,

1 Z %
Summing over 7, we obtain
m m m
'Z w, + ) y; = _E ;o (1)
=1 i=1 =1

Because we are partitioning the interval [1l,n], then every integer
in this interval occurs in exactly one triple and as precisely one
of the elements of the triple, i.e. the sets X = {mi|lsism}’

Y = {yi|lsigm} and 2 = {zi|lsism} are pairwise disjoint and their
union contains every integer in the interval. Hence

m m 3m B
g+ oy, + ) oz, =1 1= *‘5'-'[3m+1] ; (2)
1=1 1=1

1=1

I~

=1

From (1) and (2)

which implies
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m

All the zi are integers and therefore X z must also be an
L ?:=1

integer. Because just one of 3m and 3m+l is even we have,

"

3m = 0 (mod 4) or 3m+l = 0 (mod &)

so that

=0 (mod 4) or m = 1 (mod &)

3
1

and since n = 3m

=0 (mod 12) or # = 3 (mod 12).

=
It

Therefore, there are no partitions of [1,3m] unless m is of the form
4k or 4k+1. Since the Nickerson, Langford, modified Langford and
Skolem problems are all special cases of the partition problem, we
see there are no solutions to those problems unless m is of the form
4k or 4k+1.
For what values of n, when n is of the prescribed form, do part-
itions exist? Table I.1  exhibits all partitions for n = 3 and
n = 12 and exhibits some sample partitions for n = 15, 24, 27 and 36.
Appendix 1 contains a complete list of partitions when »n = 15 and a
summary of information for n = 24. Since the Langford, modified
Langford, Skolem and Nickerson problems have been solved for all m = 0 or 1
(mod 4) (I1.2.7, 1.2.8 and I1.2.9, pp. 19-21) we see that partitions of [1,3m]

into triples satisfying x + ¥ = 2 exist for every such m. From the ideas
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Table I.1

Partitions of [1,n] satisfying x + y = z.

O~ o U
e

=

O MWWk

27
28
33
29
26
19
13
14
15
16
17
18

N

= e
LW o

36

36
35
34
32
31
30
25
24
23
22
21
20

£ L
00 WO~ W
o
N OO
SR WN
wo !
e

N = O~

34
27
28
29
32
20
30
14
15
16
17
18
19

39

4 7 7 2
8§ 9 9 4
6 11 11 3
10 12 12 1
n = 24 = 27
2 11 13 2 12 14
5 9 14 5 10 15
7 10 17 7 11 18
4 15 19 8 13 21
8 12 20 3 19 22
3 18 21 6 17 23
6 16 22 4 20 24
123 24 9 16 25
1 26 27
39
38
37
36
35
73
31
26
25
24
23
22
21

=~ oy
i

N O W oo
[
[y YT,
=
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of 1.2 and I.2.7, I.2.8 and 1.2.9, we obtain the partitions contained
{

in I.3.2, I.3.3 and I.3.4. All general partitions known at the time

of writing are listed below in sections I.3.2 through I.3.18.

IL:3.:2

R.0. Davies [8] in response to the Langford problem, gave the

following general partition (see I.2.7, p.19) for [1,4Kk].

bk-b, bk-6,...,2k, 4k~2, 2k-3, 2k-5,...,1, 4k-1, 1, 3,...,2k-3, 2k,
k42, . .. Jhk-4, 4k, 4k-3, &k-5,...,2k+1, 4k-2, 2k-2, 2k-4,...,2,

2k-1, 4k-1, 2, 4,...,2k-2, 2k+1, 2k+3,...,4k=3, 2k-1, 4k.

In I.2.1 (p.3) and I.2.5 (p.10) we showed that a partition of
[1,12k+3] could be constructed from a Langford sequence for [1,4k] by
adjoining two zeros to the end of the sequence, adding one to every
term and then labelling the sequence from 4k+2 to 12k+3. If we write

the labels underneath the sequence we obtain,

4k-3  4k-1...2k+1 4k-1 2k-2 2k-4...2 4k 2 4 ...2k-2 2k+1

Lk+2 4k+3... 5k 5k+1 5k+2 5k+3...6k 6k+l 6k+2 6k+3... Tk Tk+l

2k+3...4k-3 4k+1 4k-2  bk-4...2k+3 4k-1 2k-1 2k-3 2k-5... 3 2k

7k+2...8k-1 8k  8k+1 B8k+2...9k-1i 9%  Sk+l 9k+2 9k+3...10k-1 10k

4k 3 5 ...2k-1 2k+2  2k+h... 4k-2 2k 4K+l 1 1

10k+1 10k+2 10k+3... 11k 11k+1 11k+2...12k-1 12k 12k+1 12k+2 12k+3.
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Now by taking an integer < in [1,4k+1] and
to ‘the two occurrences of 7 then we obtain
which consists of four sets of k-1 triples

k=1) together with five other triples, i.e.

(2k-2-27 ,5k+2+47 , 7k-7)
(4k-2-27 ,8k+1+7 ,12k-1-7)
(2k-1-27 ,9k+1+2 ,11k-1)
(4k-3-21 ,4k+241 ,8k-1-7)
(4k+1,8k,12k+1)

(4k ,6k+1,10k+1)
(&k-1,5k+1,9k)

(2k 10k ,12k)

(1,12k+2,12k+3)

the labels corresponding
a partition of [1,12k+3]

(these sets are empty if

o
A
(ol
A
&
|
N

Similarly, starting with Davies' solution for a Langford se-

quence of length 8k-2, we obtain a partition of [1,12k] which con-

sists of four sets of k-1 triples (again, these sets are empty if

k=1) and four other triples:
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(2k=2-27 ,5k+1+1 , 7Tk=1-7)

(4k-2-21 ,8k+i ,12k-2-1)

(2k-1-27,9k+% ,11k~1~1)

(4k=~3-27 J4k+1+7 , 8k-2-1)

(4k,6k,10%k)

(4k-1,5k,9k-1)

(2k,8k~-1,10k~-1)

(1,12k-1,12k)

L343

0 <17 ¢ k-2
0 <7 < k-2
0 <7 < k=2
0 <7 g k-2

Of course, a Langford sequence may be reversed and it is still

a Langford sequence. If we reverse Davies' sequence we then obtain

the following partitions, again consisting of four sets of k-1 triples

(empty if k=1) and four or five other triples according as n = 12k or

12k+3.

n = 12k

(2k-2-27 ,9k+24¢ ,11k~2) 0
(4k=-2-27 ,4k+3+7 ,8k-1+1) O
(2k-1-27 ,5k+2+7 ,7k-7+1) O
(4k-3-27 ,8k+3+i,12k-2) O
(4k ,6k+1,10k+1)

(4k-1,7k+2 ,11k+1)

(2k ,6k+2,8k+2)

(1,4k+1,4k+2)

g I7aY A

A

n = 12k+3

(2k=2-27 ,9k+5+7 ,11k+3-7) O
(6k-2-27 ,bk+6+7 ,8k+4-7) O
(2k=1-21 ,5k+5+7 , 7k+4-7) O
(4k=-3-27 ,8k+6+. ,12k+3-7) O
(4k+1, 4k+4, 8k+5)

(4k ,6k+4 , 10k+4)
(4k=-1,7k+5,11k+4)

(2k , 4k+5,6k+5)

(1,4k+2 ,4k+3)

A

A

A

A

A

A

A

IA

k-2
k-2
k=2
k=2
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‘ "In the above constructions, when we formed a modified Langford
sequence, we adjoined the two zeros at the end. However we may ad-
join them to the beginning of the sequence. This changes the labelling
of the terms, which affects only the y and z values and changes the

triple containing one.

Sﬁecifically, partitions contained in I.3.2 become :

n = 12k

Replace the triple (1,12k-1,12k) by the triple (1,4k+1,4k+2) in I.3.2;
this corresponds to placing the two zeros at the front of the Langford
sequence, and add two to every y and z in all other triples, which

corresponds to the new labelling scheme.

n = 12k+3
Replace (1,12k+2,12k+3) by (1,4k+2,4k+3) in I.3.2) and add 2 to y and z

in every other triple.

I.3.5

n = 12k
Replace (1,4k+1,4k+2) by (1,12k-1,12k) and subtract two from y and z
in every other triple of the appropriate partition of I.3.3.

n = 12k+3
Replace (1,4k+2,4k+3) by (i,12k+2,12%k+3) and subtract two from y and z

in all other triples of the appropriate partition of I.3.3
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For example let us take the Langford sequence
231213
we -have
231213 or 312132}
the next step gives
23121300 or 00231213; 31213200 or 00312132,
Then, add%ng one to each term, we have
34232411 or 113423243 42324311 or 11423243;

and labelling them from 5 to 12 we obtain

34232 4 1.1 11342 3 .2.%_ 42324 3 1 L 114
56789101112* 56 789 10121256789 10 11 12° 56 7
from which we obtain the triples

3 5 8 15 6 4 5 9 15 6

4 6 10 3710 2 6 8 4 7 11

2 7T 9 4 8 12 3 710 2 8 10

1 11 .12 29 11 1.11 12 39 12

which are four different partitions of [1,12], which correspond to
1.3.2, 1.3.4, 1.3.5, 1.3.3, respectively, for k = 1.
The above partitions may be seen to be distinct if we compare

the triples that contain 4% in each case.



- 30 -

n = 12k n = 12k+3
1.5.2 (4% ,6k,10%) (4% ,6k+1,10k+1)
I.3.3 (4k,6k+1,10k+1) (4k , 6%+4 , 10k+4)
I.3.4 (4k,6k+2,10%+2) (4%, 6k+3,10k+3)
I.3.5 (4k,6k-1,10k-1) (4K ,6k+2 ,10k+2)

I.3.6

D.C.B. Marsh [25] gave a general solution to the Nickerson
problem.in I.2.2, TUsing the ideas of §2, this general solution

gives the following partition which consists of three sets of

2k, k-1 (or k) and k-2 trivles and three other triples. Note that

the third set is empty for k& = 2 and that no partition exists if

k =1o0r 0.
n = 12k n = 12k+3

(4k=27 , bl+1+7 , 8k+1-1) 0 <7 < 2k-1  (4k-27,4%k+2+7 ,8k+2-7) O

A
5
A
Ln

A
[N

(4k=3-27,8k+3+{ ,12%k~1) 0 k=2 (4k-1-27 ,8k+3+7 ,12%+2~{)0 ¢

A
S,
IA

(2k=3-27,9k+2+4,11k-1-7) 0 ¢ © < k-3 (2k=3-27,9k+5+(,11k+2-7)0 < ¢
(4k-1,6k+1,10%) (4k+1,6k+2,10k+3)
(2k-1,8k+2,10%+1) (2k-1,10%k+4,12k+3)
(1,11%,11k+1) ' (1,9%+3,9k+4)

Led.7

If we reverse a Nickerson sequence then the sequence is still a
Nickerson sequence. Therefore we may reverse the sequence given by

Marsh and obtain the following partition which consists of three sets
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of triples of size 2k, k-1 (or k) and k-2, and three

other triples. As above, the third set is empty for ¥ = 2 and

the partition does not exist for kX = 1 or 0.

n = 12k

(4k-21 ,8k+i ,12k-1)

0

(4k-3-27 ,4k+1+1 ,8k~2~12) O

(2k=3-27 ,5k+2+41 ,7k-1-7) O

(4k-1,6k+1,10k)

(2k-1,6k,8k-1)

(1,5k ,5k+1)

For illustration, let us

n = 36
12
9
3
11
n = 39
12
11
3

13

i3
27
29
19

14
27
32
20

25
36
32
30

26
38
35
33

A A

"IN

take

14
28

26

15
28

34

24
35

31

25
37

39

A

A

2k-1
k-2

k-3

n = 12k+3
(Lk-27 ,8k+3+:,12k+3-2) 0 <
(4k=1-27 ,6k+3+1 ,8k+2-1) O ¢
(2k=-3-27 ,5k+3+1,7k-1) 0 ¢
(4k+1,6%+2,10k+3)
(2k=-1,4k+2,6Kk+1)
(1,7k+1,7k+2)

10 To3.6

15 23 6 16 22 4 17 21

33 34

16 24 6 17 23 4 18 22

29 36

30 31

o
A

7
=

2 18 20

219 21



We also take k

n = 36

12 24 36 10
9-13 22 7
3 .17 20

11 19 30 5

n = 39

12 27 39 10

11 15 26 g
3 1R .21

13 20 33 5

I.3.8

o Y

=3 1in 1.3.7.

25 35 8 26 34
14 21

18 23 7 15 16
28 38 8 29 37
16 25 7 17 24
14 19 122 23

6 27 33 4 28 32 2 29 31

6 30 36 4 31 35 2 32 34

Th. Skolem [29] gave a general solution to his own problem

1.2.3, and both he and Hanani [12] deduced solutions to the prob-

lems of constructing cyclic Steiner triple systems. Using the

ideas of I.2 we can obtain partitions of [1,7] into triples satis-

fying x + y = z.

The partitions consist of three sets of 2k, k-1

(or k) and k-2 triples, with three other triples. Note that for

k = 2 the third set is empty (see Table I.2 on P85

n = 12k

(4k=27 , 8K+ ,12k~1)

(4k-3-27 ,4k+1+1 ,8k-2-7) O

(2k~3-24 ,5k+2+44,7k-1-1) O

(4k-1,6k+1,10k)

(2k-1,6k, 8k-1)

(1,5k,5k+1)

0

IA A
e [ty
A A

A
L
A

1 = 12k+3

(4k=-27 ,8k+3+L ,12k+3-7) 0 < £
(4k-1-27 ,4k+2+7 ,8k+1-1) 0 < 2
(2k-3-27 ,5k+4+7 , 7k+1-7) 0O £ f
(4k+1,6k+2,10k+3)
(2k-1,6k+3,8k+2)

(1,5k+2,5k+3)
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Notice that Skolem's solution for #n = 12k corresponds to one
of Marsh's solutions to the Nickerson problem (see I.3.7, n = 12k

on p.31).

I.3.9

Hanani produced a different partition for » = 12k+3 which

consists of three sets of 2k-1, k-1 and k-1 triples with four

]
et

other triples. The second and third sets are empty if %

(see Table I1.2).

n = 12k+3

(4k—2~2£,£k+3+£,8k+1~i) 0 <17 g 2k=2
(2k-1-27 ,9k+3+7 ,11k+2-2) 0 < © < k=2
(4k=1-27 ,8k+4+7 ,12k+3-2) 0 < 7 < k-2
(4k+1,4%+2,8k+3)

(&% ,6k+2,10k+2)

(2k+1,8k+2,10k+3)

(1,11%+3,11k+4)

£.9.10

We may obtain different partitions from I.3.8 and I.3.9 by inter-

changing y and z and then subtracting the y's and z's from 16k+5.
This is equivalent to forming the Nickerson sequence and reversing
the sequence. TFrom I.3.8 we obtain a partition which consists of

three sets of size 2k, k and k-2 and three other triples (also see

Table I.2).
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(4k-27 , bk+2+7 , 8k+2~7) 0 g1 ¢
(4k=1-2 ,8k+44E,12Kk43-2) 0 < © < k=1
(2k-3-27,9k+44+1,11%k+1-%) 0 < 7 < k-3
(4k+1,6k+2 ,10k+3)
(2k-1,8k+3, 10k+2)

(1;11%42 ,11%+3)

T..3. 1Y

Similarly from [.3.9, we obtain a partition consisting of three

sets of triples of size 2k-1,k -1 and k-1 with four other triples

(see Table 1.2 on p.35).

(4k-2-27 ,8k+447 ,12k+2-7) 0 < © € 2k=2
(2k-1-27 ,5k+3+L,7Tk+2-2) 0 < i < k=2

(4k=1-27 ,4k+244 ,8k+1-2) 0 < 7 g k-2

(4k+1, 8%+2,12k+3)

(4k ,6k+3,10k+3)

(2k+1, 6k+2 , 8k+3)

(1,5k+1,5k+2)

Table I.2 illustrates the four sections I.3.8-11 with the case

k=3,n=139.



I.3.8 gives

1227 39
11 14 25
319 22
13 20 33

I.3.9 gives

10 15 25
5 30 35
11 28 39
13 14 27

I.3.10 gives

12 14 26
11 28 39
3 31 34
13 20 33

I.3.11 gives

10 28 38
518 23
11 14 25
13 26 39

T.3:12

10
9

5

R O W oo

10

)

5

b WO W oo

28
15

21

16
31
29
20

15
29

29
19
15
21

38
24

26

24
34
38
32

25
38

32

37
22
24
33

29
16

17

17

26

16
30

35

30

20

- 35 -

Table I.Z

« Illustrative partitions of the interval [1,39]

37
23

23

33

24
37

36

36

27

6 30

4 18

1 36

6 17

4 31

116

22

37

35

17

4 31 35 2 32 34
2 19 21
4 18 22 219 21
2 32 34

R.K. Guy [17] considered the problem and split it into eight

cases, n = 0,3,12,15,24,27,36 and 39 (mod 48). The partitions

exist in all but a finite number of
index set is 'less than empty', for
If the index set is empty, e.g. 1 < 7 < ¢t for

tition exists but with this particular set of

cases.

example 1

The exceptions occur when the

2 < t-1 for £t = 0.

A

T 1, then the par-

triples being empty.
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n = 12k (m32) n = 12k+3 (k32)
(21 ,6k=1 ,6k+1) Lgigk-1 (27,6k-1+2 ,6k+i+2) leisk
(272-1,10k-741,10k+2) 1gi<2k-1 (24-1,10k=1+4 ,10k++3) 1lgig2k-1
(5k-1,7k+1,12K) (5k-1,7k+4,12k+3)
(2k,6k,8k) (2k4-2,6k+2 ,8%k+4)
k=25 i.e. n = 24s k=25, n = 24gt3
(4s+47i+2,108-27-1,14s+24+]1) lgiss (4s+47+8,105-27-3,14s+24+5) 1giss-1

(45+6,105-3,145+3)

(4st+b,10s4+1,14845)

s =2¢t, n = 48¢ s = 2¢t, n = 484+3
(8¢+87,20¢-47+2 ,28t+4742) 1<igt-1 (8++87+2,20¢=4i+4 ,28++41+6) lgict-1
(8t+81-4,20t-41,28¢t+41-4) 1<ist (8++87+6,20¢-47-2,28¢+47+4) lgigt-1
(8++2,20£,28%+2) (8++8,20t-2,284+6)
g = 2t+l, n = 484+24 g = 2¢t+l, n = 484427
(8t+87,20t~47+14 ,28¢+47+14) i<t (8++87+10,204-47+12,28¢+41422) lgict-1
(8¢t+8i+4,20t-47+8,28t+47412) lgist (8£+87+6,20¢-47+10,28:447+16) lgist
(8¢4+6,20¢+8,28%+14) (8++12,20¢+10,28+4+22) if £ > 0O

k = 2s8+1, n = 243+12 k = 2g+l, n = 245+15

(48+47+10,108-27+1,145+27+11) 1lgics-1 (4s+b4i+4,108-27+7,14s+24+11) lgige-1
(bs+4,108+3,1l4s+7)
(45+8,105+1,14549)

(4s+6,105+5,1454+11)
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{

g = 2t, n = 481412 a8 = 2, n = 48t+15

(8t+81+4,20t-47+6,28L+47+10) 1<i<t-1 (8t+81+2,20t~4i+4 ,28t+41+6) 1gist

- (8t+81+8,20¢~41 ,28t+41+8) 1gsigt-1 (8t+81~2,20t-41+10,28¢+47+8) 1<ist

(84+10,20%,28¢+10) (8s+3,85+7,163+10)
(8s5+5,8s+6,16s8+11)
s = 2t+1, n = 48t+36 ' s = 2¢+l, n = 48t+39

(8t+8i+12,20t-47+14,28t+47+26) 1<i<t-1 (8t+87-2,20¢~41+20,28t+41+22) lsgigt+l
(8t+81+8,20t~47+12,28¢t+47+20) 1gist  (8t+81+46,20t-4i+14 ,28t+41+20) Lgigt+l

(8t+14,20¢t+12,28¢+26) (83+3,8s+5,165+8)
(8s+4,83+7,16s+11).

Notice in n = 12k, k = 25+1, we may obtain a new partition by re-

writing the triples

(4s+4,108+3,145+7)
(4s+8,10s+1,14549)

(4s+6,108+5,145+11)

as

(4s+6,10s+1,145+7)
(45+4,10s+5,145+9)

(4s+8,10s+3,1458+11).
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T.3:13

Priday [32] showed the existence of a sequence with the property
[

that there are two copies of each integer ¢ in [k,3k] and the two

copies are separated by % ferms. For example, let us take k = 4,
12 10 8 6 4 11 9 7 5 4 6 8 10 lé 579611
his general solution being
3k,3k—2,...,k,sk—l,3k~3,...,k+l,k,k+2,...,3k,k+l,k+3,...,3k—1.

As in 1,2 we can add one to each term, then label this sequence from
3k+2 to 7k+3. We now obtain the triples (i,pi,qi) where 7 is in
[k+1,3k+1] and p; and g, are the labels of the two occurrences of 7.

That is, we have the following two sets of k+1 and k triples which

partition [k+1,7k+3],

(3k+1-21, 3k+2+i ,6k+3-1) 0 < © < K,
(324 ,bk+3+ , Th#3-1) 0ci ¢kl

To obtain a partition of [1,7k+3] we only have to adjoin a
partition of [1,k]. Therefore k must be of the form 12¢ or 12++3
(see I:3.1, p.22) and 7k+3 must be of the form 12(7#)+3 or 7(12¢+3)+3,

i.e. 84t+3 or 84¢+24.
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I.3:14
Priday's sequence may be reversed without altering its pro-

perties. This gives the following partition of [k+1,7k+3] into

two sets of kK and k+1 triples

(3k-27 ,3k+2+7 , 6k+2-1) 0 ¢7 < k-1

(3k41-27 ,4k+2+47 ,Tk+3-7) 0 <7 < k

To obtain a partition of [1,7k+3], we again adjoin a partition
of [1,k].

For example, take k = 3 and 7k+3 = 24

I.3.13 gives

10 11 21 8 12 20 6 13 19 4 14 18
9 15 24 7 16 23 517 22
1 2 3

I1.3.14 gives

9 11 20 7 12 19 5 13 18
10 14 24 8 15 23 6 16 22 4 17 21
1 2 3

T+3:15 : S

The following partitions, discovered by the writer, are useful
in providing information concerning §(n), the number of partitions

of [1,n].
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n = 48¢
(27+1,36%-7,36t+i+1) Osi<12t-1

2x(any partition of [1,12%])

n = 48t+12
(27+1,36t+9-7 ,36L+10+1) 0<i<12%+2

2%(any partition of [1,12¢+3])

n = 48t
(2i+l,48tf2—4i,48t—l—2i) 0<i<12¢-1

4x(any partition of [1,12%])

n= 481L+12
(27+1,48t+10-47 ,48¢+11-27) O0<i<l2t+2

4x(any partition of [1,12%+3])

n = 48¢t+3

(2741,36t+2-1,36t+3+7) 0g1512¢

2x(any partition of [1,12t])

n = 481415
(2i+l,36t+1l—i,36t+12+i) 0g2<12¢t+3

2x(any partition of [1,12¢+3])

n = 48443
(2£+l,48t+2n4£,48t+3—2i) 0<ic12¢+1

4x(any partition of [1,12¢])

n = 48t+15
(27+1,48t+14-47 ,48t+15-27) 0grg124+3

4x (any partition of [1,12¢+3])

These constructions provide methods for showing that if n is of the

form 48¢ or 48¢+3, then

Qn) = 20(n/d).

Or, if n is of the form 48%+12 or 48¢+15, then

Q(»n) = 20(12¢t+3).

For example, we can illustrate I1.3.15 by the follcwing
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t=1p=48  t=1 p=51
1 36 37 1 38 39

3 35 38 3 37 40

{ 5 34 39 5 36 41
7 33 40 7 35 42

G 32 41 9 34 43
11 31 42 11 33 44
13 30 43 13 32 45
15 29 44 15 31 46
17 28 45 17 30 47
19 27 46 19 29 48
21 26 47 21 28 49
23 25 48 23 27 50
25 26 51

The integers missing in both cases are the even numbers from

2 to 24. Therefore we may take any of the eight partitions of

[1,12] (Table I.1 on p.24), for example,

15 6 2 10 12
2 8 10 . 4 16 20
4711 and double each member to obtain 8 14 22
39 12 6 18 24

which, with the two blocks of triples above produces partitions of

[1,48] and [1,51]. Similarly for I.3.16

=1 n=48 t=1 n=51
1 46 47 1 50 51
3 42 45 3 46 49
5 38 42 5 42 47
7 34 41 7 38 45
8 30 33 9 34 43
11 28 37 11 30 41
13 22 35 13 26 39
15 18 33 15 22 37
17 14 31 17 18 35
19 10 29 19 14 33
Zi. B 27 21 10 31
23 2 25 23 6 23
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The missing integers are multiples of four. Again we may

{ .

take any of the partitions of [1,12], for example

24 6 8 16 24
19 10 _ i ; 4 36 40
38 11° quadruple it and obtain 12 24 44 °
57 12 20 28 48

By adjoining four such triples we obtain partitions of [1,48] or

of [1;51].

1.3.13

V.E. Alekseev [1] produced the following construction to ob-
tain partitions of [1,12k] with the condition that all x's are less
than or equal to 4%. The triples which are constructed are "even",
in the sense that not both x and y are odd. From any partition of
[1,12%] consisting of "even' triples we may form a partition of
[1,12k+3] by adding 2 to every odd number and adjoining the triple

(1,12k+2,12k+3). Let us define

YP(J) = &4 + 1.,

% ‘k )
’ 4|L-2__J, 4!-2J, 2 and 2 triples,

. -, k-1
We will now construct five sets of 4tjg-
according to the following scheme (in which the triples are now the

colunns of the matrices):-
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B (R)

0
&, (K)

1
S (k)

U(k)

L]

v(k) = {

- &

Y5(2i+1) YS(Zi) YB(Zi) y6(2i+1)
v, (2k=3i-3) v, (2k=3i-3) y (k=i-1) vy, (k=i-2)
Y, @k=i-1) v, QK-i-2) v, (k) Y ()
Y, (%) ¥y, () v, (%) Y, (%)

Yq(Zk—3iu1} YZ(ZR—3€—2) Y2(2k-3i"l) Yu(Zk—3i—2)
Y6(2km2i—l) YG(Zk—Zi—2) YS(ZkHZi_l) y5(2k—2£—2)

Y, (@) Y, @) Y, @) Y,
Y2(2k—3i—l) Yu(Zk‘3i‘2) yk(Zk—Bi—l) y2(2k~3i—2)
Y (2k-21-1) y (2k-28-2) yg(2Kk-2i-1) v, (2k-2i-2)]

Y g (k-1) Yg(k-l)ﬁ
S e
[ <
v (k=2) vy (k-2)
Yq(%ﬁ Yl(%) k even.
[Ys(%ghl) Yl(égﬁl)
r " _ b
n&EL v ED
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 If EG’EI’EZ"'.’EIB/%J“l is any binary sequence (of zeros and

ones) then it will be shown that

‘W(k,gl,...,elﬁ/%J"l) = Hj(k) U Ucky UTV(k)
is a partition of [1,12k] into "even" triples, i.e. & and y are not
both odd. That the triples are indeed even is evident since in
every colum at least one of the first two entries is even. The
collection W(k’el""’gtk/ZJ—l) consists of 4[§J + él%ggj + 4 = 4k
colums, i.e. it consists of 4k triples. It now remains to check
that for any 7 in [1,6] and any J in [0,2%-1] the number Yr(j) = 6J+y
is contained in a triple. Since Sg(k) and Si(k) are sets of triples
over one and the same set of integers, then it is sufficient to
prove this for W(k,0,0,...,0). We show that yr(j) is in a triple by
indicating the 'coordinates' of the number yr(j) in W(k,040;:.4508)
in Table I.3a) when k¥ = 27 and Table I.3b) when

k = 27+1. The coordinate of yr(j) is situated at the inter-
section of the rth row and jth columm. For example, the entry
Sj(l,ﬁ&) in the first row and jth column, 0 < § ¢ I-1, of the Table
T3 peans that the number yl(j), 0 £ J ¢ -1 occurs in S;(k), of
the collection W(k,0,0,...,0), at the intersection of the first row

and fourth column. The notation K;,Kg,...,K§ in Table I.32) and b)

is explained in part c¢) of the Table.
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It is easy to see that the partitions produced for two
différent binary szquences of the same length are distinct. For
if the binary sequences are different then they differ in at least
oné place, say the ith place, and then the two sets of triples
Sg(k) and Si(k) are composed of distinct triples over the same set
of integers and hence the partitions associated with each binary
sequence is distinct. Since there are le*D/QJ binary sequences of
(-1y2]

k-1
length t?rj the above construction furnishes us with 2| par-

) 7
titions, i.e. ZL-/ZQJ partitions, where n = 12k.
For illustration let us take kK = 3. There are two possible
binary sequences of length one, namely 0 and 1.

Let us first consider W(3,0).

11 5 6 12)
R,(3) = |20 22 13 9
41 97 19 31
0 (2 4 3 1)
So(3) = |36 26 32 28
36 30 35 29
(17 15
U(3) = | 8 18
25 33
[ 7 10)
V(3) = |16 14
23 24
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1-7=0 (mod 3)

B41-x-3)73%s D

R eg-geayatt et

5413133

S(AZ~j)/3(2’4)

J=0 (mod 2)
53/2(1,2)
Rj/2(1,3)

S (3,4)

(2k-4-2)/2

S (ak-4-2y 1233
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Table I.3c

1-g=1 (mod 3)

S (4-g-1) /3223

S (41-4-1 131

Bat-g-1y73*% 0

Ria1-g-1y13%%

F=1 (mod 2)

R (1,1}

(4-1)/2

R (1,4)

(4-1)/2

S or-g-13 123

8 geryt2 P

1~-3=2 (mod J)

% h1-5-1y /3%

5 41--2)13%%)

S 41-g+1) /3% D)

S (41-5+41) 132
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The number 1 is written as YI(O) so that » = 1 and J = 0. In Table

T

I.3b; these coordinates give 30(1,4) which means the number one is found in
38(3) at the intersection of the first row and fourth column.
The entry corresponding to Ys(l), i.e. 11, is K?. Since J = 1
(med 2), Kf is equivalent to R(l_l)/z(l,l), i.e. Ro(l,l), this
means that 11 is found in RO(3) at the intersection of the first
row and first column.
Associated with the binary sequence 1 we have W(3,1). Note
that the only difference between W(3,0) and ¥(3,1) will be in the

set of triples 55(3) and 83(3).

(11 5 6 12
R,(3) = |20 22 13 9
31 27 19 21
g (4 2 1 3
5,(3) = [32 28 34 26
36 30 35 29
17 15)
U(3) = | 8 18
25 33
: 7 10)
V(3) = (16 14
23 24/

Since the above partition consists of even triples we may add two
to each odd number and adjoin the triple (1,38,39) to obtain a par-

tition of [1,39], i.e.



20

(13 7
133

I:.3:17

It remains to show

We have shown, already,

= 40 =

6 12) 4 2 3 5

15 11 32 28 34 26

21 23 36 30 37 31

17 (9 10] (1]

18 16 14 38

35} 25 24 [39J
that all the above partitions are distinct.
that the partitions contained in I.3.2,

I.3.3, I.3.4, and I1.3.5 are all different.

of showing there exists one number that lies in a

By the same method, that

different triple

in every partition, we will prove that all the partitions are dis-

tinct.

.10

.11

a12

(1,12k-1,12k)
(1,4k+1,4k+2)
(1,4k+1,4%k+2)
(1,12%-1,12%k)
(1,11%,11%+1)

(1,5 ,5k+1)

(1,10%k+1,10k+2)

First, let us consider the triple which contains 1.

n = 12k+3

(1,12k+2,12k+3)
(1,4k+2,4K+3)
(1,4k+2,41+3)
(1,12k+2,12k+3)
(1,9%+3,9%+4)
(1,7k+1,7k+2)
{1;5k42,5k+3)
(1,11%+3,11k+4)
(1,311%+2,11%+3)
(1,5%k+1,5k+2)

(1,10%+4,10%k+3)
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I.3.14

Lv 318

T:.3.17
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In these partitions, 1 is in a triple

with y such that 2 <y < t%%%J < 4k.

n = 12k

(L,9k8k+1)
(1,12k-1,12%)

(1;12k-8,12k=7)

or (1,12k-2,12k~-1)

n = 12k+3
(1592 ;9%:4+3)
(1,12k+2,12k+3)

(1,12k+2,12k+3)

The only partitions not proved to be distinct are the ones

contained in 1.3.2, I.3.3, I.3.4, I.3.5, 1.3.16, and I.3.17

(n = 12k+3).

Let us now compare triples which contain the integer 5.

1.3.2
T33
I.3.4
E.:3ub
I1.3.16

I1.3.17

n = 12k
(5,10k-3,10k+2)
(5,6k-1,6k+4)
(5,10k-1,10k+4)
(5,6k+1,6k+6)

(5,12k~10,12k-5)

n = 12k+3
(5,10k-2,10k+3)
(5,6k+2,6k+7)
(5,10%k ,10k+5)
(5,6k+4,6k+9)
(5,12k-6,12k-1)

(5,12k-14,12k-9)

Therefore all the partitions given above are distinct.
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After finding partitions for every permissible n, the next
interesting question is how many partitions exist for a given n?
If §(n) is the total number of partitions and A(n) the number of

partitions associated with the Nickerson problem, how fast do they

grow? Both §(n) and A(n) grow rapidly, as Table I.4 shows.

Table I.4
Numbers of Partitions of [1,n] into Triples Satisfying x + y = 2.
n 3 12 15 24 27
Q(n) 1 8 21 3040 20505
‘ An) 1. 6 10 700 -
P(n) 0 2 11 2300 -

where P(n) = @(n) - A(n). It seems that P(n) grows faster than
A(n). Unfortunately, very little is known about any of the three

fupctions. Alekseev ([1] and I.3.17) produced the best known results

when he showed

L0 5 22/24 (3)

It can be verified that the partitions contained in I.3.14 and 1.3.15
are not associated with the Nickerson problem, since neither yield partitions

in which all the «'s are less than 4k. Hence, we have

P(n) > QFZ;] + Q[%] , n = 336t.
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Since @(n) = A(n) we have from (3)

Py 5 227961, olm/108] _ aag

However, the second term is so much smaller compared with the first,

that we essentially have

Pln) » 2L¥/9@l n = 336t.
In fact, we have
P(n) > Q[—f] , 21n/96¢] n = 48E.

It seems reasonable to assume that J(n) is monotonic (for per-
missible values of u). Therefore we have
n/96
Pn) » 2L—/ -J for all permissible #.
However, this information does not enable us to increase the lower
bound for §(n). since

() = P(n) + 4(n) > 2LE/961 3 zlﬁ/ZQJ

and again the first term is extremely small in comparisen to the
second.

Upper bounds (for Q(n;a,b,c)) will be discussed in II.2.2 on p.58.



CHAPTER II

IT.1. INTRODUCTION

t

In this chapter we will discuss the problem of partitioning

[1,7], where »n will always be divisible by 3, into
ax + by = cz,

where a, b and ¢ are arbitrary fixed positive integers. The prob-
lem will be broken down into a number of parts.

We use the symbol §(n,a,b,c) to denote the number of partitions

of [1,n] satisfying
ax + by = ez.

Whenever the context is clear we will abbreviate @(n,a,b,c) to @(n).
If the g.c.d. of a,b,¢ is (a,b,c¢) = d, then we may divide each

side of the equation
ax + by = ez

by d without altering the values of x, y or 2. Therefore we may take
(a,b,e) = 1.

Now (a,c) divides byi for all ©. Since (a,b,c) = 1 we have that
(a,c) divides yi for all 7. Because there are m values yi we must

have

(a,e) < 3.
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Similarly, we obtain,

€

(a,b)

A
w

and

(H.e) £ 3

A

We consider the problem by cases according to the values of (a,b),
(a,e) and (b,ec), and we also discuss the case a = b.

The discussionsof a = b, and of (a,b) = 3 and (a,c) = 2 are
lengthy but positive results are given in each case. All numerical
results were found by a computer search. A short description of the
program is given in Appendix 2. The other cases are discussed, but
briefly because we have not yet been able to complete a detailed
analysis.

Note that the case

is not discussed in this chapter. This is the original question and

was discussed in detail in chapter I.
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II.2. The case a = b = 1.

IL. 2.1

. The following discussion establishes bounds on ¢ and the ad-

missible values of m. In general

A
@
"
3

xz., + Y. = cz, 1
1 yz ZL’

hence summing over <,

m
.Z F + z y; = ¢ ‘E Bos (2.1)

Since every integer in [1,3m] is in exactly one triple

O ¥+ B, = 2 = 5(3m+l) . (2.2)
i=1 ¢ 4=1 Y =1 ¥ =1 .
From (2.1) and (2.2)
" 3m
(e+l) ) 2. ==(3ml),
; 1 2
=1
i.e
m
P 5. = =20 (3mtl) - (2.3)
- 7 2(e+1) :

=1

Now, the maximum values that & and y can take are 3m and 3m-1,

hence
Im + 3m-1 = ez
m

where gm is the maximum of the z's. Since there are m z's we have



~ BB -

6m-1
mg a < 3
m e
hence
em < om-1
i.e c <6 —-l
m
Therefore we have
e <5
We also have
m m=1 55
) 2.5 ) (z3-1) =mz - 5 (m=1).
i=1 °  4=1

From (2.4) we obtain

 meml) _me oo mP(12-0)4m(ce=2)

a; =
1 1 c 2 2¢c

I e~13

2

From (2.3) and the above we obtain

3m(3mel) _ ? L m’ (12-c)+m(c=2)

2(et]y 4 T 2¢ ’

9m+3 & m(1l2-c)+c-2
e+l °© e

(2.4)
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which may be written

2
(9mk3)e < m(—c2+11c=+12) + ¢ -c-2,

or
e?(m=1) = 2¢(m-2) < 12m-2.
If m= 1, this gives ¢ £ 5. Otherwise m > 1 implies
2
e (m=-1) - 2¢(m=-2) < 12m - 2 + 3(m-1),
2 2 2 2
e (m-1) - 2e(m-1) (m-2) + (m-2) < (15m-5)(m-1) + (m-2) ,
1.8,

{e(m-1) - (m—2)}2 < 16m° - 24m + 9,

which yields

e(m-1) < dm -3 +m-=- 2,

e < 5.

Therefore we have if m = 1 then ¢ £ 5 and if m > 1 then ¢ < 5.

From (2.3) we have congruence cenditions upon m, i.e.
3m(3m+l) = 0 mod (2(c+l)).

We summarize these conditions in the following table.
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Table I1.1
Conditions for the Existence of a Partition

Q

1 m =z 0,1 (mod &)

2 m is unrestricted
3 m = 0,5 (mod 8)

4 mz 0,3 (mod 5)

5 m=1

I1.2.2. The equation & + y = 23.

From the above table we see that it may be possible to partition
every interval into triples satisfying the equation x + y = 2z. We
shall see that_it is always possible.

In Table II.2 we exhibit all partitions for m = 1,2 and 3 with

examples for m = 4, 5 and 6, where n = 3m.

Table I11.2
Partitions of [1,n] Satisfving x + y = 2z,

n =3

1.3,2
n==6

13,2 1,5,3

4,6,5 2,6,4
n=29

1,3,2 1543 25443 14342 1,74

4,6,5 2,6,4 1,95 4,8,6 258,5

7,9,8 7,9,8 6,8,7 5,9,7 3,9,6
n = 12

1y 35 2 s 945

4, 6, 5 2,10,6

7, 9, 8 3,11,7

10:,12,11 4,12,8



1, 3, 2 1, 5, 3
L, 6,5 %s By 4
7s 9, & 7, 9, 8
10,12,11  10,14,12
13,15,14  11,15,13
18

1, 3, 2 3, 7, 5
4, 6, 5 1,11, 6
7x 9, B 4,12, B
103 12518 2,16, 9
13,15,14  10,18,14
16,18,17  13,17,15

— 50 =

Immediately, two general partitions spring to mind,

(1+37 ,3+32,24372) 0 < 7 ¢ m-1 (1)
and

(142, 2m+ 1+ ,mt1+) 0 ¢ € ¢ m-1 (2)

Hence, we see that partitions do exist in every possible case.

We now ask the question: how many partitions exist for a
given n?

We define a Ilinked partition as a partition of [1,3m] such
that there exists no j such that [1,3j] is partitioned by j of the

triples. TFor example
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is a linked partition, whereas

q

o
O W
. W w

~N Sy N

is not linked, since (j=1) the triple (1,3,2) partitions [1,3].

It can be seen that (2) is a linked partition, while (1) is not.

Note that any partition of [1,3m] may be made into a partition of
[g,3mtg-1] into triples which still satisfy « + y = 2%, for any
positive integer g. This is accomplished by adding g-1 to every

term. For if the triple (xi,yi,zi) satisfies
x, + Y. = 23{
then so does (xi+g~l,y:+g~1,ai+g—l), e,
(4
(xﬁ+g—l) + (yi+g-l) = 2(z£+g-1).

Therefore any partition of [1,3m] may be regarded as a linked par-
tition of [1,3j], for some 7 < m, and a partition of [3/+1,3m], which
is equivalent to a partition of [1,3m=3j]. 1If we define g(n) to be the

number of linked partitions of [1,n] and also §(0) = 1 and g(0) = 0 then

/
Q(n) = ) q(35)2(n-37) (2.5)



Let

and

-6

QO
A

8
V
i

!

J=0

g<a> = )
Fus

be the generating functions of §

Let us compare coefficients

J = 0 then both coefficients are

.

efficient of xJ

is @(37), while

1 =

Q(33)ad

q(35)a’

and g respectively.
of 27 in Q<xz> and 1 + g<x>@<x>. If
1. If j > 0 then in g<z> the co-

in 1 + g<ax>@<x> the coefficient is

% q(37)4(37-32). By (2.5) we see that these two coefficients are

=0

equal. Hence

Q<x> = 1 +

q<x>Q<x>,

_ 1
fQ<x> l—q<x>
Table I1.3

Numbers of Partitions and Linked Partitions of [1l,n].

NO W 3

27

Q{n)

i

2

5

15

55

232
1161
6643
44566
327064

qg(n)

1

1

2

6

25

115
649
4046
29674
228030
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From p.59 (1) and (2), we know that both #(n) and g(n) are positive.

We know that
n/3
Q) = ] q(3NQ(m-3j) > Q(n=3) = (nz6),
J=0
i.e. @(n) is strictly increasing. We will now prove that for n > 15
Qn) = 2n/3 and we will demonstrate how this bound can be improved.
For n > 0, g(n) = 1, hence we have
n/3 (n/3)-1

/
Q) = ) Q@-37) = )  Q(3%).
J=1 1=0

From Table II.3 we see that

Q(n) > 2n/3 for 15 € n £ 30
and that
(n/3)-1
Y oQ(3d) > 3 or 18 < < 30.
=0
Assume inductively that Q(n) > 2n/3 for 18 ¢ n < nys then for HD > 18
5 (ng/3)-1 s (no/3)-1
Qny) = T Q) + L Q) > 2%+ ) 2t =2m0f3
' 1=0 1=6 1=6

So, we have

aeny 3% gar w3 15, (2.6)
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To improve this result we require bounds for g(n), and this is
what we shall obtain next.

The triple (1,2n+3,n+2) together with any partitions of [2,n+1]

and of [n+3,2n+2] form a linked partition of [1,2rn+3]; so that
2
g(2n+3) =z {Q(n)} , (n=0), (2.7)

since the numbers of partitions of [2,n+1] and [n+3,2n+2] are each
@(n) (see the argument on p.60).
Similarly, the triples (1,2n+5,n+3), (2,2n+6,n+4) together with

any partitions of [3,n42] and [n+5,2n+4] enable us to see that
2
g(2n+6) = {Qm) 1, (nz0). (2.8)

If we combine these results with (2.6) we see that

(n-6)/3

qgn) = 2 for # > 33

and from Table II.3, it can be verified that this inequality holds

for n £ 30 with equality when n = 6 or 9. We now have that

S

(n/3)-1 {(n/3)=5
Q) = 7 gqBBN9mn-37) = 7§
J=1 J=1

2 (35-6)/3 . (=313

18)/3 (n-15)/3 (n-12)/3 i 2(n~9)/3 & 2(n~6)/3

+ 15x2 7~ + 5x2 + 2x2

(n=18)



Therefore we have

Q) > 2”/3F%§q (1518) .

From Table IT.3 we see that this inequality holds for all n.
However, with the information already obtained we are able to
achieve better results.

We know that

n/3)-1 (n/3)-1
gn) = ) q(37)8(n=-34) + q(n) > ) g(37)9(n-37) for n > 0.
J=1 J=1
(2.9)
Therefore we have,
10
Qn) > ) q(35)Qn-35) for n 3 33. (2.10)
J=1
From Table II1.3 if we obtain values 4 and B such that
Q) > 48" (2.11)

for 3 ¢« n 2 30, then (2.11) will continue to hold for »n > 33, since,

from (2.10)

10 .

-3

Q) > 4B T B Y909 |,
J=1 )

provided that we also have

5B Va3 > 1. (2.12)
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-3
If we write * = B, the left-hand side of (2.12) becomes

7
F(w) = 2280300 0 + 2067407 + 4046:° + 6492  + 1152° + 250" + 6o + 2 + & + @

and we find that for & = 0.257, f(z) > 1.00116 > 1.

Therefore we may take

B~ = 0.257

so that

From Table II.3 we observe that Q(n)/Bn has its minimum value at

n = 15, so that we may take

-15 _Z_L
A = 558 > 65

Therefore we have that
n
4 (11
Q(n) >65[7]

for all values of n which are multiples of three.

From (2.7), (2.8) and (2.11) we alsc have that

4% n 1 (11)"
qiR) > gl :’4000(7

for the same values of n.

We note that this method will enable us to obtain upper bounds
for Q(n) - q(n), but will not help us in determining upper bounds for
either function. The best results developed so far are in terms of

the gzneral function @(n,a,b,a).
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We know that

n/3 n ' (5%
E 3,21 B3 X 1= E(JB + l} s
=1 1=(2n/3)+1
and therefore we require the number of partitions of %{%? + l] into %

distinct parts. Because they are distinct we may subtract 1 from the

first part, 2 from the second, etc. We now require the number of

f E{QE + l] e 4= Zﬁi into at most = parts, which
613 " ) " 233 9 ; 3 FREERg "
is less than the total number of partitions of —g—. The total number

1 eﬁVEfB

4ky3

3v3 2m/3V3 20
2

8n

partitions o

of partitions of k is asymptotically » So our number is less

than = . From the remaining £ values, a set of %’possible

2n/3
n/3

If we fix the order of the z's then there

values for the x's must be chcsen, which gives us ] choices; asymp-

n/3

totically this is
are {%]! or asymptozzéilly Vﬁ?ﬁ?ﬁtn/3)n/36_n/3 possible permutations of
the x's which may fit with the z's. Obviously not all permutations
will produce solutions, but unfortunately we have not found any means

of predicting how many will not. Since we are not distinguishing be-

/3

tween & and ¥ we have counted each partition 2™ times.
Therefore we have
% V3 9 5 43 _
QChsasbse) & 2“% ezvﬂ/3‘3 A ¢§;;7§(n/3)n/36 n/3 i/3
' 8n Yan/3 9
i.e
Q(n,ab,e) < (0.92)(2.1)"0/3
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1I1.2.3. The equation x + y = 33.

From Table II.l1 we know that m must be of the form 8k or 8&+5
before a partition is possible. Table II.4 contains all the part-

itions of [1,15] and some examples of partitions of [1,24], [1,39]

and [1,48].
Table I1I.4
Partitions of [1l,n] Satisfying x + y = 3z.
m=5, n=15
i1 8 3 2 13 I 1l & 2 10 &4
213 5 1 11 & 213 5 114 5
4 14 6 513 6 3156 3156
10 11 7 10 14 8 9 12 7 9 12 7
12 15 9 12 15 9 10 14 8 11 13 8
m= 8, n = 24
1 5 2 1 8 3 4 11 5 4 11 5
3 9 4 5 7 4 315 6 315 6
10 11 7 2 16 6 219 7 120 7
6 18 8 9 21 10 123 8 222 8
16 20 12 13 20 11 9 21 10 9 21 10
17 22 13 17 19 12 16 20 12 17 19 12
19 23 14 18 24 14 17 22 13 16 23 13
21 24 15 22 23 15 24 18 14 18 24 14
m= 13, n = 39
1 5 2 123 8 3 9 4
3.9 4 225 9 213 5 Any
10 11 7 327 1 120 7 partition
6 18 8 4 29 11 6 18 8 of
17 25 14 5 34, 13 16 17 1k [1,15]
13 32 15 6 36 14 10 26 1 18 30 16
12 36 16 7 38 15 15 27 14 22 29 17
28 29 19 18 30 16 28 29 19 26 31 19
27 33 20 12 39 17 30 33 21 27 33 20
26 37 21 24 33 19 31 .35 22 28 35 21
31 35 22 28 32 20 32 37 23 32 37 23
30 39 23 26 37 21 34 38 24 34 38 24

34 38 24 31 35 22 36 39 25 36 39 25



= BB =

m= 16, n = 48
129 10 819 9
2 31 11 7 23 10
3 33 12 6 27 11
4 35 13 5 31 12
5 37 14 4 35 13
6 42 16 3 39 14
7 44 17 2 43 15
8 46 18 1 47 16
9 48 19 17 37 18
15 45 20 24 36 20
24 39 21 25 38 21
30 36 22 32 34 22
28 41 23 33 45 26
32 43 25 40 44 28
38 40 26 41 46 29
34 47 27 48 42 30

If n'is of the form 24k then we have the following general

partition, which consists of one set of 4k triples and four sets

of k triples each.

(1+i ,24k=1-47 , 8k=1) 05t <bk=1
(8k+1+167 ,16k+5+87 ,8k+2+87) 0zig<k-1
(8k+8+167 ,16k+4+87 ,8k+4+87) Ogick-1
(8k+9+167 ,16k+06+87 ,8k+5+87) Ogick-1

(8k+16+16% ,16k+2+87 ,8k+6+87) Ogi<k-1

We can permute the elements of the following triples
(27-1,24k-81+7,8k-27+2), (27,24k-87+3,8k-27+1) and
(24k-167+8,24k~87+4,16k-87+4) , (24k-16149,24Kk-81+6,16k-87+5), 1 < 7 < k,

to obtain these triples:-



(27 ,24k-81+6 ,8k-21+2), (21-1,24k-87+4,8k-2i+1) and

-

Since these can be changed independently we have

For example, let us take n = 72, i.e. k

P~ w

Woo~ o

10
11
12
25

32
33

40
41

48
49

56
57

64
65

72

71
67

63
59

55
51

47
43
39
35
34
27
53

52
54

50
61

60
62

58
69

68
70

66

Q(24k) = 2

24
23

22
21

6 54 20
5 52 19

18 \ 7
17 \'\. /

16

15 X

14 \

13 \

26 Y,

28/ 33 51 28
29 32 55 29

30

20
194

34 /
36 /

37

38
42

44
45

46

% _

2n/24

49 59
48 63 37

% 1029377

= 3.

36

2 70 24
168 23

65 67 44
64 71 45

- &

(24k=167+8,24%~81+7 ,16k-8i+5), (24k~16749,24k-871+3,16k-87+4), 1 < <

k.
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As we see, there are eight different partitions.

We will now construct partitions when n is of the form 24k
or 24k+15 which are based on partitions for smaller values of k.
In the case m = 24k the partition will consist of three sets of

5k-11j-7, 4k-4j-3 and 7j-k+5 triples where J will be determined

by the construction. We have:

ANY PARTITION OF [1,247+15]

(24j+16+ 1 | 15k+155+11+27,5k+13+9+7) 052 <5k-117-8
(13k+57+4+1 , 17Tk+j+2+27 , 10k+2 j+2+1) Ogichk-4g-4
(17k+7+1+2% , 25k=7 j=4+i , 14k~25~1+1) Oci<7j-k+4

For example, take Xk = 2 and j = 0,

ANY PARTITION OF [1,15]

16 41 19 17 43 20 18 45 21
30 36 22 31 38 23 32 40 24 33 42 25 34 44 26
35 46 27 37 47 28 39 48 29



_

Now for the partition to exist, the index sets must not be less than

emnty, i.e.

5k-11j-7 = 0, (1)
k- 4j-3 =2 0, (2)
75 - k+5 = 0. (3)

Notice that if ¥ > 1 then (1) implies (2), since
445 < 20k-28 < 44k-33.
From (1) and (3) we now obtain
11k~-55 < 774 < 35k-49.

It can be verified that these inequalities ensure that none of the

triples overlap. The first and last triples in each sequence are:-

(24k+16 ,15k+15/+11,5k+137+9)

and (5k+137+8,25k-77-5,10k+2j+1) ;

(13k+57+4 ,17k+7+2 ,10k+2+2)

and ' (17k+j ,25k-75-6 ,14k=~24-2) ;

(17k+;+1,25k-75-4 ,14k-25-1)

and (15k+157542,24k ,13k+575+3) .



In order for the sequences to be distinct we must have the elements
in the last triple greater than or equal to the corresponding ele-
ments in the first triple of the sequence, which is equivalent to

saying that the index set is non-empty. We must also have

5k+137+8 < 13k+57+4

i.e. 8j+4 < 8k,
but from (2) we know that
87 < 8k-6 < Bk-4,

Similarly, for n of the form 24k+15 we have the following par-
tition consisting of a partition of [1,247] and of three sets of

5k-~11j+3, &k-4j+2 and 7j-k triples.

ANY PARTITION OF [1,247]

(24J+144 , 15k+155+11427 , 5k+137+4+1) 07 <5k-114+2
(13k+57+9+0 , 17k+7+12427 , 10k+274+7+7) 0t sbk~bj+1
(17k+g+11427 ,25k=7+16+7 , 14k-25+9+1) 0<L<7i-k-1

For the partitions to exist the index sets must be non-empty, hence

5k-117+3 % 0 (4)



= J9 e

bk-45+2 =2 0, (5)

13-k = 0. (6)
Notice that if k > 0 then (4) implies (5) since
447 < 20k+12 < 44R+22.
From (4) and (6) we now obtain
11k < 77§ & 35k+21.

We note, as in the previous case, that it can be verified that
these inequalities ensure that the triples will form a partition.

We have seen that for n = 24k
Q(n) > (1.0293)",
For n = 24k+15 the above constructions give
n/19‘

Qn) = (1.0293)

For example, let us take k = 3, j =1, n = 87.



ANY PARTITION OF [1,24]

25 71 32 26 73 33 27 75 34 28 77 35 29 79 36 30 81 37 31 83 38

53 64 39 54 66 40 55 6§ 41 56 70 42 57 72 43 58 74 44 59 76 45

60 78 46 61 80 47 €2 82 48

63 84 49 65 85 50 67 8 51 69 87 52

11.2.4. The equation & + y = 4z,

From Table I1.1 (p.58) we recall that for a partition to be able
to exist we must have m of the form 5k or 5k+3. Table II.5 gives all

the partitions for n = 24 and n = 30 and some sample partitions for

n = 39, 45 and 54.

Table II1.5

Partitions of [1,n] Satisfying & + y = 4z.

n o= 24
313 4 313 4 2 14 4 2 14 4 115 4
119 5 218 5 119 5 317 5 37 5
2 22 6 123 6 321 6 123 6 2 22 6
12 16 7 12 16 7 12 16 7 12 16 7 12 16 7
14 18 8 15 17 .8 15 17 8 1319 8 14 18 8
15 21 9 14 22 9 13 23 9 15 21 9 13 23 9
17 23 10 19 21 10 18 22 10 18 22 10 19 21 10
20 24 11 20 24 11 20 24 31 20 24 11 20 24 11
n =30
115 4 11 4 115 4 115 4 1.15 4
317 5 218 5 218 5 2 18 5 218 5
6 22 7 325 7 6 22 7 6 22 7 6 22 7
2 30 8 6 26 8 329 8§ 329 8 329 8
16 20 9 17 19 49 16 20 9 16 20 9 17 19 9
19 21 10 16 24 10 17 23 10 19 21 10 16 24 19
18 26 11 21 23 11 19 25 11 1727 11 21 23 11
23 25 12 20 28 12 20 27 4% 23 25 12 20 28 12
24 28 13 22 30 13 24 285 13 24 28 13 25 27 13
27 29 14 27 29 14 26 30 14 26 30 14 26 30 14

12
13
14
L7
20

15 4
18 5
21 6
16 7
19 38
22 9
23 10
24 11



39

U~

14
20
23
22
27
29
32
34
37

45

18
30
39
37
25
28
29
34
33
36
41
42
44
45

10
1.1
12
13
14
15
16
17
19
20
21
22

Numbers of Partitions Satisfying a + y = 4z.

[es BV, BRI N

20
21
23
26
28
33
34
37

~NoUn N

28
29
30
27
26
39
33
36
44
42
47

15
22
25
31
32
24
27
29
30
36
35
38
39

31
34
37
40
43

46

49
32
35
38
45
50
41
ol
52
48

54

53

O~y Oy

10
L1
12
13
14
16
17
18
19

16

= 78 =

Ul =N W

19
20
23
22
24
27
30
33

2]
26
31
32
35
25
28
29
34

36

37
38
39

Table I1.6
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Table II.€é shows the known values of §(n), which show

more irregularity than any of the previous cases. It is easy to
show why there are no partitions for n = 9 and 15. For n = 9,
there are 2 multiples of four, 4 and 8. If they appear in the

same triple as x and y, then we have,
b+ 8 = bz

and 3 = 3. Now from (2.3) on p.55 we know that

therefore the other values of z must be 1 and 5. But 5 is im-

possible since the maximum value aty can take is

749 = 16 < 4x5 = 20,

~One of 4 and 8 cannot appear in a triple as an x or y without the
other, because 4 divides 2 and 4 divides 4z implies 4 must divide

Y, so they must both occur as values of z. But as above

7

7+9 = 16 < 4x8 = 32.

Similarly for n = 15. The integers 8 and 12 must occur to-

gether in the same triple as x and y because they are too big for

8+12
values of 3. Therefore, both 4 and 5(= A =) mnust occur as z's.

"From (2.3) on p.55 we know that



Therefore, the three remaining z's sum to 15 and since 4 and 5

have already been used, they are 2, 6 and 7. But now there is no

possible pair (x,y) to satisfy x + y = 8.

Unfortunately, no general partitions for all permissible n were found,
although it seems a safe conjecture that partitions do exist for
such n > 24. However, given a partition of [1,15k] then partitions of
[1,285k-21], of [1,285k-6], of [1,285k+14] and of [1,285k+39] may

be constrﬁcted as followe.

n = 285k~-21
There are three sets of 32k-3, 30k-2 and 30k-2 triples together with

any partition of [1,15k].

(15k+1+7 ,165%k-9+37 , 45k=2+41) 0<7<32k-4
(135k-9+7,165k=11+37 , 75k~5+7) 0<7<30k-3

(165k-10+3¢ ,255k=18+7 ,105k-7+£) 07 <30k-3

n = 285k-6
There are three sets of 30k-1, 30k-1 and 30k-1 triples with

an extra triple and any partition of [1,15k].

(15k+144 , 165k=1+437 , A5%+7) 0< <30k-2
(135k=-2+4,165k-2+37 , 75k~ 1+1) 057 <30k-2
(165k+34 ,255k~4+7 ,105k=1+1) 0<7 <30k-2

(165k-3,255k-5,105k~2)
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n = 285k+24

The partition consists of three sets of 30k+3, 30k+3 and 30k+2

triples together with any partition of [1,15].

(15Kk-+1+7 ,165%+15+37 , 45k+4+1) 057 <30k+2
(135k+12+7 ,165k+16+32 , 75k+7+1) 057 <30k+2

(165k+17+37 ,255k+23+7 ,105k+10+2) 0<Z<30k+1

n = 285k+39

Again, we have three sets of triples, this time of size 30%+5,

30k+4 and’30k+4, and any partition of [1,15k].

(15k+14+% ,165k-+23+37 , 45k+6+7) 0«2 <30k+4
(135k+19+7 ,165k+25+37 ,75k+11+7) 0<7 <30k+3

(165k+24+437 ,255k+36+37,105k+15+7) 0<7 <30k+3

Similarly, from any given partition of [1,15%+10] we mav form
partitions of [1,285k+150], of [1,285k+165], of [1,285k+195] and of

[1,285k+210] by means of the following constructions.

n = 285k+150

This partition consists of three sets of 30k+15, 30%+16 and

30k+16 triples, and any partition of [1,15%k+10].

(15%+10+7 ,165k+904+3< , 45k+25+1) 052<30k+14
(135k+22+7 ,165k+88+37 , 75k+407) 0<2530k+15

(165k+89+37 ,255k+135+7 , 105k+56+7) 0<Z<30k+15
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n = 285k+165

This partition consists of three sets of 30k+17, 30k+17 and

30k+17 triples and one other triple, together with any partition of

[1,15k+101.
(15k+10+7 ,165k+98+37 , 45k+27+1) 0<7<30k+16

(135k+7944 ,165k+9 7+3% , 75k+444+7) 0<7 <30k+16
(165k+99+37 ,255k+149+7 ,105k+62+7) 0<7 <30k+16

(165k+96 ,255k+148,105k+61)

n = 285k+195

This partition consists of three sets of 30k+21, 30%+20 and
30k+20 triples, together with one other triple and any partition of

[1,15%k+10].
(15k+10+% ,165Kk+114+37 , 45k+314%) 0<7<30k+20

(135k+93+7 ,165k+115+37 , 75k+52+%) 0<7<30k+19
(165k+116+37,255k+176+7 ,105k+73+%) 057 <30k+19

(165k+113,255k+175,105k+72)

n = 285k+210

The following partition consists of three sets of 30k+22,

30k+22 and 30k+22 triples, topether with any partition of [1,15k+10].

(15k+1047 ,165k+122+437 , 45k+33+1) 01 <30k+21
(135k+100+2 , 165k+124+37 , 75k+56+7) 0<2$30k+21

(165k+123+37 ,255k+189+1 , 105k+78+%) 052 <30k+21



Examples of the above are:-

]

Any partition of [1,24] gives partition of [1,435], [1,450],
[1,480] and [1,495].
Any partition of [1,30] gives a partition of [1,549], [1,564],

[1,594] and [1,609].

juo)

Any partition of [1,39] gives partition of [1,720], [1,735],

[1,765] and [1,780].

It is easy to see from the examples that starting with any set of
partitions it will not be possible teo obtain partitions for all n

by means of the above constructions.

IT.2.5. The equation x + y = 53.

Trom IZ.2.1 (pp. 56-7) we know that m = 1. The only possible

partition is

(2,3,
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I1.3., The case a=b = 2.

In the equation
20+ 2y = oz

we are assuming that (aq,b,e) i.e. (2,2,¢) = 1. Therefore, ¢ is not

even, which implies that B is even for all 4.

The maximum values that x and y can take are 3m and 3m-1.

Therefore
ez < onmtom-2 = 12m-2.
Since all the z's are even we have

2me < CZ & 12m—-2,

i.e. c <b 5 o "
m
Hence
e <5,
Since
22, + 2y, = . .
z y; = ez, {3.1)

holds for all 7, we have



Because this is a partition of [1,3m] we also have

T T 4 3m

Yoz, ) oy + ) oa =5 G (3.2)
; 2 : 2k . 1 2
7=1 oo 'z,=]_

From (3.1) and (3.2) we obtain

m
(24¢) ) 2, = 3m(3mHl)
1=1
l.8.
m
_ 3m(3mtl)
Z % = P (3.3)

=1

Now we know that zm < 3m; hence

m m-1 s 5
Z & < Z (3m-24) = 3m(m) - 2(—§~]m = 2m + m.
=1 g=0
From (3.3) we have
m
3m(3m+1) 2
; +
(et+2) E 4 & 2m m

which yields

9m+3 < (2m+l) (et+2)

i.e. 5mtl < e(2mtl)



which implies that

Since (a,b,c) = 1, ¢ is odd, therefore e

Ll 2

i Y e

A

The equation 2x + 2y = 3z.

From (3.3) we have

Therefore a necessary

3
1"

Table .7 exhibits the

and shows some sample

Partitions
n=2710 n=15
154 1 5 &
276 3 9 8
398 2 13 10

7 11 12

6 15 14

3 o 5.

condition for a partition to exist is

= 0 (mod 5)

or m

3 (mod 5) .

unique partitions for each of »n

partitions for n =

Table TI.7

= 9

24, 30 and 39.

of [1,n] Satisfying 2x + 2y = 3z.

3

W g o=

11
13
15
17
19
21
23
24

24

8
10
12
14
16
18
20
22

18
20
22
24
26
28
30

Lo~ bW

17
19
21
23
25

~
L

29
31
33
35
37
38
39

and n = 15

39

12
14
16
18
20
22
24
26
28
30
32
34
36
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We can give the following general partitions

= 15k n = 15%+9

154 (141 ,6k+5427 ,bk+4+427) Ogigbhk+2
276 (
398 (Lk+5+27 , L4k+10+7 ,12k+10427) Ogick-1

(1047 , 6k+5+27 ,4k+10+27) 0<i<bk-3

(4k+1+7 , 14k+8+27 , 12k+6+27) Ogick-2
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The equation 2x + 2y = 53.

From IL.3.1 (p.81) we see that

m =0 (mod 7)

or m = 2 (mod 7).

Parity and other conditions make it impossible to partition any

interval less than [1,63].

Unfortunately, for intervals larger

than this no general partition is known although it is virtually

certain that partitions do exist for every n (363),

as evidence.

we offer Table II.8

We also conjecture that their number grows at least ex-

ponentially with .

P
WU U~ o~ W=

Table ITI.8

Partitions of [1,n] Satisfying 2x + 2y = 5z.

19

44

1

e
CUR U R & WN

13
23
27
31
25
39
35
54
o>
56
51
58
59
60
47
62
63
64
65
66
67
68
69

69

n = 84
8 1 9 4
10 2 13 6
12 515 8
14 32210
16 11 19 12
18 17 18 14
20 7 33 16
22 21 29 20
24 25 35 24
26 31 39 28
28 34 41 30
30 23 57 32
32 27 63 36
34 26 69 38
36 47 53 40
38 37 68 42
40 45 65 44
42 43 72 46
44 49 71 48
46 51 74 50
48 55 75 52
50 59 76 54
52 61 79 56
67 78 58
70 80 60
73 82 62
77 83 64
81 84 66



20

O~ Ut

11
25
27
19
31
13
35
21
43
29
47
37
41
45
5%
53
65
61
67
69
73
77
81
85

A
i
15
18
26
23
39
30
33
51
49
72
55
74
57
76
63
78
79
80
71
82
4D
84
83
86
87
88
89
90

2

10
14
16
20
22

a
&

28
32
34
36
38
40
42
L
46
48
50
52
54
55
58
60
62
64
66
68
70

n

B

el =
WO WMyWU =N

L
11
15
19
45
27
31
35
53
43
47
51
69
59
63
67
71
25

23
29
30
33
41
27
49
39
57
61
55
82
73
84
85
86
65
88
89
90
77
L
93
94
g1
96
97
98
99
100

= 105

10
12
14
16
13
20
22
24
26
28
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70

79 101 72
83102 74
87 103 76
91 104 78
95 105 80
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"

O wwhNo

101
104

11
19
23
217
35
37
=i
43
63
61
59
67
75
56
55
88
81
90
84
92
83
94
96
97
48
91
100
99
10z
103
106
105
108
107
110
109
111

n =111

6

10
12
16
20
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
58
60
62
64
66
68
70
72
74
76
78
80
82
34
86

=

(=1
MW= Oyt~ 0o b

108
110
101
112
105
114
113
116
109
118
117
120
121
122
123
124
125
126

2
14
16
18
20
22
24
26
28
30
32
34
36
40
44
46
48
50
52
54
56
58
60

n
r=

66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
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11.4. ‘The vsse a=Jb = 3.

IT.4.1

We note that ¢ = 3 is impossible since we have (a,b,c) = 1.

Now

3z + 3y = cz

implies that 2z is a multiple of 3. Since there are m multiples
of 3 in [1,3m] and m z's then neither x nor y can be divisible by 3.
The maximum values that z and y can take are 3m-1 and 3m-2, while

the maximum value 2 can take is 3m. Hence
9m-3 + 9m-6 = 3em

which yields

o
1
3w
W
Q

Therefore

1 €@ % by

In the following cases we will list the permissible x and y values
for each z, until a z is reached, where no values of x and y are
permissible, and then all pairs (x,y) will be listed with reasons

for their exciusion.

IT.4.2. 32+ 3y = 3.

z = 3

(1,0){0,1) Both x and y must be positive.

il

(x,y)
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11.4.3. 3x + 3y = 2z
z2=3

(x,y) = (1,1) This is excluded since x and y must be different.

I1.4.4. 3x + 3y = 4z

g =3
(z,y) = (1,3) These are excluded because y cannot be a
(252) multiple of 3, x and y must be different and
(3,1 2 cannot be a multiple of 3,

~

I1.4.5. 3x + 3y = 5z

a2 = 3 6 9 12 15

(x,y) = (1,4)(2,8)(5,10)(7,13) (11,14)

At this point we have a partition of [1,15] into triples, where
all the triples are forced so that there is only one partition. If
we consider the next value of z, z = 18, x + y = 30, then one of x
and y is less than 15 but all such numbers have already been used.

Therefore no other interval may be partitioned by this equation.
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IT1.5. The case (a,b) = 3.

ITI.5.1. Ceneral Results

We shall first develop some results which will be useful in

the following sections.

Since ax and by are both divisible by 3 then so is cz. Be-
cause (a.b,e) = 1, 3 cannot divide ¢ and must therefore divide 3.

As there are m z's and m multiples of 3 in [1,3m] and since we have

ordered the z's by 31 < 32 < ... < 2 , we have
m

z. = 3T 1 <12 gsm, (5.1)

The maximum values that x and y can take are 3m-1 and 3m-2. Since

2 must take the value 3m we have

a(3m-1) + b(3m=-2) 2 3me or a(3m-2) + b(3m-1) > 3me
i.e; ath > ¢ (5.2)

If n = 9 then the interval cannot be partitioned into triples
satisfying ax + by = ¢z if one of a or b is divisible by 9. For

we have from (5.1) that By = 9 and

ax, + by3 = 9c.

Now if g were divisible by 9 since (a,b) = 3 then Y4 would be
divisible by 3 which contradicts (5.1). Similarly if b were divis-

ible by 9, x5 would be divisible by 3. Therefore if n > 9
9+4a, 915 (5.3)

From (5.1) we have



Ze=] i=1
Since
axr, + byi = ¢c3., 1 £% £ i,
we have
\\‘
\ m m m
\\\ a ) @, + b ) y; = ° ¥ g
: 72=1 i:l =1

yielding

m m By
a z x. + b z y; = c——z—(m+1).
=k £=F

(5.4)

Since every integer in the interval occurs in exactly one triple

as just one of the #, ¥ or Z, we have

3Mmea.
> (3m+1)

3
8
+
h~13
o
o,

+
=3
fAx

]

1
e~
(_\

I

From (5.4) and (5.5) we obtain

3m
1 2
b see 11.4 on p.87) then

m
(b-a) _Z x, = ({2b-clm=e).
’l’=

If we assume a # b (for a

_ 3m . B
@ _'ETE:EY({ZE crm-c),

No~13

=1

4 i 3m 3m 2
I @+ 1y, = () - S5Gmkl) = 3m .

{3:8)

(5.6)
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Similarly, we obtain

i 3m , "
I ¥ = 30y ({e-2akmte). (5.7)

Now the minimum wvalues that the xi can take are 1,2,4,5,7,8,..., 5

which gives

- 5 f
’f . | (3m %)/% _l_(B’”Zl)J(%J> lf3m~_} (Bnﬁ-ﬂ _;[m-l] (m—i—l} v add
s s N *2[ 2 72 22 {2
L(3m=2)3m) _ 3|m|(m=2
2| 2 2 212/ 2 i evsh
(i 2
- 2L m odd
4
]
3 2
Zm m even (5.8)
From (5.5) we have
m m 5
z x. + Z . = 3m
i=1 ¥ g=1 "%
therefore, from (5.8) we obtain
Ty, ¢
gay e " 4
m m
Similarly, if we interchange igl L, and iﬁl y; e obtain

(5.9)
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If we combine (5.7) with (5.9) we obtain

3 2 3m ) 9
< S ({e-2abmte) < i

3, 2
4 T 2(b- '

If we assume that b > g then

(b-a)m < 2{e-2almt2c < 3m(b-a)

which yields

(G+3a)ym . (3bta)m
20mr) S ¢ S 20 (5.10)

Theorem II.1

If (&,b) = 3 and b > a then y, = 1or 2.

By symmetry, if a > b then x = 1 or 2. This particular result

will be extremely useful in II.6 and II.7.

Proof

The proof is by exhaustion. From (5.2) we have

e <b+a

therefore

ax, + byl = 3¢ < 3b + 3a

which implies that

byl < 3D + 2a

A yl < 3+ %§-< 5. (5.11)

If Y, = 4 then in (5.10) we must have
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We also have

ax, + 4b < 3a + 3b
i.e. gr. < 3a - b

which yields

Thereforewl = 1.

Now 32 = 6 and using the above results we obtain the system of

equations

a+ &b = 3¢

ax, + byz = bc

which yields
b, _ a
(8—y2)C§) = (m2~2)C§)

Since z, cannot equal one we have 1 ¢ Y, € 8 and z, 2 2. Because
ab = 1 we must have g—dividing (8- ) Therefore if # 8
- 3 - 52 * e yz
then y2 ¢ {2,5,7} which implies that g takes on cne of the values
3, 6, 9 or 18. But since n 3z 9, (5.3) tells us that 9 cannot divide
a. Also if g = 6 then since 2a > b we have 6 < b < 12 which means that
b =9, contradicting (5.2). Therefore ¢ = 3 but then 3 < b < 6 which

is impossible. Therefore we must have
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Y, * & and z, = 2.

Let us now consider the possibilities for x, and Yge We

have the two equations

a+ 4b = 3¢

and ax, + by, = 9¢

which yield

12y ) = @ -H .

Since z . cannot take any of the values 1, 2, 3 or 4, we have

4 < Y, € 11 and 4 4@ &

More specifically Y, can take any of the values 5, 7, 10, 11.

Since (%ﬁ divides (12"y3) this implies that ¢ divides 3, 6, 15 or

21. Now ¢ = 3 and a = 6 are impossible by a similar argument tc

that at the foot of p.93.

i) If ¢ = 15 then b lies between 15 and 30 and is not
divisible by 9. Hence: if b = 21 then 3¢ = 4-21+15,

1; if

which yields ¢ = 33 which contradicts (a,b,c)

b = 24 then 3¢ = 4°24+15, which yields that e

Table I1.9 ).

ii) If a = 21 then b lies between 21 and 42, and is not

divisible by 9. Hence: if b = 24 then 3e = 4:24+21

which yields ¢ = 39, contradictiag (a,b,e) = 1; if b

37 (see

30

then 3¢ = 4.30+21 which yields ¢ = 47 (see Table I1.9 )
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if b = 33 then 3¢ = 4.33+21 which yields ¢ = 51, con-
tradicting (a,b,c) = 1; if b = 39 then 3¢ = 4.39+21

which yields ¢ = 59 (see Table II.9).

Therefore since ¥y does not assume the value 4, it must assume the

value 1 or 2.
The following table lists the triples for successive values of
2 until one is reached where no triple containing it can be used to

form a partition of an interwval.

Table II.9

Equations Arising From Theorem II.1

i) 15x + 24y = 37z

z 3 6 9 12
(x,y) = (1,4) (2,8) (11,7) (4,16) These triples are excluded from
(12,11 a partition because of Y, 3+xq,
(20,6) 3+y4 and of x, respectively.
(28,1)

i1) 21x + 30y = 47z

2 3 6 9 12
(x,y) = (1,4) (2,8) (13,5) (4,16) These triples are excluded from
(14,9)  a partition because of Yy 3er|+
(24,2) and of x_, respectively.

2

iii) 21x + 39y = 59z
z 3 6 9 12

(z,y) = (1,4) (2,8) (16,5) (4,16) ] These triples are excluded from

(17,9) } a partition because of y,, 3+y4

(30,2) | and of x, respectively.
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I1.6. The case (a,b) = 3, (a,e) = 2.
The objective of this section is to prove that apart from the
interval [1,3], there is only one interval which can be partitioned,

and that is [1,42], and that the triples of this partition satisfy
12x + 3y = lbz,

By symmetry, if (b,e) = 2 then there is only one interval, [1,42]

which can be partitioned and the triples of this partition satisfy
3x + 12y = l4z.

I1.6.1

We first make the observation that since (a,e) = 2 and
ax + by = cz

then by is divisible by 2. However, (a,b,c) = 1, therefore y is

’ 3m : 2 m
divisible by 2. Now, there are 5| even numbers in [1,3m] and 5
of them are multiples of 3, therefore there are m even numbers
which are not multiples of 3. Since there are also m y's, then we
have that every even number is a z 1f it is a multiple of 3 and is

a y otherwise, i.e.

x = 1, mod 2 {(6.1)
This implies that
3 3m
m m rl 7 odd ] 3 5 m even
L o¥g= 1 |3~ FRA I
i=1 =1 2 % evenJ m odd
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which vields

m
1 g

[ Ngw
= o

B
i‘"‘

t\.Ji

Fronm (5.6) we have that

m

m even

m cdd

) Y: = 5oyl {e-2almte].

é(b )L

With (6.2) this yields

3,

2
3m “+1

W%I{@"Za}mc] =

We simplify to obtain

3m? (b-a)

3em(mi-1) ~6mﬁ=

m even

m odd

(3m%+1) (b-a)

which yields

m(b+a)
mtl

3m? (bra)+(b-a)

{ 3m(mtl)

From the above result, it would seem

analysis into two different cases, m even and m odd.

this turns out to be the best approach.

11.6.2. The case m even

Trom 2 = 1 and 2 and

of linear equations

m even

m  odd

reasonable to split the

(6.2)

(6.3}

In fact,

1 from {6.3) we have the following system



o G =

ax, + byl = 3c

ax, + byz = 6c

a+ b = FEELJC
m

The above system of equations yvields

*, Y, 3
z, Y, 6 | =0
m

which implies

mEl
P;;J(xlyz—mzyl) - 6w, + 3x, + 6y, - 3y, =0

rw+l] ~ 6 (2 -y, )+3(y,-x,)
mn LY o—Tol 3

which vields
E¥,7%04,

= - (6.4)
6 )~y )+3(y y~w, )~ (-,

m

which is an extremely useful relationship if any three of
My &1y Tyy Y, Y, are knowmn.
We will further subdivide the problem so that we may use

Theorem II.1.

a) a <b
By Theorem IL.1l (p.922) and the preceding page, we have Yy, = 2.

If y, = 4 then we have



- GG =

Q
&
+
]
o
i

3c

(Y&

Q
8
+
I~
o
]

together they yield

which is impossible by (6.1) since all the x. are odd. Therefore

we have Y, % 8.
TE Y, 2 14 then

ax, + 14b £ 6¢c < 6a + 6b

b - ar, < 6a - 8 < 0 (since a<b)

which is impossible.

If Y, = 10 then

ax, + 10b = 6¢ < 6g + 6b

9
i.e. axz < ba - 4b
x<6—'§£<6—4
2 a

which implies that g, = 1

Hence, with ¥, = 2, Y, = 10, x, = 1, (6.4) yields

2
1031"2
Sl v
1
which implies
17u4m1 >0

G
p S
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Since x; is odd this is impossible as x, = 1 and 8, = 3

Therefore we have that Uy = 8 and

ax, + 8b = 6 < bag + 6b

which yields

2b ,
x, <6 -—— <4,
2 a
Therefore, we have
x, = 1.

3

Therefore, with x, = 1, y, = 2 and Yy * 8, (6.4) gives

8x1-2 2

" Gl T ey <2

Since we are assuming that m is positive and even, this is impossible.

Therefore the case m even and @ < b produces no partitions.

b) meven and a > b.

From Theorem II.1 and (6.1) we know that x, = 1. Since the mi are

Dy 1 BY 21l

"
i

odd we have x2

iy If z 11 then

W

2

1lq + byz < 6e < 6a + 6b

which gives

by, < 6b - 5a
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5a

which is impossible.

ii)y If x, = 7 then we have

7a + by, = 6c < 6a + 6b

Yy = 6 - % < 5.

Since Yy, is even then Yy, = 2 or 4.

If Y, = 4 then from (6.4) we have
| 7y.~4
m = ‘71?

Because m and 7y1—4 are positive then so is 7-y1. Since y, = 4

then Yy, = 2. Therefore we now have

But this is impossible because &y = 7 which is not in the interval
.60,
If y, = 2 then (6.4) yields

7y1—2
" Ty,

which implies that 11-y, > 0. Since Y, = 2 then Y, = 4, 8 or 10,

Now y, = 4 is impossible for then



o 28-2 26
11-4 7
which is not an integer.
Tor y, = 8 wa have
a+ 8 = 3¢
7a + 2b = 6¢
which vields
6a = 6D
Lees a=>b

which is impossible since a > b,

For y, = 10 we have

\

a+ 10b = 3¢
Ja + 2b = 6¢
which yields
6a = 8b
i.e. 3a = 4p

Since 9 divides 3¢ then 9 must divide 4b, i.e. b which contradicts
(5.2) on p.89, because n > 9.

i44) If x, = 5 then we have the system

L
Q
-+
o
<
]
(22}
Q



which yields
3ag = b(2y1—y2)
From this we know that y, = 2 and Wy ™ 4 are not both true since

a>0. Ify,=4andy, =2 then

3a = 6b
Ll a=2b
and a+ 4(2b) = 3¢
i.e, 9a = 3¢

which is impossible because (a,¢) = 2. Therefore one of Yy, and

Y, is greater than 6 and n must be at least 9, and ¢ and b cannot

be divisible by 9. Returning to
3a = b(Zyl-yz)

since {a,b) = 3, this implies that b = 3, g = 2y1—y2, z, = 1 and

The possible values for x_, are 7, 11 or =13.

3
3y 1f@, 213 then

13a + by, < 9¢ < 9a + 9b

which yields

Yy <9 - =
3 y B

since b = 3 and g is even this implies that
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4
yS < g - T%'< 9-4(2) = 1,

which is impossible.

ii) If T, = 11 then

1lla + 3y3 =9¢ < 9a + 27

therefore
2a
y3<9—3-
Since a is even and Yy 2 2 we have
2a
< et
2 9 3
i.e. a < %%.

Therefore a = 6 (see Table II.10 on p.106).

iii) If T, = 7 then the possible values of x, are 11, 13 or 317.

Tf z), %2 17 then

17a + byq £ 12¢ < 12a + 12b

which yields

5a
yq<12—3.

Since g is at least 6 we have
Y, < 12-10 = 2,

which 1is impossible.
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13a + 3y 12¢ < 12a + 36

p I 1 ¥, <12 —'% .

Since Yy is even we have that

)
A
S
1
|

Therefore a must take one of the wvalues 6, 12 or 24.
See Table II.10 for details.

1f xq = 11 then consider

11lg + Byq = 12e

a + Byl = 3¢
If we eliminate ¢ and then g we arrive at the following

o

Hy, - v,

(4y,-y,)

e
which implies that

4y1 - ¥, £ 0 (mod 3) and 11y1 - Y, £ 0 (mod 2)
18, Yy £ y, (mod 3) and 2y1 7 yh (mod 3)

which implies that one of U and y, must be divisible by 3 which

is impossible.
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Table II.10

Equations Arising From the Previous Section

Therefore ¢ (a+b)ﬁiz—} = EEL.

\m+1 m+1
2 or 8.

Therefore m

If m= 2 then ¢ = 6 which is impossiblie, as (a,c¢) = 2.

If m = 8 then ¢ = 8.

6x + 3y = 8z

2 = 3

(x,y) = (1,6) ] _ These are excluded by: y is not a
(2,4) multiple of 3, x cannot be even,
£3,2) is not a multiple of 3.

= 3, a < 30

i) a=6, b = 3, then ¢ = %Ez-which is the same as 1. above.

ii) a =12, b = 3

Therefore ¢ = 15&#%{] which implies that m = 2, 4 or 14.

m = 2 implies that ¢ = 10.

12x + 3y = 10z

(xfy) : (1?6) These are excluded by: Yy cannot be a multiple
(2,2) of 3 and x cannot be even.

m= 4 implies ¢ = 12 which is impossible, as (a,c) = 2.

m= 14 implies ¢ = 14.
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12z + 3y = 14z

z = 3 6 9 12 15 18 21
(,y) = (1,10) (5,8) (7,14) (13,4) (11,26) (11,40) (19,22)
(17,2) €17,16)
2 = 24 27 30 33 36 39 42
(z,y) = (23,200 (25,26) (31,16) (29,38) (35,28) (37,34) (41,32)

(31,2) (25,40)

This gives two partitions of [1,42], namely

110 3 110 3
5 8 6 5 8 6
714 9 714 9
13 4 12 13 4 12
11 26 15 17 215

17 16 18/ A\ll 40 18

19 22 21 \/ 19 22 21

23 20 24 //\, 23 20 24
27|1% N

/

31 2 ~ 25 26 27
25 40 30 {31 16 30
29 38 33 29 38 33
35 28 26 35 28 36
37 34 39 37 34 39
41 32 42 41 32 42

iii) a =24, b =3

p
Therefore ¢ = 27{TE%J which implies that m = 2, 8 or 26.

m = 2 implies that ¢ = 18 which is impossible as (a,e) = 2.
m = 8 implies that ¢ = 24 which is impossible as (ag,e) = 2.

m = 206 implies that ¢ = 26.

24 + 3y = 26z

-

(x,y) = (1,18) L These are excluded by: y cannot be
(z,10) ‘ a multiple of 3, & cannot be even

(3.2) J and ~ cannot be a multiple of 3.



I1.6.3. m odd
From (6.3) we have

3 () +b-a) |
3 (mt1) ?

" rearranging the terms we obtain

(3m%-1Ya + (3m+1)b = m(ml)e.

We also know that

az, + byl = ¢z

i
Q
n

and ax, + by, 9 .

From this system of three equations we must have

|
] By Y1 3
s Yy 6 =0

3m2-1 3m2+1l m(m+l)
L.e. @ [y, mlmrl)= (18n746) J=y, [2,m(r+1) - (18n°~6) 143e, (3 +1) -3y, (3n=1) = 0.
If we collect terms as coefficients of m we obtain,
mz{—18x1+18y1+9x2~9u2+m1y2—y1m2]+m[x Y1=Y T2ty , 1+ (62, =6y 1 +308,4+3 =
v B R R R 228y =6 +30,+3y ) C.
But z, and x, are cdd and Y, and y, are even. Therefores we have

M + B+ C =0

with A, B and ¢ odd, which is impossible, Therafore m cannot be cdd.



= 109 =

IT.7. The case (a,b) = 3, (a,e) =1, (b,e) =1

i

By methods similar to those employed in the last section a
few meager results may be obtained. Since these methods lead to

long and tedious proofs, we will summarize the information obtained.

L. 7:1
If

0 <b < 5qg

then with the exception of

3r + 12y = 13z

no equation gives rise to a partition of any interval [1,n] where
n > 6. The above equation is still in doubt, although it is known
that © must be a multiple of 39 and that # must be greater than or

equal to 156 are necessary conditions for a partition to exist.

IT.7:2
It

b > 5a

then the known information is contained in the following table,
which is designed so that if we know the first three y values then

we know the values over which a may range.



Values of a, Given yl, yz and ya.
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10

H~ Lo oo

10

H U N

& & & 8 o 9

a

]

3,21
3,15
3,6,12
3,6

3

no ¢ exists

Q& /8 & o

3,6
3

3
3,15



I1.8. The case (a,b) = 2.

In this section we will develop relationships between a, b, c,

m m m

2 X,y Z Yo l ) and m that are necessary for a partition to
=1 =1 =1
exist.

In the equation

. P by, = ez,
s Y; 7
then (q,b), i.e. 2, divides ca s for all 4. Since (a.b,c) = 1,

then we must have zi even.

'

1L.B.1l. {a.e) = 3.

Similar to the above argument we have that (g,¢), i.e. 3, divides
byi and therefore since (a,b,c) = 1 we must have 3 dividing y. for all
2. As in II.6, but ordering the triples by the Yo i.e. Uy T Uy ©amw LY

we have

Yy = 37 for all <.

Since we have m even numbers in [1,3m] which are not multiples of

3, we see that every even number not divisible by 3 occurs as a Z. o

for some 7.

Since we have

ax, + byi = ¢z, for all 1,

we must have
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3b < e(3m-1);

therefore

I£f

then in the equation

by. = cz. - ax.
7 1 T

we must have zi > mi. Therefore when zi = 2, xi = 1, but when
2. =4, &, can no longer assume any value. Therefore, we must

T

have
e > a
if we wish to partition [1,n] with n 2 6.

If m is odd, then the maximum values T, and y; can take are

3m-2 and 3m, while the maximum value z, can take is 3m-1 and there-

fore we have

a(3m-2) + b(3m) = (Bm=1)e,

4 b-a
i.e. a4+ b+ a1 > o
Similarly if m is even we obtain
b+a
+ > c.
a+b+ 3.2 2 ¢

Therefore we have
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b+a
3m-2

a+ b + > ¢ > max(a,b).

This gives good bounds on ¢, but we will now develop exact formulae

for c.

Since y. = 37 for all i, we have

3
3

il 0~

_ .. 3m '
y; = 3 7:51 i = So(mHl). (8.1)

=1

Since zi takes the values of all the even numbers which are not

divisible by 3 in [1,3m], we have

m m 1 % odd
z z,= ) 3 -
" T s ;
1=1 =1 2 17 even
(8.2)
§W2 m even
= 21 ’
Fad
3 +1 m odd,
L2
Since every integer occurs in precisely one triple we have
m m m 3m 3
Poapt 3oyt ] s, = ] 1= 5700w, (8.3)
=1 =~ i=1 = i=1 =1
Therefore, (8.1), (8.2) and (8.3) cowbine to yield
m f%nz m even
) x, =4° (8.4)

7 .
1 L;__ﬂl m odd.
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We also know that

If m is even then (8.1), (8.2), (8.4) and (8.5) vyield

2 2
3m 3m _ e3m
a =+ Db S (ml) = >
1.€. 2z =q+ b(::*_l)" m even.

If m is odd, then (8.1), (8.2), (8.4) and (8.5) yield

2
a[ﬁl”-;:l) + b Zhmi1) = ol
= \

3m2+1
2

2
i.e. o= 3m (a+b)+23mb~a m odd.

2
3m +1

11.8.2. (a,e) =1

Unfortunately, none of the above analysis carries over into
this case. However, we can say a little.
Since gi is even, the least maximum value zi can take is 2m,

i.e. in every set of Brs B, 2 2m. The maximum values that & and y

can take are 3m and 3m-1. Hence

a(3m=-1) + b{(3m) = 2cm

ie 3eth) 2 .,
e 2 2m >

2.

Bt

3(ath) %
2
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I1.9. The case {(a,hb) = 1.

I1.9.1. (a,e) =1, (b,e) =1

The maximum values that x and y can take are 3m and 37-1,

while the least wvalue zm can take is m, Hence
2am + b(3m-1) > om
1.8 3(ath) > .

Other congruence conditions apart from (g,c) = 2, (b,e) = 3
allow us to make a slight improvement on this bound for @. As
we have already given the methods and reasoning, we will state

the results without repeating the calculations.

IT.9.2. (a,e) =2, (b,e) =1

The inequality for ¢ is
e < 3(ath)
and the y; are even.

11.9.3. (ase) =2, (b,e) = 3

As above, {(a,c) divides byi and therefore Ysps i.e. yi is even,
Also (b,e) divides ax, and therefore divides . This implies that
the T take as values all the multiples of 3, while the Y; take all
even values not divisible by 3. Therefore the minimum values ©. can
Y; can take are 3 and 2 respectively, while the minimum value Zi can

take is 1. This implies
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Now the maximum values of z and y are 3m and 3m-1, while the

maximum value ai takes is 3m-2. Therefore

Ina + (3m=-1)b = e(3m-2)

s a+b + ?%%ég) z e.
So

a+ b+ ?%§§%T >e 3z 3a+2b
i.e. , 2a + b 2 (2a+b) (3m-2).

It

Therefore m = 1 and ¢ = 3a+2b, and the only partition is (3,2,1)

and this exists for all sets of values a, b, ¢ satisfying

(a ,b',c

“Y=1,a +b = ¢ where a = 2¢', b = 30" and ¢ = 6c'.

11.9.4. (a,e) = 3, (b,e) =1

The sums of the Yps 2 and x, are given by

4 3n

N 2y = Flerg) (M(2atb)b)
7=1

4 3m

Y @, = Z(C;QX((Zc—b)m—b)
7=1 ’

and the bounds for ¢ are

e
|
Q

& &gt Da



CHAPTER ITII

JII.1. INTRODUCTION

In this chapter we launch investigations into, and report
other people's work on other generalizations of the Langford,

Skolem and Nickerson problems.

In I11.2 we use Q(n,s,t) to denote the number of partitions

of [1,n] into (s+t)-tuples satisfying

xl + z, T o ws =Y, + Y, + awe F yt.
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IT1.2. Welsh's Generalization

I11.2.1

D.J.A. Welsh (oral communication) defines a Skclem system of
type S[n,s,f], where n, & and ¢ are all positive integers, to be a
partition of [1l,n] into a set of (s+t)-tuples such that if

.,xs:yl,yz,...,yt) is in the set then

(xl,xz,..

Zy Fx, hxgt .. F z. =Y ¥ Yot e, F Yy

where there is no loss of generality in assuming s 2 ¢. We say
that n € S(s,® if a Skolem system S[n,s,t] exists. The first ob-
servation ﬁe can make is that » must be divisible by s+t for a
Skolem system to exist, because there are m r-tuples, where r = s+t

and every integer is in exactly one r-tuple, hence

m = n. (L)

Now for all r-tuples (ml,mz,...,ms:yl,...,yt) we have

xz, + z, + ..o tx =y, tYy, T oass F yt.

1 8

If we sum over all r-tuples we have

where X is the sum of all the x's and Y is the sum of the y's.
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Because every integer is in exactly one r-tuple, we have

X+Y=2X= 1'12-(n+1)

>

= Z(nt1) (2)
4
Hence, for a system S[#n,s,t] to exist, it is necessa;y that
7 20 (mod 4) or n = 3 (mod 4).
We next consider a few examples.

I1I.2.2
If »r = 3 then 8 = 2 and ¢ = 1. That is, we require a par-—

tition of [1,n] into a set of triples satisfying
x+y = 3.

This was discussed in Chapter I.

If » = 4 then there are two cases, 8 = 3 and ¢ =1 and s = ¢

111.2.3. 8 = 3 and ¢ = 1.

This means that we have to partition [1l,n] into 4-tuples satis-—

fying

z+y+2=0v
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From (1) we know that n must be a multiple of 4, i.

t

*

Therefore the maximum wvalues

Hence

4m

g |

2=3mt+1

. 7
1

=1

The minimum values that the x,

j i
(z.4y.+2.) 2 )
=1 ¥ Y=
Therefore,
2 m
om® | 3m .
2 + g = E (&£+y1

which is impossible.

ITT1.2.4. s

e.

4m.

7m2

4m 3m _
7?(4m+l) - (3mtl) = 2

y and 2z can take are 1 to 3m.

. _ 3m _ 9m 3m

£ 5 (3m+l) = 5+
m In® | m

ta) = L ovp sty
=1

Our 4-tuples must now satisfy the equation

x+y=u+ v.

that the »'s can take are 3ptl to 4m.

+m

2

Hence,
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Again, n = &4m. Here solutions are possible for every value of m.
Spe;:ifically, the set of four-tuples {(4m+l-i,%;2m+1-1,2m—%)|1sism},
illustrated by Tigure 3, gives a Skolem system of the type

S[n,2,2] for all n. Moreover . + Y; (and U, + ")i) is constant

and equal to 4m+l. We will later call this an equipartition. We

note from (2) that there are no further restrictions on #.

Y1 Y2 ¥3 U3 Up U] U] Uy Uz x3 xp 2
! { i | '
1':.\2:1 3\! 2m=2} ‘Azrr}\-/ / 2m+3 [ um
.\ L \\ e r / /,

Figure 3. Skolem Systems of Type S5[#1,2,2]

For example, m = 3, n = 12 gives
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1 2 3 4 5 6 7 8 9 10 11 12
. _/,/ /
{
f.e. F32,187,6
11,2:8,5
12,3:9,4
111425
We have seen one example (III.2.3) where a Skolem system did not exist
because the equation was too 'one-sided'. The same max-min argu-

ment enables us to find bounds on how one-sided the equations may

be.

Consider a system of the form S[rm,s,£]. Then the r-tuples

must satisfy

z, + x, + .00 + xs =y, +t ...+ yt.

Now the maximum values that the y's can take are the integers

rm=tm+l to ym. If we again define Y to be the sum of all the y's

then,



= 143 =

v rm (m—tm)
Y < 7 4 = SRl - S g

rm—~tmtl -
Since r = s+t we have

ML (2g+E)m+l)

N]\‘#

¥ Izn(z"nﬁ"l) - %@(smﬂ) = 'g(m(rznsz)“!'r—s) =

The minimum values that the x's can take are the integers 1 to am.
8

Hence

Therefore no Skolem system of the type S[i,s.#] exists unless
P25 +Im+1) 2 DlomtD)
-0 t((28+¢ )ml) > s(emtl)
i.e. (t*425t-t")m 3 st 3 0
so we have
(s-1)? > 28
which implies that
r2 > 2(r—t)2

which yields

r > V2(r-t)



=
[0

Y2t > (V2-1)r,

Since % is defined as being less than s and s+¢f = r, hence we must

have

(-1l = & % E (3)

for a Skolem system to exist.

IIT.2.6

The following theorem was stated by D.J.A. Welsh.

Theorem III.1

If vm € S(s,t) and 2k'm € S(k',k') then ymt2k'm € S(k'+s,k'+£).

Proof.

If rm € S(s,t) then there exists a partition of [1,rm] into

r-tuples which satisfy
e +tx + oot = ot . F .
s yl Yy Ye

1 2

Also, if 2k'm € S(k',k') then we have a partition of [1,2k'm] into

U 2 “« o v - 1 v i LR I v "

If we add rm to evary term in every 2k'—tup1e in the partition of
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[1,2%k'm] then equality still holds in (4). If we now form the
(22'+p)~tuples according to the scheme (“1’“2"'"uk"xl’xz"’°’xo’

L=l

. r 1
yl,yz,...,yt,vl,vz,...,Uk,), then every integer in [1, {2k +r)m]

occurs in exactly one (2k '+r)-tuple and every such tuple satisfies
Uy tupy + .0 F Up 1 X, .. F xs =Yy T Y, + .00+ yt t v, o, + ..+vk,
Therefore (2k'+r)m € S(k'+e,k'+t).

LIL: 2.4

To illustrate the previous two results, we show that if » = 7,
then the only Skolem systems are of the type S[7m,4,3].

From {3) we have

7(1-1/v2) <% % E"J

i.e. 7(0.29) <t £ 3
1 a8 2:03 = £ 3

Therefore we must have

t = 3.

m

4 (7m+1) is an integer and that

From (2) we know that

0 (med 4) or 7m = 3 (mod 4)

111

7m

=0 {(mod 4) or m = 1 {(mod 4)

!—l

)

3
i
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For such m, we have seen in I.3 that 3m € S(2,1). In III.2.4, we
showed that 4m € S(2,2) for all m, therefore by theorem 1II.1

7m € 5(4,3) where m is of the form 4k or 4k+l. Tor a numerical

example, let us take n = 4 and the two Skolem systems
2,4:6 1,16:8,9
1.9:10 and 25 d5 1 7510
3,8:11 3,14:6,11
5; 7312 4,13%5,12

If we add 12 to every term in the Skolem system on the right, we

obtain

13,28:20,21
14,27:19,22
15,26:18,23
16,25:17,24

We mav now form the 7-tuples

13,28: 6,20,21
14,27:10,19,22
15,26:11,18,23
16,25:12,17,24

which is a Skeclem system cf type 5[28,4,3].

We will investigate in more detail Skolem systems of type

S[2tm,t,t].

I11.2.8

Tirst we will consider the case ¢ even. From (2) we have that

2tm v ; ’ oo
~——={2tm+1) must be an inteper. Since t is even then this is true

4
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for all m.

Theorem I1I11.2

For all m and all even k, 2tm € S(t,%).

Proof.
We have just shown that such systems may exist. It remains
to construct such a sequence.
For all m and all even k we have

ki 2

2tm = 2(2 Z]m.
=1
Now by III.2.4 we know that 4m € S(2,2). By applying theorem III.1
to two such systems we have & € 5(4,4). We apply theorem III.1 with
4m € 5(2,2) and 8m € S(4,4) which yields 12m € 5(6,6). 1f we apply

this theorem /2 times in total we arrive at
2tm € S(¢,t).

In III.2.4 we saw that there existed at least one solution of the
form S[4m,2,2]. The next interesting question is, how many?

I1f we assume two systems of the form S5[4m,2,2] to be different
if they &iffer in one 4-tuple, then the solution given in IIL.2.4
has all the pairs of elements (mi,yi) and (ui,vi) adding up to 4mtl.
Therefore all the pairs are interchangeable, which yields (2m)!

different systems, all of which are essentially the same. To avoid
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this we will now make the following general definition. Two
systems Sl and 52 of the form J[rm,s,%2] will be said to be equi-
valent if s -tuples and the ¢-tuples of Sl may be permuted to
vield 5,. With this definition III.2.4 only gives us one equi-
valence class.

If we define a linked partition as in Chapter II, as a par—
tition of [1,xm] into m r-tuples such that there exists no J less

than m such that [1,rj] is partitioned by j of the r~tuples. For

example

is a linked partition, while

53
7

Litis2
5,86,

is not, since the 4-tuple (1,4:2,3) partitions [1,4].
We may take a partition of [1,g] into 2t-tuples, t even, sat-

isfying
y tax, + ...t xt =Yy tY, + ...+ yt,

and add & to every term to obtain a partition of [h+1,g+h]
into 2¢-tuples satisfying the above equation. Hence any interval

[A+1,9+1] may be thus partitioned if
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g = 0 (mod 2%)

Therefore any partition of [1,2¢m] may be regarded as consisting
of a linked partition of [1,2¢;] where j is greater than or equal

to zero and less than or equal to m, and a partition of [2¢#j4+1,2¢m].

Since
2tm - (2tj+1~1) = 0 (mod 2t)

this is equivalent to a partition of [1,(m=j)2¢]. Hence if we de-
fine Q(2tm,2t,2t) and q(2¢m,t,t) to be the number of equivalence
classes of partitions and linked partitions respectively, then we

have

m
Q2tm,t,t) = ) q(2ti,t,t)Q(2tm-2¢L ,t,t)

i=1

1f, for a fixed ¢, we rewrite Q(2tm,t,t) as Qm and g(2ti,t,t) as a;

and define QO as 1 and g, as 0 we obtain

~—3

.4 4

T7m-1

g =

m
3=0

In I1.2.2 we saw that this meant that the generating functions

@<x> and g<x> of Qm and q; were related by the equation

il
G = T (6)
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Presumably (5) can be used as in II.2.2 to obtain lower bounds of

Q(2tm,2¢,2¢) and q(2tm,2t,2¢t).

LIT.2.9

We now turn to the case S[2¢m,t,t] where ¢, the number of
varisbles on each side of the equation, is odd. From (2) we know
2tm ;
that-"z-(2ﬁﬂ+l) must be an integer. Hence m must be even.
Obviously ¢ cannot be equal to one. For ¢ = 3 we have the
following general partition.
{(3+12i,7+12i,ll+12i:4+12i,8+l2i,9+12£),(l+12i,5+12i,12+l2i:2+12i,6+12i,10+12i)I

O<Zsm}

Therefore, for every even m, we have that 6m € S(3,3). As before

we may now produce solutions for every odd t and all even m. Since,

t-3/2
2tm = 2[3+ ¥ Z]m {£=5)

and we know that 6m € S(3,3) and 4m € S(2,2) by repeated application
of theorem III.l1 we obtain that 2tm € S(¢,%). The same arguments

in III.2.8 concerning linked partitions apply here. Any partition
of [1,2¢m] may be considered as a linked partition of [1,2%j] where
Jj is even, of the form S[2¢j,t,t], and a partition of [2£j+1,2¢m]
which may be formed from a partition of [1,2¢tm-2jt], of the form

S[2t(m-7),t,t], by adding 2jt to each term.
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Therefore we have

' m
Q@b t:8) = ) g2t 8)0020m-280 58]
i=1

For a fixed ¢ if we write Qi for @(2¢1 t,t) and g. for q(2ti,t,t)
L

we again have

1 m=1

O
]
1 ~3
<
O

and the generating functions are still related by

1
B = l-g<x> °

I11.2.10

Let us now consider Skolem systems of type S[(2¢+1)m,t+1,%].
Table III.1 shows some examples. The relationship between linked
and unlinked partitions that was found in III.2.8 and IIL.2.9 no
longer holds because partitions of [g,2] where g > 1 can no longer
be formed from partitions of [1,h-g-1].
We define an 'equipartition' to be a Skolem system in which all
the equations sum to the same number. For example Table III.1 (p.133) shows
all the equipartitions for € = 2 and m = 3, Also the system given

in I11.2.4 is an equipartition for Skolem systems of the form

Sl4m,2,2]7.
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D.J.A., Welsh asks the following question. When does an equi-
partition exist for Skolem systems of the form 5[ (2¢+1)m,++1,%2]1?
Since all the equations sum up to the same number, I, if we

sum over all the m equations, we have

omg = %(cztﬂ)m—l)
hence
T = ﬂ%’ﬁ((zﬁl)ml)

which yields
(2¢+1)m = 3 (mod &)
which implies that m must be odd. In fact, we have

= 1 (mod 4) t odd

3
il

and

= 3 (mod 4) £ even.

3
"



Table III.1

Examples of Equipartitions

t=2 m=3 I=20

3l 1 355,15

3,4,13
2,7,11:6,14 1,7,312:6,14
2,8,10

1:9,10:8,12

t=2 m=7 5=45

55 7;33510,35
3,12,30:11,34
8, 9,28:13,32
4,15,26:14,31
2,19,24:16,29
1521;23:18,27
6,17,22:20,25

t=3 m=5 =35

1,15,17,30:35, 2,26
3,13,18,29:34, 4,25
9311419,28:33, 6,24
75 9,20,27:32, 8,23
12,14,16,21:31,10,22

4, 6,35:
216,29
$17,28

3, 8,34
2519533

1512,32%
5, 9,31:
7,14,24:
§22,23

11,13,21

15,30

18,27
19,26
20,25

:5,15
17,13
8512

17 .13
18,12
19,11
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We will show that equipartitions of the
S[3m,4,3] exist for all m of the appropriate
m € S(2,2) and from repeated applications of

show that equipartitionzs exist for all £ and

form 5[5m,3,2] and
form, then from
theorem II1.1 we will

all permissible m.

For ¢ = 2 we use the following equipartition, consisting of

four sets of 5-tuples and a single 5-tuple.

(244+1,11549=7 , 145+10~7 :55+5+7,205+15-2) O<igj

(27 ,125+9-7 ,135+9~7 :6+5+% , 195+15-7) 1¢i <=1

(2543427 ,5j+4—1 ,187+13-7 :8j+8+1 ,177+12+L) Ogigd

(2548427, BjH+6~1 ,15+10-7 194847 , 185+124+5)  1<i -1

(2442 ,85+7,157+11:105+8,15;+12)

For example, let 7 = 1, n = 35.

1,20 ,24:10,35 8528 223311, 84

2321;22412,33

5,9,3L. £16,29 7,8,30 :17,28

6514525:1.8,27

4,15,26:13,32

If ¢ is even and m is of the form 1+4k, then there exists an equi-

partition of the form S[(2¢+1)m,t+1,t]. We have just shown that

5m € S(4,3) and we know that 4m € S(2,2), hence by theorem III.1

9m € S5(5,4), repeating we have (2¢+1)m € S(#+1,£). If we start with
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an equipartiticen and then at every stage adjoin an equipartition
of the type S[4m,2,2] then we obtain an equipartition.
For ¢ = 3 we have the following equipartition which consists

of two sets of 7-tuples and is illustrated in Table III.1

(2427 , 215+5-7 , 285+ 7% 126+1,125+3-22 , 135+t , 25 5+6-1) 0<2<35

(6544427 , 185+ 41 ,255+6-7 :105+2-27 , 10+4+27 , 124440 ,175+4-7) Ogigj-1

where 7m = 287+7, i.e. m = 4j+1. The reasoning follows as before.

If ¢t is odd and m is of the form 3+4%, then there exists an
equipartition of the form S[(2¢+1)m,¢t+1,t]. We have just shown
that 7m El5(4,3) and we know that 4m € S(2,2), hence by theorem III.1
11m € S(6,5), repeating we have (2¢+1)m € S(¢t+1,t). If we start with
an equipartition then at every stage if we adjoin an equipartition of

the form S[4m,2,2] then we obtain another equipartition.

I11.3. Lam's Generalization

Clement Lam (oral communication) has proposed the following
generalization. Find the values of n, for given g, b and ¢, for
which Zn’ the set of residue classes of the integers, modulo n,

can be partitioned into triples satisfying
ax + by = ¢z (mod n)

We will call such s partition a Lam partition. The first thing we
may note is that since [1l,n] is partitioned with triples, n must be

divisible by three.
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Very few of the previous results from Chapter II hold, be-
cause the residue classes modulo n are not ordered. For example,
the condition (a,b) < 3 (see II.1, p.54) does not hold, nor does
Theorem II.1 (p.92) that (a,b) = 3 implies min(xl,yl) < 3, TFor
if we take ¢ = b = 6 and ¢ = 1 we have the following triples

forming a Lam partition.

(5,8,3) (10,.11.8) (2,7.8% C13,14,12) {1.4,33%.

It is evident however that if we obtained a partition of [1,n]
into triples satisfying ax + by = ¢z in Chapter II then this par-

tition is also a Lam partition for the triples also satisfy
ax + by = cz (mod n).

Lam partitions, in certain cases, have interesting inter-
pretations when considered in conjunction with graph theory. For
example, in I.2 we showed the equivalence between cyclic Steiner
triple systems on 6mt+l elements and partitioning [1,3m] into

triples satisfying

x+y =z (mod 3m)
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or

c+y+ 2 =1 (mod 3m).

This was shown by considering a complete graph on the 6mtl
vertices of a regular (6mtl)-gon.

A Lam partition of [1l,n] satisfying
xz +y = 2z (mod n)

is equivalent to decomposing the complete graph on the 3m ver-
tices of a regular 3m-gon into disjoint isosceles triangles.

To see this, label the vertices from 1 to 3m and define, as in 1.2,
the lengths of the sides of the triangles as the difference of the
vertices modulo 3m. If (d,e,f) are the vertices of the triangle

and (d,z) and (e,f) are the sides of equal length then
e -—dz=f-e (mod 3m)

and

d+ f = 2e (mod 3m)
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ITI.4. Generalized Lanzford and Slkolem sequences

ITI.4.1

In I.2 we discussed the Langford, Skolem and Nickerson prob-
lems. Gillespie and Utz [15], Baron [4] and Levine [23], [24],
D.P. Roselle [35] and J.F. Dillon [9] have all comsidered problems
which are generalizations of the earlier problems.

A sequence cf length sn is called a Langford sequence if each
integer 7, 1 < ¢ ¢ 7, occurs exactly s times and each term is
separated by exactly 7 terms of the sequence. A Skolem sequence
differs from a Langford sequence by including & zeros. Strictly
speaking, these are generalizations of what were called in I.2 the
Langford problem and the modified Langford problem. These sequences
will be hevreafter referred to as Langford (s,n) sequences or Skolem

(g,n) sequences. For example, we have the Langford (3,10) sequence
191618257269258476354938743

It is obvious that a Skolem (g,n) sequence exists if a Langford (s,n)
sequence exists but as was seen in I.2 there are Skolem (2,n) se-
quences which do not give Langford (2,n) sequences.

Many necessary conditions are known for Langford (s,n) or for
Skolem (2,n) sequences, mosc of which are derived from the obser-—
vation that a Skolem (s,n) sequence is equivalent to a partition of
the integer set Zs , i.e. {1,2,...,8n} into n arithmetic progressions

b

of the form
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{al,al+l,a1+2,...,al+s-1}

{az,a2+2,a2+é,...,a2+(s-l)2}

{an,an+n,an+2n,...,an+(s—1)m}

This equivalence may be easily seen by taking the ranks of
occurrence of each integer in turn. The integer 0 occurs at the
positions al,a1+l,...,a1+s—1; the integer 1 occurs at the positions
az,a2+2,...,a2+(s—l)2;...; the integer (n-1) occurs at the positions
a ,an+n,...,an+(s—1)n. The converse is obvious. Dillon now uses

n

the induced polynomial equation

st sn
t{1-X _ 1-X"
| ] - [

where the polynomials are in Z[X] (the ring of polynomials with
rational integer coefficients). For more details see Dillon [9]
and Roselle [35].
In spite of this nice observation, no sufficient condition has
vet been found for a Langford {&,n) or a Skolem (s,n) seguence to
exist if 8 > 2. However, this observation did cause Dillon to ask
for integers alsaz,...,an for which the s»n integers ai+(j—l)i
12¢ gns 15 gwe, are all distinet modulo sn. Such a system he calls an
(s,n)-Skolem partition. In a similar way he asks for integers
A 38, 5w s, such that the en integers a. + (J-1(44+1), 1 £ 1 < n,

17 2

1 <7 < s, are all distinct modulo sn. Such a system he calls an

U N
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(s,n)-Langford partition. Of course, any Langford (s,n) or Skolem
(s,n) sequence yields a (s,n)-Langford or (s,n)-Skolem partition,
however the converse is not true. E. Levine [24] shows that there
does not exist a Langford (3,8) sequence but Dillon [9] gives the

lrd

following (3,8)-Langford partition of Dyt

{1,3,5},1{6,9,12},{15,19,23},{11,16,21},{8,14,20},{17,24,7},{2,10,18},{4,13,22}.

IT1.5. Other Questions

Many other problems arose during the research on this topic.
Some appear frivolous, others interesting, but we will list here

a selection of these problems.

II1.5.1

If (Al,A "Ar) is a family of finite subsets of a set F

2%

then a subset 7 of ¥ iz said to be a transversal of the family

(4 Az,...,An) if there exists a bijection ¢:7 - {1,...,n} such

l’

that « € 4 for all © € 7. A necessary and sufficient conditicn

Y {ax)

for the existence of such a transversal is Hall's condition,

| UA.| 2 |J] for all J c {1,...,n}
; T -
1€J
(see, for example, Mirsky [27], Theorem 2.2.1).
If the elements of £ are themselves sets, what are the necessary

and sufficient conditions for a transversal of (AI""’AW) to exist
r

such that for all x,y € T, x # y

xly = @72
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ITI.5.2

Generalize the problem of partitioning [1,n] into triples

satisfying az + by = cz to that of partitioning [s,#] into triples

fl

satisfying axr + by = ez.
In fact in all the problems discussed, the interval has been

[1,n], so we may generalize each problem by asking for a solution

over the interval [s,%].

LIL+5.3

Given a regular n-gon and assuming that the vertices are num—
bered 1 to » what is the greatest number of triangles that may be
drawn using the numbered vertices such that no sides of triangles
cross each other, each vertex is used at most once as the vertex of
a triangle, the 'length' of each side is different, where length is
defined as the difference of the labels of two vertices modulo #?
Also, what is the least number of such triangles in a maximal set,
i.e. a set to which no further triangles may be added without pro-

ducing intersections?

ITTI.5.4

If we 1ift the restriction on the length of the sides we then
have the question of what is the greatest number of non-intersecting
triangles possible on the vertices of an n~gon and what is the least

number in a maximal set?
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APPENDIX 1

1l
fand

a) The 21 partitions of [1,15] into triples satisfying = + y

are:-

2 4 6 1 5 6 1 5 6 L & 4 2 5 1 6 7 3 4 7
111 12 3 ¢g12 21012 2 ¢11 11011 3 811 2 9 11
31013 21113 4 913 5 813 4 913 4 913 11213
5 9 14 4 10 14 31114 41014 6 814 212 14 6 8 14
7 815 7 8 15 7 8 15 3 .12 15 3 1d 15 510 15 5 10 15
2 57 3 4 7 17 8 2 6 8 3 5 8 1 7 8 2 6 8
3 811 11011 4 6 10 3 710 1 810 5 611 4 711
11213 5 813 21113 11213 6 7 12 3 9 12 3 9 12
410 14 21214 5 914 5 914 21214 41014 113 14
6 9 15 6 915 3 12 15 4 11 15 4 11 15 2 1315 5 10 15
35 8 3 6 9 4 5 9 1 8 9 2 7 9 3 6 9 4 5 §
4 711 2 810 3 710 4 610 5 611 4 711 3 811
21012 5 712 11112 5 712 4 812 2 1012 2 10 12
113 14 11314 6 8 14 31114 31013 5 813 6 713
6 9 15 4 11 15 21315 2 2315 1 13415 11415 11415

b) Below is an enumeration of the number of partitions of [1,24]
& ¥
into triples satisfying 2 + y = 2. This list records the number of

partitions which have (x,y,z) as the triple (mlylzl). (Note that we

have defined By €8, % aus % gH/3_)

x y =z # & g # r y = i

1 2 3 45 1 3 4 26 1 4 5 38
2 ‘3.5 32 1 5 6 52 2 4 6 43
1 6 .7 62 5 5 7 58 35 4 7 50
1 7 8 g5 2 6 8 £6 3 5 8 69
1 8 9 112 2 7 9 112 3 6 9 101
4 5 9 83 1 910 80 2 810 115
3 710 107 4 6 10 102 110 11 149
2 911 119 3 8 11 127 L& 711 136
5 6 11 133 111 12 101 2 10 12 90
3 912 119 4 8 12 106 5 712 105
1 12 13 63 2 11 13 58 4 9 13 58
5 813 81 6 7 13 65 113 14 8
2 12 14 11 311 14 14 4 10 14 21
5 9 14 1 6 8 14 20 Total 3040
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APPENDIX 2

The program used in this research was written in Fortran
with Compass subroutines and was executed on the CDC 6400. The
idea of the program was essentially a tree-like search but with
optimizing factors built in.

All the possible triples were first generated and then they
were sorted by the frequency of occurrence of their elements.
For example, if 36 appeared in five of the generated triples and
every other element appeared in at least six triples, then the
triples containing 36 would be sorted to the top of the list.
If there were two or more such numbers then the numerically greatest
number would be placed at the top of the 1list. The program then
called for a tree-like search using these triples as roots. The
search consists of taking fhe triple of thé top of the list and
finding all thé triples in the list which do not conflict. Repeat
with this new list, until a solution appears or until we run out
of triples. If a solution was found then a variable was increased
by one (there was also the option of printing the solution) but in
either case we drop back to check the next lower triple in the list.

This ensured that all ccmbinations were tried and none twice.



