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1. INTRODUCTION

We define the Fibonacci numbers as usual by means of

=0 = =
Fy , Iy 1, F Fn + Fn

ntl n=1.

-1

It is known that every positive integer N can be written in the form

(1.1) N = Fk1+Fk2+'°'+Fkr ,
where
(1.2) Ky = ky = ee0 > k= 2

and r depends on N. We call (1.1)a Fibonacci representation of N. More-
over by the theorem of Zeckendorf, the representation (1.1) is unique pro-
vided the kj satisfy the inequalities

1.3) kj - kj+1 = 2 G=1,2, o, v - 1) k

v
o

Such a representation may be called the canonical representation of N.
Now let Ak

denote the set of positive integers {N} for which k. =k
Then it is clear that the ’
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2 FIBONACCI REPRESENTATIONS [Jan.

constitute a partition of the set of positive integers. The chief object of the
present paper is to describe the numbers in Ak in terms of the greatest in-
teger function. We shall show that

@ A, = {ab"ta@ |n = 1, 2,3, -} € =1,2,3, ),
(L5) Ay = {bta(n)ln =1,2,8, -} t =1,2,8,°°°),
where

(1.6) a@ = [an], b{w) = [eMn], a = (1 + N5)/2

and [x] denotes the greatest integer =x. As is customary, powers and jux-
taposition of functions should be interpreted as composition.

Moreover, we shall show that

A@t, 37 2) = {ab'la2() |ln =1,2,3, -}
A2, 2t + 2) = {abt_lab(n) In =1,2,8, -}
A@t +1, 2673 = {bla2w) |n = 1, 2,3, -+ }

A2t + 1, 2t + 3)

Il

{olab) |n = 1, 2,3, <= } ,

where A{s, s + 2) denotes the set of positive integers with canonical
representation

T, 4 cvo + F

I + F

+ H
kp s+2 s

while A{s, s + 2) denotes the set with canonical representation

° 0o I =
Fk1+ Fk+F (kr s + 2),
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we define
1.7 eN) = F

The fact that e(N) is independent of the Fibonacci representation chosen for
N was proved in [ 2].

The following theorems, which will be used in Section 4, were also
established in [2].

Theorem 1. For every N, e(N +1) = e(N) with equality if and only if
N isin A, (See[2], p. 216, Theorem 5 and proof.)

Theorem 2. If N isin A, then neither N -1 nor N+1 is in A,

(See [2], p. 217, comments following Theorem 5. )

2. THE ARRAY R

As in [ 3] we form the 3-rowed array R as follows: In the first row
we put the positive integers in natural order. We begin the second row with
1. To get an entry of the third row, we add the entries appearing above it in
the first and second rows. We get further entries in the second row by
choosing the smallest integer which has not appeared so far in the second or

third rows.

11213 4 5 6 7 8 9110 | «--

(2,1) 1134 6 8 9111112 |14 | 16 | ---

21517 |10 13|15 | 18 | 20 | 23 | 26 | -

Note that R is uniquely determined by the following properties:

(2.2) Every positive integer appears exactly once in row 2 or row 3.

(2.3) Each row is a monotone sequence.

(2.4) The sum of the first two rows is the third row.

Now also consider the 3-rowed array R'.
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1 2 3 4

al) | a@ | a®) | a@)

b(1) | b(2) | b(3) | b(4)

where a(n), b(n) are defined by (1.6). Since @ + 1 = &%, properties (2.3)
and (2.4) are obviously satisfied by R'. To see that every number appears
in R', let N = 2 be arbitrary. We will show that either a([N/a]) or
b([N/ozz]) is N - 1. Suppose not. Then they are both too small; that is,

@[N/e] = N -1
and
?[N/2] < N - 1.

Dividing the first inequality by «, the second by &2, remembering that

IS
4

R =

and adding, we get

[N/a] + [N/e?] = N - 1.

But this is a contradiction since N/a + N/oZ = N,
Now to see that the ranges of a and b are disjoint, suppose for some
numbers N, M and P, we had a(N) = b(M) = P, Then

N -1 = P < oN

and

M -1 < P < ZM .
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Again dividing and adding, we get

N+M-1 <P <N+M,
a contradiction. The fact that no number appears twice in the same row fol-
lows simply because both o and o* are greater than 1. Note that (2.2) was

proved using only the fact that ¢ and o are irrational and

+ L

QI+

=1.

Q
B

The result is not new, of course.
We have established that R = R'.

3. SOME PROPERTIES OF a(n) AND b(n)

In this section we prove several equalities involving the functions a(n)
and b(n). In our proof we use only the properties (2.2), (2.3) and (2.4) of
R(=R') from Section 2. Of course, the equalities could, with much more ef-

fort, be proved from the definitions (1.6).

(3.1) N + a(N) = b(N)
(3.2) b(N) = a@@(N)) + 1
(3.3) a(N) + b(N) = b(a)) +1
(3.4) ab®)) = b@®)) + 1
(3.5) a(N) + b(N) = a(b())
(3.6) b2(N) = aba(N) + 2

(3.7) ab?(N) = b%a(N) + 3
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(3.8) bY@ = ab™lam) + F, (c = 1,2, )

(3.9) ab*(N) = b a() +F, (r =1,2, ")
r — s e

(3.10) b () = Fy o (r =1,2, ) .

Proof. Equation (3.1) is (2.4). For (3.2), note that in R, in the third
row, to b(N), or the second row to a(J) = b(N) - 1, occur all the numbers
1, 2, -++, b(N). Hence J +N = b(N). Therefore, by (3.1) J = a(N); that
is, a(a(N)) = b(N) - 1. Equation (3.3) comes from (3.1) and (3.2). To prove
(3.4), note that b(a(N)) is the a(N)th entry in the third row of R, and
a(@)) is the b(N)th entry in the second row. Then the total number of
entries is a(N) + b(N) = b(a(N)) + 1. Hence b(a(N)) cannot be thelargest so
a(pb(N)) must be and every integer =b(a(N)) + 1 must have appeared. Hence
a(b(N)) = b@@a@)) + 1. Equation (3.5) is obvious from (3.3) and (3.4). Equa-
tion (3.6) is obtained by adding (3.2) and (3.4) and using (3.1) and (3.5). Sim-
ilarly we get (3.7) by adding (3.4) and (3.6). Equations (3.8) and (3.9) arise
by induction. If we set N = 1 in (3.8) we get

r-1 r-1
b T@W) = ab’ M) + Fy

so, by (3.1),

@) = F21‘*1 °

4. THE SETS Ak

We begin with some preliminary theorems.
Theorem 3. If N isin Ay, then N+1 isin Ak with k odd.
Proof. By Theorem 2,

(4.1) N+1=F + F + .00 +F k. =2.

kr kr—l 1

For convenience we let
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Then

Continuing, we see that N + 1 igs either
F3 + Fy + Fg+ «on + F + N
or

Fy+ Fg+ Fg+ 00 +F + N'

If the latter,, N would be in Aj. Hence

N ="F,+Fg+-++F + N

kr—l
and kr is odd.

Theorem 4, If N and M are in A, and e(e(N)) = e(e(M)), then
N = M.

Proof. Suppose N # M. If e(N) = e(M) then by Theorem 1, N and
M are consecutive integers and by Theorem 2 could not both be in A,. So
suppose e(N) < e(M). Then by Theorem 1, e(N) is in A, and e(M) =
e(N) + 1. Hence by Theorem 3, e(M) is in Akr with kr odd:

e(M) = Fk + Fk
T r-1

+ oo (kr odd) .

Let

Now e(®) = e(M), but P isin Akr+1 so P # M. Hence, by Theorem 1

we must have P = M + 1. Hence kr is odd, a contradiction, This proves
the theorem.
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Theorem 5. Let Qj be the jth largest number in A,. Then
e(e(Qj)) =7j.

Proof. We can easily see by induction that there are exactly Fn-l

numbers in A, whose canonical representations involve only F,y, Fg, «--,

Fn’ for let Cn be that set of numbers; i.e., N € Cn if and only if

N = Fpote ot B g =m).

We want to show that card (Cn) =F and that if N & Cn’ N <

n-1
Fn +1° This is easily checked for small n. Suppose it is true up to n. Then
Cn+1 = Cn Y (Cn-l * Fn+1) :

Since this union is disjoint, by the induction hypothesis, the conclusion fol-
lows readily.

The point is that 1 + Fn+ > 3) isthe (1 + Fn_1 )th number in A,,

1
But

el + Fn+1)) =1+F 4>

th

i.e., the value of e(e(:)) onthe (1 + F_ number of A, is 1+F

) .
1 -1
Hence, since efe(-)) is monotone and 1 -1 on A, (Theorems 1 and

4), we see that e(e(-)) simply counts the members of A,; that is,
e(e(Qj)) =j.
Now let Ni be defined by the requirements
4.3) e(Ni) = i, e(Ni -1) £1i.

(Set e(0) = 0, sothat Ny =1, N, = 3, etc.)
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Theorem 6. For any N, e(@a(N)) = N and e®m®)) = a(n). The num-
bers (Ny, Ny, «+-) and (@ +1, Qy +1, «-+) arethe second and third rows
of the array Rj.

Proof. Note that by Theorem 1, e((Qi +1)-1) = e(Qi + 1) so that the
sets {Ni} and {Qi +1} are disjoint. Furthermore, again by Theorem 1,
together they exhaust all positive integers. Now to establish the theorem we
only have to show property (2.4) of Section 2 and then that e(Qj +1) = Nj’

Suppose for some j that the latter is false. Then, since
e(e(Qj +1)) = e@)) == e(Nj),
we must have
e(Q].+1) =Nj+1

(since e(Nj - 1) #j, by (4.3)). Furthermore Nj must be in A, There-
fore e(Qj + 1) EAkr’ kr odd, so that

e(QJ. + 1) = Fkr +oeee + Fkl (kr odd) .

But then

Qj+1 :Fkr+1+.”+Fk1+1 (kr+1 even) .

Theorem 3 implies that Qj is not in A,, a contradiction. Hence e(QJ. + 1)
= N..

J
Now suppose

N. = F + F + s0e + F
] ks ks—l k1

is the canonical representation of Nj' Then, since Qj +1 isnotin A,

Q +1=F T E g b TF L
] kLT Tk o+ k) +1

so that
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4.4 j+N, = e(N.)+ N, = Q, +1.
4.4) j i e(J) f QJ

This proves the theorem.
Theorem 7. We have A, = a?(W) where N is the set of positive in-
tegers. Further,

t

(4.5) A2t+1 = b a(M) t =1,2, 3, )
and
(4.6) Ay = ab’ a (M) € =1,2, 3, ).

Proof. We have seen that for any N,
e(b(N)) = e@*(N)) = a(N) .
Hence since b(N) # a’(N) and Qyn+1l =DbMN), we get QN = a%(N). This
shows that A, = a?(). Now suppose N is in Az, Then e(N) is in A,
and e(N) = a?(M) for some M. Hence N is either ba(M) or a3(M). The
latter is impossible since N is in Az, not A,. Hence Az = ba(M).
Continuing in this way, we complete the proof of the theorem by

induction.

5. SOME ADDITIONAL PROPERTIES

Since
(5.1) R = a(l) U b(H)

it follows from Theorem 7 that

(5.2) aW) = U A

and
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o0
(5.3) b@®) = U A .
oy 2t
Again, by (5.1)
(5.4) a’?(M) = a?@) U a%h(N) .

By (3.2)

a®@) = ba@) - 1.
Since, by (4.5),
(5.5) ba®) = A; ,
it follows that
(5.6) a*M) = A@, 4),

where the right member denotes the set of positive integers with canonical

representation

F +...+Fkr+F2 &k = 4),
Thus by (5.4), we have
(5.7) a’h@®) = A2, 4),

where the right member denotes the set of positive integers with canonical

representation

Fki Foeee +Fkr +F,

+ F, (kr>5).

Generally if we let A(s, s +2) denote the set of positive integers with

canonical representation
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F, ++00 +F

Ky i, Fera T T e, = 8 +3

and A(s, s +2) the set with canonical representation

Fk1+°"+Fkr+Fs (kr> s + 2)

then we may state

Theorem 8. For t =1 we have

(5.8) abtlalN) = A, 2t + 2) ,
(5.9) ab™lab@) = A, 2t + 2)
(5.10) bla2M) = A2t + 1, 2t 7 3),
(5.11) blab®) = A2t + 1, 2t + 3) .

The proof is by induction on t. For t = 1, Eqgs. (5.8) and (5.9) reduce
to (5.6) and (5.7), respectively. Next by (5.5)

(5.12) Az = ba’?(N) ) bab(N) .
Let n € ba?(N); then
e € a3®W) = A@, 1),
that is,
eln) = Fy + €Fg5 + +=0
where € = 0 or 1. This implies either

n = Fy + €Fg + - or F3 + €Fg + -~

The first possibility contradicts (5.3), so that
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(5.13) ba?@) C A(a,5) .

Now take n  bab@M), so that

eln) € a?b(N) = A2, 4),

en) = Fy + Fy + €Fg + »0- .,

This implies either

n=F2+F5+€F7+-“ or F3+F5+€F7+°

The first possibility cannot occur, so that

(5.14) bab@®) C A(3, 5).

Clearly (5.13) and (5.14) prove (5.10) and (5.11) for t = 1.

13

We now assume that (5.8), -, (5.11) hold up to andincluding the value

t-1. Let n € abt_laz(m, so that
eln) € bt lazay) |
By the inductive hypothesis this gives
en) € A€t - 1,2t + 1),

that is,

This implies

so that
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(5.15) ab'la2m) C At T F D).
Now take n & abt"lab(N), so that
e@) € b lab@y) .
Hence by the inductive hypothesis
en) € A@t -1, 2t +1),
that is,
o) = Fpp g * Faprn * Tapug * 000 -
This implies
D= Fop * Fopig = €Fapig T o0
so that
(5.16) ab'labM) ¢ AGt, 2t + 2),
In the next place, take n € btaz(]ﬂf), so that
en) € abtLazaw)
By (5.15) this gives

en) € A@t, 2t + 2),

that is,

Then either
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D= Forg T EFgpy e

or

D= Fyp b Fydeee # By FEFy g+

The second possibility is ruled out, so that

la) c A@t+ 1, T T D).

(5.17) ab
Finally take n € btab(iN), so that
eln) € abt—lab(N) .
Then by (5.16),
e(n) € A@2t, 2t + 2),
that is,
en) = F

ot T Fopea ¥ gy T

Then either

n = F EF

Fotra T Fapg T €Fgp5 * 00"

or

n = Fy+ Fyt oo +F2 +F2t+3+EI‘

t “ot+5

Again the second possibility is ruled out, so that

(5.18) blab) € A@t + 1, 2t + 3) .

4o

15
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Combining (5.15), (5.16), (5.17), (5.18), it is clear that we have com-
pleted the induction.

We define a function A(N) by means of A(1) = 0 and A(N) = t, where
N =1 and t is the smallest integer such that
t _
(5.19) e (N) = 1.
Theorem 9. Let

(5.20) N =F

where
k, - k, = 2 G =1, -

be the canonical representation of N. Then

kr -2 r = 1)
(5.21) ANy = kr -1 @ = 1)
Proof.
1. r =1, Clear,
2. T =132, N=Fkl+Fk2.
kq-2
e N = P gn T
k k -2 k-2
et 2 ¢2 W) = Fy +F
eki--S(N) = F3 + Fz = F4
eki‘Z(N) = F3
ky-1



1972] FIBONACCI REPRESENTATIONS 17

3. r = 2, By induction.

Let A ¢ denote the set of positive integers N such that
(5.22) AN) = t.

Theorem 10. At congists of the integers N such that

(5.23) Fiygy ~N=F,.
Thus
(5.24) |At| = F,.

Proof. Let N satisfy (4.22) and assume that N has the canonical
representation (5.20). By (5.21) the value N = Ft+2 satisfies (5.22). For

all other values of N, itis clear that r = 1. Moreover since
Fot Fgteee # Fog = Fogn -
F3+F4+"'+FZS = F -1,

it is clear that N must satisfy

(5.25) Ft+1 = N < Ft+2 .
Conversely all N that satisfy (5.25) are of the form (5.20) with r = 1. This
evidently completes the proof.

Finally we state

Theorem 11. Let {x} = x - [x] denote the fractional part of the real

number x. Then

(5.26) Necaw) 20 < )Nl <1
a? o
(5.27) N € b(N):—*%< N <4
2
od )
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Proof. We recall that

a) = [on], b = [®n] .

Thus N = b(n) is equivalent to

ofn = N + € 0 <€ <1,
so that
N €
e = n _ —
a? a?
Thus
D - S SRR R
w:’ o o?
Conversely if
1_x
o ia/z

then
.lil.:m+e, - < e <1,
)
Thus
N = o*m + o€
so that

o?m + 1) = N + o1 - €)
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Since
(1l - €) < a2<1—é)=a-1 <1,
/

it follows that b(m + 1) = N.
This proves (5.27). The equivalence (5.26) follows from (5.27) since

a( U b@) = N .

6. WORD FUNCTIONS

By a word function (or briefly a word) is meant any monomial in the
a's and b's. It is convenient to include 1 as a word. Clearly if u, v are
any words, then au # bv. Also if au = av or bu = bv then u =v. It

follows readily that any word is uniquely represented as a product of "primes"
a, b.

We define the weight of a word by means of
(6.1) p) = 0, pa) = 1, pb) = 2

together with

6.2) pav) = pw + p(v) ,

where u,v are arbitrary words. Thus there is exactly one word of weight
1, two of weight 2, and three of weight 3. Let Np denote the number of
words of weight p. If w is any word of weight p, then, for p =2, w =

au or bv, where u is of weight p -1, v of weight p - 2. Hence

it follows that

(6.3)

Z
I
<)
v

0) ,
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the number of words of weight p is equal to the Fibonacci number Fp+1 .

Consider the equation
(6.4) uv = vu.

We may assume without loss of generality that p(u) = p(v). It then follows
from the unique factorization property that u = vz, where z is some word.
Thus vzv = v?z, so that zv = vz. Thus by an easy induction on the total
weight of uv we get the following theorem.

Theorem 12. The words u,v satisfy (6.4) if and only if there is a
word w such that u = wr, v = ws, where r,s are nonnegative integers.

We show next that any word is ''almost' linear. More precisely we
prove

Theorem 13. Any word w of weight p is uniquely representable in
the form
(6.5) um) = Fpa(n) + Fp—ln - Ay
where )\u is independent of n.

Proof. We have

bm) = a) + n,
a?tn) = a) +n -1,
abm) = 2a() + n,

ba(m) = 2a(m) +n - 1.

We accordingly assume the truth of (6.5) for words u of weight <p.
There are two cases to consider. (i) if u = va, then v is of weight p -1,

so that (6.5) gives

n - A

vin) = Fp_la(n) + Fp—Z v -

Hence
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ufp) = va) = Fp_laz(n) + Fp_za(n) - )\V

9

Fpa(n)+F n—/\V—F

p-1 p-1

(ii) if u = vb, v is of weight p - 2, so that

Then

u() = vbln) = Fp_zab(n) + Fp_Sb(n) =N
= Fp_z(Za(n) + n) + Fp_s(a(n) +n) - )\‘;

= (2F + F
p- -

2 p 3)
= Fpa(n) + Fp_ln - 7\V

an) + (Fp_2 + Fp_g)n - )\V

This completes the induction.

We now show that the representation (6.5) is unique. Otherwise there

exist numbers r, s, t such that

ra(n) + sn = t .
Taking n =1, 2, 3 we get

(r+s =t

l3r + 25 = t

4r + 3s = ¢t

and therefore r = s =t =0,

Incidentally, we have proved that }\u satisfies

(6.6) )\Va = )\V + Fp’ )\Vb = )\V )

where v is of weight p. Note that
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Avab = Na T )\V N Fp’ }‘vba - Avb * F1o+1

Note also that (6.5) implies
(6.7) )\u = Fp+1 - u().

As an immediate corollary of Theorem 13 we have

Theorem 14. For arbitrary words, u,v, we have

(6.8) uw = vu = C ,

where C is independent of n.

= +
)\V F

It may be of interest to mention a few special cases of (6.5):

k. . _

(6.9) a (o) = Fka(n) + Fk—ln - Fk+1 + 1,
(6.10) b5m) = F am + F. .n

* ' 2k 2k-1" 7

k _ 2k
(6.11) bm) = a® @ + Fyy -1,
k _ 1

(6.12) (ab) () = nga(n) + Fg 40 - 'Z'(FSk-l -
(6.13) (ba)k(n) = F_amn) + F n-F

: 3k 3k-1 3k-1"
(6.14) @) @ - ba)¥m = 1(F + 1)

. 2V k-1 ’

k, j _
(6.15) ab'n) = F2j+ka(n) + F2j+k—1n - Fk+1 +
Jok.y _

(6.16) b'a (n) = F2j+k:a(n) + F2j+k-1n - F2j+k+1 +
(6.17) ) - paw) = T F... -F

2j+Hk+1 T T 2541 k+1

7. GENERATING FUNCTIONS

Put

1),

1,

Foj+1 2

+1 .

[Jan.

ptl’
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_ n ) A
@) b = Y] x G = 2, 3, 4,
n€A,
J
In view of (4.5) and (4.6), Eq. (5.1) is equivalent to
w r-1
_ ab™ "a(n)
(7.2) pp®) = D %
n=1
and
- b a(n)
(7.3) Porn® = Z X
n=1
Also it is clear that
X _
(7.4) = 2 9
j=0
It follows from the definition of Ar that
F_ °
(7.5) ¢ = x 1+ 2: ¢, &) (c =2,3,4,
j=r+2
This evidently implies
-FL Frn
(7.6) x "¢ &) -x bpiq® = b ® r =2, 3,4,

FIBONACCI REPRESENTATIONS

In particular, by (7.5),

23
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P00 = x|1+ 20 6
=4

Combining this with (5.4), we get

X
- x °

(7.7) (1 + x)pa(x) + xpg(x) = T

It is convenient to define
(7.8) o) = D <20
n=1

Since the set a(®N) is the union of the sets a%(N) and ab(N), it follows
from (3.4) that

(7.9) Px) = ¢a(x) + x¢gx) .

Therefore by (7.7), we have

(7.10) xpp(®) = 7o - o)
and
(7.11) xipyx) = 7o + (1 + X)) .

Making use of (7.5), (7.10) and (7.11) we can express all ¢>j (x) in terms

of ¢(x). For example, since

Y0, - x 20500 = o40x)

we get
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(7.12) xpyx) = }i+ ’f - @+ x + x2)Px)

Generally we have

Fr +1-1 . xAr(x)
(7.13) X ¢r(X) = (-1) g _-x ~ Br(X)¢(X) s
where Ar(x), Br(x) are polynomials that satisfy
F
_ T r+l
Ar+2(x) = Ar+1(x) + X Ar(x)
(7.14) F.q
B =B ,®+x " "B K
together with the initial conditions
fAx) = 1, Azx) = 1,
iBz(X) =1, Bylx) = 1 +x .
It follows readily that
F
1-x T
(7.15) BI’(X) = —T-—X_
while
Fr—l
- a(j)
(7.16) XA (K) = ) x
=1

In conclusion we shall show that the function ¢(x) cannot be continued
across the unit circle. Indeed by a known theorem [1, p. 315], either ¢ (x)
is rational or it has the unit circle for a natural boundary. Moreover, it is

rational if and only if, for some positive integer m,
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m

(7.17) 1-x)¢x = Pr) ,

where P(x) is a polynomial. Clearly the coefficients of P(x) are rational

integers. It follows that
(7.18) }yli{nl 1 -x)¢x) = C,

where C is rational. On the other hand, if we put

so that o, = 0 or 1, itis evident from (7.8) that

Rl

n
ch~

k=1

Since this implies

Qi

Jimy @ - x)¢ &)

we have a contradicticn with (7.18).

8. APPENDIX

In addition to the canonical representation (1.1) we have another rep-
resentation described in the following

Theorem 15. Every integer N is uniquely represented in the form

(8.1) N =F +-°°+F

where
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ki -k =2 G=1,-,r-1, k -(@+1) =2,
Proof. By (5.2),

©o

(8.2) a® = U A .
=1 2t

Hence, by the first proof of Theorem 6,

This evidently proves the theorem.

We may refer to (8.1) as the second canonical representation of N.

In view of Theorem 15, we let A denote the set of positive inte-

2k+1
gers {N} of the form (8.1). Then the sets

A2k+1 k = 0, 1, 29"')

constitute a partition of the positive integers. Clearly

(8.3) - A2k+1 = A2k+1 (k = 1: 2, 39 "') 9
while
(8.4) 1 = :Jl AZt = a@).

For N €4y, if

(8.5) N=F_ ++F +F
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then clearly we may replace F; by F, and (8.5) reduces to the first canoni-

cal representation. In this case, then, N € A,. However, if kr = 3,

situation is less simple. For example
8 = Fg = Fy + Fg + Fy .
Generally, since
Fy + Fg + Fg + «+ +F2s~1 = F2S s
it follows that if the number N has the second canonical representation
N =TF +Fg+--- EkFZS—l + Fk1 + sz +oeee

where

then N & AZS and conversely.
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