%I #12 Nov 18 2020 20:46:16
%S 1,1,1,1,3,1,1,2,15,1,1,2,5,105,1,1,2,4,15,945,1,1,2,4,11,55,10395,1,
%T 1,2,4,10,23,232,135135,1,1,2,4,10,21,68,1161,2027025,1,1,2,4,10,20,
%U 59,161,6643,34459425,1,1,2,4,10,20,57,125,488,44566,654729075,1
%N Square of P(n,t) read by antidiagonals. P(n,t) = number of ways to split [t*n] into n arithmetic progressions each with t terms.
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 3, 2, 2, 2, 2, 2, 2, 2, ...
%e 1, 15, 5, 4, 4, 4, 4, 4, 4, ...
%e 1, 105, 15, 11, 10, 10, 10, 10, 10, ...
%e 1, 945, 55, 23, 21, 20, 20, 20, 20, ...
%e 1, 10395, 232, 68, 59, 57, 56, 56, 56, ...
%e 1, 135135, 1161, 161, 125, 119, 117, 116, 116, ...
%e 1, 2027025, 6643, 488, 349, 329, 323, 321, 320, ...
%e 1, 34459425, 44566, 1249, 848, 760, 745, 739, 737, ...
%e ...
%Y Cf. A104429-A104442. P(1, _)=P(_, 1) = A000012, P(_, 2) = A001147.
%K nonn,tabl
%O 1,5
%A _Jonas Wallgren_, Mar 17 2005
%E More terms from _Alois P. Heinz_, Nov 18 2020