[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a092182 -id:a092182
Displaying 1-8 of 8 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A302561 Partial sums of A092182. +20
1
1, 121, 1068, 4720, 14705, 36981, 80416, 157368, 284265, 482185, 777436, 1202136, 1794793, 2600885, 3673440, 5073616, 6871281, 9145593, 11985580, 15490720, 19771521, 24950101, 31160768, 38550600, 47280025, 57523401, 69469596, 83322568, 99301945 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Geometrically, the partial sums of A092182 may be interpreted as 5-dimensional hexacosichoronal hyperpyramidal numbers. The hexacosichoron is a convex regular 4-D polytope with Schlaefli symbol {3,3,5}.
LINKS
FORMULA
a(n) = Sum_{k=1..n} A092182(k).
From Colin Barker, Aug 15 2018: (Start)
G.f.: x*(1 + 115*x + 357*x^2 + 107*x^3) / (1 - x)^6.
a(n) = (n*(12 + n - 64*n^2 + 5*n^3 + 58*n^4)) / 12.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
MATHEMATICA
Accumulate[LinearRecurrence[{5, -10, 10, -5, 1}, {1, 120, 947, 3652, 9985}, 30]] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {1, 121, 1068, 4720, 14705, 36981}, 30] (* Harvey P. Dale, May 04 2024 *)
PROG
(PARI) Vec(x*(1 + 115*x + 357*x^2 + 107*x^3) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Aug 15 2018
(PARI) a(n) = (n*(12 + n - 64*n^2 + 5*n^3 + 58*n^4)) / 12 \\ Colin Barker, Aug 15 2018
CROSSREFS
Cf. A092182.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A000583 Fourth powers: a(n) = n^4.
(Formerly M5004 N2154)
+10
399
0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1048576, 1185921 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Figurate numbers based on 4-dimensional regular convex polytope called the 4-measure polytope, 4-hypercube or tesseract with Schlaefli symbol {4,3,3}. - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004
Totally multiplicative sequence with a(p) = p^4 for prime p. - Jaroslav Krizek, Nov 01 2009
The binomial transform yields A058649. The inverse binomial transforms yields the (finite) 0, 1, 14, 36, 24, the 4th row in A019538 and A131689. - R. J. Mathar, Jan 16 2013
Generate Pythagorean triangles with parameters a and b to get sides of lengths x = b^2-a^2, y = 2*a*b, and z = a^2 + b^2. In particular use a=n-1 and b=n for a triangle with sides (x1,y1,z1) and a=n and b=n+1 for another triangle with sides (x2,y2,z2). Then x1*x2 + y1*y2 + z1*z2 = 8*a(n). - J. M. Bergot, Jul 22 2013
For n > 0, a(n) is the largest integer k such that k^4 + n is a multiple of k + n. Also, for n > 0, a(n) is the largest integer k such that k^2 + n^2 is a multiple of k + n^2. - Derek Orr, Sep 04 2014
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
a(n+2)/2 is the area of a trapezoid with vertices at (T(n), T(n+1)), (T(n+1), T(n)), (T(n+1), T(n+2)), and (T(n+2), T(n+1)) with T(n)=A000292(n) for n >= 0. - J. M. Bergot, Feb 16 2018
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ralph Greenberg, Math for Poets.
Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.
Eric Weisstein's World of Mathematics, Biquadratic Number.
FORMULA
a(n) = A123865(n)+1 = A002523(n)-1.
Multiplicative with a(p^e) = p^(4e). - David W. Wilson, Aug 01 2001
G.f.: x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5. More generally, g.f. for n^m is Euler(m, x)/(1-x)^(m+1), where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292).
Dirichlet generating function: zeta(s-4). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: (x + 7*x^2 + 6*x^3 + x^4)*e^x. More generally, the general form for the e.g.f. for n^m is phi_m(x)*e^x, where phi_m is the exponential polynomial of order n. - Franklin T. Adams-Watters, Sep 11 2005
Sum_{k>0} 1/a(k) = Pi^4/90 = A013662. - Jaume Oliver Lafont, Sep 20 2009
a(n) = C(n+3,4) + 11*C(n+2,4) + 11*C(n+1,4) + C(n,4). [Worpitzky's identity for powers of 4. See, e.g., Graham et al., eq. (6.37). - Wolfdieter Lang, Jul 17 2019]
a(n) = n*A177342(n) - Sum_{i=1..n-1} A177342(i) - (n - 1), with n > 1. - Bruno Berselli, May 07 2010
a(n) + a(n+1) + 1 = 2*A002061(n+1)^2. - Charlie Marion, Jun 13 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24. - Ant King, Sep 23 2013
From Amiram Eldar, Jan 20 2021: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/720 (A267315).
Product_{n>=2} (1 - 1/a(n)) = sinh(Pi)/(4*Pi). (End)
MAPLE
A000583 := n->n^4: seq(A000583(n), n=0..50);
A000583:=-(z+1)*(z**2+10*z+1)/(z-1)**5; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
with (combinat):seq(fibonacci(3, n^2)-1, n=0..33); # Zerinvary Lajos, May 25 2008
MATHEMATICA
Range[0, 100]^4 (* Vladimir Joseph Stephan Orlovsky, Mar 14 2011 *)
PROG
(PARI) A000583(n) = n^4 \\ Michael B. Porter, Nov 09 2009
(Haskell)
a000583 = (^ 4)
a000583_list = scanl (+) 0 a005917_list
-- Reinhard Zumkeller, Nov 13 2014, Nov 11 2012
(Maxima) makelist(n^4, n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(Magma) [n^4 : n in [0..50]]; // Wesley Ivan Hurt, Sep 05 2014
(Python)
def a(n): return n**4
print([a(n) for n in range(34)]) # Michael S. Branicky, Nov 10 2022
CROSSREFS
Cf. A000538, A005917 (first differences), A000332, A014820, A092181, A092182, A092183.
Cf. A002593, A260810. - Bruno Berselli, Jul 31 2015
KEYWORD
nonn,core,easy,nice,mult
AUTHOR
STATUS
approved
A000332 Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24.
(Formerly M3853 N1578)
+10
381
0, 0, 0, 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 31465, 35960, 40920, 46376, 52360, 58905, 66045, 73815, 82251, 91390, 101270, 111930, 123410 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Number of intersection points of diagonals of convex n-gon where no more than two diagonals intersect at any point in the interior.
Also the number of equilateral triangles with vertices in an equilateral triangular array of points with n rows (offset 1), with any orientation. - Ignacio Larrosa Cañestro, Apr 09 2002. [See Les Reid link for proof. - N. J. A. Sloane, Apr 02 2016]
Start from cubane and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink on chemistry. - Robert G. Wilson v, Aug 02 2002
For n>0, a(n) = (-1/8)*(coefficient of x in Zagier's polynomial P_(2n,n)). (Zagier's polynomials are used by PARI/GP for acceleration of alternating or positive series.)
Figurate numbers based on the 4-dimensional regular convex polytope called the regular 4-simplex, pentachoron, 5-cell, pentatope or 4-hypertetrahedron with Schlaefli symbol {3,3,3}. a(n)=((n*(n-1)*(n-2)*(n-3))/4!). - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004, R. J. Mathar, Jul 07 2009
Maximal number of crossings that can be created by connecting n vertices with straight lines. - Cameron Redsell-Montgomerie (credsell(AT)uoguelph.ca), Jan 30 2007
If X is an n-set and Y a fixed (n-1)-subset of X then a(n) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Product of four consecutive numbers divided by 24. - Artur Jasinski, Dec 02 2007
The only prime in this sequence is 5. - Artur Jasinski, Dec 02 2007
For strings consisting entirely of 0's and 1's, the number of distinct arrangements of four 1's such that 1's are not adjacent. The shortest possible string is 7 characters, of which there is only one solution: 1010101, corresponding to a(5). An eight-character string has 5 solutions, nine has 15, ten has 35 and so on, congruent to A000332. - Gil Broussard, Mar 19 2008
For a(n)>0, a(n) is pentagonal if and only if 3 does not divide n. All terms belong to the generalized pentagonal sequence (A001318). Cf. A000326, A145919, A145920. - Matthew Vandermast, Oct 28 2008
Nonzero terms = row sums of triangle A158824. - Gary W. Adamson, Mar 28 2009
Except for the 4 initial 0's, is equivalent to the partial sums of the tetrahedral numbers A000292. - Jeremy Cahill (jcahill(AT)inbox.com), Apr 15 2009
If the first 3 zeros are disregarded, that is, if one looks at binomial(n+3, 4) with n>=0, then it becomes a 'Matryoshka doll' sequence with alpha=0: seq(add(add(add(i,i=alpha..k),k=alpha..n),n=alpha..m),m=alpha..50). - Peter Luschny, Jul 14 2009
For n>=1, a(n) is the number of n-digit numbers the binary expansion of which contains two runs of 0's. - Vladimir Shevelev, Jul 30 2010
For n>0, a(n) is the number of crossing set partitions of {1,2,..,n} into n-2 blocks. - Peter Luschny, Apr 29 2011
The Kn3, Ca3 and Gi3 triangle sums of A139600 are related to the sequence given above, e.g., Gi3(n) = 2*A000332(n+3) - A000332(n+2) + 7*A000332(n+1). For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 29 2011
For n > 3, a(n) is the hyper-Wiener index of the path graph on n-2 vertices. - Emeric Deutsch, Feb 15 2012
Except for the four initial zeros, number of all possible tetrahedra of any size, having the same orientation as the original regular tetrahedron, formed when intersecting the latter by planes parallel to its sides and dividing its edges into n equal parts. - V.J. Pohjola, Aug 31 2012
a(n+3) is the number of different ways to color the faces (or the vertices) of a regular tetrahedron with n colors if we count mirror images as the same.
a(n) = fallfac(n,4)/4! is also the number of independent components of an antisymmetric tensor of rank 4 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Does not satisfy Benford's law [Ross, 2012] - N. J. A. Sloane, Feb 12 2017
Number of chiral pairs of colorings of the vertices (or faces) of a regular tetrahedron with n available colors. Chiral colorings come in pairs, each the reflection of the other. - Robert A. Russell, Jan 22 2020
From Mircea Dan Rus, Aug 26 2020: (Start)
a(n+3) is the number of lattice rectangles (squares included) in a staircase of order n; this is obtained by stacking n rows of consecutive unit lattice squares, aligned either to the left or to the right, which consist of 1, 2, 3, ..., n squares and which are stacked either in the increasing or in the decreasing order of their lengths. Below, there is a staircase or order 4 which contains a(7) = 35 rectangles. [See the Teofil Bogdan and Mircea Dan Rus link, problem 3, under A004320]
_
|_|_
|_|_|_
|_|_|_|_
|_|_|_|_|
(End)
a(n+4) is the number of strings of length n on an ordered alphabet of 5 letters where the characters in the word are in nondecreasing order. E.g., number of length-2 words is 15: aa,ab,ac,ad,ae,bb,bc,bd,be,cc,cd,ce,dd,de,ee. - Jim Nastos, Jan 18 2021
From Tom Copeland, Jun 07 2021: (Start)
Aside from the zeros, this is the fifth diagonal of the Pascal matrix A007318, the only nonvanishing diagonal (fifth) of the matrix representation IM = (A132440)^4/4! of the differential operator D^4/4!, when acting on the row vector of coefficients of an o.g.f., or power series.
M = e^{IM} is the matrix of coefficients of the Appell sequence p_n(x) = e^{D^4/4!} x^n = e^{b. D} x^n = (b. + x)^n = Sum_{k=0..n} binomial(n,k) b_n x^{n-k}, where the (b.)^n = b_n have the e.g.f. e^{b.t} = e^{t^4/4!}, which is that for A025036 aerated with triple zeros, the first column of M.
See A099174 and A000292 for analogous relationships for the third and fourth diagonals of the Pascal matrix. (End)
For integer m and positive integer r >= 3, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (3 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Charles W. Trigg: Mathematical Quickies. New York: Dover Publications, Inc., 1985, p. 53, #191
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 0..1002
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
Gaston A. Brouwer, Jonathan Joe, Abby A. Noble, and Matt Noble, Problems on the Triangular Lattice, arXiv:2405.12321 [math.CO], 2024. Mentions this sequence.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
Paul Erdős, Norbert Kaufman, R. H. Koch and Arthur Rosenthal, E750 (Interior diagonal points), Amer. Math. Monthly, 54 (Jun, 1947), p. 344.
Th. Grüner, A. Kerber, R. Laue and M. Meringer, Mathematics for Combinatorial Chemistry.
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 4.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Tim McDevitt and Kathryn Sutcliffe, A New Look at an Old Triangle Counting Problem. The Mathematics Teacher. Vol. 110, No. 6 (February 2017), pp. 470-474.
Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Les Reid, Counting Triangles in an Array. [Cached copy]
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42. doi:10.4169/math.mag.85.1.36.
Kirill S. Shardakov and Vladimir P. Bubnov, Stochastic Model of a High-Loaded Monitoring System of Data Transmission Network, Selected Papers of the Models and Methods of Information Systems Research Workshop, CEUR Workshop Proceedings, (St. Petersburg, Russia, 2019), 29-34.
Eric Weisstein's World of Mathematics, Composition.
Eric Weisstein's World of Mathematics, Pentatope Number.
Eric Weisstein's World of Mathematics, Pentatope.
A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
FORMULA
a(n) = n*(n-1)*(n-2)*(n-3)/24.
G.f.: x^4/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = n*a(n-1)/(n-4). - Benoit Cloitre, Apr 26 2003, R. J. Mathar, Jul 07 2009
a(n) = Sum_{k=1..n-3} Sum_{i=1..k} i*(i+1)/2. - Benoit Cloitre, Jun 15 2003
Convolution of natural numbers {1, 2, 3, 4, ...} and A000217, the triangular numbers {1, 3, 6, 10, ...}. - Jon Perry, Jun 25 2003
a(n) = A110555(n+1,4). - Reinhard Zumkeller, Jul 27 2005
a(n+1) = ((n^5-(n-1)^5) - (n^3-(n-1)^3))/24 - (n^5-(n-1)^5-1)/30; a(n) = A006322(n-2)-A006325(n-1). - Xavier Acloque, Oct 20 2003; R. J. Mathar, Jul 07 2009
a(4*n+2) = Pyr(n+4, 4*n+2) where the polygonal pyramidal numbers are defined for integers A>2 and B>=0 by Pyr(A, B) = B-th A-gonal pyramid number = ((A-2)*B^3 + 3*B^2 - (A-5)*B)/6; For all positive integers i and the pentagonal number function P(x) = x*(3*x-1)/2: a(3*i-2) = P(P(i)) and a(3*i-1) = P(P(i) + i); 1 + 24*a(n) = (n^2 + 3*n + 1)^2. - Jonathan Vos Post, Nov 15 2004
First differences of A000389(n). - Alexander Adamchuk, Dec 19 2004
For n > 3, the sum of the first n-2 tetrahedral numbers (A000292). - Martin Steven McCormick (mathseq(AT)wazer.net), Apr 06 2005 [Corrected by Doug Bell, Jun 25 2017]
Starting (1, 5, 15, 35, ...), = binomial transform of [1, 4, 6, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
Sum_{n>=4} 1/a(n) = 4/3, from the Taylor expansion of (1-x)^3*log(1-x) in the limit x->1. - R. J. Mathar, Jan 27 2009
A034263(n) = (n+1)*a(n+4) - Sum_{i=0..n+3} a(i). Also A132458(n) = a(n)^2 - a(n-1)^2 for n>0. - Bruno Berselli, Dec 29 2010
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=1. - Harvey P. Dale, Aug 22 2011
a(n) = (binomial(n-1,2)^2 - binomial(n-1,2))/6. - Gary Detlefs, Nov 20 2011
a(n) = Sum_{k=1..n-2} Sum_{i=1..k} i*(n-k-2). - Wesley Ivan Hurt, Sep 25 2013
a(n) = (A000217(A000217(n-2) - 1))/3 = ((((n-2)^2 + (n-2))/2)^2 - (((n-2)^2 + (n-2))/2))/(2*3). - Raphie Frank, Jan 16 2014
Sum_{n>=0} a(n)/n! = e/24. Sum_{n>=3} a(n)/(n-3)! = 73*e/24. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
Sum_{n>=4} (-1)^(n+1)/a(n) = 32*log(2) - 64/3 = A242023 = 0.847376444589... . - Richard R. Forberg, Aug 11 2014
4/(Sum_{n>=m} 1/a(n)) = A027480(m-3), for m>=4. - Richard R. Forberg, Aug 12 2014
E.g.f.: x^4*exp(x)/24. - Robert Israel, Nov 23 2014
a(n+3) = C(n,1) + 3*C(n,2) + 3*C(n,3) + C(n,4). Each term indicates the number of ways to use n colors to color a tetrahedron with exactly 1, 2, 3, or 4 colors.
a(n) = A080852(1,n-4). - R. J. Mathar, Jul 28 2016
From Gary W. Adamson, Feb 06 2017: (Start)
G.f.: Starting (1, 5, 14, ...), x/(1-x)^5 can be written
as (x * r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = (1+x)^5;
as (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...) where r(x) = (1+x+x^2)^5;
as (x * r(x) * r(x^4) * r(x^16) * r(x^64) * ...) where r(x) = (1+x+x^2+x^3)^5;
... (as a conjectured infinite set). (End)
From Robert A. Russell, Jan 22 2020: (Start)
a(n) = A006008(n) - a(n+3) = (A006008(n) - A006003(n)) / 2 = a(n+3) - A006003(n).
a(n+3) = A006008(n) - a(n) = (A006008(n) + A006003(n)) / 2 = a(n) + A006003(n).
a(n) = A007318(n,4).
a(n+3) = A325000(3,n). (End)
Product_{n>=5} (1 - 1/a(n)) = cosh(sqrt(15)*Pi/2)/(100*Pi). - Amiram Eldar, Jan 21 2021
EXAMPLE
a(5) = 5 from the five independent components of an antisymmetric tensor A of rank 4 and dimension 5, namely A(1,2,3,4), A(1,2,3,5), A(1,2,4,5), A(1,3,4,5) and A(2,3,4,5). See the Dec 10 2015 comment. - Wolfdieter Lang, Dec 10 2015
MAPLE
A000332 := n->binomial(n, 4); [seq(binomial(n, 4), n=0..100)];
MATHEMATICA
Table[ Binomial[n, 4], {n, 0, 45} ] (* corrected by Harvey P. Dale, Aug 22 2011 *)
Table[(n-4)(n-3)(n-2)(n-1)/24, {n, 100}] (* Artur Jasinski, Dec 02 2007 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 1}, 45] (* Harvey P. Dale, Aug 22 2011 *)
CoefficientList[Series[x^4 / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *)
PROG
(PARI) a(n)=binomial(n, 4);
(Magma) [Binomial(n, 4): n in [0..50]]; // Vincenzo Librandi, Nov 23 2014
(GAP) A000332 := List([1..10^2], n -> Binomial(n, 4)); # Muniru A Asiru, Oct 16 2017
(Python)
# Starts at a(3), i.e. computes n*(n+1)*(n+2)*(n+3)/24
# which is more in line with A000217 and A000292.
def A000332():
x, y, z, u = 1, 1, 1, 1
yield 0
while True:
yield x
x, y, z, u = x + y + z + u + 1, y + z + u + 1, z + u + 1, u + 1
a = A000332(); print([next(a) for i in range(41)]) # Peter Luschny, Aug 03 2019
(Python)
print([n*(n-1)*(n-2)*(n-3)//24 for n in range(50)])
# Gennady Eremin, Feb 06 2022
CROSSREFS
binomial(n, k): A161680 (k = 2), A000389 (k = 5), A000579 (k = 6), A000580 (k = 7), A000581 (k = 8), A000582 (k = 9).
Cf. A000217, A000292, A007318 (column k = 4).
Cf. A158824.
Cf. A006008 (Number of ways to color the faces (or vertices) of a regular tetrahedron with n colors when mirror images are counted as two).
Cf. A104712 (third column, k=4).
See A269747 for a 3-D analog.
Cf. A006008 (oriented), A006003 (achiral) tetrahedron colorings.
Row 3 of A325000, col. 4 of A007318.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Some formulas that referred to another offset corrected by R. J. Mathar, Jul 07 2009
STATUS
approved
A014820 a(n) = (1/3)*(n^2 + 2*n + 3)*(n+1)^2. +10
30
1, 8, 33, 96, 225, 456, 833, 1408, 2241, 3400, 4961, 7008, 9633, 12936, 17025, 22016, 28033, 35208, 43681, 53600, 65121, 78408, 93633, 110976, 130625, 152776, 177633, 205408, 236321, 270600, 308481 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) is the number of 4 X 4 pandiagonal magic squares with sum 2n. - Sharon Sela (sharonsela(AT)hotmail.com), May 10 2002
Figurate numbers based on the 4-dimensional regular convex polytope called the 16-cell, hexadecachoron, 4-cross polytope or 4-hyperoctahedron with Schlaefli symbol {3,3,4}. a(n)=(n^2*(n^2+2))/3 if the offset were 1. - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004, R. J. Mathar, Jul 18 2009
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 7-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Equals binomial transform of [1, 7, 18, 20, 8, 0, 0, 0, ...], where (1, 7, 18, 20, 8) = row 4 of the Chebyshev triangle A081277. Also = row 4 of the array in A142978. - Gary W. Adamson, Jul 19 2008
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
LINKS
M. Ahmed, J. De Loera and R. Hemmecke, Polyhedral Cones of Magic Cubes and Squares, arXiv:math/0201108 [math.CO], 2002.
Maya Ahmed, Jesús De Loera and Raymond Hemmecke, Polyhedral cones of magic cubes and squares, in Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 25-41.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Eric Weisstein's World of Mathematics, 16-Cell
FORMULA
Or, a(n-1) = n^2*(n^2+2)/3. - Corrected by R. J. Mathar, Jul 18 2009
From Vladeta Jovovic, Apr 03 2002: (Start)
G.f.: (1+x)^3/(1-x)^5.
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
a(n-1) = C(n+3,4) + 3 C(n+2,4) + 3 C(n+1,4) + C(n,4).
Sum_{n>=0} 1/((1/3*(n^2 + 2*n + 3))*(n+1)^2) = (1/4)*Pi^2 - 3*sqrt(2)*Pi*coth(Pi*sqrt(2))*(1/8) + 3/8 = 1.1758589... - Stephen Crowley, Jul 14 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n > 4, a(0)=1, a(1)=8, a(2)=33, a(3)=96, a(4)=225. - Yosu Yurramendi, Sep 03 2013
From Bruce J. Nicholson, Jan 23 2019: (Start)
Sum_{i=0..n} a(i) = A061927(n+1).
a(n) = 4*A002415(n+1) + A000290(n+1) = A039623(n+1) + A002415(n+1). (End)
E.g.f.: (3 + 21*x + 27*x^2 + 10*x^3 + x^4)*exp(x)/3. - G. C. Greubel, Feb 10 2019
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 17/3 - 8*log(2) = 1/(8 + 2/(8 + 6/(8 + ... + n*(n-1)/(8 + ...)))). See A142983. - Peter Bala, Mar 06 2024
MAPLE
al:=proc(s, n) binomial(n+s-1, s); end; be:=proc(d, n) local r; add( (-1)^r*binomial(d-1, r)*2^(d-1-r)*al(d-r, n), r=0..d-1); end; [seq(be(4, n), n=0..100)];
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 33, 96, 225}, 31] (* Jean-François Alcover, Jan 17 2018 *)
PROG
(Magma) [(1/3)*(n^2+2*n+3)*(n+1)^2: n in [0..40]]; // Vincenzo Librandi, May 22 2011
(PARI) a(n)=(n+1)^2*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Apr 17 2012
(R)
a <- c(1, 8, 33, 96, 225)
for(n in (length(a)+1):30) a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5]
a # Yosu Yurramendi, Sep 03 2013
(Sage) [((n+1)^2+2)*(n+1)^2/3 for n in range(40)] # G. C. Greubel, Feb 10 2019
(GAP) List([0..40], n -> (n+1)^2*((n+1)^2 +2)/3); # G. C. Greubel, Feb 10 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Formula index corrected by R. J. Mathar, Jul 18 2009
STATUS
approved
A092181 Figurate numbers based on the 24-cell (4-D polytope with Schlaefli symbol {3,4,3}). +10
9
1, 24, 153, 544, 1425, 3096, 5929, 10368, 16929, 26200, 38841, 55584, 77233, 104664, 138825, 180736, 231489, 292248, 364249, 448800, 547281, 661144, 791913, 941184, 1110625, 1301976, 1517049, 1757728, 2025969, 2323800, 2653321, 3016704 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is the 4-dimensional regular convex polytope called the 24-cell, hyperdiamond or icositetrachoron.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Eric Weisstein's World of Mathematics, 24-Cell
FORMULA
a(n) = n^2*((3*n^2)-(4*n)+2).
a(n) = C(n+3,4) + 19 C(n+2,4) + 43 C(n+1,4) + 9 C(n,4).
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+19*x+43*x^2+9*x^3)/(1-x)^5. [R. J. Mathar, Jun 21 2010]
a(n) = Sum_{k = 1..n} (k^3 + k^7)* binomial(n,k)/binomial(n+k,k). Cf. A034262 and A155977. - Peter Bala, Feb 12 2019
EXAMPLE
a(3)= 3^2*((3*3^2)-(4*3)+2) = 9*(27-12+2) = 9*17 = 153
MATHEMATICA
Table[SeriesCoefficient[x (1 + 19 x + 43 x^2 + 9 x^3)/(1 - x)^5, {x, 0, n}], {n, 32}] (* Michael De Vlieger, Dec 14 2015 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 24, 153, 544, 1425}, 40] (* Harvey P. Dale, May 25 2022 *)
PROG
(Magma) [n^2*((3*n^2)-(4*n)+2): n in [1..40]]; // Vincenzo Librandi, May 22 2011
(PARI) a(n) = n^2*(3*n^2-4*n+2); \\ Michel Marcus, Dec 14 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004
STATUS
approved
A092183 Figurate numbers based on the 120-cell (4-D polytope with Schlaefli symbol {5,3,3}). +10
8
1, 600, 4983, 19468, 53505, 119676, 233695, 414408, 683793, 1066960, 1592151, 2290740, 3197233, 4349268, 5787615, 7556176, 9701985, 12275208, 15329143, 18920220, 23108001, 27955180, 33527583, 39894168, 47127025, 55301376 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is the 4-dimensional regular convex polytope called the 120-cell, hecatonicosachoron or hyperdodecahedron.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Eric Weisstein's World of Mathematics, 120-Cell
FORMULA
a(n) = n*((261*n^3)-(504*n^2)+(283*n)-38)/2.
a(n) = C(n+3,4) + 595 C(n+2,4) + 1993 C(n+1,4) + 543 C(n,4).
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+595*x+1993*x^2+543*x^3)/(1-x)^5. [R. J. Mathar, Jun 21 2010]
EXAMPLE
a(3) = 3*((261*3^3)-(504*3^2)+(283*3)-38)/2 = 3*(7047-4536+849-38)/2 = 1.5*3322 = 4983
MATHEMATICA
Table[SeriesCoefficient[x (1 + 595 x + 1993 x^2 + 543 x^3)/(1 - x)^5, {x, 0, n}], {n, 26}] (* Michael De Vlieger, Dec 14 2015 *)
PROG
(Magma) [n*((261*n^3)-(504*n^2)+(283*n)-38)/2: n in [1..40]]; // Vincenzo Librandi, May 22 2011
(PARI) a(n) = n*(261*n^3 - 504*n^2 + 283*n - 38)/2; \\ Michel Marcus, Dec 14 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004
STATUS
approved
A195163 1000-gonal numbers: a(n) = n*(499*n - 498). +10
4
0, 1, 1000, 2997, 5992, 9985, 14976, 20965, 27952, 35937, 44920, 54901, 65880, 77857, 90832, 104805, 119776, 135745, 152712, 170677, 189640, 209601, 230560, 252517, 275472, 299425, 324376, 350325, 377272, 405217, 434160, 464101, 495040, 526977, 559912, 593845, 628776 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(A271470(n)) is a perfect square. In fact, a(A271470(n)) = A271105(n) if the first term of a(n) is 1. - Muniru A Asiru, Apr 10 2016
LINKS
M. A. Asiru, All square chiliagonal numbers, Int J Math Educ Sci Technol, 47:7(2016), 1123-1134.
FORMULA
a(n) = 998*n*(n-1)/2 + n, according to the common formula for s-gonal numbers, a(n) = (s-2)*n*(n-1)/2 + n. - Sergey Pavlov, Aug 14 2015
G.f.: x*(1+997*x)/(1-x)^3. - R. J. Mathar, Sep 12 2011
E.g.f.: exp(x)*x*(1 + 499*x). - Ilya Gutkovskiy, Apr 10 2016
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. - Muniru A Asiru, Sep 12 2017
MAPLE
A195163:=n->n*(499*n - 498): seq(A195163(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {0, 1, 1000}, 50] (* Vincenzo Librandi, Nov 25 2011 *)
PolygonalNumber[1000, Range[0, 40]] (* Harvey P. Dale, Sep 15 2022 *)
PROG
(PARI) a(n)=n*(499*n-498) \\ Charles R Greathouse IV, Sep 11 2011
(PARI) x='x+O('x^99); concat(0, Vec(x*(1+997*x)/(1-x)^3)) \\ Altug Alkan, Apr 10 2016
(Magma) [n*(499*n-498): n in [0..45]]; // Vincenzo Librandi, Nov 25 2011
(JavaScript) function a(n){return 998*n*(n-1)/2+n} // Sergey Pavlov, Aug 14 2015
(GAP)
a:=[0, 1, 1000];; for n in [4..10^2] do a[n]:=3*a[n-1]-3*a[n-2]+*a[n-3]; od; a; # Muniru A Asiru, Sep 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kausthub Gudipati, Sep 10 2011
STATUS
approved
A100012 Let h(k) = a(k)*((145*a(k)^3)-(280*a(k)^2)+(179*a(k))-38)/6, then a(n) = h(a(n-1)) for n >= 1 and a(0) =2. +10
0
2, 120, 4930988840, 14287387711051307292599794275187472361080 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The next term has 163 digits.
LINKS
MATHEMATICA
NestList[#/6*(145#^3-280#^2+179#-38)&, 2, 3] (* Harvey P. Dale, Apr 09 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 17 2004
STATUS
approved
page 1

Search completed in 0.088 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 09:19 EDT 2024. Contains 375532 sequences. (Running on oeis4.)