[go: up one dir, main page]

login
A004831
Numbers that are the sum of at most 2 nonzero 4th powers.
11
0, 1, 2, 16, 17, 32, 81, 82, 97, 162, 256, 257, 272, 337, 512, 625, 626, 641, 706, 881, 1250, 1296, 1297, 1312, 1377, 1552, 1921, 2401, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4096, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6561, 6562, 6577, 6642
OFFSET
1,3
COMMENTS
Apart from 0, 1, 2, there are no three consecutive terms up to 10^16. The first two consecutive terms not of the form n^4, n^4+1 are 3502321 = 25^4 + 42^4, 3502322 = 17^4 + 43^4. - Charles R Greathouse IV, Oct 17 2017
FORMULA
Call f(x) the number of terms if this sequence up to x. Then x^(7/16) << f(x) << x^(1/2); in other words, n^2 << a(n) << n^(16/7). The upper bound becomes O(n^2) if A230562 is finite. - Charles R Greathouse IV, Jul 12 2024
MATHEMATICA
Reap[For[n = 0, n < 10000, n++, If[MatchQ[ PowersRepresentations[n, 2, 4], {{_, _}, ___}], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 30 2017 *)
PROG
(Haskell)
a004831 n = a004831_list !! (n-1)
a004831_list = [x ^ 4 + y ^ 4 | x <- [0..], y <- [0..x]]
-- Reinhard Zumkeller, Jul 15 2013
(PARI) is(n)=#thue(thueinit(z^4+1), n) \\ Ralf Stephan, Oct 18 2013
(PARI) list(lim)=my(v=List(), t); for(m=0, sqrtnint(lim\=1, 4), for(n=0, min(sqrtnint(lim-m^4, 4), m), listput(v, n^4+m^4))); Set(v) \\ Charles R Greathouse IV, Sep 28 2015
CROSSREFS
Subsequences include A003336, A000583 and A002645.
Sequence in context: A261617 A075376 A032935 * A342030 A368404 A217307
KEYWORD
nonn
STATUS
approved