[go: up one dir, main page]

login
Search: a000332 -id:a000332
     Sort: relevance | references | number | modified | created      Format: long | short | data
Euler transform of A000332.
(Formerly M4144 N1721)
+20
17
1, 6, 21, 71, 216, 672, 1982, 5817, 16582, 46633, 128704, 350665, 941715, 2499640, 6557378, 17024095, 43756166, 111433472, 281303882, 704320180, 1749727370, 4314842893, 10565857064, 25700414815, 62115621317, 149214574760, 356354881511, 846292135184
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. O. L. Atkin, P. Bratley, I. G. McDonald, and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
A. O. L. Atkin, P. Bratley, I. G. McDonald, and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
Srivatsan Balakrishnan, Suresh Govindarajan, and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011, p.21.
N. J. A. Sloane, Transforms
FORMULA
a(n) ~ Pi^(3/160) / (2 * 3^(243/320) * 7^(83/960) * n^(563/960)) * exp(Zeta'(-1)/4 - 143 * Zeta(3) / (240 * Pi^2) + 53461 * Zeta(5) / (3200 * Pi^4) + 107163 * Zeta(3) * Zeta(5)^2 / (2*Pi^12) - 24754653 * Zeta(5)^3 / (10*Pi^14) + 413420708484 * Zeta(5)^5 / (5*Pi^24) + Zeta'(-3)/4 + (-847 * 7^(1/6) * Pi / (19200 * sqrt(3)) - 189 * sqrt(3) * 7^(1/6) * Zeta(3) * Zeta(5) / (2*Pi^7) + 305613 * sqrt(3) * 7^(1/6) * Zeta(5)^2 / (80*Pi^9) - 614365479 * sqrt(3) * 7^(1/6) * Zeta(5)^4 / (4*Pi^19)) * n^(1/6) + (3 * 7^(1/3) * Zeta(3) / (4*Pi^2) - 693 * 7^(1/3) * Zeta(5) / (40*Pi^4) + 857304 * 7^(1/3) * Zeta(5)^3 / Pi^14) * n^(1/3) + (11 * sqrt(7/3) * Pi / 120 - 1701 * sqrt(21) * Zeta(5)^2 / Pi^9) * sqrt(n) + 27 * 7^(2/3) * Zeta(5) / (2*Pi^4) * n^(2/3) + 2*sqrt(3)*Pi / (5*7^(1/6)) * n^(5/6)). - Vaclav Kotesovec, Mar 12 2015
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+3, 4)): seq(a(n), n=1..30); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
nn = 50; b = Table[Binomial[n, 4], {n, 4, nn + 4}]; Rest[CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x]] (* T. D. Noe, Jun 21 2012 *)
nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)/24), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 11 2015 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^5/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */
KEYWORD
nonn
STATUS
approved
Sums of 2 distinct positive pentatope numbers (A000332).
+20
8
6, 16, 20, 36, 40, 50, 71, 75, 85, 105, 127, 131, 141, 161, 196, 211, 215, 225, 245, 280, 331, 335, 336, 345, 365, 400, 456, 496, 500, 510, 530, 540, 565, 621, 705, 716, 720, 730, 750, 785, 825, 841, 925, 1002, 1006, 1016, 1036, 1045, 1071, 1127
OFFSET
0,1
COMMENTS
Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n) = Ptop(i) + Ptop(j) for some positive i=/=j and Ptop(n) = binomial(n+3,4).
MATHEMATICA
nn=15; Select[Union[Total/@Subsets[Binomial[Range[4, nn], 4], {2}]], #<Binomial[nn, 4]+1&] (* Harvey P. Dale, Mar 13 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 05 2005
EXTENSIONS
Extended by Ray Chandler, Mar 05 2005
STATUS
approved
Sums of 3 distinct positive pentatope numbers (A000332).
+20
7
21, 41, 51, 55, 76, 86, 90, 106, 110, 120, 132, 142, 146, 162, 166, 176, 197, 201, 211, 216, 226, 230, 231, 246, 250, 260, 281, 285, 295, 315, 336, 337, 341, 346, 350, 351, 366, 370, 371, 380, 401, 405, 406, 415, 435, 457, 461, 471, 491, 501
OFFSET
0,1
COMMENTS
Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n) = Ptop(i) + Ptop(j) + Ptop(k) for some positive i=/=j=/=k and Ptop(n) = binomial(n+3,4).
MATHEMATICA
Total/@Subsets[Table[Binomial[n+3, 4], {n, 10}], {3}]//Sort (* Harvey P. Dale, Feb 14 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 05 2005
EXTENSIONS
Extended by Ray Chandler, Mar 05 2005
STATUS
approved
Exponential transform of binomial(n,4) = A000332.
+20
7
1, 0, 0, 0, 1, 5, 15, 35, 105, 756, 6510, 46530, 283470, 1667380, 11457446, 99776040, 969295145, 9298091180, 86154691680, 804769174536, 8052676029420, 88489327173660, 1038440150703340, 12501684521410700, 151866259113256611
OFFSET
0,6
COMMENTS
a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 4 balls are seen at the top.
a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 4 labels.
FORMULA
E.g.f.: exp(exp(x)*x^4/4!).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1) *binomial(j, 4) *a(n-j), j=1..n))
end:
seq(a(n), n=0..30);
MATHEMATICA
Table[Sum[BellY[n, k, Binomial[Range[n], 4]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
CROSSREFS
4th column of A145460, A143398.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 10 2008
STATUS
approved
Sums of 4 distinct positive pentatope numbers (A000332).
+20
6
56, 91, 111, 121, 125, 147, 167, 177, 181, 202, 212, 216, 231, 232, 236, 246, 251, 261, 265, 286, 296, 300, 316, 320, 330, 342, 351, 352, 356, 371, 372, 376, 381, 385, 386, 406, 407, 411, 416, 420, 421, 436, 440, 441, 450, 462, 472, 476, 492, 496
OFFSET
1,1
COMMENTS
Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n) = Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 05 2005
EXTENSIONS
Extended by Ray Chandler, Mar 05 2005
STATUS
approved
Sums of 5 distinct positive pentatope numbers (A000332).
+20
6
126, 182, 217, 237, 247, 251, 266, 301, 321, 331, 335, 357, 377, 386, 387, 391, 412, 421, 422, 426, 441, 442, 446, 451, 455, 456, 477, 497, 507, 511, 532, 542, 546, 551, 561, 562, 566, 576, 581, 586, 591, 595, 606, 616, 620, 626, 630, 642, 646, 650
OFFSET
1,1
COMMENTS
Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n) = Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).
MAPLE
N:= 1000: # for terms <= N
ptop:= n -> n*(n+1)*(n+2)*(n+3)/24:
P:= 1:
for i from 1 while ptop(i) < N do
P:= P * (1 + x*y^ptop(i))
od:
sort(map(degree, convert(convert(series(coeff(P, x, 5), y, N+1), polynom), list)));
# Robert Israel, Nov 20 2023
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 05 2005
EXTENSIONS
Extended by Ray Chandler, Mar 05 2005
STATUS
approved
Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1234. 0 <= k <= A000332(n).
+20
6
1, 1, 2, 6, 23, 1, 103, 12, 4, 0, 0, 1, 513, 102, 63, 10, 6, 12, 8, 0, 0, 5, 0, 0, 0, 0, 0, 1, 2761, 770, 665, 196, 146, 116, 142, 46, 10, 72, 32, 24, 0, 13, 0, 12, 18, 0, 0, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,3
COMMENTS
Equivalently the table for the pattern 4321.
First column is A005802.
LINKS
Peter Kagey, Rows n = 0..13, flattened, based on Anders Kaseorg's Rust program in the Code Golf Stack Exchange link.
Anders Kaseorg, Answer: Patterns in Permutations, Code Golf Stack Exchange.
EXAMPLE
Table begins:
n\k| 0 1 2 3 4 5 6
---+-------------------------------------------------------------------
0 | 1;
1 | 1;
2 | 2;
3 | 6;
4 | 23, 1;
5 | 103, 12, 4, 0, 0, 1;
6 | 513, 102, 63, 10, 6, 12, 8, ...
7 | 2761, 770, 665, 196, 146, 116, 142, ...
8 | 15767, 5545, 5982, 2477, 2148, 1204, 1782, ...
9 | 94359, 39220, 49748, 25886, 25190, 13188, 19936, ...
10 | 586590, 276144, 396642, 244233, 260505, 142550, 210663, ...
11 | 3763290, 1948212, 3089010, 2167834, 2493489, 1476655, 2136586, ...
CROSSREFS
Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342863 (1243), A342864 (1432).
KEYWORD
nonn,tabf
AUTHOR
Peter Kagey, Mar 26 2021
STATUS
approved
A000332(n) = a(n)*(3*a(n) - 1)/2.
+20
5
0, 0, 0, 0, 1, 2, -3, 5, 7, -9, 12, 15, -18, 22, 26, -30, 35, 40, -45, 51, 57, -63, 70, 77, -84, 92, 100, -108, 117, 126, -135, 145, 155, -165, 176, 187, -198, 210, 222, -234, 247, 260, -273, 287, 301, -315, 330, 345, -360, 376, 392, -408, 425, 442, -459, 477
OFFSET
0,6
COMMENTS
As the formula in the description shows, all members of A000332 belong to the generalized pentagonal sequence (A001318). A001318 also lists all nonnegative numbers that belong to A145919.
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n+3) = A001840(n) when 3 does not divide n, A001840(n)*-1 otherwise.
After first two zeros, this sequence consists of all values of A001318(n) and A045943(n)*(-1), n>=0, sorted in order of increasing absolute value.
G.f.: (-x^4*(x^4+2*x^3-3*x^2+2*x+1))/((x-1)^3*(1+x^2+x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
EXAMPLE
a(6) = -3 and A000332(6) = (-3)(-10)/2 = 15.
MATHEMATICA
CoefficientList[Series[(-x^4*(x^4 + 2*x^3 - 3*x^2 + 2*x + 1))/((x - 1)^3*(1 + x^2 + x)^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 13 2017 *)
LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {0, 0, 0, 0, 1, 2, -3, 5, 7}, 60] (* Harvey P. Dale, Feb 13 2023 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0, 0], Vec((-x^4*(x^4 +2*x^3 -3*x^2 +2*x +1))/((x-1)^3*(1+x^2+x)^3))) \\ G. C. Greubel, Jun 13 2017
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Matthew Vandermast, Oct 28 2008
STATUS
approved
List of numbers that are both pentagonal (A000326) and binomial coefficients C(n,4) (A000332).
+20
5
0, 1, 5, 35, 70, 210, 330, 715, 1001, 1820, 2380, 3876, 4845, 7315, 8855, 12650, 14950, 20475, 23751, 31465, 35960, 46376, 52360, 66045, 73815, 91390, 101270, 123410, 135751, 163185, 178365, 211876, 230300, 270725, 292825, 341055, 367290, 424270
OFFSET
1,3
COMMENTS
All binomial coefficients C(n,4) belong to the generalized pentagonal sequence (A001318).
Pentagonal numbers of generalized pentagonal number (A001318) index number. - Raphie Frank, Nov 25 2012
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n+1) = A000326 (A001318(n)).
Positive values of A000332(n) belong to the sequence if and only if 3 does not divide n. A000332(n) is positive when n>3.
Conjecture: a(n) = a(n-1) + 4a(n-2) - 4a(n-3) - 6a(n-4) + 6a(n-5) + 4a(n-6) - 4a(n-7) - a(n-8) + a(n-9). - R. J. Mathar, Oct 29 2008
Conjecture: G.f.: x^2(1 + 4x + 26x^2 + 19x^3 + 4x^5 + x^6 + 26x^4)/((1+x)^4(1-x)^5). - R. J. Mathar, Oct 29 2008
a(n) = (27x^4 - 18x^3 - 3x^2 + 2x)/8 where x = floor(n/2)*(-1)^n, for n >= 1. - William A. Tedeschi, Aug 16 2010
EXAMPLE
35, for example, is both A000326(5) and A000332(7).
CROSSREFS
Cf. A141919, of which this is a subsequence.
KEYWORD
easy,nonn
AUTHOR
Matthew Vandermast, Oct 28 2008
STATUS
approved
Sums of 6 distinct positive pentatope numbers (A000332).
+20
4
252, 336, 392, 427, 447, 456, 457, 461, 512, 547, 567, 577, 581, 596, 621, 631, 651, 661, 665, 677, 687, 707, 712, 717, 721, 732, 742, 746, 752, 756, 761, 772, 776, 786, 796, 816, 826, 830, 841, 852, 872, 881, 882, 886, 897, 907, 916, 917, 921, 932
OFFSET
1,1
COMMENTS
Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24.
Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n) = Ptop(f) + Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive f=/=g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 05 2005
EXTENSIONS
Extended by Ray Chandler, Mar 05 2005
STATUS
approved

Search completed in 0.251 seconds