Displaying 1-10 of 384 results found.
page
1
2
3
4
5
6
7
8
9
10
... 39
Euler transform of A000332.
(Formerly M4144 N1721)
+20
17
1, 6, 21, 71, 216, 672, 1982, 5817, 16582, 46633, 128704, 350665, 941715, 2499640, 6557378, 17024095, 43756166, 111433472, 281303882, 704320180, 1749727370, 4314842893, 10565857064, 25700414815, 62115621317, 149214574760, 356354881511, 846292135184
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) ~ Pi^(3/160) / (2 * 3^(243/320) * 7^(83/960) * n^(563/960)) * exp(Zeta'(-1)/4 - 143 * Zeta(3) / (240 * Pi^2) + 53461 * Zeta(5) / (3200 * Pi^4) + 107163 * Zeta(3) * Zeta(5)^2 / (2*Pi^12) - 24754653 * Zeta(5)^3 / (10*Pi^14) + 413420708484 * Zeta(5)^5 / (5*Pi^24) + Zeta'(-3)/4 + (-847 * 7^(1/6) * Pi / (19200 * sqrt(3)) - 189 * sqrt(3) * 7^(1/6) * Zeta(3) * Zeta(5) / (2*Pi^7) + 305613 * sqrt(3) * 7^(1/6) * Zeta(5)^2 / (80*Pi^9) - 614365479 * sqrt(3) * 7^(1/6) * Zeta(5)^4 / (4*Pi^19)) * n^(1/6) + (3 * 7^(1/3) * Zeta(3) / (4*Pi^2) - 693 * 7^(1/3) * Zeta(5) / (40*Pi^4) + 857304 * 7^(1/3) * Zeta(5)^3 / Pi^14) * n^(1/3) + (11 * sqrt(7/3) * Pi / 120 - 1701 * sqrt(21) * Zeta(5)^2 / Pi^9) * sqrt(n) + 27 * 7^(2/3) * Zeta(5) / (2*Pi^4) * n^(2/3) + 2*sqrt(3)*Pi / (5*7^(1/6)) * n^(5/6)). - Vaclav Kotesovec, Mar 12 2015
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+3, 4)): seq(a(n), n=1..30); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
nn = 50; b = Table[Binomial[n, 4], {n, 4, nn + 4}]; Rest[CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x]] (* T. D. Noe, Jun 21 2012 *)
nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)/24), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 11 2015 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^5/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */
Sums of 2 distinct positive pentatope numbers ( A000332).
+20
8
6, 16, 20, 36, 40, 50, 71, 75, 85, 105, 127, 131, 141, 161, 196, 211, 215, 225, 245, 280, 331, 335, 336, 345, 365, 400, 456, 496, 500, 510, 530, 540, 565, 621, 705, 716, 720, 730, 750, 785, 825, 841, 925, 1002, 1006, 1016, 1036, 1045, 1071, 1127
COMMENTS
Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
FORMULA
a(n) = Ptop(i) + Ptop(j) for some positive i=/=j and Ptop(n) = binomial(n+3,4).
MATHEMATICA
nn=15; Select[Union[Total/@Subsets[Binomial[Range[4, nn], 4], {2}]], #<Binomial[nn, 4]+1&] (* Harvey P. Dale, Mar 13 2011 *)
Sums of 3 distinct positive pentatope numbers ( A000332).
+20
7
21, 41, 51, 55, 76, 86, 90, 106, 110, 120, 132, 142, 146, 162, 166, 176, 197, 201, 211, 216, 226, 230, 231, 246, 250, 260, 281, 285, 295, 315, 336, 337, 341, 346, 350, 351, 366, 370, 371, 380, 401, 405, 406, 415, 435, 457, 461, 471, 491, 501
COMMENTS
Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
FORMULA
a(n) = Ptop(i) + Ptop(j) + Ptop(k) for some positive i=/=j=/=k and Ptop(n) = binomial(n+3,4).
MATHEMATICA
Total/@Subsets[Table[Binomial[n+3, 4], {n, 10}], {3}]//Sort (* Harvey P. Dale, Feb 14 2018 *)
Exponential transform of binomial(n,4) = A000332.
+20
7
1, 0, 0, 0, 1, 5, 15, 35, 105, 756, 6510, 46530, 283470, 1667380, 11457446, 99776040, 969295145, 9298091180, 86154691680, 804769174536, 8052676029420, 88489327173660, 1038440150703340, 12501684521410700, 151866259113256611
COMMENTS
a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 4 balls are seen at the top.
a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 4 labels.
FORMULA
E.g.f.: exp(exp(x)*x^4/4!).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1) *binomial(j, 4) *a(n-j), j=1..n))
end:
seq(a(n), n=0..30);
MATHEMATICA
Table[Sum[BellY[n, k, Binomial[Range[n], 4]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
Sums of 4 distinct positive pentatope numbers ( A000332).
+20
6
56, 91, 111, 121, 125, 147, 167, 177, 181, 202, 212, 216, 231, 232, 236, 246, 251, 261, 265, 286, 296, 300, 316, 320, 330, 342, 351, 352, 356, 371, 372, 376, 381, 385, 386, 406, 407, 411, 416, 420, 421, 436, 440, 441, 450, 462, 472, 476, 492, 496
COMMENTS
Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
FORMULA
a(n) = Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).
Sums of 5 distinct positive pentatope numbers ( A000332).
+20
6
126, 182, 217, 237, 247, 251, 266, 301, 321, 331, 335, 357, 377, 386, 387, 391, 412, 421, 422, 426, 441, 442, 446, 451, 455, 456, 477, 497, 507, 511, 532, 542, 546, 551, 561, 562, 566, 576, 581, 586, 591, 595, 606, 616, 620, 626, 630, 642, 646, 650
COMMENTS
Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
FORMULA
a(n) = Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).
MAPLE
N:= 1000: # for terms <= N
ptop:= n -> n*(n+1)*(n+2)*(n+3)/24:
P:= 1:
for i from 1 while ptop(i) < N do
P:= P * (1 + x*y^ptop(i))
od:
sort(map(degree, convert(convert(series(coeff(P, x, 5), y, N+1), polynom), list)));
Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1234. 0 <= k <= A000332(n).
+20
6
1, 1, 2, 6, 23, 1, 103, 12, 4, 0, 0, 1, 513, 102, 63, 10, 6, 12, 8, 0, 0, 5, 0, 0, 0, 0, 0, 1, 2761, 770, 665, 196, 146, 116, 142, 46, 10, 72, 32, 24, 0, 13, 0, 12, 18, 0, 0, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
COMMENTS
Equivalently the table for the pattern 4321.
EXAMPLE
Table begins:
n\k| 0 1 2 3 4 5 6
---+-------------------------------------------------------------------
0 | 1;
1 | 1;
2 | 2;
3 | 6;
4 | 23, 1;
5 | 103, 12, 4, 0, 0, 1;
6 | 513, 102, 63, 10, 6, 12, 8, ...
7 | 2761, 770, 665, 196, 146, 116, 142, ...
8 | 15767, 5545, 5982, 2477, 2148, 1204, 1782, ...
9 | 94359, 39220, 49748, 25886, 25190, 13188, 19936, ...
10 | 586590, 276144, 396642, 244233, 260505, 142550, 210663, ...
11 | 3763290, 1948212, 3089010, 2167834, 2493489, 1476655, 2136586, ...
0, 0, 0, 0, 1, 2, -3, 5, 7, -9, 12, 15, -18, 22, 26, -30, 35, 40, -45, 51, 57, -63, 70, 77, -84, 92, 100, -108, 117, 126, -135, 145, 155, -165, 176, 187, -198, 210, 222, -234, 247, 260, -273, 287, 301, -315, 330, 345, -360, 376, 392, -408, 425, 442, -459, 477
COMMENTS
As the formula in the description shows, all members of A000332 belong to the generalized pentagonal sequence ( A001318). A001318 also lists all nonnegative numbers that belong to A145919.
FORMULA
a(n+3) = A001840(n) when 3 does not divide n, A001840(n)*-1 otherwise.
After first two zeros, this sequence consists of all values of A001318(n) and A045943(n)*(-1), n>=0, sorted in order of increasing absolute value.
G.f.: (-x^4*(x^4+2*x^3-3*x^2+2*x+1))/((x-1)^3*(1+x^2+x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
EXAMPLE
a(6) = -3 and A000332(6) = (-3)(-10)/2 = 15.
MATHEMATICA
CoefficientList[Series[(-x^4*(x^4 + 2*x^3 - 3*x^2 + 2*x + 1))/((x - 1)^3*(1 + x^2 + x)^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 13 2017 *)
LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {0, 0, 0, 0, 1, 2, -3, 5, 7}, 60] (* Harvey P. Dale, Feb 13 2023 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0, 0], Vec((-x^4*(x^4 +2*x^3 -3*x^2 +2*x +1))/((x-1)^3*(1+x^2+x)^3))) \\ G. C. Greubel, Jun 13 2017
List of numbers that are both pentagonal ( A000326) and binomial coefficients C(n,4) ( A000332).
+20
5
0, 1, 5, 35, 70, 210, 330, 715, 1001, 1820, 2380, 3876, 4845, 7315, 8855, 12650, 14950, 20475, 23751, 31465, 35960, 46376, 52360, 66045, 73815, 91390, 101270, 123410, 135751, 163185, 178365, 211876, 230300, 270725, 292825, 341055, 367290, 424270
COMMENTS
All binomial coefficients C(n,4) belong to the generalized pentagonal sequence ( A001318).
Pentagonal numbers of generalized pentagonal number ( A001318) index number. - Raphie Frank, Nov 25 2012
FORMULA
Positive values of A000332(n) belong to the sequence if and only if 3 does not divide n. A000332(n) is positive when n>3.
Conjecture: a(n) = a(n-1) + 4a(n-2) - 4a(n-3) - 6a(n-4) + 6a(n-5) + 4a(n-6) - 4a(n-7) - a(n-8) + a(n-9). - R. J. Mathar, Oct 29 2008
Conjecture: G.f.: x^2(1 + 4x + 26x^2 + 19x^3 + 4x^5 + x^6 + 26x^4)/((1+x)^4(1-x)^5). - R. J. Mathar, Oct 29 2008
a(n) = (27x^4 - 18x^3 - 3x^2 + 2x)/8 where x = floor(n/2)*(-1)^n, for n >= 1. - William A. Tedeschi, Aug 16 2010
CROSSREFS
Cf. A141919, of which this is a subsequence.
Sums of 6 distinct positive pentatope numbers ( A000332).
+20
4
252, 336, 392, 427, 447, 456, 457, 461, 512, 547, 567, 577, 581, 596, 621, 631, 651, 661, 665, 677, 687, 707, 712, 717, 721, 732, 742, 746, 752, 756, 761, 772, 776, 786, 796, 816, 826, 830, 841, 852, 872, 881, 882, 886, 897, 907, 916, 917, 921, 932
COMMENTS
Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24.
Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
FORMULA
a(n) = Ptop(f) + Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive f=/=g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).
Search completed in 0.251 seconds
|