[go: up one dir, main page]

login
Sums of 6 distinct positive pentatope numbers (A000332).
4

%I #19 Dec 14 2015 05:54:45

%S 252,336,392,427,447,456,457,461,512,547,567,577,581,596,621,631,651,

%T 661,665,677,687,707,712,717,721,732,742,746,752,756,761,772,776,786,

%U 796,816,826,830,841,852,872,881,882,886,897,907,916,917,921,932

%N Sums of 6 distinct positive pentatope numbers (A000332).

%C Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24.

%C Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.

%D Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.

%H Hyun Kwang Kim, <a href="http://dx.doi.org/10.1090/S0002-9939-02-06710-2">On Regular Polytope Numbers</a>, Proc. Amer. Math. Soc., 131 (2003), 65-75.

%H J. V. Post, <a href="http://www.magicdragon.com/poly.html">Table of Polytope Numbers, Sorted, Through 1,000,000</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PentatopeNumber.html">Pentatope Number</a>.

%F a(n) = Ptop(f) + Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive f=/=g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).

%Y Cf. A000332, A100009, A102857, A104392, A104393, A104394, A104395.

%K easy,nonn

%O 1,1

%A _Jonathan Vos Post_, Mar 05 2005

%E Extended by _Ray Chandler_, Mar 05 2005