[go: up one dir, main page]

login
Search: a019673 -id:a019673
     Sort: relevance | references | number | modified | created      Format: long | short | data
The squares: a(n) = n^2.
(Formerly M3356 N1350)
+10
3219
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
OFFSET
0,3
COMMENTS
To test if a number is a square, see Cohen, p. 40. - N. J. A. Sloane, Jun 19 2011
Zero followed by partial sums of A005408 (odd numbers). - Jeremy Gardiner, Aug 13 2002
Begin with n, add the next number, subtract the previous number and so on ending with subtracting a 1: a(n) = n + (n+1) - (n-1) + (n+2) - (n-2) + (n+3) - (n-3) + ... + (2n-1) - 1 = n^2. - Amarnath Murthy, Mar 24 2004
Sum of two consecutive triangular numbers A000217. - Lekraj Beedassy, May 14 2004
Numbers with an odd number of divisors: {d(n^2) = A048691(n); for the first occurrence of 2n + 1 divisors, see A071571(n)}. - Lekraj Beedassy, Jun 30 2004
See also A000037.
First sequence ever computed by electronic computer, on EDSAC, May 06 1949 (see Renwick link). - Russ Cox, Apr 20 2006
Numbers k such that the imaginary quadratic field Q(sqrt(-k)) has four units. - Marc LeBrun, Apr 12 2006
For n > 0: number of divisors of (n-1)th power of any squarefree semiprime: a(n) = A000005(A006881(k)^(n-1)); a(n) = A000005(A000400(n-1)) = A000005(A011557(n-1)) = A000005(A001023(n-1)) = A000005(A001024(n-1)). - Reinhard Zumkeller, Mar 04 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
Numbers a such that a^1/2 + b^1/2 = c^1/2 and a^2 + b = c. - Cino Hilliard, Feb 07 2008 (this comment needs clarification, Joerg Arndt, Sep 12 2013)
Numbers k such that the geometric mean of the divisors of k is an integer. - Ctibor O. Zizka, Jun 26 2008
Equals row sums of triangle A143470. Example: 36 = sum of row 6 terms: (23 + 7 + 3 + 1 + 1 + 1). - Gary W. Adamson, Aug 17 2008
Equals row sums of triangles A143595 and A056944. - Gary W. Adamson, Aug 26 2008
Number of divisors of 6^(n-1) for n > 0. - J. Lowell, Aug 30 2008
Denominators of Lyman spectrum of hydrogen atom. Numerators are A005563. A000290-A005563 = A000012. - Paul Curtz, Nov 06 2008
a(n) is the number of all partitions of the sum 2^2 + 2^2 + ... + 2^2, (n-1) times, into powers of 2. - Valentin Bakoev, Mar 03 2009
a(n) is the maximal number of squares that can be 'on' in an n X n board so that all the squares turn 'off' after applying the operation: in any 2 X 2 sub-board, a square turns from 'on' to 'off' if the other three are off. - Srikanth K S, Jun 25 2009
Zero together with the numbers k such that 2 is the number of perfect partitions of k. - Juri-Stepan Gerasimov, Sep 26 2009
Totally multiplicative sequence with a(p) = p^2 for prime p. - Jaroslav Krizek, Nov 01 2009
Satisfies A(x)/A(x^2), A(x) = A173277: (1, 4, 13, 32, 74, ...). - Gary W. Adamson, Feb 14 2010
Positive members are the integers with an odd number of odd divisors and an even number of even divisors. See also A120349, A120359, A181792, A181793, A181795. - Matthew Vandermast, Nov 14 2010
Besides the first term, this sequence is the denominator of Pi^2/6 = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + ... . - Mohammad K. Azarian, Nov 01 2011
Partial sums give A000330. - Omar E. Pol, Jan 12 2013
Drmota, Mauduit, and Rivat proved that the Thue-Morse sequence along the squares is normal; see A228039. - Jonathan Sondow, Sep 03 2013
a(n) can be decomposed into the sum of the four numbers [binomial(n, 1) + binomial(n, 2) + binomial(n-1, 1) + binomial(n-1, 2)] which form a "square" in Pascal's Triangle A007318, or the sum of the two numbers [binomial(n, 2) + binomial(n+1, 2)], or the difference of the two numbers [binomial(n+2, 3) - binomial(n, 3)]. - John Molokach, Sep 26 2013
In terms of triangular tiling, the number of equilateral triangles with side length 1 inside an equilateral triangle with side length n. - K. G. Stier, Oct 30 2013
Number of positive roots in the root systems of type B_n and C_n (when n > 1). - Tom Edgar, Nov 05 2013
Squares of squares (fourth powers) are also called biquadratic numbers: A000583. - M. F. Hasler, Dec 29 2013
For n > 0, a(n) is the largest integer k such that k^2 + n is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n is a multiple of k + n is given by k = n^(2*m). - Derek Orr, Sep 03 2014
For n > 0, a(n) is the number of compositions of n + 5 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
a(n), for n >= 3, is also the number of all connected subtrees of a cycle graph, having n vertices. - Viktar Karatchenia, Mar 02 2016
On every sequence of natural continuous numbers with an even number of elements, the summatory of the second half of the sequence minus the summatory of the first half of the sequence is always a square. Example: Sequence from 61 to 70 has an even number of elements (10). Then 61 + 62 + 63 + 64 + 65 = 315; 66 + 67 + 68 + 69 + 70 = 340; 340 - 315 = 25. (n/2)^2 for n = number of elements. - César Aguilera, Jun 20 2016
On every sequence of natural continuous numbers from n^2 to (n+1)^2, the sum of the differences of pairs of elements of the two halves in every combination possible is always (n+1)^2. - César Aguilera, Jun 24 2016
Suppose two circles with radius 1 are tangent to each other as well as to a line not passing through the point of tangency. Create a third circle tangent to both circles as well as the line. If this process is continued, a(n) for n > 0 is the reciprocals of the radii of the circles, beginning with the largest circle. - Melvin Peralta, Aug 18 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
Numerators of the solution to the generalization of the Feynman triangle problem, with an offset of 2. If each vertex of a triangle is joined to the point (1/p) along the opposite side (measured say clockwise), then the area of the inner triangle formed by these lines is equal to (p - 2)^2/(p^2 - p + 1) times the area of the original triangle, p > 2. For example, when p = 3, the ratio of the areas is 1/7. The denominators of the ratio of the areas is given by A002061. [Cook & Wood, 2004] - Joe Marasco, Feb 20 2017
Equals row sums of triangle A004737, n >= 1. - Martin Michael Musatov, Nov 07 2017
Right-hand side of the binomial coefficient identity Sum_{k = 0..n} (-1)^(n+k+1)*binomial(n,k)*binomial(n + k,k)*(n - k) = n^2. - Peter Bala, Jan 12 2022
Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)-1} such that |A|=|B|=k and A+B contains {0,1,2,...,a(n)-1}} = n. - Michael Chu, Mar 09 2022
Number of 3-permutations of n elements avoiding the patterns 132, 213, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Number of intercalates in cyclic Latin squares of order 2n (cyclic Latin squares of odd order do not have intercalates). - Eduard I. Vatutin, Feb 15 2024
REFERENCES
G. L. Alexanderson et al., The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965-1984, "December 1967 Problem B4(a)", pp. 8(157) MAA Washington DC 1985.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Chapter XV, pp. 135-167.
R. P. Burn & A. Chetwynd, A Cascade Of Numbers, "The prison door problem" Problem 4 pp. 5-7; 79-80 Arnold London 1996.
H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1996, p. 40.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), p. 6.
M. Gardner, Time Travel and Other Mathematical Bewilderments, Chapter 6 pp. 71-2, W. H. Freeman NY 1988.
Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
Alfred S. Posamentier, The Art of Problem Solving, Section 2.4 "The Long Cell Block" pp. 10-1; 12; 156-7 Corwin Press Thousand Oaks CA 1996.
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. K. Strayer, Elementary Number Theory, Exercise Set 3.3 Problems 32, 33, p. 88, PWS Publishing Co. Boston MA 1996.
C. W. Trigg, Mathematical Quickies, "The Lucky Prisoners" Problem 141 pp. 40, 141, Dover NY 1985.
R. Vakil, A Mathematical Mosaic, "The Painted Lockers" pp. 127;134 Brendan Kelly Burlington Ontario 1996.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.
LINKS
Valentin P. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp. 17-41.
Stefano Barbero, Umberto Cerruti, and Nadir Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7, section 4.4.
Anicius Manlius Severinus Boethius, De institutione arithmetica libri duo, Book 2, sections 10-12.
Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
R. J. Cook and G. V. Wood, Feynman's Triangle, Mathematical Gazette, 88:299-302 (2004).
John Derbyshire, Monkeys and Doors.
Michael Drmota, Christian Mauduit, and Joël Rivat, The Thue-Morse Sequence Along The Squares is Normal, Abstract, ÖMG-DMV Congress, 2013.
Ralph Greenberg, Math for Poets.
Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
L. B. W. Jolley, Summation of Series, Dover, 1961.
Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
J. H. McKay, The William Lowell Putnam Mathematical Competition, Problem B4(a), The American Mathematical Monthly, vol. 75, no. 7, 1968, pp. 732-739.
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)].
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992; arXiv:0911.4975 [math.NT], 2009.
Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
William S. Renwick, The start of the EDSAC log.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.
James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
Eric Weisstein's World of Mathematics, Square Number.
Eric Weisstein's World of Mathematics, Unit.
Eric Weisstein's World of Mathematics, Wiener Index.
FORMULA
G.f.: x*(1 + x) / (1 - x)^3.
E.g.f.: exp(x)*(x + x^2).
Dirichlet g.f.: zeta(s-2).
a(n) = a(-n).
Multiplicative with a(p^e) = p^(2*e). - David W. Wilson, Aug 01 2001
Sum of all matrix elements M(i, j) = 2*i/(i+j) (i, j = 1..n). a(n) = Sum_{i = 1..n} Sum_{j = 1..n} 2*i/(i + j). - Alexander Adamchuk, Oct 24 2004
a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) + 2. - Miklos Kristof, Mar 09 2005
From Pierre CAMI, Oct 22 2006: (Start)
a(n) is the sum of the odd numbers from 1 to 2*n - 1.
a(0) = 0, a(1) = 1, then a(n) = a(n-1) + 2*n - 1. (End)
For n > 0: a(n) = A130064(n)*A130065(n). - Reinhard Zumkeller, May 05 2007
a(n) = Sum_{k = 1..n} A002024(n, k). - Reinhard Zumkeller, Jun 24 2007
Left edge of the triangle in A132111: a(n) = A132111(n, 0). - Reinhard Zumkeller, Aug 10 2007
Binomial transform of [1, 3, 2, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
a(n) = binomial(n+1, 2) + binomial(n, 2).
This sequence could be derived from the following general formula (cf. A001286, A000330): n*(n+1)*...*(n+k)*(n + (n+1) + ... + (n+k))/((k+2)!*(k+1)/2) at k = 0. Indeed, using the formula for the sum of the arithmetic progression (n + (n+1) + ... + (n+k)) = (2*n + k)*(k + 1)/2 the general formula could be rewritten as: n*(n+1)*...*(n+k)*(2*n+k)/(k+2)! so for k = 0 above general formula degenerates to n*(2*n + 0)/(0 + 2) = n^2. - Alexander R. Povolotsky, May 18 2008
From a(4) recurrence formula a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 4, a(3) = 9. - Artur Jasinski, Oct 21 2008
The recurrence a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) is satisfied by all k-gonal sequences from a(3), with a(0) = 0, a(1) = 1, a(2) = k. - Jaume Oliver Lafont, Nov 18 2008
a(n) = floor(n*(n+1)*(Sum_{i = 1..n} 1/(n*(n+1)))). - Ctibor O. Zizka, Mar 07 2009
Product_{i >= 2} 1 - 2/a(i) = -sin(A063448)/A063448. - R. J. Mathar, Mar 12 2009
a(n) = A002378(n-1) + n. - Jaroslav Krizek, Jun 14 2009
a(n) = n*A005408(n-1) - (Sum_{i = 1..n-2} A005408(i)) - (n-1) = n*A005408(n-1) - a(n-1) - (n-1). - Bruno Berselli, May 04 2010
a(n) == 1 (mod n+1). - Bruno Berselli, Jun 03 2010
a(n) = a(n-1) + a(n-2) - a(n-3) + 4, n > 2. - Gary Detlefs, Sep 07 2010
a(n+1) = Integral_{x >= 0} exp(-x)/( (Pn(x)*exp(-x)*Ei(x) - Qn(x))^2 +(Pi*exp(-x)*Pn(x))^2 ), with Pn the Laguerre polynomial of order n and Qn the secondary Laguerre polynomial defined by Qn(x) = Integral_{t >= 0} (Pn(x) - Pn(t))*exp(-t)/(x-t). - Groux Roland, Dec 08 2010
Euler transform of length-2 sequence [4, -1]. - Michael Somos, Feb 12 2011
A162395(n) = -(-1)^n * a(n). - Michael Somos, Mar 19 2011
a(n) = A004201(A000217(n)); A007606(a(n)) = A000384(n); A007607(a(n)) = A001105(n). - Reinhard Zumkeller, Feb 12 2011
Sum_{n >= 1} 1/a(n)^k = (2*Pi)^k*B_k/(2*k!) = zeta(2*k) with Bernoulli numbers B_k = -1, 1/6, 1/30, 1/42, ... for k >= 0. See A019673, A195055/10 etc. [Jolley eq 319].
Sum_{n>=1} (-1)^(n+1)/a(n)^k = 2^(k-1)*Pi^k*(1-1/2^(k-1))*B_k/k! [Jolley eq 320] with B_k as above.
A007968(a(n)) = 0. - Reinhard Zumkeller, Jun 18 2011
A071974(a(n)) = n; A071975(a(n)) = 1. - Reinhard Zumkeller, Jul 10 2011
a(n) = A199332(2*n - 1, n). - Reinhard Zumkeller, Nov 23 2011
For n >= 1, a(n) = Sum_{d|n} phi(d)*psi(d), where phi is A000010 and psi is A001615. - Enrique Pérez Herrero, Feb 29 2012
a(n) = A000217(n^2) - A000217(n^2 - 1), for n > 0. - Ivan N. Ianakiev, May 30 2012
a(n) = (A000217(n) + A000326(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = A162610(n, n) = A209297(n, n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(A000217(n)) = Sum_{i = 1..n} Sum_{j = 1..n} i*j, for n > 0. - Ivan N. Ianakiev, Apr 20 2013
a(n) = A133280(A000217(n)). - Ivan N. Ianakiev, Aug 13 2013
a(2*a(n)+2*n+1) = a(2*a(n)+2*n) + a(2*n+1). - Vladimir Shevelev, Jan 24 2014
a(n+1) = Sum_{t1+2*t2+...+n*tn = n} (-1)^(n+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*4^(t1)*7^(t2)*8^(t3+...+tn). - Mircea Merca, Feb 27 2014
a(n) = floor(1/(1-cos(1/n)))/2 = floor(1/(1-n*sin(1/n)))/6, n > 0. - Clark Kimberling, Oct 08 2014
a(n) = ceiling(Sum_{k >= 1} log(k)/k^(1+1/n)) = -Zeta'[1+1/n]. Thus any exponent greater than 1 applied to k yields convergence. The fractional portion declines from A073002 = 0.93754... at n = 1 and converges slowly to 0.9271841545163232... for large n. - Richard R. Forberg, Dec 24 2014
a(n) = Sum_{j = 1..n} Sum_{i = 1..n} ceiling((i + j - n + 1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Product_{j = 1..n-1} 2 - 2*cos(2*j*Pi/n). - Michel Marcus, Jul 24 2015
From Ilya Gutkovskiy, Jun 21 2016: (Start)
Product_{n >= 1} (1 + 1/a(n)) = sinh(Pi)/Pi = A156648.
Sum_{n >= 0} 1/a(n!) = BesselI(0, 2) = A070910. (End)
a(n) = A028338(n, n-1), n >= 1 (second diagonal). - Wolfdieter Lang, Jul 21 2017
For n >= 1, a(n) = Sum_{d|n} sigma_2(d)*mu(n/d) = Sum_{d|n} A001157(d)*A008683(n/d). - Ridouane Oudra, Apr 15 2021
a(n) = Sum_{i = 1..2*n-1} ceiling(n - i/2). - Stefano Spezia, Apr 16 2021
From Richard L. Ollerton, May 09 2021: (Start) For n >= 1,
a(n) = Sum_{k=1..n} psi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} psi(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = (A005449(n) + A000326(n))/3. - Klaus Purath, May 13 2021
Let T(n) = A000217(n), then a(T(n)) + a(T(n+1)) = T(a(n+1)). - Charlie Marion, Jun 27 2022
a(n) = Sum_{k=1..n} sigma_1(k) + Sum_{i=1..n} (n mod i). - Vadim Kataev, Dec 07 2022
a(n^2) + a(n^2+1) + ... + a(n^2+n) + 4*A000537(n) = a(n^2+n+1) + ... + a(n^2+2n). In general, if P(k,n) = the n-th k-gonal number, then P(2k,n^2) + P(2k,n^2+1) + ... + P(2k,n^2+n) + 4*(k-1)*A000537(n) = P(2k,n^2+n+1) + ... + P(2k,n^2+2n). - Charlie Marion, Apr 26 2024
Sum_{n>=1} 1/a(n) = A013661. - Alois P. Heinz, Oct 19 2024
EXAMPLE
For n = 8, a(8) = 8 * 15 - (1 + 3 + 5 + 7 + 9 + 11 + 13) - 7 = 8 * 15 - 49 - 7 = 64. - Bruno Berselli, May 04 2010
G.f. = x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 36*x^6 + 49*x^7 + 64*x^8 + 81*x^9 + ...
a(4) = 16. For n = 4 vertices, the cycle graph C4 is A-B-C-D-A. The subtrees are: 4 singles: A, B, C, D; 4 pairs: A-B, BC, C-D, A-D; 4 triples: A-B-C, B-C-D, C-D-A, D-A-B; 4 quads: A-B-C-D, B-C-D-A, C-D-A-B, D-A-B-C; 4 + 4 + 4 + 4 = 16. - Viktar Karatchenia, Mar 02 2016
MAPLE
A000290 := n->n^2; seq(A000290(n), n=0..50);
A000290 := -(1+z)/(z-1)^3; # Simon Plouffe, in his 1992 dissertation, for sequence starting at a(1)
MATHEMATICA
Array[#^2 &, 51, 0] (* Robert G. Wilson v, Aug 01 2014 *)
LinearRecurrence[{3, -3, 1}, {0, 1, 4}, 60] (* Vincenzo Librandi, Jul 24 2015 *)
CoefficientList[Series[-(x^2 + x)/(x - 1)^3, {x, 0, 50}], x] (* Robert G. Wilson v, Jul 23 2018 *)
Range[0, 99]^2 (* Alonso del Arte, Nov 21 2019 *)
PROG
(Magma) [ n^2 : n in [0..1000]];
(PARI) {a(n) = n^2};
(PARI) b000290(maxn)=for(n=0, maxn, print(n, " ", n^2); ) \\ Anatoly E. Voevudko, Nov 11 2015
(Haskell)
a000290 = (^ 2)
a000290_list = scanl (+) 0 [1, 3..] -- Reinhard Zumkeller, Apr 06 2012
(Maxima) A000290(n):=n^2$ makelist(A000290(n), n, 0, 30); /* Martin Ettl, Oct 25 2012 */
(Scheme) (define (A000290 n) (* n n)) ;; Antti Karttunen, Oct 06 2017
(Scala) (0 to 59).map(n => n * n) // Alonso del Arte, Oct 07 2019
(Python) # See Hobson link
(Python)
def A000290(n): return n**2 # Chai Wah Wu, Nov 13 2022
CROSSREFS
Cf. A092205, A128200, A005408, A128201, A002522, A005563, A008865, A059100, A143051, A143470, A143595, A056944, A001157 (inverse Möbius transform), A001788 (binomial transform), A228039, A001105, A004159, A159918, A173277, A095794, A162395, A186646 (Pisano periods), A028338 (2nd diagonal).
A row or column of A132191.
This sequence is related to partitions of 2^n into powers of 2, as it is shown in A002577. So A002577 connects the squares and A000447. - Valentin Bakoev, Mar 03 2009
Boustrophedon transforms: A000697, A000745.
Cf. A342819.
Cf. A013661.
KEYWORD
nonn,core,easy,nice,mult
EXTENSIONS
Incorrect comment and example removed by Joerg Arndt, Mar 11 2010
STATUS
approved
a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.
(Formerly M1278)
+10
51
2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802, 27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, 73621286644, 274758382274, 1025412242452, 3826890587534, 14282150107684, 53301709843202, 198924689265124
OFFSET
0,1
COMMENTS
a(n) gives values of x satisfying x^2 - 3*y^2 = 4; corresponding y values are given by 2*A001353(n).
If M is any given term of the sequence, then the next one is 2*M + sqrt(3*M^2 - 12). - Lekraj Beedassy, Feb 18 2002
For n > 0, the three numbers a(n) - 1, a(n), and a(n) + 1 form a Fleenor-Heronian triangle, i.e., a Heronian triangle with consecutive sides, whose area A(n) may be obtained from the relation [4*A(n)]^2 = 3([a(2n)]^2 - 4); or A(n) = 3*A001353(2*n)/2 and whose semiperimeter is 3*a[n]/2. The sequence is symmetrical about a[0], i.e., a[-n] = a[n].
For n > 0, a(n) + 2 is the number of dimer tilings of a 2*n X 2 Klein bottle (cf. A103999).
Tsumura shows that, for prime p, a(p) is composite (contrary to a conjecture of Juricevic). - Charles R Greathouse IV, Apr 13 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 12 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 192 = 0. - Colin Barker, Feb 16 2014
A268281(n) - 1 is a member of this sequence iff A268281(n) is prime. - Frank M Jackson, Feb 27 2016
a(n) gives values of x satisfying 3*x^2 - 4*y^2 = 12; corresponding y values are given by A005320. - Sture Sjöstedt, Dec 19 2017
Middle side lengths of almost-equilateral Heronian triangles. - Wesley Ivan Hurt, May 20 2020
For all elements k of the sequence, 3*(k-2)*(k+2) is a square. - Davide Rotondo, Oct 25 2020
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 82.
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p.91.
Michael P. Cohen, Generating Heronian Triangles With Consecutive Integer Sides. Journal of Recreational Mathematics, vol. 30 no. 2 1999-2000 p. 123.
L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 197;198;200;201. Chelsea NY.
Charles R. Fleenor, Heronian Triangles with Consecutive Integer Sides, Journal of Recreational Mathematics, Volume 28, no. 2 (1996-7) 113-115.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
V. D. To, "Finding All Fleenor-Heronian Triangles", Journal of Recreational Mathematics vol. 32 no.4 2003-4 pp. 298-301 Baywood NY.
LINKS
R. A. Beauregard and E. R. Suryanarayan, The Brahmagupta Triangles, The College Mathematics Journal 29(1) 13-7 1998 MAA.
Hacène Belbachir, Soumeya Merwa Tebtoub and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015.
H. W. Gould, A triangle with integral sides and area, Fib. Quart., 11 (1973), 27-39.
Tanya Khovanova, Recursive Sequences
E. Keith Lloyd, The Standard Deviation of 1, 2, ..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.
S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
Hideyuki Ohtskua, proposer, Problem B-1351, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 62, No. 3 (2024), p. 258.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
Yu Tsumura, On compositeness of special types of integers, arXiv:1004.1244 [math.NT], 2010.
Eric Weisstein's World of Mathematics, Heronian Triangle
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
FORMULA
a(n) = ( 2 + sqrt(3) )^n + ( 2 - sqrt(3) )^n.
a(n) = 2*A001075(n).
G.f.: 2*(1 - 2*x)/(1 - 4*x + x^2). Simon Plouffe in his 1992 dissertation.
a(n) = A001835(n) + A001835(n+1).
a(n) = trace of n-th power of the 2 X 2 matrix [1 2 / 1 3]. - Gary W. Adamson, Jun 30 2003 [corrected by Joerg Arndt, Jun 18 2020]
From the addition formula, a(n+m) = a(n)*a(m) - a(m-n), it is easy to derive multiplication formulas, such as: a(2*n) = (a(n))^2 - 2, a(3*n) = (a(n))^3 - 3*(a(n)), a(4*n) = (a(n))^4 - 4*(a(n))^2 + 2, a(5*n) = (a(n))^5 - 5*(a(n))^3 + 5*(a(n)), a(6*n) = (a(n))^6 - 6*(a(n))^4 + 9*(a(n))^2 - 2, etc. The absolute values of the coefficients in the expansions are given by the triangle A034807. - John Blythe Dobson, Nov 04 2007
a(n) = 2*A001353(n+1) - 4*A001353(n). - R. J. Mathar, Nov 16 2007
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..infinity} (1 + x^(4*n + 1))/(1 + x^(4*n + 3)). Let alpha = 2 - sqrt(3). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.24561 99455 06551 88869 ... = 2 + 1/(4 + 1/(14 + 1/(52 + ...))). Cf. A174500.
Also F(-alpha) = 0.74544 81786 39692 68884 ... has the continued fraction representation 1 - 1/(4 - 1/(14 - 1/(52 - ...))) and the simple continued fraction expansion 1/(1 + 1/((4 - 2) + 1/(1 + 1/((14 - 2) + 1/(1 + 1/((52 - 2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((4^2 - 4) + 1/(1 + 1/((14^2 - 4) + 1/(1 + 1/((52^2 - 4) + 1/(1 + ...))))))).
(End)
a(2^n) = A003010(n). - John Blythe Dobson, Mar 10 2014
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 12*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
E.g.f.: 2*exp(2*x)*cosh(sqrt(3)*x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n*(n - k - 1)!/(k!*(n - 2*k)!)*4^(n - 2*k) for n >= 1. - Peter Luschny, May 10 2016
From Peter Bala, Oct 15 2019: (Start)
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; -1, 4].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
2*Sum_{n >= 1} 1/( a(n) - 6/a(n) ) = 1.
6*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 2/a(n) ) = 1.
8*Sum_{n >= 1} 1/( a(n) + 24/(a(n) - 12/(a(n))) ) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 8/(a(n) + 4/(a(n))) ) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/2 - 6*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 6)),
Sum_{n >= 1} 1/a(n) = 1/8 + 24*Sum_{n >= 1} 1/(a(n)*(a(n)^2 + 12)),
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/6 + 2*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 2)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 12)).
Sum_{n >= 1} 1/a(n) = ( theta_3(2-sqrt(3))^2 - 1 )/4 = 0.34770 07561 66992 06261 .... See Borwein and Borwein, Proposition 3.5 (i), p.91.
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - theta_3(sqrt(3)-2)^2 )/4. Cf. A003499 and A153415. (End)
a(n) = tan(Pi/12)^n + tan(5*Pi/12)^n. - Greg Dresden, Oct 01 2020
From Wolfdieter Lang, Sep 06 2021: (Start)
a(n) = S(n, 4) - S(n-2, 4) = 2*T(n, 2), for n >= 0, with S and T Chebyshev polynomials, with S(-1, x) = 0 and S(-2, x) = -1. S(n, 4) = A001353(n+1), for n >= -1, and T(n, 2) = A001075(n).
a(2*k) = A067902(k), a(2*k+1) = 4*A001570(k+1), for k >= 0. (End)
a(n) = sqrt(2 + 2*A011943(n+1)) = sqrt(2 + 2*A102344(n+1)), n>0. - Ralf Steiner, Sep 23 2021
Sum_{n>=1} arctan(3/a(n)^2) = Pi/6 - arctan(1/3) = A019673 - A105531 (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024
MAPLE
A003500 := proc(n) option remember; if n <= 1 then 2*n+2 else 4*procname(n-1)-procname(n-2); fi;
end proc;
MATHEMATICA
a[0]=2; a[1]=4; a[n_]:= a[n]= 4a[n-1] -a[n-2]; Table[a[n], {n, 0, 23}]
LinearRecurrence[{4, -1}, {2, 4}, 30] (* Harvey P. Dale, Aug 20 2011 *)
Table[Round@LucasL[2n, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
PROG
(Sage) [lucas_number2(n, 4, 1) for n in range(0, 24)] # Zerinvary Lajos, May 14 2009
(Haskell)
a003500 n = a003500_list !! n
a003500_list = 2 : 4 : zipWith (-)
(map (* 4) $ tail a003500_list) a003500_list
-- Reinhard Zumkeller, Dec 17 2011
(PARI) x='x+O('x^99); Vec(-2*(-1+2*x)/(1-4*x+x^2)) \\ Altug Alkan, Apr 04 2016
(Magma) I:=[2, 4]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
CROSSREFS
Cf. A011945 (areas), A334277 (perimeters).
Cf. this sequence (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, May 03 2000
Additional comments from Lekraj Beedassy, Feb 14 2002
STATUS
approved
Decimal expansion of Pi/(2 + 2*Pi).
+10
32
3, 7, 9, 2, 7, 3, 4, 9, 6, 4, 9, 7, 3, 8, 8, 0, 7, 2, 6, 7, 2, 2, 1, 5, 3, 4, 4, 5, 2, 2, 4, 4, 6, 4, 3, 2, 0, 6, 9, 2, 1, 3, 1, 8, 2, 8, 2, 0, 2, 6, 5, 4, 9, 8, 3, 3, 4, 4, 9, 4, 1, 0, 6, 8, 9, 1, 2, 7, 4, 0, 6, 8, 5, 5, 0, 4, 7, 8, 6, 8, 8, 1, 6, 0, 3, 1, 6, 5, 8, 7, 0, 0, 7, 6, 7, 7, 8, 8, 6
OFFSET
0,1
COMMENTS
The number Pi/(2 + 2*Pi) is the least x > 0 such that sin(x) = cos(Pi*x).
If b and c are distinct real numbers, the solutions of sin(bx) = cos(cx) are x = (k - 1/2)*Pi/(b + c), where k runs through the integers. Thus, if b > 0 and c > 0, the least solution x > 0 is Pi/(2*b + 2*c), so that this is also the least x > 0 for which sin(c*x) = cos(b*x). Related sequences, each with a Mathematica program which includes a graph:
...
b.....c.......sequence........x
1.....2.......A019673........ x = Pi/6
1.....3.......A019678........ x = Pi/8
1.....4.......(A000796)/10... x = Pi/10
1.....Pi......A197682........ x = Pi/(2+2*Pi)
1.....2*Pi....A197683........ x = Pi/(2+4*Pi)
1.....1/Pi....A197684........ x = Pi^2/(2+2*Pi)
1.....2/Pi....A197685........ x = Pi^2/(4+2*Pi)
1.....Pi/2....A197686........ x = Pi/(2+Pi)
1.....Pi/3....A197687........ x = 3*Pi/(6+2*Pi)
1.....Pi/4....A197688........ x = 2*Pi/(4+Pi)
1.....Pi/6....A197689........ x = 3*Pi/(6+Pi)
2.....3.......(A000796)/10... x = Pi/10
2.....Pi......A197690........ x = Pi/(4+2*Pi)
2.....2*Pi....A197691........ x = Pi/(4+4*Pi)
2.....1/Pi....A197692........ x = Pi^2/(2+4*Pi)
2.....2/Pi....A197693........ x = Pi^2/(4+4*Pi)
2.....Pi/2....A197694........ x = Pi/(4+Pi)
3.....Pi......A197695........ x = Pi/(2+2*Pi)
3.....2*Pi....A197696........ x = Pi/(6+4*Pi)
3.....1/Pi....A197697........ x = Pi^2/(2+6*Pi)
3.....2/Pi....A197698........ x = Pi^2/(4+6*Pi)
3.....Pi/2....A197699........ x = Pi/(6+Pi)
1/2...Pi......A197700........ x = Pi/(1+2*Pi)
1/2...2*Pi....A197701........ x = Pi/(1+4*Pi)
1/2...1/Pi....A197724........ x = Pi^2/(2+Pi)
1/2...2/Pi....A197725........ x = Pi^2/(4+Pi)
1/2...Pi/2....A197726........ x = Pi/(1+Pi)
1/2...Pi/4....A197727........ x = 2*Pi/(2+Pi)
1/3...Pi/3....A197728........ x = 3*Pi/(2+2*Pi)
1/3...Pi/6....A197729........ x = 3*Pi/(2+Pi)
2/3...Pi/6....A197730........ x = 3*Pi/(4+Pi)
1/4...Pi......A197731........ x = 2*Pi/(1+4*Pi)
1/4...Pi/2....A197732........ x = 2*Pi/(1+2*Pi)
1/4...Pi/4....A197733........ x = 2*Pi/(1+Pi)
1/5...Pi/5....10*A197691..... x = 5*Pi/(2+2*Pi)
1/6...Pi/6....A197735........ x = 3*Pi/(1+Pi)
1/8...Pi/8....A197736........ x = 4*Pi/(1+Pi)
EXAMPLE
0.37927349649738807267221534452244643...
MATHEMATICA
b = 1; c = Pi;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .3, .4}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197682 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi}]
PROG
(PARI) 1/(2/Pi+2) \\ Charles R Greathouse IV, Sep 27 2022
CROSSREFS
Cf. A197683.
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 17 2011
STATUS
approved
Decimal expansion of Pi/(3*sqrt(2)).
+10
21
7, 4, 0, 4, 8, 0, 4, 8, 9, 6, 9, 3, 0, 6, 1, 0, 4, 1, 1, 6, 9, 3, 1, 3, 4, 9, 8, 3, 4, 3, 4, 4, 8, 9, 4, 9, 7, 6, 9, 1, 0, 3, 6, 1, 4, 8, 9, 5, 9, 4, 8, 3, 7, 0, 5, 1, 4, 2, 3, 2, 6, 0, 1, 1, 5, 9, 4, 0, 5, 7, 9, 8, 8, 4, 9, 9, 1, 2, 3, 1, 8, 4, 2, 9, 2, 2, 1, 1, 5, 5, 7, 9, 4, 1, 2, 7, 5, 3, 9, 5, 6, 0
OFFSET
0,1
COMMENTS
Density of densest packing of equal spheres in three dimensions (achieved for example by the fcc lattice).
Atomic packing factor (APF) of the face-centered-cubic (fcc) and the hexagonal-close-packed (hcp) crystal lattices filled with spheres of the same diameter. - Stanislav Sykora, Sep 29 2014
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. 15, line n = 3.
Clifford A. Pickover, The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (2009), at p. 126.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.
LINKS
James Grime and Brady Haran, The Best Way to Pack Spheres, Numberphile video (2018).
J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
Thomas C. Hales, Dense Sphere Packings, Cambridge University Press, 2012.
G. Nebe and N. J. A. Sloane, Home page for fcc lattice.
N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
Eric Weisstein's World of Mathematics, Cubic Close Packing.
Eric Weisstein's World of Mathematics, Ellipsoid Packing.
Eric Weisstein's World of Mathematics, Sphere Packing.
FORMULA
Equals A019670*A010503. - R. J. Mathar, Feb 05 2009
EXAMPLE
0.74048048969306104116931349834344894976910361489594837...
MATHEMATICA
RealDigits[Pi/(3 Sqrt[2]), 10, 120][[1]] (* Harvey P. Dale, Feb 03 2012 *)
PROG
(PARI) default(realprecision, 20080); x=10*Pi*sqrt(2)/6; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b093825.txt", n, " ", d)); \\ Harry J. Smith, Jun 18 2009
(PARI) Pi/sqrt(18) \\ Charles R Greathouse IV, May 11 2017
CROSSREFS
Cf. A093824.
Cf. APF's of other crystal lattices: A019673 (simple cubic), A247446 (diamond cubic).
Cf. A161686 (continued fraction).
KEYWORD
nonn,cons,easy
AUTHOR
Eric W. Weisstein, Apr 16 2004
EXTENSIONS
Entry revised by N. J. A. Sloane, Feb 10 2013
STATUS
approved
Decimal expansion of the area of a unit 9-gon.
+10
12
6, 1, 8, 1, 8, 2, 4, 1, 9, 3, 7, 7, 2, 9, 0, 0, 1, 2, 7, 2, 1, 3, 7, 4, 4, 0, 5, 9, 6, 1, 9, 7, 6, 3, 6, 1, 4, 9, 4, 1, 7, 1, 3, 3, 4, 8, 1, 3, 4, 3, 5, 8, 0, 9, 8, 3, 8, 6, 8, 6, 4, 2, 5, 5, 6, 6, 9, 7, 7, 1, 0, 7, 1, 2, 3, 3, 5, 8, 4, 6, 6, 4, 7, 6, 6, 3, 5, 9, 5, 5, 3, 3, 8, 9, 0, 7, 9, 1, 8, 4, 0, 9, 9, 0, 2
OFFSET
1,1
COMMENTS
From Michal Paulovic, May 09 2024: (Start)
This constant multiplied by the square of the side length of a regular enneagon equals the area of that enneagon.
9^2 divided by this constant equals 36 * tan(Pi/9) = 13.10292843... which is the perimeter and the area of an equable enneagon with its side length 4 * tan(Pi/9) = 1.45588093... . (End)
FORMULA
Equals (p/4)*cot(Pi/p), with p = 9.
From Michal Paulovic, May 09 2024: (Start)
Equals 9 * sqrt(2 / (1 - sin(5 * A000796 / 18)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019669 / 9)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019670 / 6)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019673 / 3)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019676 / 2)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(50 * A019685)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * Pi / 18)) - 1) / 4.
Equals 9 * sqrt(4 / (2 - i^(4/9) - i^(-4/9)) - 1) / 4.
Equals 9 * sqrt(1 / (8 - (-32 + sqrt(-3072))^(1/3) - (-32 - sqrt(-3072))^(1/3)) - 1/16). (End)
EXAMPLE
6.181824193772900127213744059619763614941713348134358098386864...
MAPLE
evalf(9 / (4 * tan(Pi/9)), 100); # Michal Paulovic, May 09 2024
MATHEMATICA
RealDigits[(9/4)*Cot[Pi/9], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
PROG
(PARI) p=9; a=(p/4)*cotan(Pi/p) \\ Use realprecision in excess
CROSSREFS
Cf. A000796, A019669, A019670, A019673, A019676, A019685, A019968, A120011 (p=3), A102771 (p=5), A104956 (p=6), A178817 (p=7), A090488 (p=8), A178816 (p=10), A256854 (p=11), A178809 (p=12).
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Apr 12 2015
STATUS
approved
Expansion of (phi(q)^2 - phi(q^3)^2) / 4 in powers of q where phi() is a Ramanujan theta function.
+10
11
1, 1, -1, 1, 2, -1, 0, 1, 1, 2, 0, -1, 2, 0, -2, 1, 2, 1, 0, 2, 0, 0, 0, -1, 3, 2, -1, 0, 2, -2, 0, 1, 0, 2, 0, 1, 2, 0, -2, 2, 2, 0, 0, 0, 2, 0, 0, -1, 1, 3, -2, 2, 2, -1, 0, 0, 0, 2, 0, -2, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, -3, 0, 0, -2, 0, 2, 1, 2, 0, 0, 4, 0, -2, 0, 2, 2, 0, 0, 0, 0, 0, -1, 2, 1, 0, 3, 2, -2, 0, 2, 0
OFFSET
1,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (eta(q^2)^3 * eta(q^6) * eta(q^12)^2) / (eta(q) * eta(q^3) * eta(q^4)^2) in powers of q.
Euler transform of period 12 sequence [1, -2, 2, 0, 1, -2, 1, 0, 2, -2, 1, -2, ...].
Moebius transform is period 12 sequence [1, 0, -2, 0, 1, 0, -1, 0, 2, 0, -1, 0, ...].
a(n) is multiplicative and a(2^e) = 1, a(3^e) = (-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f.: ((Sum_{k} x^(k^2))^2 - (Sum_{k} x^(3*k^2))^2) / 4.
G.f.: Sum_{k>0} x^(3*k-1) / (1 + x^(6*k-2)) + x^(3*k-2)/(1 + x^(6*k-4)).
G.f.: Sum_{k>0} x^k * (1 - x^(2*k))^2 / (1 + x^(6*k)).
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 + x^k)^3 * (1 + x^(3*k)) * (1 + x^(4*k) + x^(8*k))^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138949.
a(n) = (-1)^e * A035154(n) where 3^e is the highest power of 3 dividing n.
a(4*n + 1) = A008441(n).
Expansion of q * f(-q, -q^5) * f(q, q^5)^2 / phi(-q^3) in powers of q where phi(), f(,) are Ramanujan theta functions. - Michael Somos, Jan 31 2015
Expansion of q * (psi(q^3)^3 / psi(q)) * (phi(q) / phi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/6 (A019673). - Amiram Eldar, Nov 24 2023
EXAMPLE
G.f. = q + q^2 - q^3 + q^4 + 2*q^5 - q^6 + q^8 + q^9 + 2*q^10 - q^12 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, (-1)^IntegerExponent[ n, 3] Sum[ KroneckerSymbol[ -36, d], { d, Divisors[ n]}]]; (* Michael Somos, Jan 31 2015 *)
a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q^(3/2)]^3 / EllipticTheta[ 2, 0, q^(1/2)] (EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^3]), {q, 0, n}]; (* Michael Somos, Jan 31 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, (-1)^valuation(n, 3) * sumdiv(n, d, kronecker(-36, d)))};
(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, if( p==3, 1 / (1 + X), 1 / (1 - X) / (1 - kronecker(-36, p) * X)))[n])};
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^6 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^2), n))};
(Magma) A := Basis( ModularForms( Gamma1(12), 1), 106); A[2] + A[3] - A[4] + A[5]; /* Michael Somos, Jan 31 2015 */
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Nov 02 2005
STATUS
approved
Decimal expansion of Pi^2/36.
+10
11
2, 7, 4, 1, 5, 5, 6, 7, 7, 8, 0, 8, 0, 3, 7, 7, 3, 9, 4, 1, 2, 0, 6, 9, 1, 9, 4, 4, 4, 1, 0, 0, 4, 1, 9, 8, 2, 0, 3, 1, 5, 8, 3, 1, 6, 8, 6, 7, 7, 9, 9, 7, 3, 9, 6, 2, 2, 5, 9, 3, 0, 3, 8, 2, 2, 8, 3, 3, 4, 5, 7, 8, 4, 0, 0, 5, 3, 3, 4, 7, 8, 9, 7, 2, 2, 7, 1, 4, 8, 3, 4, 3, 6, 6, 2, 6, 4, 5, 0, 8, 8, 4, 0, 0, 0, 7
OFFSET
0,1
COMMENTS
Ratio between the volume of the stepped pyramid with an infinite number of levels described in A245092 and that of the circumscribed cube (see the first formula).
See also Vaclav Kotesovec's formula (2016) in A175254.
Volume shared by a sphere inscribed in a cube of volume Pi and one of the six pyramids inscribed in the cube. - Omar E. Pol, Sep 01 2024
FORMULA
Equals lim_{n->oo} A175254(n)/n^3.
Equals A002388/36.
Equals A102753/18.
Equals A195055/12.
Equals A091476/9.
Equals A013661/6.
Equals A100044/4.
Equals A072691/3.
Equals A086463/2.
Equals A086729*2.
Equals A019673^2.
Equals Re(dilog((1+sqrt(3)*i)/2)). - Mohammed Yaseen, Jul 03 2024
EXAMPLE
0.2741556778080377394120691944410041982031583168677997396225930382283345784...
MAPLE
evalf(Pi^2/36, 121); # Alois P. Heinz, May 11 2022
MATHEMATICA
RealDigits[Pi^2/36, 10, 100][[1]] (* Amiram Eldar, May 11 2022 *)
PROG
(PARI) Pi^2/36
(PARI) zeta(2)/6
KEYWORD
nonn,cons
AUTHOR
Omar E. Pol, May 10 2022
STATUS
approved
Decimal expansion of Pi/12.
+10
10
2, 6, 1, 7, 9, 9, 3, 8, 7, 7, 9, 9, 1, 4, 9, 4, 3, 6, 5, 3, 8, 5, 5, 3, 6, 1, 5, 2, 7, 3, 2, 9, 1, 9, 0, 7, 0, 1, 6, 4, 3, 0, 7, 8, 3, 2, 8, 1, 2, 5, 8, 8, 1, 8, 4, 1, 4, 5, 7, 8, 7, 1, 6, 0, 2, 5, 6, 5, 1, 3, 6, 7, 1, 9, 0, 5, 1, 7, 4, 1, 6, 5, 5, 2, 3, 3, 6, 2, 3, 5, 4, 4, 5, 1, 7, 6, 4, 2, 2
OFFSET
0,1
COMMENTS
Equals cone's volume (radius = 1/2, height = 1) and semi-sphere's volume (radius = 1/2). - Eric Desbiaux, Dec 08 2008
Decimal expansion of least x > 0 having cos(4x) = (cos 3x)^2. See A197476. - Clark Kimberling, Oct 15 2011
Multiplied by 10, decimal expansion of 5*Pi/6. - Alonso del Arte, Aug 19 2013
Volume between a cylinder and the inscribed sphere of diameter 1. - Omar E. Pol, Sep 25 2013
FORMULA
A003881 - A019673. - Omar E. Pol, Sep 25 2013
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^6) dx. - Peter Bala, Oct 27 2019
Equals Sum_{k>=0} binomial(2*k,k)/((2*k+1)*4^(2*k+1)). - Amiram Eldar, May 30 2021
Constant divided by 10 = Pi/120 = 0.0261799387... = Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)) (using the Eisenstein summation convention Sum_{n = -oo..oo} = lim_{N -> oo} Sum_{n = -N..N}). Note that 22/7 - Pi = 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)). - Peter Bala, Nov 28 2021
EXAMPLE
Pi/12 = 0.2617993877991494365385536152732919070164307... - Vladimir Joseph Stephan Orlovsky, Dec 02 2009
MATHEMATICA
RealDigits[N[Pi/12, 6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
RealDigits[Pi/12, 10, 120][[1]] (* Harvey P. Dale, Jan 12 2024 *)
PROG
(PARI) Pi/12 \\ Charles R Greathouse IV, Sep 28 2022
KEYWORD
nonn,cons
STATUS
approved
Decimal expansion of the surface area of a 3D sphere with unit volume.
+10
10
4, 8, 3, 5, 9, 7, 5, 8, 6, 2, 0, 4, 9, 4, 0, 8, 9, 2, 2, 1, 5, 0, 9, 0, 0, 5, 3, 9, 9, 1, 7, 8, 5, 4, 8, 1, 6, 8, 3, 3, 8, 4, 2, 2, 1, 6, 9, 7, 1, 5, 8, 4, 6, 6, 7, 0, 7, 6, 8, 7, 6, 2, 2, 6, 1, 3, 6, 8, 5, 2, 8, 9, 5, 1, 7, 1, 4, 3, 5, 8, 2, 2, 7, 3, 8, 4, 6
OFFSET
1,1
COMMENTS
More generally, the ratio (surface)/(volume)^(2/3), characteristic of the shape of a bounded 3D body, which is invariant under linear scaling and known as the surface index. Its common value for all spheres is the smallest possible among all closed 3D bodies (for a cube, for example, it is exactly 6.0).
FORMULA
(36*Pi)^(1/3) = 6*A019673^(1/3).
EXAMPLE
4.83597586204940892215090053991785481683384221697158466707687622613685...
MATHEMATICA
RealDigits[(36 Pi)^(1/3), 10, 90][[1]] (* Bruno Berselli, Dec 01 2013 *)
CROSSREFS
Cf. A000796 (Pi), A019673 (Pi/6); other sphere metrics: A019694, A019699, A087198, A087199.
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Nov 30 2013
STATUS
approved
Decimal expansion of arcsin(sqrt(1/3)) and of arccos(sqrt(2/3)).
+10
8
6, 1, 5, 4, 7, 9, 7, 0, 8, 6, 7, 0, 3, 8, 7, 3, 4, 1, 0, 6, 7, 4, 6, 4, 5, 8, 9, 1, 2, 3, 9, 9, 3, 6, 8, 7, 8, 5, 5, 1, 7, 0, 0, 0, 4, 6, 7, 7, 5, 4, 7, 4, 1, 9, 5, 2, 7, 7, 7, 4, 1, 6, 6, 8, 3, 1, 9, 9, 6, 1, 5, 7, 2, 3, 9, 1, 2, 8, 0, 4, 3, 9, 2, 6, 6, 2, 5, 8, 1, 0, 0, 8, 5, 4, 3, 0, 4, 6, 0, 5
OFFSET
0,1
COMMENTS
The complementary magic angle, that is, Pi/2 - A195696. The angle between the body-diagonal and a congruent face-diagonal of a cube. And also the polar angle of the cone circumscribed to a regular tetrahedron from one of its vertices. - Stanislav Sykora, Nov 21 2013
This is the value of the angle of the circular cone to the axis, that maximizes the volume of the cone enclosed by a given area. See the +plus link. - Michel Marcus, Aug 27 2017
LINKS
John D. Barrow, Outer space: Archimedean ice cream cones, +plus magazine.
Wikipedia, Polyhedron, and further links therein.
FORMULA
Also equals arctan(1/sqrt(2)). - Michel Marcus, Aug 27 2017
EXAMPLE
arcsin(sqrt(1/3)) = 0.61547970867038734106746458912399...
MATHEMATICA
r = Sqrt[1/3];
N[ArcSin[r], 100]
RealDigits[%] (* A195695 *)
N[ArcCos[r], 100]
RealDigits[%] (* A195696 *)
N[ArcTan[r], 100]
RealDigits[%] (* A019673 *)
N[ArcCos[-r], 100]
RealDigits[%] (* A195698 *)
PROG
(PARI) atan(1/sqrt(2)) \\ Michel Marcus, Aug 27 2017
(Magma) [Arcsin(Sqrt(1/3))]; // G. C. Greubel, Nov 18 2017
CROSSREFS
Cf. A195696 (magic angle), A195698, A020760, A157697, A243445.
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 23 2011
STATUS
approved

Search completed in 0.027 seconds