[go: up one dir, main page]

login
A197699
Decimal expansion of Pi/(6 + Pi).
2
3, 4, 3, 6, 5, 9, 2, 2, 5, 7, 6, 4, 7, 9, 3, 5, 8, 5, 8, 8, 3, 1, 8, 6, 3, 7, 4, 8, 9, 3, 5, 7, 2, 7, 9, 1, 8, 3, 2, 7, 8, 4, 6, 7, 7, 6, 5, 0, 2, 2, 4, 8, 1, 6, 7, 3, 0, 3, 6, 1, 0, 1, 4, 6, 5, 3, 9, 6, 5, 5, 4, 2, 7, 9, 7, 9, 3, 0, 7, 3, 7, 0, 5, 9, 0, 8, 8, 7, 0, 3, 4, 1, 7, 9, 0, 1, 5, 5, 4
OFFSET
0,1
COMMENTS
Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=3 and c=Pi/2; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
EXAMPLE
0.3436592257647935858831863748935727918327846776...
MATHEMATICA
b = 3; c = Pi/2;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .34, .35}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197699 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 1.5}]
CROSSREFS
Cf. A197682.
Sequence in context: A110738 A175028 A248006 * A005092 A136195 A117892
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 17 2011
STATUS
approved