OFFSET
0,1
COMMENTS
Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/2 and c=2*Pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
EXAMPLE
0.2315720794377097216062891145511312308...
MATHEMATICA
b = 1/2; c = 2*Pi;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .23, .24}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197701 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, .8}]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 17 2011
STATUS
approved