[go: up one dir, main page]

login
A264772
Triangle T(n,k) = binomial(3*n - 2*k, 2*n - k), 0 <= k <= n.
13
1, 3, 1, 15, 4, 1, 84, 21, 5, 1, 495, 120, 28, 6, 1, 3003, 715, 165, 36, 7, 1, 18564, 4368, 1001, 220, 45, 8, 1, 116280, 27132, 6188, 1365, 286, 55, 9, 1, 735471, 170544, 38760, 8568, 1820, 364, 66, 10, 1, 4686825, 1081575, 245157, 54264, 11628, 2380, 455, 78, 11, 1
OFFSET
0,2
COMMENTS
Riordan array (f(x), x*g(x)), where g(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + ... is the o.g.f. for A001764 and f(x) = g(x)/(3 - 2*g(x)) = 1 + 3*x + 15*x^2 + 84*x^3 + 495*x^4 + ... is the o.g.f. for A005809.
The even numbered columns give the Riordan array A119301, the odd numbered columns give the Riordan array A144484. A159841 is the array formed from columns 1,4,7,10,....
More generally, if R = (R(n,k))n,k>=0 is a proper Riordan array, m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 2, b = 1. See A092392, A264773, A264774 and A113139 for further examples.
LINKS
Paul Barry, On the halves of a Riordan array and their antecedents, arXiv:1906.06373 [math.CO], 2019.
E. Lebensztayn, On the asymptotic enumeration of accessible automata, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No.3, 2010, 75-80, Section 2.
R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
FORMULA
T(n,k) = binomial(3*n - 2*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(3*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(2*n + 1)*binomial(3*n,n)*x^n.
EXAMPLE
Triangle begins
.n\k.|......0.....1....2....3...4..5...6..7...
----------------------------------------------
..0..| 1
..1..| 3 1
..2..| 15 4 1
..3..| 84 21 5 1
..4..| 495 120 28 6 1
..5..| 3003 715 165 36 7 1
..6..| 18564 4368 1001 220 45 8 1
..7..| 116280 27132 6188 1365 286 55 9 1
...
MAPLE
A264772:= proc(n, k) binomial(3*n - 2*k, 2*n - k); end proc:
seq(seq(A264772(n, k), k = 0..n), n = 0..10);
MATHEMATICA
Table[Binomial[3 n - 2 k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
PROG
(Magma) /* As triangle */ [[Binomial(3*n-2*k, n-k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
CROSSREFS
Cf. A005809 (column 0), A045721 (column 1), A025174 (column 2), A004319 (column 3), A236194 (column 4), A013698 (column 5). Cf. A001764, A007318, A092392, A119301 (C(3n-k,2n)), A144484 (C(3n+1-k,2n+1)), A159841 (C(3n+1,2n+k+1)), A264773, A264774.
Sequence in context: A290862 A290030 A072479 * A263917 A324428 A131440
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Nov 24 2015
STATUS
approved