OFFSET
0,2
COMMENTS
Riordan arrays of the form (f(x)^(m+1), f(x)), where f(x) satisfies 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) include (modulo differences of offset) the Motzkin triangle A091836 (m = -1), the Catalan triangle A033184 (m = 0) and the Schroder triangle A091370 (m = 1). This is the case m = 2. See A263918 for the case m = 3.
The coefficients of the power series solution of the equation 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) appear to be given by [x^0] f(x) = 1 and [x^n] f(x) = 1/n * Sum_{k = 1..n} binomial(n,k)*binomial(n + m*k, k - 1) for n >= 1.
This triangle appears in Novelli et al., Figure 8, p. 24, where a combinatorial interpretation is given in terms of trees.
LINKS
J.-C. Novelli and J.-Y. Thibon, Noncommutative Symmetric Functions and Lagrange Inversion, arXiv:math/0512570 [math.CO], 2005-2006.
FORMULA
EXAMPLE
Triangle begins:
1
3 1
15 4 1
85 22 5 1
519 132 30 6 1
3330 837 190 39 7 1
22135 5516 1250 260 49 8 1
151089 37404 8461 1773 343 60 9 1
MAPLE
# For the function TreesByArityOfTheRoot_Row(m, n) see A263918.
A263917_row := n -> TreesByArityOfTheRoot_Row(2, n):
seq(A263917_row(n), n=0..9); # Peter Luschny, Oct 31 2015
MATHEMATICA
rows = 9;
f[_] = 1; Do[f[x_] = 1 + x*f[x]*(f[x]^2 + f[x] - 1) + O[x]^(rows+1) // Normal, {rows+1}];
coes = CoefficientList[f[x]^3/(1 - x*t*f[x]) + O[x]^(rows+1), x];
row[n_] := CoefficientList[coes[[n+1]], t];
Table[row[n], {n, 0, rows}] // Flatten (* Jean-François Alcover, Jul 19 2018 *)
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Oct 29 2015
STATUS
approved