[go: up one dir, main page]

login
A324428
Number T(n,k) of labeled cyclic chord diagrams with n chords such that every chord has length at least k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
12
1, 3, 1, 15, 4, 1, 105, 31, 7, 1, 945, 293, 68, 11, 1, 10395, 3326, 837, 159, 18, 1, 135135, 44189, 11863, 2488, 381, 29, 1, 2027025, 673471, 189503, 43169, 7601, 879, 47, 1, 34459425, 11588884, 3377341, 822113, 160784, 23559, 2049, 76, 1, 654729075, 222304897, 66564396, 17066007, 3621067, 607897, 72989, 4788, 123, 1
OFFSET
1,2
COMMENTS
T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with 1 <= k <= n. T(n,0) = A001147(n), T(0,k) = 1, T(n,k) = 0 for k > n > 0.
LINKS
FORMULA
T(n,k) = Sum_{j=k..n} A324429(n,j).
EXAMPLE
Triangle T(n,k) begins:
1;
3, 1;
15, 4, 1;
105, 31, 7, 1;
945, 293, 68, 11, 1;
10395, 3326, 837, 159, 18, 1;
135135, 44189, 11863, 2488, 381, 29, 1;
2027025, 673471, 189503, 43169, 7601, 879, 47, 1;
...
MAPLE
b:= proc(n, f, m, l, j) option remember; (k-> `if`(n<add(i, i=f)+m+
add(i, i=l), 0, `if`(n=0, 1, add(`if`(f[i]=0, 0, b(n-1,
subsop(i=0, f), m+l[1], [subsop(1=[][], l)[], 0], max(0, j-1))),
i=max(1, j+1)..min(k, n-1))+`if`(m=0, 0, m*b(n-1, f, m-1+l[1],
[subsop(1=[][], l)[], 0], max(0, j-1)))+b(n-1, f, m+l[1],
[subsop(1=[][], l)[], 1], max(0, j-1)))))(nops(l))
end:
T:= (n, k)-> `if`(n=0 or k<2, doublefactorial(2*n-1),
b(2*n-k+1, [1$k-1], 0, [0$k-1], k-1)):
seq(seq(T(n, k), k=1..n), n=1..10);
MATHEMATICA
b[n_, f_List, m_, l_List, j_] := b[n, f, m, l, j] = Function[k, If[n < Total[f] + m + Total[l], 0, If[n == 0, 1, Sum[If[f[[i]] == 0, 0, b[n - 1, ReplacePart[f, i -> 0], m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]], {i, Max[1, j + 1], Min[k, n - 1]}] + If[m == 0, 0, m*b[n - 1, f, m - 1 + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]] + b[n - 1, f, m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 1], Max[0, j - 1]]]]][Length[l]];
T[n_, k_] := If[n == 0 || k < 2, 2^(n-1) Pochhammer[3/2, n-1], b[2n-k+1, Table[1, {k-1}], 0, Table[0, {k-1}], k-1]];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)
CROSSREFS
T(n,n-1) gives A000204.
Sequence in context: A072479 A264772 A263917 * A131440 A269950 A190088
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 27 2019
STATUS
approved