[go: up one dir, main page]

login
A025174
a(n) = binomial(3n-1, n-1).
43
0, 1, 5, 28, 165, 1001, 6188, 38760, 245157, 1562275, 10015005, 64512240, 417225900, 2707475148, 17620076360, 114955808528, 751616304549, 4923689695575, 32308782859535, 212327989773900, 1397281501935165, 9206478467454345, 60727722660586800, 400978991944396320
OFFSET
0,3
COMMENTS
Number of standard tableaux of shape (2n-1,n). Example: a(2)=5 because in the top row we can have 123, 124, 125, 134, or 135. - Emeric Deutsch, May 23 2004
Number of peaks in all generalized {(1,2),(1,-1)}-Dyck paths of length 3n.
Positive terms in this sequence are the numbers k such that k and 2k are consecutive terms in a row of Pascal's triangle. 1001 is the only k such that k, 2k, and 3k are consecutive terms in a row of Pascal's triangle. - J. Lowell, Mar 11 2023
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part I, Springer-Verlag, see Entry 14, Corollary 1, p. 71.
LINKS
Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
D. Kruchinin and V. Kruchinin, A Generating Function for the Diagonal T2n,n in Triangles, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.
W. Mlotkowski and K. A. Penson, Probability distributions with binomial moments, arXiv preprint arXiv:1309.0595 [math.PR], 2013.
Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
FORMULA
G.f.: z*g^2/(1-3*z*g^2), where g=g(z) is given by g=1+z*g^3, g(0)=1, that is, (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
a(n) = Sum_{k=0..n} ((3k+1)/(2n+k+1))C(3n, 2n+k)*A001045(k). - Paul Barry, Oct 07 2005
Hankel transform of a(n+1) is A005156(n+1). - Paul Barry, Apr 14 2008
G.f.: x*B'(x)/B(x) where B(x) is the g.f. of A001764. - Vladimir Kruchinin Feb 03 2013
D-finite with recurrence: 2*n*(2*n-1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Feb 05 2013
Logarithmic derivative of A001764; g.f. of A001764 satisfies G(x) = 1 + x*G(x)^3. - Paul D. Hanna, Jul 14 2013
G.f.: (2*cos((1/3)*arcsin((3/2)*sqrt(3*x)))-sqrt(4-27*x))/(3*sqrt(4-27*x)). - Emanuele Munarini, Oct 14 2014
a(n) = Sum_{k=1..n} binomial(n-1,n-k)*binomial(2*n,n-k). - Vladimir Kruchinin, Nov 12 2014
a(n) = [x^n] C(x)^n for n >= 1, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the generating function for A000108 (Ramanujan). - Peter Bala, Jun 24 2015
From Peter Bala, Nov 04 2015: (Start)
Without the initial term 0, the o.g.f. equals f(x)*g(x)^2, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. g(x)^2 is the o.g..f for A006013. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5), A165817 (k = -1), A117671 (k = -2). (End)
G.f.: ( 2F1(1/3,2/3;1/2;27*x/4)-1)/3. - R. J. Mathar, Jan 27 2020
O.g.f. without the initial term 0, in the form g(x)=(2*cos(arcsin((3*sqrt(3)*sqrt(x))/2)/3)/sqrt(4-27*x)-1)/(3*x), satisfies the following algebraic equation: 1+(9*x-1)*g(x)+x*(27*x-4)*g(x)^2+x^2*(27*x-4)*g(x)^3=0. - Karol A. Penson, Oct 11 2021
O.g.f. equals f(x)/(1 - 2*f(x)), where f(x) = series reversion (x/(1 + x)^3) = x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ... is the o.g.f. of A001764 with the initial term omitted. Cf. A224274. - Peter Bala, Feb 03 2022
Right-hand side of the identities (1/2)*Sum_{k = 0..n} (-1)^(n+k)*C(x*n,n-k)*C((x+2)*n+k-1,k) = C(3*n-1,n-1) and (1/3)*Sum_{k = 0..n} (-1)^k* C(x*n,n-k)*C((x-3)*n+k-1,k) = C(3*n-1,n-1), both valid for n >= 1 and x arbitrary. - Peter Bala, Feb 28 2022
a(n) ~ 2^(-2*n)*3^(3*n)/(2*sqrt(3*n*Pi)). - Stefano Spezia, Apr 25 2024
a(n) = Sum_{k = 0..n-1} binomial(2*n+k-1, k) = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(3*n, k). - Peter Bala, Jul 21 2024
EXAMPLE
L.g.f.: L(x) = x + 5*x^2/2 + 28*x^3/3 + 165*x^4/4 + 1001*x^5/5 + 6188*x^6/6 + ...
where G(x) = exp(L(x)) satisfies G(x) = 1 + x*G(x)^3, and begins:
exp(L(x)) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ... + A001764(n)*x^n + ...
MAPLE
with(combinat):seq(numbcomp(3*i, i), i=0..20); # Zerinvary Lajos, Jun 16 2007
MATHEMATICA
Table[ GegenbauerC[ n, n, 1 ]/2, {n, 0, 24} ]
Join[{0}, Table[Binomial[3n-1, n-1], {n, 20}]] (* Harvey P. Dale, Oct 19 2022 *)
PROG
(Magma) [Binomial(3*n-1, n-1): n in [0..30]]; // Vincenzo Librandi, Nov 12 2014
(PARI) vector(30, n, n--; binomial(3*n-1, n-1)) \\ Altug Alkan, Nov 04 2015
CROSSREFS
Cf. A001764 (binomial(3n,n)/(2n+1)), A117671 (C(3n+1,n+1)), A004319, A005809, A006013, A013698, A045721, A117671, A165817, A224274, A236194.
Sequence in context: A327999 A254538 A090040 * A371778 A083316 A027284
KEYWORD
nonn,easy
STATUS
approved