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Let R = (f(x), xg(x)) be a proper Riordan array. We shall associate with R
a bi-in�nite array R∗ (itself not a Riordan array), which contains R as a
subarray. The main result of this paper is to �nd a 4-parameter family of
Riordan arrays that are embedded in R∗. For particular values of the
parameters these arrays will in fact be embedded in the Riordan array R.

The generating function of the kth column of R is, by de�nition, the Taylor
series expansion of the series f(x)(xg(x))k about 0. In section 3 we prove a
companion result for the rows of R: there is a pair of formal power series F (x)
and G(x) such that the entries in nth row of the proper Riordan array R, read
from right to left, are the coe�cients in the Taylor polynomial of degree n of
the series F (x)G(x)n about 0. The proof uses the properties of a particular
member of our family of Riordan arrays embeddded in R∗. In Section 4 we
show that the Taylor series expansions about 0 of the functions F (x)G(x)n,
n ∈ Z, are the generating functions for the rows of the extended array R∗.

1 Introduction

Let f(x) = 1 + f1x+ f2x
2 + · · · and g(x) = 1 + g1x+ g2x

2 + · · · be a pair of
formal power series with (say) integer coe�cients. The proper Riordan array

R = (R(n, k))n,k≥0 = (f(x), xg(x))

is de�ned as the lower unitriangular array whose kth column has the ordinary
generating function f(x)(xg(x))k [2, Section 2], [4, Section 1]. The elements of
the array R are thus given by

R(n, k) = [xn]f(x)(xg(x))k [n, k ≥ 0]. (1)

where [xn] denotes the coe�cient extraction operator. The most well-known
example of a proper Riordan array is Pascal's triangle of binomial coe�cients((
n
k

))
n,k≥0 , which is the Riordan array

(
1

1−x ,
x

1−x

)
.

We associate with the Riordan array R the bi-in�nite array R∗ (which is not
a Riordan array) whose elements are given by

R∗(n, k) = [xn]f(x)(xg(x))k [n, k ∈ Z]. (2)

R∗ is an example of a recursive array [1]. We refer to the array R∗ as the
extended array associated with the Riordan array R.
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The �rst few rows of R∗ are shown below. Clearly, R∗(n, k) = R(n, k) for
n, k ≥ 0, so we can view R as a subarray of R∗ occupying the bottom right
quadrant of R∗. We see by (2) that the entries in R∗ lying above the main
diagonal are all zero.

R∗(n, k), n, k ∈ Z
fg−3 fg−2 fg−1 f fg fg2 fg3 · · ·

n�k · · · −3 −2 −1 | 0 1 2 3 · · ·
...

. . . |
−3 · · · R∗(−3,−3) |
−2 · · · R∗(−2,−3) R∗(−2,−2) |
−1 · · · R∗(−1,−3) R∗(−1,−2) R∗(−1,−1) |
- - - - - - - - - - -
0 · · · R∗(0,−3) R∗(0,−2) R∗(0,−1) | R(0, 0)
1 · · · R∗(1,−3) R∗(1,−2) R∗(1,−1) | R(1, 0) R(1, 1)
2 · · · R∗(2,−3) R∗(2,−2) R∗(2,−1) | R(2, 0) R(2, 1) R(2, 2)
...

...
...

... |
...

...
...

. . .

As an example we show part of the extended version of Pascal's triangle
below. By (2), the array entries are given by

[xn]
1

1− x
.

xk

(1− x)k
=

[
xn−k

]
(1− x)−k−1

= (−1)n−k
(
−k − 1

n− k

)
[n, k ∈ Z].

Note the bottom left quadrant of the array has all zero entries, which is usually
not the case in an arbitrary extended array R∗.

. . .

· · · 1
· · · −3 1
· · · 3 −2 1
· · · −1 1 −1 1

1
1 1
1 2 1
1 3 3 1
...

...
...

...
. . .


It follows from the de�nition of an extended array that the column generating

functions of the extended version of Pascal's triangle are given by 1/(1−x)n for
n ∈ Z. Note there is a similar result in this case for the rows of the extended
array: if we read the rows from right to left, the row generating functions have
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the form (1 + x)n for n ∈ Z. In Section 4 we generalise this observation to a
result on the row generating functions of the extended array R∗ associated with
an arbitrary proper Riordan array R.

2 Embedded Riordan arrays

In this section we are interested in �nding Riordan arrays that are, so to
speak, contained in either a given Riordan array R or in the associated
extended array R∗. We refer to these arrays as embedded Riordan arrays of R
or of R∗. One simple method to construct an embedded Riordan array of a
proper Riordan array R = (R(n, k)) = (f(x), xg(x)) is by selecting columns
from R. For example, the Riordan array (f(x), xg2(x)) = (R(n+ k, 2k))n,k≥0
is constructed by taking the even indexed columns of R and arranging them in
a lower unitriangular array. Similarly, the Riordan array (f(x)g(x), xg2(x))
= (R(n+ k + 1, 2k + 1))n,k≥0 is constructed from the odd indexed columns of
R. Embedded arrays of these two types have been studied in [3]. More
generally, let p ≥ 0, q = 1 be integers. Then the Riordan array
(f(x)gp(x), xgq(x)) = (R(n+ (q − 1)k + p, qk + p))n,k≥0 is constructed from
columns p, p+ q, p+ 2q, ... of R.

A less obvious example of an embedded Riordan array was given by

Sprugnoli [9, Section 5.6]. The binomial coe�cient array
((

2n−k
n

))
, which is

A092392 in the database, is an embedded Riordan array of Pascal's triangle,
constructed by taking the �rst k + 1 elements from column k of Pascal's
triangle and using them to form the kth row of a lower unit triangular array:

((
n
k

)) ((
2n−k
n

))

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
...

...
...

...
...

...
...

. . .


→



1
2 1
6 3 1
20 10 4 1
70 35 15 5 1
...

...
...

...
...

. . .


Using the Lagrange inversion formula, Sprugnoli shows that the array((
2n−k
n

))
is the Riordan array (r′(x), r(x)), where

r(x) = Revert(x(1− x)) = 1−
√
1− 4x

2
.

By the above remarks we can then construct further Riordan arrays from the

columns of A092392. For example, the array
((

2n
n+k

))
formed from the even
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numbered columns of A092392 is the Riordan array (r′(x), r
2(x)
x ). This is

A094527. The array
((

2n+1
n+k+1

))
formed from the odd numbered columns of

A092392 is the Riordan array (r′(x) r(x)x , r
2(x)
x ). This is A111418 in the

database.

Sprugnoli says his approach extends to deal with arrays of binomial
coe�cients of the form

(
pn+ak
n−ck

)
. Indeed, as we shall see in a moment,

Sprugnoli's approach can be extended to �nd examples of embedded Riordan
arrays in an arbitrary proper Riordan array. Given a Riordan array R and its
associated extended array R∗, we shall construct a 4-parameter family of
embedded Riordan arrays of R∗. For particular values of the parameters these
arrays will be embedded in R, as was the case in the examples above. The
proof uses series inversion. We shall make use of the following version of the
Lagrange-Bürmann formula for formal power series [5, Theorem 1.2.4], [11]:

Let f(x) = 1 + f1x+ f2x
2 + f3x

3 + · · · , H(x) = h0 + h1x+ h2x
2 + h3x

3 + · · · ,
be a pair of formal power series. Let G(x) = Revert

(
x

f(x)

)
. Then

[xn]H(G(x)) =
1

n

[
xn−1

]
H
′
(x)f(x)n, for n ≥ 1. (3)

The following result extends the calculations in [2, Theorem 6]. For related
results see [10].

Theorem 1. Let m, a, b, c be integers with a > b. Let
f(x) = 1 + f1x+ f2x

2 + · · · and g(x) = 1 + g1x+ g2x
2 + · · · be a

pair of formal power series. Let R = (R(n, k))n,k≥0 = (f(x), xg(x))

be the associated proper Riordan array and let R* denote the
extended array associated with R as de�ned in (2) above. De�ne

the array R̃ =
(
R̃(n, k)

)
n,k≥0

by setting

R̃(n, k) = R∗((m+ 1)n− ak + c,mn− bk + c) [n, k = 0].

Then R̃ is a Riordan array given by

R̃ =

(
f(r(x))gc(r(x))xr

′(x)
r(x)

, xa−b (
r(x)
x )

a−b

gb(r(x))

)
, (4)

where the power series r(x) is determined by

r(x) = Revert

(
x

gm(x)

)
. (5)
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If m is nonzero then we can write R̃ solely in terms of f(x) and
r(x):

R̃ =

(
f(r(x))r′(x)

(
r(x)

x

) c−m
m

, xa−b
(
r(x)

x

)a−b− b
m

)
[m 6= 0].

(6)

Remark. If a = b+ 1, the array R̃ is a proper Riordan array, while if
a > b+ 1 the array R̃ is a vertically stretched Riordan array.1

Proof. Let n, k = 0. By (2)

R̃(n, k) = R∗ ((m+ 1)n− ak + c,mn− bk + c)

=
[
x(m+1)n−ak+c

]
f(x)(xg(x))mn−bk+c

= [xn]x(a−b)kf(x)g(x)mn−bk+c

= (n+ 1)

{
1

n+ 1
[xn]

f(x)

gm−c(x)

(
xa−b

gb(x)

)k
(gm(x))

n+1

}
. (7)

De�ne a power series H(x) by

H
′
(x) =

f(x)

gm−c(x)

(
xa−b

gb(x)

)k
, with H(0) = 0. (8)

Then (7) becomes

R̃(n, k) = (n+ 1)

{
1

n+ 1
[xn]H

′
(x) (gm(x))

n+1

}
= (n+ 1)[xn+1]H(r(x)), by (3) and (5) since n+ 1 ≥ 1,

= [xn]
d(H(r(x))

dx

= [xn]H
′
(r(x))r′(x)

= [xn]
f(r(x))

gm−c(r(x))
r′(x)

(
r(x)a−b

gb(r(x))

)k
by (8),

for n, k ≥ 0.

1A vertically stretched Riordan array S = (f(x), xsg(x)), where s is a positive integer
greater than 1, is de�ned as the lower triangular array whose k-th column has the ordinary
generating function f(x)(xsg(x))k - see [4, Section 2].
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Thus R̃ is the Riordan array

R̃ = (F (x), xa−bG(x)),

where

F (x) =
f(r(x))

gm−c(r(x))
r′(x), G(x) =

(
r(x)
x

)a−b
gb(r(x))

. (9)

Now it follows from (5) that

r(x)

gm(r(x))
= x. (10)

Using (10) we can rewrite F (x) as

F (x) = f (r(x)) gc (r(x))
xr′(x)

r(x)
.

Therefore R̃ is the Riordan array

R̃ =

(
f(r(x))gc(r(x))xr

′(x)
r(x)

, xa−b (
r(x)
x )

a−b

gb(r(x))

)
(11)

completing the proof of (4).

When m 6= 0 we can use (10) to rewrite (11) solely in terms of f(x) and r(x).
We obtain

R̃ =

(
f(r(x))r′(x)

(
r(x)

x

) c−m
m

, xa−b
(
r(x)

x

)a−b− b
m

)
[m 6= 0]

proving (6). �

Example 1. In Theorem 1 take R to be Pascal's triangle
((
n
k

))
=
(

1
1−x ,

x
1−x

)
so f(x) = g(x) = 1

1−x and choose a = m, b = m− 1 and c = 0. Taking

m = 1, 2, ... we get a family of proper Riordan arrays
((

2n−k
n

))
,
((

3n−2k
2n−k

))
,((

4n−3k
3n−2k

))
, ...,
((

(m+1)n−mk
mn−(m−1)k

))
embedded in Pascal's triangle and given by(

1

1− r(x)
xr′(x)

r(x)
, x

(
r(x)

x

) 1
m

)
,

where

r(x) = Revert (x(1− x)m) .
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This result can be expressed in terms of Lambert's generalized binomial
series Bt(x) [6, Sections 5.4 and 7.5] de�ned as

Bt(x) =
∑
n≥0

1

nt+ 1

(
nt+ 1

n

)
xn.

Lambert's series satisfy the identity [6, equation 5.61], [7, Section 2]:∑
n≥0

(
mn+ k

n

)
xn =

Bm(x)k+1

m+ (1−m)Bm(x)
.

Hence the array of binomial coe�cients
((

(m+1)n−mk
mn−(m−1)k

))
n,k≥0

equals the proper

Riordan array
(

Bm+1(x)
m+1−mBm+1(x)

, xBm+1(x)
)
.

3 A result on the row generating functions of Riordan
arrays

Let R = (R(n, k))n,k≥0 = (F (x), xG(x)) be a proper Riordan array. By
de�nition, the column generating functions of R are the Taylor series
expansions about 0 of the functions xkF (x)Gk(x). We shall use a particular
case of Theorem 1 to �nd a similar result expressing the generating functions
of the rows of R as Taylor series expansions.

Applying Theorem 1 with m = 1, a = 1 and b = c = 0 tells us the array
R̃ = (R(2n− k, n))n,k≥0 is the proper Riordan array

R̃ =

(
xF (r(x)

r′(x)

r(x)
, x

(
r(x)

x

))
, (12)

where

r(x) = Revert

(
x

G(x)

)
. (13)

The �rst few rows of the arrays R and R̃ are shown below.

(R(n, k)) R̃ = (R(2n− k, n))

R(0, 0)

R(1, 0) R(1, 1)

R(2, 0) R(2, 1) R(2, 2)

R(3, 0) R(3, 1) R(3, 2) R(3, 3)
...

... R(4, 2) R(4, 3)
. . .

... R(5, 3)
. . .

R(6, 3)
. . .

...
. . .


→



R(0, 0)
R(2, 1) R(1, 1)
R(4, 2) R(3, 2) R(2, 2)
R(6, 3) R(5, 3) R(4, 3) R(3, 3)

...
...

...
...

. . .


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We observe that the entries in the nth row of the Riordan array R̃, when
read from right to left, are the �rst n+ 1 entries from column n of the Riordan
array R = (F (x), xG(x)), which has the generating function F (x)G(x)n. Thus

the entries in the nth row of R̃, when read from right to left, are simply the
coe�cients of the nth degree Taylor polynomial of the function F (x)Gn(x)
about 0. In other words

R̃(n, k) =
[
xn−k

]
F (x)G(x)n [n ≥ k ≥ 0].

Now we claim that an arbitrary proper Riordan array (f(x), xg(x)) is equal

to an array of the form R̃ = (R(2n− k, n))n,k≥0 for some proper Riordan array
R = (F (x), xG(x)), and hence the entries in the nth row of the array
(f(x), xg(x)) will be the coe�cients of the nth degree Taylor polynomial of the
function F (x)Gn(x) about 0. To prove the claim we see from (12) and (13)
that we need to show that given power series f(x) = 1 + f1x+ f2x

2 + · · · and
g(x) = 1 + g1x+ g2x

2 + · · · we can �nd power series F (x) and G(x) solving
the following pair of equations:

xF (r(x))
r′(x)

r(x)
= f(x) (14)

r(x)

x
= g(x) (15)

where

r(x) = Revert

(
x

G(x)

)
. (16)

From (15) and (16) we �nd

G(x) =
x

Revert(xg(x))
. (17)

By (15)

r(x) = xg(x). (18)

In (14), replace x with Revert(r(x)) and then use the identity

dφ

dx

(
φ−1(x)

)
=

1
dφ−1

dx (x)

for the derivative of an inverse function to obtain

F (x) =
x d
dx (Revert(r(x)))

Revert(r(x))
f (Revert(r(x)))

=
x d
dx (Revert(xg(x)))

Revert(xg(x))
f (Revert(xg(x))) . (19)

by (18).
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It follows that the power series F (x) and G(x) given by (19) and (17) are
such that the entries in row n of the Riordan array (f(x), x, g(x)) are the
coe�cients of the nth degree Taylor polynomial of F (x)G(x)n about 0. For the
sake of convenience we state this result in the form of a theorem.

Theorem 2. Let f(x) = 1+ f1x+ f2x
2 + · · · and g(x) = 1+ g1x+ g2x

2 + · · ·
be a pair of formal power series. Let R be the proper Riordan array

R = (R(n, k))n,k≥0 = (f(x), xg(x)),

where

R(n, k) = [xn]f(x)(xg(x))k [n, k ≥ 0].

Then there exists formal power series F (x) = 1 + F1x+ F2x
2 + · · · and

G(x) = 1 +G1x+G2x
2 + · · · de�ned by

F (x) =
x d
dx (Revert(xg(x)))

Revert(xg(x))
f (Revert(xg(x)))

G(x) =
x

Revert(xg(x))

such that

R(n, k) = [xn−k]F (x)G(x)n [n, k ≥ 0].�

Example 2. The triangle A033184 in the OEIS is the Riordan array

(C(x), xC(x)), where C(x) = 1−
√
1−4x
2x = 1 + x+ 2x2 + 5x3 + 14x4 + · · · is the

o.g.f. for the sequence of Catalan numbers A000108. The array begins



1
1 1
2 2 1
5 5 3 1
14 14 9 4 1
42 42 28 14 5 1
...

...
...

...
...

...
. . .


.

It is easy to check the generating function C(x) has the properties

Revert(xC(x)) = x− x2
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C
(
x− x2

)
=

1

1− x
.

Then from (17) and (19) we �nd

F (x) =
1− 2x

(1− x)2

and

G(x) =
1

1− x
.

Therefore by Theorem 2, the entries in row n of A033184 are the coe�cients
of the nth degree Taylor polynomial of the rational function F (x)G(x)n =
(1−2x)

(1−x)n+2 about 0. For example, for n = 5 we have the Taylor expansion

(1− 2x)

(1− x)7
= 1 + 5x+ 14x2 + 28x3 + 42x4 + 42x5 +O

(
x6
)
,

which gives row 5 of A033184 as (42, 42, 28, 14, 5, 1).

The �rst few rows of the Riordan array (F (x), xG(x)) =
(

1−2x
(1−x)2 ,

x
1−x

)
are

shown below. 

1
0 1
−1 1 1
−2 0 2 1
−3 −2 2 3 1
−4 −5 −5 5 4 1
−5 −9 −14 5 9 5 1
...

...
...

...
...

...
...

. . .


Exercise 1. With the conditions and notation as in Theorem 2, de�ne a map
ψ on pairs of powers series by ψ : (f, g)→ (F,G). Show

ψ :

(
F,

1

G

)
→

(
f,

1

g

)
.

Exercise 2. A hitting-time array H = (H(n, k))n,k≥0 is a proper Riordan
array of the form (xh′(x)/h(x), h(x)), where h(x) = x+ h2x

2 + h3x
3 + · · · .

Show the (n, k)th entry of the hitting-time array (xh′(x)/h(x), h(x)) is given by

H(n, k) =
[
xn−k

]
G(x)n [n, k ≥ 0],

where
G(x) =

x

Revert(h(x))
.

This particular case of Theorem 2 is due to Peart and Woan [8, Theorem 4.1
(i)].
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4 The row generating functions of the extended array R∗

Let R = (f(x), xg(x)) be a proper Riordan array and let R∗ be the
associated extended array. Theorem 2 tells us that there are power series F
and G such that coe�cients in the nth degree Taylor polynomial of FGn about
0 give the entries in the nth row of R, for n = 0, 1, 2, .... In this section we
show that Taylor series of FGn about 0 for n ∈ Z is, in fact, a generating
function for the nth row of the extended array R∗.

Theorem 3. Let f(x) = 1+ f1x+ f2x
2 + · · · and g(x) = 1+ g1x+ g2x

2 + · · ·
be a pair of formal power series. Let R be the proper Riordan array

R = (R(n, k))n,k≥0 = (f(x), xg(x)),

where

R(n, k) = [xn]f(x)(xg(x))k [n, k ≥ 0].

Let R∗ = (R∗(n, k))n,k∈Z be the extended array associated with R with entries

de�ned by

R∗(n, k) = [xn]f(x)(xg(x))k [n, k ∈ Z].

Then there exists formal power series F (x) = 1 + F1x+ F2x
2 + · · · and

G(x) = 1 +G1x+G2x
2 + · · · de�ned by

F (x) =
x d
dx (Revert(xg(x)))

Revert(xg(x))
f (Revert(xg(x)))

G(x) =
x

Revert(xg(x))

such that

R∗(n, k) = [xn−k]F (x)G(x)n [n, k ∈ Z].

Proof. Let m be a nonnegative integer. De�ne a subarray R∗(m) of R∗ by

R∗(m) = (R∗(n, k)) [n, k ≥ −m].

Thus R∗(m) is the subarray of R∗ starting at row −m and column −m.
Clearly, the array R∗(m), when regarded as a lower unitriangular array, is the
proper Riordan array (f(x)g−m(x), xg(x)). In particular R∗(0) is the array R.
When R∗(m) is viewed as an array in its own right, the row indices n and
column indices k both start at 0. When R∗(m) is regarded as a subarray of
R∗, the nth row of R∗(m), n = 0, 1, 2, ..., gives the �rst n+ 1 elements of the
(n−m)th row of R∗.
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We now apply Theorem 2 to the proper Riordan array R∗(m)

= (f(x)g−m(x), xg(x)) to produce a pair of power series F̃ (x), G̃(x) given by

F̃ (x) =
x d
dx (Revert(xg(x)))

Revert(xg(x))
f̃ (Revert(xg(x))) (20)

G̃(x) =
x

Revert(xg(x))
, (21)

where f̃(x) = f(x)g(x)−m, such that the coe�cients of the nth degree Taylor

polynomial of F̃ (x)G̃(x)n about 0 gives the entries in row n of R∗(m), that is
produces the �rst n+ 1 elements of the (n−m)th row of the extended array
R∗.

It follows from (20) and (21) and the de�nitions of the functions F (x) and
G(x) that

F̃ (x) = F (x)G(x)−m, G̃(x) = G(x). (22)

Hence, for n = 0, 1, 2, ..., the nth degree Taylor polynomial of F̃ (x)G̃(x)n =
F (x)G(x)n−m about 0 gives the �rst n+ 1 elements of the (n−m)th row of
R∗. Therefore, setting n = m+ p, we see that for p ≥ −m the (m+ p)th degree
Taylor polynomial of F (x)G(x)p about 0 gives the �rst m+ p+ 1 elements of
the pth row of R∗. Letting m tend to in�nity, we �nd that the Taylor
expansion of F (x)G(x)p about 0 gives the elements of the pth row of R∗.�

Example 3. Consider the proper Riordan array R = (f(x), xg(x)), where
f(x) = 1 and g(x) = 1− x. This is A109466. The �rst few rows of the array R
are shown below.

Column g.f. f fg fg2 fg3 fg4 fg5 fg6 · · ·
n�k 0 1 2 3 4 5 6 · · ·
0 1 F
1 0 1 FG
2 0 -1 1 FG2

3 0 0 -2 1 FG3

4 0 0 1 -3 1 FG4

5 0 0 0 -3 -4 1 FG5

6 0 0 0 1 6 -5 1 FG6

...
...

...
...

...
...

...
...

. . .
...

Using (17) and (19) we �nd

F (x) =
1 +
√
1− 4x

2
√
1− 4x

, G(x) =
2x

1−
√
1− 4x

. (23)
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Therefore, by Theorem 2, the nthdegree Taylor polynomial of the function
FGn, n = 0, 1, 2, ... about 0 gives the entries in row n of the Riordan array
R = (1, x(1− x)). For example, for row 4 we have

F (x)G(x)4 = 1− 3x+ x2 +O(x5), (24)

giving correctly the �ve entries in row 4 of R, and hence also the �rst �ve
entries in row 4 of the extended array R∗.

Below we show a subarray of the extended array R∗, starting at column
k′ = −4 and row n′ = −4. Clearly, regarded as a lower unitriangular array,
this subarray is the proper Riordan array

(
f(x)g−4(x), xg(x)

)
, which we

denote by R∗(4). The nth degree Taylor polynomial of the function F̃ (x)G̃(x)n

about 0, where by (22)

F̃ (x) = F (x)G(x)−4, G̃(x) = G(x), (25)

gives a row generating function for the nth row of R∗(4).

For example, for row 8 of the Riordan array R∗(4) (corresponding to the
beginning of row 4 of the extended arrayR∗) the row generating function is the

Taylor polynomial of degree 8 of the function F̃ (x)G̃(x)8 = F (x)G(x)4 about
0, that is the expansion

F (x)G(x)4 = 1− 3x+ x2 + x5 + 7x6 + 36x7 + 165x8 +O(x9).

now gives the correct values for the nine entries in row 8 of R∗(4), which are
also the �rst nine entries in row 4 of R∗.

Array R∗(4), n, k ≥ 0

Column g.f. fg−4 fg−3 fg−2 fg−1 f fg fg2 fg3 fg4 · · ·
n�k 0 1 2 3 | 4 5 6 7 8 · · ·
0 1 | FG−4

1 4 1 | FG−3

2 10 3 1 | FG−2

3 20 6 2 1 | FG−1

- - - - - - - - - - - - -
4 35 10 3 1 | 1 F
5 56 15 4 1 | 0 1 FG
6 84 21 5 1 | 0 -1 1 FG2

7 120 28 6 1 | 0 0 -2 1 FG3

8 165 36 7 1 | 0 0 1 -3 1 FG4

...
...

...
...

... |
...

...
...

...
...

. . .
...
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