OFFSET
0,2
COMMENTS
Riordan array (f(x),x*g(x)), where g(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + ... is the o.g.f. for A002293 and f(x) = g(x)/(4 - 3*g(x)) = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + ... is the o.g.f. for A005810.
More generally, if (R(n,k))n,k>=0 is a proper Riordan array and m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 3 and b = 2. See A092392, A264772, A264774 and A113139 for further examples.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
Peter Bala, A 4-parameter family of embedded Riordan arrays
E. Lebensztayn, On the asymptotic enumeration of accessible automata, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
FORMULA
T(n,k) = binomial(4*n - 3*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(4*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(3*n + 1)*binomial(4*n,n)*x^n.
EXAMPLE
Triangle begins
n\k | 0 1 2 3 4 5 6 7
------+-----------------------------------------------
0 | 1
1 | 4 1
2 | 28 5 1
3 | 220 36 6 1
4 | 1820 286 45 7 1
5 | 15504 2380 364 55 8 1
6 | 134596 20349 3060 455 66 9 1
7 | 1184040 177100 26334 3876 560 78 10 1
...
MAPLE
MATHEMATICA
A264773[n_, k_] := Binomial[4*n - 3*k, n - k];
Table[A264773[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 06 2024 *)
PROG
(Magma) /* As triangle: */ [[Binomial(4*n-3*k, 3*n-2*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Nov 30 2015
STATUS
approved