Skip to main content
    Antibody engineering and protein design have led to the creation of a new era of targeted anti-inflammatory therapies in rheumatology. Recombinant DNA technologies have enabled the selection and humanization of specific antibody fragments... more
    Antibody engineering and protein design have led to the creation of a new era of targeted anti-inflammatory therapies in rheumatology. Recombinant DNA technologies have enabled the selection and humanization of specific antibody fragments in order to develop therapeutic reagents of any specificity that can be 'armed' to deliver effective anti-inflammatory 'payloads'. Antibodies and antibody-like proteins provide the opportunity to block key soluble mediators of inflammation in their milieu, or alternatively to block intracellular inflammation-triggering pathways by binding to an upstream cell-surface receptor. These designer proteins can be tuned for desired pharmacokinetic and pharmacodynamic effects, and represent tools for specific therapeutic intervention by delivering precisely the required immunosuppressive effect. The extent of desired and undesired effects of a particular biologic therapy, however, can be broader than initially predicted and require careful evaluation during clinical trials. This Review highlights advances in recombinant technologies for the development of novel biologic therapies in rheumatology.
    Antibody engineering and protein design have led to the creation of a new era of targeted anti-inflammatory therapies in rheumatology. Recombinant DNA technologies have enabled the selection and humanization of specific antibody fragments... more
    Antibody engineering and protein design have led to the creation of a new era of targeted anti-inflammatory therapies in rheumatology. Recombinant DNA technologies have enabled the selection and humanization of specific antibody fragments in order to develop therapeutic reagents of any specificity that can be 'armed' to deliver effective anti-inflammatory 'payloads'. Antibodies and antibody-like proteins provide the opportunity to block key soluble mediators of inflammation in their milieu, or alternatively to block intracellular inflammation-triggering pathways by binding to an upstream cell-surface receptor. These designer proteins can be tuned for desired pharmacokinetic and pharmacodynamic effects, and represent tools for specific therapeutic intervention by delivering precisely the required immunosuppressive effect. The extent of desired and undesired effects of a particular biologic therapy, however, can be broader than initially predicted and require careful evaluation during clinical trials. This Review highlights advances in recombinant technologies for the development of novel biologic therapies in rheumatology.
    Novel in vitro methods for the display of antibody libraries against disease-related antigens have led to the development of powerful protein-based biotherapeutics. Eukaryotic ternary ribosome complexes can be used to display human single... more
    Novel in vitro methods for the display of antibody libraries against disease-related antigens have led to the development of powerful protein-based biotherapeutics. Eukaryotic ternary ribosome complexes can be used to display human single chain antibodies (scFvs) to isolate specific binding reagents to these antigens. Here, we present the isolation of human scFv against the immunotherapeutic target antigen CD22 from a patient-derived human scFv library using ribosome display technology. The ribosome complexes were enriched against the extra-cellular domain of human CD22 conjugated to magnetic beads. Isolated constructs were further affinity-matured and specific binding activity was demonstrated by surface plasmon resonance and validated using in vitro cell assays. The isolated human anti-CD22 scFvs can provide a basis for the development of new immunotherapeutic strategies in CD22-expressing malignant diseases.
    In this study, human T cells were provided with a reactivity against the Lewis-Y (LeY) carbohydrate antigen, which is overexpressed on 70% of epithelial-derived tumors, but not normally recognized by T cells. Antitumor reactivity was... more
    In this study, human T cells were provided with a reactivity against the Lewis-Y (LeY) carbohydrate antigen, which is overexpressed on 70% of epithelial-derived tumors, but not normally recognized by T cells. Antitumor reactivity was achieved by transduction of T cells with a gene encoding a cell-surface chimeric receptor composed of single-chain anti-LeY antibody linked to an enhanced cytoplasmic signaling domain made up of CD28 and CD3-ζ. Importantly, the single-chain antibody was humanized to try to reduce potential problems of human anti-mouse antibody responses in patients receiving chimeric receptor-modified T cells in future clinical trials. T cells expressing the chimeric receptor were demonstrated to secrete cytokines and proliferate in response to receptor ligation and lysed LeY+ tumors in vitro. Another aspect of this study was the finding that no activity was observed against normal tissue, as represented by autologous neutrophils that express low levels of LeY. Significantly, systemic delivery of anti-LeY T cells dramatically inhibited established s.c. human ovarian OVCAR-3 tumors (a recognized difficult model to treat) in mice. Finally, we demonstrated that anti-LeY T cells preferentially expanded or accumulated in the tumor compared with control empty vector T cells, thereby providing mechanistic insight into the specific antitumor response. This study supports the use of humanized gene-modified T cells as a potential therapy for LeY+ malignancies.
    The rat transthyretin gene, 7.3 kilobase pairs (kb) long, with 14.5 kb of 5' flanking and 12.2 kb of 3' flanking region was cloned and characterized. The gene contained four exons. A "TATA box" sequence... more
    The rat transthyretin gene, 7.3 kilobase pairs (kb) long, with 14.5 kb of 5' flanking and 12.2 kb of 3' flanking region was cloned and characterized. The gene contained four exons. A "TATA box" sequence (5'-TATATAA-3') and a "CAAT box" sequence (5'-GTCAAT-3') were located 23 and 95 nucleotides upstream, respectively, from the major transcription start site. Nucleotides -51 to -189 were highly conserved (93% homology between rats and humans, 97% homology between rats and mice). Tandem repeats of sequences of 5'-AC-3' and 5'-ACACATGC-3' in the 5' flanking region, of 5'-GAAA-3' in the first intron, and of 5'-GT-3' in the third intron of the gene were observed. Using specific cDNA probes, tissue specificity and regulation of transthyretin mRNA biosynthesis during embryogenesis were analyzed. Transthyretin expression occurred first in the yolk sac, then decreased when expression increased in fetal liver. Pres...
    The humanized complementarity determining region-grafted anti-Lewis Y (Le(y)) monoclonal antibody [humanized 3S193 (hu3S193)] was developed for targeting Le(y)-expressing epithelial tumors such as breast, colon, lung, prostate, and... more
    The humanized complementarity determining region-grafted anti-Lewis Y (Le(y)) monoclonal antibody [humanized 3S193 (hu3S193)] was developed for targeting Le(y)-expressing epithelial tumors such as breast, colon, lung, prostate, and ovarian carcinoma. We are exploring the potential use of smaller molecular size, bivalent analogues of hu3S193, because the faster blood clearance of M(r) approximately 54,000 diabody and M(r) approximately 110,000 F(ab')(2) molecules may be advantageous in achieving optimal and rapid tumor uptake for diagnostic and potential therapeutic applications. The single-chain variable fragment-5 residue linker construct (diabody) was expressed using the bacterial secretion vector pPOW3, and soluble product was purified without refolding processes. The F(ab')(2) fragment was obtained by pepsin digest of parental hu3S193. To facilitate evaluations, the radiometal (111)In was used to label C-functionalized trans-cyclohexyl diethylenetriaminepentaacetic acid ...
    In vitro compartmentalization (IVC) is a powerful tool for studying protein-protein reactions, due to its high capacity and the versatility of droplet technologies. IVC bridges the gap between chemistry and biology as it enables the... more
    In vitro compartmentalization (IVC) is a powerful tool for studying protein-protein reactions, due to its high capacity and the versatility of droplet technologies. IVC bridges the gap between chemistry and biology as it enables the incorporation of unnatural amino acids with modifications into biological systems, through protein transcription and translation reactions, in a cell-like microdrop environment. The quest for the ultimate chip for protein studies using IVC is the drive for the development of various microfluidic droplet technologies to enable these unusual biochemical reactions to occur. These techniques have been shown to generate precise microdrops with a controlled size. Various chemical and physical phenomena have been utilized for on-chip manipulation to allow the droplets to be generated, fused, and split. Coupled with detection techniques, droplets can be sorted and selected. These capabilities allow directed protein evolution to be carried out on a microchip. With further technological development of the detection module, factors such as addressable storage, transport and interfacing technologies, could be integrated and thus provide platforms for protein studies with high efficiency and accuracy that conventional laboratories cannot achieve.
    ABSTRACT Retinoic acid has a specific role in cellular differentiation and is believed to act by regulating the transcription of specific genes. In the present work, evidence is provided to show that alkaline phosphatase (ALP) gene... more
    ABSTRACT Retinoic acid has a specific role in cellular differentiation and is believed to act by regulating the transcription of specific genes. In the present work, evidence is provided to show that alkaline phosphatase (ALP) gene expression is mediated by retinoic acid in a model clonal cell line (UMR 201) derived from rat neonatal calvaria. These cells have the characteristics of relatively undifferentiated mesenchymal cells with a very low basal ALP activity which is dramatically increased by retinoic acid. Messenger RNA for ALP was clearly demonstrated when the cells were treated with 1 microM retinoic acid for 24 h. Recombinant human tumour necrosis factor-alpha (recombinant TNF-alpha) interacted with retinoic acid to potentiate the rise in ALP activity, although recombinant TNF-alpha alone had no effect. The potentiation of retinoic acid-induced ALP activity was correlated with an increased amount of mRNA for ALP with the combined treatment. By observing the rate of decay of mRNA for actin and ALP, we were able to demonstrate that the interaction between retinoic acid and recombinant TNF-alpha modulated the steady state of ALP mRNA. The mode of action of recombinant TNF-alpha may serve as a model for other paracrine regulators of cell function.