[go: up one dir, main page]

WO2025043931A1 - 一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物 - Google Patents

一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物 Download PDF

Info

Publication number
WO2025043931A1
WO2025043931A1 PCT/CN2023/135929 CN2023135929W WO2025043931A1 WO 2025043931 A1 WO2025043931 A1 WO 2025043931A1 CN 2023135929 W CN2023135929 W CN 2023135929W WO 2025043931 A1 WO2025043931 A1 WO 2025043931A1
Authority
WO
WIPO (PCT)
Prior art keywords
galnac
gal
compound
μmol
oligonucleotide
Prior art date
Application number
PCT/CN2023/135929
Other languages
English (en)
French (fr)
Inventor
宋更申
黄泽傲
李振民
田志康
杨硕
姚鹏
高中才
余晓文
黄大卫
庞雪
侯宇华
王杰
林芳
常亚男
Original Assignee
杭州天龙药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州天龙药业有限公司 filed Critical 杭州天龙药业有限公司
Publication of WO2025043931A1 publication Critical patent/WO2025043931A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives

Definitions

  • the present invention relates to the field of biomedicine, and in particular to a GalNAc compound having a ribose ring structure and a GalNAc oligonucleotide conjugate prepared therefrom.
  • Oligonucleotide drugs are widely used due to their simple synthesis and high activity.
  • Oligonucleotide drugs generally include antisense oligonucleotides (ASO), small interfering RNA (siRNA), micro RNA (miRNA) and nucleic acid aptamers.
  • ASO antisense oligonucleotides
  • siRNA small interfering RNA
  • miRNA micro RNA
  • nucleic acid aptamers nucleic acid aptamers
  • Oligonucleotides are a class of short DNA or RNA molecules, oligomers, that readily bind to their respective complementary oligonucleotides, DNA or RNA in a sequence-specific manner to form duplexes, or less commonly, higher order hybrids. This fundamental property makes oligonucleotides widely used in genetic testing, targeted gene therapy research, and medicine. These small fragments of nucleic acid can be made into single-stranded molecules with any specified sequence. In nature, oligonucleotides are usually small RNA molecules that play a role in regulating gene expression, or degradation intermediates derived from the decomposition of larger nucleic acid molecules.
  • RNA interference is a natural defense mechanism against foreign genes.
  • siRNA can knock out target genes by recognizing specific sequences and degrading target mRNA.
  • N-acetylgalactosamine is a ligand that binds to the asialoglycoprotein receptor (ASGPR) on the liver surface.
  • the asialoglycoprotein receptor is an endocytic receptor specifically expressed on the surface of hepatocytes.
  • GalNAc asialoglycoprotein receptor
  • Alnylam pharmaceuticals, Inc. reported that siRNA based on GalNAc conjugation technology exerted gene silencing activity in mice (Nair JK, et al. J. Am. Chem. Soc. 2014, 136, 16958).
  • the article reported that the conjugate of GalNAc and siRNA showed both in vivo and in vitro experiments.
  • the drug has good delivery activity.
  • the ED 50 of a single dose was determined to be 1 mg/kg, and the single injection dose was less than 1 mL.
  • subcutaneous injection once a week can obtain stable interference activity for up to 9 months.
  • the study found that the affinity of tetra-antennary and tri-antennary GalNAc compounds for ASGPR is much higher than that of bi-antennary and mono-antennary GalNAc compounds.
  • PCSK9 Proprotein convertase subtilisin/kexin type 9
  • PCs proprotein convertase family
  • secretory serine protease It is mainly expressed in tissues such as the liver and intestines and then secreted into the blood.
  • PCSK9 can specifically bind to the epidermal growth factor-like domain of the low-density lipoprotein receptor (LDL-R) on the surface of hepatocytes, guide it into the hepatocytes to reach the lysosomes, and degrade LDL-R in the lysosomes, thereby reducing LDL-R on the surface of hepatocytes, thereby reducing the liver's ability to bind and clear LDL-C, and ultimately leading to an increase in LDL-C levels in the blood. Therefore, hypercholesterolemia can be treated by inhibiting PCSK9.
  • LDL-R low-density lipoprotein receptor
  • PCSK9 is closely related to obesity and type 2 diabetes, and is also closely related to chronic kidney diseases such as nephrotic syndrome and proteinuria. Therefore, inhibiting PCSK9 can become an important means of preventing and treating these related diseases.
  • GalNAc ligand structures have very different effects on nucleic acid delivery.
  • liver-targeted drugs such as PCSK9 inhibitors
  • the present invention designs a series of novel GalNAc compounds.
  • the novel GalNAc compounds of the present invention can be efficiently conjugated with oligonucleotides.
  • the GalNAc oligonucleotide conjugates prepared therefrom significantly improve the liver-targeted delivery efficiency compared with GalNAc compounds with similar structures in the prior art.
  • the present invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof:
  • R 1 is oxygen or sulfur, preferably oxygen
  • R2 is hydrogen, C1-4 alkyl, C1-4 alkoxy or halogen
  • R3 is hydrogen, a hydroxyl protecting group, a phosphorus-containing reactive group, or -CO(CH 2 ) x COOH, wherein x is an integer from 1 to 10, It is controlled pore glass or polystyrene;
  • R4 is hydrogen or a hydroxyl protecting group
  • A is -(CH 2 ) a -, -(CH 2 CH 2 O) b -, -((CH 2 ) c NHCO) d - or -((CH 2 ) c CONH) d -, wherein a is an integer of 1-15, preferably an integer of 3-13, b is an integer of 1-7, preferably an integer of 2-5, c is an integer of 1-7, preferably an integer of 2-6, and d is an integer of 1-5, preferably an integer of 1-3;
  • B is -(CH 2 ) e -, wherein e is an integer of 0-7, preferably an integer of 1-5.
  • L is -CONH- or -NHCO-
  • T is N-acetyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, galactose in which the hydroxyl groups are fully protected by acyl groups, galactosamine in which the hydroxyl groups are fully protected by acyl groups, N-formyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, N-propionyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, N-n-butanoyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, or N-isobutanoyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, preferably N-acetyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, wherein the acyl groups are, for example, acetyl or benzoyl, preferably acetyl;
  • X1 is -( CH2 ) f- or - ( CH2CH2O ) fCH2- , wherein f is an integer of 1-5;
  • X2 is -( CH2 ) g- , wherein g is an integer of 1-6;
  • Y 1 is 0 or 1
  • Y2 is 0, 1 or 2;
  • Y 3 is 1, 2 or 3;
  • n is an integer from 0 to 4, preferably 0, 1 or 2;
  • n is an integer of 0-4, preferably 0, 1 or 2.
  • A is -( CH2 ) 10- , -( CH2 ) 7- , -(CH2) 8- , -( CH2 ) 9- , -( CH2 ) 11- , -( CH2 ) 12- , -( CH2CH2O ) 3- , -( CH2 )4NHCO- , or -( CH2 ) 6NHCO- .
  • B is -(CH 2 ) 0 -, -CH 2 -, -(CH 2 ) 2 -, -(CH 2 ) 4 -, or -(CH 2 ) 3 -.
  • R 1 is oxygen
  • R 1 is in the ⁇ configuration or the ⁇ configuration.
  • R2 is hydrogen or -OCH3 .
  • R 3 is a hydroxyl protecting group or a phosphorus-containing reactive group.
  • R 3 is an acyl group, a silyl group, a trityl group, a monomethoxytrityl group, a 4,4′-dimethoxytrityl group or More preferably, R 3 is acetyl, 1,1,3,3-tetraisopropyldisiloxanylidene (TIPDS), t-butyldimethylsilyl, phenyldimethylsilyl, 4,4′-dimethoxytrityl or
  • TIPDS 1,1,3,3-tetraisopropyldisiloxanylidene
  • R3 is In yet another embodiment, R 3 is -CO(CH 2 ) 2 COOH.
  • R4 is a hydroxy protecting group, preferably trityl, monomethoxytrityl or 4,4'-dimethoxytrityl, more preferably 4,4'-dimethoxytrityl.
  • m is 1.
  • n is zero.
  • G is
  • the compound of formula (I) is a compound having the following structure YK-GAL-301, YK-GAL-302, YK-GAL-303, YK-GAL-304, YK-GAL-305, YK-GAL-306, YK-GA L-307, YK-GAL-308, YK-GAL-309, YK-GAL-310, YK-GAL-311, YK-GAL-312 or YK-GAL-313:
  • the compound of formula (I) is a compound YK-GAL-314, YK-GAL-315, YK-GAL-316, YK-GAL-317, YK-GAL-318, YK-GAL-319, YK-GAL-320, YK-GAL-321, YK-GAL-322, YK-GAL-323, YK-GAL-324, YK-GAL-325 or YK-GAL-326 having the following structure:
  • the compound of formula (I) above or a pharmaceutically acceptable salt thereof is capable of binding to asialoglycoprotein receptor (ASGPR).
  • ASGPR asialoglycoprotein receptor
  • the present invention provides a conjugate comprising an oligonucleotide and a GalNAc moiety, Has the following structure:
  • Oligo represents oligonucleotide
  • R 1 , R 2 , R 3 , R 4 , A, B, L, G, m and n are as described above.
  • the hydroxyl protecting group acetyl in the N-acetyl-galactosamine of G in the conjugate is removed.
  • the oligonucleotide comprises a non-thio oligonucleotide and a thio oligonucleotide.
  • the non-thio oligonucleotide and the GalNAc moiety are linked by a phosphate bond.
  • the thio oligonucleotide and the GalNAc moiety are linked by a phosphorothioate bond.
  • the oligonucleotide comprises a small interfering nucleotide (siRNA), DNA, microRNA (miRNA), a small activating RNA (saRNA), a small guide RNA (sgRNA), a transfer RNA (tRNA), an antisense nucleotide (ASO) or an aptamer, preferably an antisense nucleotide (ASO) or a small interfering nucleotide (siRNA).
  • each nucleotide in the antisense nucleotide (ASO) or the small interfering nucleotide (siRNA) is independently a modified or unmodified nucleotide.
  • the oligonucleotide modulates expression of a target gene.
  • the present invention provides a pharmaceutical composition comprising the conjugate according to the second aspect and at least one pharmaceutically acceptable excipient.
  • the present invention provides use of the conjugate of the second aspect or the pharmaceutical composition of the third aspect in the preparation of a medicament for treating and/or preventing pathological conditions or diseases caused by the expression of specific genes in hepatocytes, optionally, the specific gene is selected from the hepatitis B virus gene, angiopoietin protein 3 gene or apolipoprotein C3 gene.
  • the disease is selected from chronic liver disease, hepatitis, liver fibrosis, liver proliferative disease and dyslipidemia; optionally, the dyslipidemia is hypercholesterolemia, hypertriglyceridemia, Lipidemia or atherosclerosis.
  • the present invention provides a method for inhibiting the expression of a specific gene in a hepatocyte, comprising contacting an effective amount of the conjugate of the second aspect or the pharmaceutical composition of the third aspect with the hepatocyte;
  • the specific gene is selected from one of the following genes: proprotein convertase subtilisin/kexin type 9 gene (PCSK9), ApoB, ApoC, ANGPTL3, SCD1, FVII, p53, HBV, HCV;
  • the specific gene is selected from the group consisting of proprotein convertase subtilisin/kexin type 9 gene (PCSK9), hepatitis B virus gene, angiopoietin-like protein 3 gene or apolipoprotein C3 gene.
  • PCSK9 proprotein convertase subtilisin/kexin type 9 gene
  • hepatitis B virus gene hepatitis B virus gene
  • angiopoietin-like protein 3 gene apolipoprotein C3 gene.
  • the present invention provides a kit comprising the conjugate according to the second aspect.
  • Figure 1 shows the inhibition rate of PCSK9 protein expression in mouse serum on the 7th and 14th days by GalNAc-conjugated siRNA sequences inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13, G18-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2.
  • Figure 2 shows the inhibition rate of PCSK9 protein expression in mouse serum on the 7th and 14th days by GalNAc-conjugated siRNA sequences inc-G1, inc-G2, inc-G3, inc-G8, inc-G9, inc-G10, inc-G25, G26-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2.
  • Figure 3 shows the inhibition rate of PCSK9 gene expression in mouse liver by GalNAc-conjugated siRNA sequences inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13, G18-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 on the 14th day.
  • Figure 4 shows the inhibition rate of PCSK9 gene expression in mouse liver by GalNAc-conjugated siRNA sequences inc-G1, inc-G2, inc-G3, inc-G8, inc-G9, inc-G10, inc-G25, G26-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 on the 14th day.
  • Figure 5 shows the effects of GalNAc-conjugated siRNA sequences inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13, G18-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 on LDL-C levels in mouse serum on days 7 and 14.
  • FIG 6 shows the GalNAc conjugated siRNA sequences inc-G1, inc-G2, inc-G3, inc-G8, inc-G9, Effects of inc-G10, inc-G25, G26-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b, and inc-GalNAc 2 on LDL-C levels in mouse serum on days 7 and 14.
  • Figure 7 shows the activity imaging of mice 8 hours after administration of GalNAc-conjugated siRNA sequences inc-G5, inc-G7, inc-L96 and inc-GalNAc 1b.
  • Figure 8 shows the half-lives of GalNAc-conjugated siRNA sequences inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13, G18-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 in mouse liver.
  • Figure 9 shows the half-lives of GalNAc-conjugated siRNA sequences inc-G1, inc-G2, inc-G3, inc-G8, inc-G9, inc-G10, inc-G25, G26-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 in mouse liver.
  • pharmaceutically acceptable means that the compound or composition is chemically and/or toxicologically compatible with the other ingredients constituting the formulation and/or with humans or mammals for the prevention or treatment of a disease or condition.
  • pharmaceutically acceptable salt refers to a relatively non-toxic, inorganic or organic acid addition salt of the compounds of the present invention.
  • pharmaceutically acceptable salt refers to a relatively non-toxic, inorganic or organic acid addition salt of the compounds of the present invention.
  • S.M.Berge et al. “Pharmaceutical Salts", J.Pharm.Sci.1977, 66, 1-19.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid or nitric acid, etc.
  • organic acids such as formic acid, acetic acid, acetoacetic acid, pyruvic acid, trifluoroacetic acid, propionic acid, butyric acid, hexanoic acid, heptanoic acid, undecanoic acid, lauric acid, benzoic acid, salicylic acid, 2-(4-hydroxybenzoyl)-benzoic acid, camphoric acid, cinnamic acid, cyclopentanepropionic acid, digluconic acid, 3-hydroxy-2-naphthoic acid, nicotinic acid, pamoic acid, pectinic acid, 3-phenylpropionic acid, picric acid, Pivalic acid, 2-hydroxyethanesulfonic acid, itaconic acid, aminosulfonic acid, trifluoromethanesulf
  • HCl or hydrochloric acid
  • HBr or hydrobromic acid solution
  • methanesulfonic acid sulfuric acid, tartaric acid or fumaric acid
  • sulfuric acid tartaric acid or fumaric acid
  • HBr or hydrobromic acid solution
  • methanesulfonic acid sulfuric acid, tartaric acid or fumaric acid
  • sulfuric acid tartaric acid or fumaric acid
  • fumaric acid can be used to form a pharmaceutically acceptable salt with the compound shown in formula (I).
  • alkyl in this application refers to branched and straight chain saturated aliphatic monovalent hydrocarbon groups having a specified number of carbon atoms.
  • C 1-4 alkyl includes methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
  • alkoxy refers to the formula -OR, wherein R is an alkyl group as defined herein.
  • R is an alkyl group as defined herein.
  • a non-limiting list of alkoxy groups is methoxy, ethoxy, n-propoxy, 1-methylethoxy (isopropoxy), n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, phenoxy, and benzoyloxy.
  • the alkoxy group may be -OR, wherein R is an unsubstituted C1-4 alkyl group.
  • the alkoxy group may be substituted or unsubstituted.
  • Halogen refers to fluorine (F), chlorine (Cl), bromine (Br) and iodine (I), preferably fluorine (F) and chlorine (Cl). In one embodiment, the halogen is fluorine.
  • protecting group refers to any atom or group of atoms introduced into a molecule to prevent existing groups in the molecule from undergoing undesired chemical reactions, which can be removed to leave an unprotected group.
  • the hydroxyl protecting group may be a protecting group commonly used to protect the hydroxyl group of the ribose structure in the synthesis of RNA or its derivatives, or may refer to the protecting groups described in Green et al. in Protective Groups in Organic Synthesis, 3rd Edition, 1999, John Wiley & Sons, Inc., for example: acetyl, phenoxyacetyl, pivaloyl, benzyl, 4-methoxybenzyl, benzoyl, triphenylmethyl, 4,4'-dimethoxytrityl (DMTr), monomethyl Oxytrityl (MMTr, monomethoxytrityl), 9-phenyl-xanthen-9-yl (9-phenyl-xanthen-9-yl), 9-p-tolyl-xanthen-9-yl (9-(p-tolyl)-xanthen-9-yl), trimethylsilyl, tert-butyldimethylsilyl (TBDMS),
  • phosphorus-containing reactive group refers to a phosphorus-containing group that can react with a hydroxyl or amine group contained in another molecule, particularly in another nucleotide unit or in another nucleotide analog, by a nucleophilic attack reaction. Typically, such a reaction produces an ester-type internucleoside bond in which a nucleotide unit or a nucleotide analog unit is connected to another nucleotide unit or a nucleotide analog unit.
  • phosphorus-containing reactive groups are known in the art and contain phosphorus atoms in P III or P V valence states, and include, but are not limited to, phosphoramidites, H-phosphonates, phosphotriesters, and phosphorus-containing chiral auxiliary agents.
  • Phosphorus-containing reactive groups are, for example:
  • the phosphorus-containing reactive The group is
  • Controlled pore glass (CPG) and polystyrene (highly cross-linked polystyrene beads) described herein are solid supports for oligonucleotide synthesis, which are insoluble particles that bind to oligonucleotides during the synthesis process and are commercially available.
  • nucleotide as used herein includes naturally occurring nucleotides and chemically modified nucleotides. Chemically modified nucleotides are non-naturally occurring nucleotides, also referred to herein as "nucleotide analogs".
  • hydroxyl groups are fully protected with acyl groups” described herein for “T” means that all hydroxyl groups in the galactose structure except the hydroxyl group used for connecting to X1 are protected with acyl groups, wherein the acyl group is, for example, acetyl, chloroacetyl, trichloroacetyl, trifluoroacetyl, pivaloyl, isobutyryl or benzoyl.
  • the present invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof:
  • R 1 is oxygen or sulfur, preferably oxygen
  • R2 is hydrogen, C1-4 alkyl, C1-4 alkoxy or halogen
  • R3 is hydrogen, a hydroxyl protecting group, a phosphorus-containing reactive group, or -CO(CH 2 ) x COOH, wherein x is an integer from 1 to 10, It is controlled pore glass or polystyrene;
  • R4 is hydrogen or a hydroxyl protecting group
  • A is -(CH 2 ) a -, -(CH 2 CH 2 O) b -, -((CH 2 ) c NHCO) d - or -((CH 2 ) c CONH) d -, wherein a is an integer of 1-15, preferably an integer of 3-13, b is an integer of 1-7, preferably an integer of 2-5, c is an integer of 1-7, preferably an integer of 2-6, and d is an integer of 1-5, preferably an integer of 1-3;
  • B is -(CH 2 ) e -, wherein e is an integer of 0-7, preferably an integer of 1-5.
  • L is -CONH- or -NHCO-
  • T is N-acetyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, galactose in which the hydroxyl groups are fully protected by acyl groups, galactosamine in which the hydroxyl groups are fully protected by acyl groups, N-formyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, N-propionyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, N-n-butanoyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, or N-isobutanoyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups.
  • T is N-acetyl-galactosamine in which the hydroxyl groups are fully protected by acyl groups, wherein the acyl groups are acetyl or benzoyl, preferably acetyl;
  • X1 is -( CH2 ) f- or - ( CH2CH2O ) fCH2- , wherein f is an integer of 1-5;
  • X2 is -( CH2 ) g- , wherein g is an integer of 1-6;
  • Y 1 is 0 or 1
  • Y2 is 0, 1 or 2;
  • Y 3 is 1, 2 or 3;
  • n is an integer from 0 to 4, preferably 0, 1 or 2;
  • n is an integer of 0-4, preferably 0, 1 or 2.
  • A is -( CH2 ) 10- , -( CH2 ) 7- , -(CH2) 8- , -( CH2 ) 9- , -( CH2 ) 11- , -( CH2 ) 12- , -( CH2CH2O ) 3- , -( CH2 )4NHCO- , or -( CH2 ) 6NHCO- .
  • B is -(CH 2 ) 0 -, -CH 2 -, -(CH 2 ) 2 -, -(CH 2 ) 4 -, or -(CH 2 ) 3 -.
  • R 1 is oxygen
  • R 1 is in the ⁇ configuration or the ⁇ configuration.
  • R2 is hydrogen or -OCH3 .
  • R3 is a hydroxyl protecting group or a phosphorus-containing reactive group.
  • the hydroxyl protecting group may be, for example, an acyl group (e.g., acetyl, phenoxyacetyl, 4-isopropylphenoxyacetyl), a silyl group, a trityl group, a monomethoxytrityl group (MMTr), or a 4,4′-dimethoxytrityl group (DMTr).
  • the phosphorus-containing reactive group may be, for example, Preferably, R 3 is acetyl, 1,1,3,3-tetraisopropyldisiloxanylidene (TIPDS), t-butyldimethylsilyl, phenyldimethylsilyl, 4,4′-dimethoxytrityl or More preferably, R3 is
  • R3 is In yet another embodiment, R 3 is -CO(CH 2 ) 2 COOH.
  • R4 is a hydroxy protecting group, preferably trityl, monomethoxytrityl or 4,4'-dimethoxytrityl, more preferably 4,4'-dimethoxytrityl.
  • m is 1.
  • n is zero.
  • G is
  • the compound of formula (I) is a compound having the following structure: YK-GAL-301, YK-GAL-302, YK-GAL-303, YK-GAL-304, YK-GAL-305, YK-GAL-306, YK-GAL-307, YK-GAL-308, YK-GAL-309, YK-GAL-310, YK-GAL-311, YK-GAL-312 or YK-GAL-313:
  • the compound of formula (I) is a compound YK-GAL-314, YK-GAL-315, YK-GAL-316, YK-GAL-317, YK-GAL-318, YK-GAL-319, YK-GAL-320, YK-GAL-321, YK-GAL-322, YK-GAL-323, YK-GAL-324, YK-GAL-325 or YK-GAL-326 having the following structure:
  • the compound of formula (I) above or a pharmaceutically acceptable salt thereof is capable of binding to asialoglycoprotein receptor (ASGPR).
  • ASGPR asialoglycoprotein receptor
  • the present invention provides a conjugate comprising an oligonucleotide and a GalNAc moiety having the structure shown below:
  • Oligo represents oligonucleotide
  • R 1 , R 2 , R 3 , R 4 , A, B, L, G, m and n are as described above.
  • the conjugate of the present invention can be prepared by solid phase synthesis reaction of the compound of formula (I) or its pharmaceutically acceptable salt with oligonucleotide.
  • the conventional method for conjugating GalNAc with oligonucleotide is solid phase synthesis method.
  • One method is to connect the GalNAc compound to a CPG (Controlled Pore Glass) column and realize the connection between the GalNAc compound and the oligonucleotide by solid phase synthesis.
  • Another method is to first prepare the GalNAc compound into a phosphoramidite monomer and realize the connection between the GalNAc compound and any position of the oligonucleotide by solid phase synthesis.
  • Oligonucleotides in the present application include single-stranded oligonucleotides (e.g., antisense nucleotides, referred to as ASOs) and double-stranded oligonucleotides (e.g., small interfering nucleotides, referred to as siRNAs).
  • ASOs antisense nucleotides
  • siRNAs small interfering nucleotides
  • the oligonucleotide contains 7-30 nucleotides. The conjugates prepared by such oligonucleotides will have more therapeutic value.
  • the oligonucleotide is selected from small interfering nucleotides, DNA, micro RNA (miRNA), small activating RNA (saRNA), small guide RNA (sgRNA), transfer RNA (tRNA), antisense nucleotides or aptamers, and preferably the oligonucleotide is an antisense nucleotide or a small interfering nucleotide.
  • Oligonucleotides in this application include natural oligonucleotides and chemically modified oligonucleotides. Chemical modifications herein include nucleoside modifications (including sugar moiety modifications and nucleobase modifications) and internucleoside linkage modifications. Chemical modifications of oligonucleotides do not include situations where there are differences only in the nucleobase sequence. Natural herein refers to situations corresponding to naturally occurring RNA or DNA.
  • Natural oligonucleotides have difficulty entering cells and are easily degraded by intracellular nucleases, resulting in poor effects. Chemical modification of oligonucleotides can improve their properties and increase their bioavailability. Among the modified oligonucleotides, the most representative are thio-oligonucleotides, in which one of the thio-types is that a non-bridging oxygen atom in the phosphodiester bond is replaced by a sulfur atom, for example
  • Thio-oligonucleotides can be commercially available or prepared by conventional solid phase synthesis methods.
  • Hydrogenated xanthan can be used as a sulfurizing agent.
  • the hydroxyl protecting group acetyl in the N-acetyl-galactosamine of G in the conjugate is removed, for example, by hydrolysis in an alkaline solution to obtain a hydroxyl group.
  • the GalNAc portion of the conjugate has the structure
  • R 1 , R 2 , A, B, L, X 1 , X 2 , Y 1 , Y 2 , Y 3 , m and n are as described above.
  • the oligonucleotide and the GalNAc moiety are connected via a bond or a cleavable linker.
  • the bond herein may include, but is not limited to, a phosphate bond and a phosphorothioate bond.
  • the cleavable linker used in this application refers to a linker that is cleaved by intracellular metabolism after internalization, for example, by hydrolysis, reduction or enzymatic reaction.
  • Suitable linkers include, but are not limited to, acid-labile linkers, hydrolysis-labile linkers, enzymatically cleavable linkers and reduction-labile linkers.
  • Acid-labile linkers can refer to the acid-labile linkers in ADC drugs (Mylotarg, Besponsas, Trodelvys).
  • the oligonucleotide comprises a non-thio oligonucleotide and a thio oligonucleotide.
  • the non-thio oligonucleotide and the GalNAc moiety are linked by a phosphate bond.
  • the thio oligonucleotide and the GalNAc moiety are linked by a phosphorothioate bond.
  • the oligonucleotide includes a small interfering nucleotide (siRNA), DNA, microRNA (miRNA), a small activating RNA (saRNA), a small guide RNA (sgRNA), a transfer RNA (tRNA), an antisense nucleotide (ASO) or an aptamer (Aptamer), preferably an antisense nucleotide (ASO) or a small interfering nucleotide (siRNA).
  • each nucleotide in the antisense nucleotide (ASO) or small interfering nucleotide (siRNA) is independently a modified or unmodified nucleotide.
  • the oligonucleotide modulates expression of a target gene.
  • the composition provided herein may include any substance that can be used in a pharmaceutical composition.
  • the composition may include one or more pharmaceutically acceptable excipients or auxiliary ingredients, such as but not limited to one or more solvents, dispersion media, diluents, dispersing aids, suspension aids, granulation aids, disintegrants, fillers, glidants, liquid vehicles, adhesives, surfactants, isotonic agents, thickeners or emulsifiers, buffers, lubricants, oils, preservatives, flavoring agents, coloring agents, etc.
  • Excipients such as starch, lactose or dextrin.
  • Pharmaceutically acceptable excipients are well known in the art (see, for example, Remington’s The Science and Practice of Pharmacy, 21st edition, A.R. Gennaro; Lippincott, Williams & Wilkins, Baltimore, MD, 2006).
  • Pharmaceutically acceptable diluents include phosphate buffered saline (PBS), for example, sterile phosphate buffered saline.
  • the conjugate is used in a pharmaceutically acceptable diluent at a concentration of 50-500 ⁇ M solution.
  • WO 2007/031091 provides suitable pharmaceutically acceptable diluents, carriers and excipients, and also provides suitable dosages, formulations, routes of administration, compositions, dosage forms, combinations with other therapeutic agents, and prodrug preparations (this document is incorporated by reference).
  • the oligonucleotide conjugates of the present invention can be mixed with pharmaceutically acceptable active substances or inert substances to prepare pharmaceutical compositions or preparations, and can be sterilized by conventional sterilization techniques, or can be sterile filtered.
  • kits comprising a conjugate as described above.
  • the kit provided herein comprises a container comprising a conjugate as described above.
  • the kit provided herein further comprises a pharmaceutically acceptable adjuvant, such as a stabilizer or a preservative.
  • the kit further comprises instructions for mixing the conjugate with a pharmaceutically acceptable adjuvant or other ingredients (if present).
  • the present invention is further described below in conjunction with the examples. However, the present invention is not limited to the following examples.
  • the implementation conditions used in the examples can be further adjusted according to the different requirements of specific use, and the implementation conditions not specified are conventional conditions in the industry.
  • the raw materials used can be obtained commercially. Unless otherwise specified, all temperatures are given in degrees Celsius.
  • the technical features involved in each embodiment of the present invention can be combined with each other as long as they do not conflict with each other.
  • the synthetic route is as follows:
  • G1-7 (154 mg, 64.2 ⁇ mol), 4-dimethylaminopyridine (15.7 mg, 128 ⁇ mol), diisopropylethylamine (16.6 mg, 128 ⁇ mol), and succinic anhydride (64.4 mg, 642 ⁇ mol) were dissolved in N,N-dimethylformamide (2.0 mL) and stirred at 30°C for 48 h under nitrogen protection. Purification by preparative chromatography (H 2 O (10 mM TEAB)-ACN) gave a white solid G1-7 (59 mg, 26.7 ⁇ mol) with a yield of 41.5%.
  • Step 6 Synthesis of YK-GAL-301
  • G1-7 (59 mg, 22.7 ⁇ mol), 4-dimethylaminopyridine (2.77 mg, 22.7 ⁇ mol), diisopropylethylamine (23.5 mg, 182 ⁇ mol), and O-benzotriazole-tetramethyluronium hexafluorophosphate (43.1 mg, 113 ⁇ mol) were dissolved in N, N-dimethylformamide (4.0 mL), followed by addition of CPG-NH 2 (425 mg), and stirred at 40°C for 12 h. The reaction solution was filtered, and the filtrate was washed with methanol and dichloromethane in turn, and dried in vacuo.
  • the synthetic route is as follows:
  • Step 7 Synthesis of YK-GAL-302
  • the synthetic route is as follows:
  • Step 6 Synthesis of YK-GAL-303
  • G4A (3.00 g, 18.7 mmol), diisopropylethylamine (4.84 g, 37.4 mmol) and O-benzotriazole-tetramethyluronium hexafluorophosphate (7.81 g, 20.6 mmol) were dissolved in N,N-dimethylformamide (30.0 mL), G4A-1 (1.50 g, 16.9 mmol) was added, and stirred at 15°C for 2 h. Preparative chromatography (H 2 O (0.1% TFA)-ACN) gave a white solid G4-1 (1.70 g).
  • Step 7 Synthesis of YK-GAL-304
  • G4-6 (20 mg, 7.57 ⁇ mol), 4-dimethylaminopyridine (1.00 mg, 8.20 ⁇ mol), diisopropylethylamine (7.82 mg, 60.5 ⁇ mol), and O-benzotriazole-tetramethyluronium hexafluorophosphate (14.4 mg, 37.8 ⁇ mol) were dissolved in N, N-dimethylformamide (1.5 mL), followed by addition of CPG-NH 2 (131 mg), and stirred at 40°C for 16 h. The reaction solution was filtered, and the filtrate was washed with methanol and dichloromethane in turn, and dried in vacuo.
  • the synthetic route is as follows:
  • G5-3 (1.32 g, 3.79 mmol) was dissolved in N, N-dimethylformamide (10.0 mL), 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (1.31 g, 4.17 mmol) and imidazole (645 mg, 9.47 mmol) were added, and stirred at 15 ° C for 2 h under nitrogen protection.
  • Saturated sodium bicarbonate aqueous solution (10.0 mL) was added to quench, and the mixture was extracted with dichloromethane (10 mL ⁇ 2). The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure to remove the solvent to obtain a crude product.
  • Step 10 Synthesis of YK-GAL-305
  • the synthetic route is as follows:
  • Step 10 Synthesis of YK-GAL-306
  • the synthetic route is as follows:
  • G7-2 (2.20 g, 6.05 mmol) was dissolved in N, N-dimethylformamide (20.0 mL), 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (2.10 g, 6.66 mmol) and imidazole (1.03 g, 15.1 mmol) were added, and stirred at 25 ° C for 2 h under nitrogen protection. Saturated sodium bicarbonate aqueous solution (10.0 mL) was added to quench, and the mixture was extracted with dichloromethane (10 mL ⁇ 2). The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure to remove the solvent to obtain a crude product.
  • Step 10 Synthesis of YK-GAL-307
  • the synthetic route is as follows:
  • Step 5 Synthesis of YK-GAL-308
  • G8-5 (190 mg, 76.1 ⁇ mol), 4-dimethylaminopyridine (9.30 mg, 76.1 ⁇ mol), diisopropylethylamine (78.7 mg, 609 ⁇ mol), and O-benzotriazole-tetramethyluronium hexafluorophosphate (144 mg, 381 ⁇ mol) were dissolved in N, N-dimethylformamide (12 mL), followed by addition of CPG- NH2 (1.27 g), and stirred at 40°C for 16 h. The reaction solution was filtered, and the filtrate was washed with methanol and dichloromethane in turn, and dried in vacuo.
  • the synthetic route is as follows:
  • the crude product G9-3 (0.23 g, 692 ⁇ mol) and anhydrous pyridine (20 mL x 3) were co-rotated to remove water.
  • the dried G9-3 and 4,4′-dimethoxytriphenylmethane (534.58 mg, 1579.8 ⁇ mol) were dissolved in pyridine (5.0 mL) and stirred at 15°C for 28 h under nitrogen protection.
  • Methanol (10 mL) was added to quench the reaction, and the solvent was removed by concentration under reduced pressure to obtain a crude product.
  • Step 6 Synthesis of YK-GAL-309
  • the synthetic route is as follows:
  • Step 6 Synthesis of YK-GAL-310
  • the synthetic route is as follows:
  • G11A (2.00 g, 13.7 mmol, 1.72 mL), diisopropylethylamine (3.54 g, 27.3 mmol) and O-benzotriazole-tetramethyluronium hexafluorophosphate (5.71 g, 15.0 mmol) were dissolved in N,N-dimethylformamide (20.0 mL), G11A-1 (1.92 g, 16.4 mmol) was added, and the mixture was stirred at 15°C for 2 h. Preparative chromatography (H 2 O (0.1% TFA)-ACN) was performed to obtain a white solid G11-1 (2.00 g, 8.15 mmol) with a yield of 59.5%.
  • Step 7 Synthesis of YK-GAL-311
  • G11-7 (35.0 mg, 13.8 ⁇ mol), 4-dimethylaminopyridine (1.69 mg, 13.8 ⁇ mol), diisopropylethylamine (14.3 mg, 110 ⁇ mol), and O-benzotriazole-tetramethyluronium hexafluorophosphate (26.2 mg, 69.3 ⁇ mol) were dissolved in N, N-dimethylformamide (2.0 mL), followed by addition of CPG-NH 2 (220 mg), and stirred at 40°C for 16 h. The reaction solution was filtered, and the filtrate was washed with methanol and dichloromethane in turn, and dried in vacuo.
  • the synthetic route is as follows:
  • Step 3 Synthesis of YK-GAL-312
  • G12-2 (1.9 g, 1.31 mmol), 4-dimethylaminopyridine (160 mg, 1.31 mmol), diisopropylethylamine (1.35 g, 10.48 mmol), and O-benzotriazole-tetramethyluronium hexafluorophosphate (2.48 g, 6.55 mmol) were dissolved in N, N-dimethylformamide (210 mL), followed by addition of CPG-NH 2 (13.6 g), and stirred at 40°C for 16 h. The reaction solution was filtered, and the filtrate was washed with methanol and dichloromethane in turn, and dried in vacuo.
  • the synthetic route is as follows:
  • G13-2 (2.66 g, 1.29 mmol), 4-dimethylaminopyridine (157.6 mg, 1.29 mmol), diisopropylethylamine (1.33 g, 10.32 mmol), and O-benzotriazole-tetramethyluronium hexafluorophosphate (2.45 g, 6.45 mmol) were dissolved in N,N-dimethylformamide (210.0 mL), and then CPG-NH 2 (18.9 g) was added and stirred at 40°C for 16 h. The reaction solution was filtered, and the filtrate was washed with methanol and dichloromethane in turn and dried in vacuo.
  • siRNA sequence was used for synthesis, and the conjugated siRNA sequence was a sequence numbered inc, and the inc sequence was as follows:
  • Antisense strand (inc-AS):
  • the sequence comes from a public sequence and is the oligonucleotide sequence of the siRNA drug inclisiran that has been marketed overseas.
  • Inclisiran is a synthetic, chemically modified double-stranded small interfering RNA (siRNA) that inhibits PCSK9 protein by targeting and binding to the mRNA encoding the PCSK9 protein through an RNA interference mechanism.
  • siRNA small interfering RNA
  • the production of LDL receptors can be regulated, thereby regulating the recovery and reuse of LDL receptors and enhancing their binding with LDL, thereby achieving the purpose of lowering LDL in the blood.
  • Oligonucleotide GalNAc conjugates were synthesized on a solid support according to phosphoramidite chemistry.
  • the GalNAc-CPG compounds synthesized in Example 1 including YK-GAL-301, YK-GAL-302, YK-GAL-303, YK-GAL-304, YK-GAL -305, YK-GAL-306, YK-GAL-307, YK-GAL-308, YK-GAL-309, YK-GAL-310, YK-GAL-311 and NAG0052
  • synthesizing conjugate 17 (sequence numbered inc-L96), purchased CPG-L96 (purchased from Tianjin WuXi AppTec New Drug Development Co.
  • conjugates 12 are GalNAc ligand compounds conjugated to the 3’ end of the oligonucleotide
  • conjugates 14 are GalNAc ligand compounds conjugated to the 5’ end of the oligonucleotide.
  • the monomer coupling time is about 1 minute, of which the oxygen generation time is about 30-45 seconds and the thio generation time is about 2 minutes. After the cycle is completed, the solid phase synthesis of the oligonucleotide is completed.
  • the solid phase carrier is transferred to a reactor, and the oligonucleotide is cleaved from the solid phase carrier with concentrated ammonia (25-28%) at 50-60°C for 16-24 hours.
  • the system is cooled to room temperature and then filtered, rinsed with a mixed solution of purified water and ethanol, the filtrate is combined, and the filtrate is concentrated at low temperature to obtain a crude residue.
  • the crude residue after deprotection was dissolved in purified water and purified by HPLC.
  • the product peak solution was collected and the content was measured by ELISA, and the molecular weight was confirmed by ESI MS.
  • the GalNAc-CPG compound synthesized in Example 1 and the GalNAc phosphoramidite compound synthesized in Example 2 are conjugated to the 3' or 5' end of the sense strand of the siRNA.
  • YK-GAL-325 was used as the phosphoramidite monomer in the synthesis of conjugate 12. Since YK-GAL-325 has a monoantennary structure, it was repeated three times in the synthesis sequence, so that the synthesized conjugate 12 has three GalNAc modification groups.
  • YK-GAL-326 was used as the phosphoramidite monomer. Since YK-GAL-326 has biantennary, it was repeated twice in the synthetic sequence, so that the synthesized conjugate 13 has four GalNAc modification groups.
  • siRNA antisense chain was synthesized according to the method for synthesizing the siRNA sense chain, wherein a universal CPG solid phase carrier was used, and the synthesis scale of each antisense chain complementary to the sense chain was 1 ⁇ mol.
  • the siRNA sense strand and the complementary antisense strand were mixed in a ratio of 1:1 according to the UV absorption content, heated to 95°C, and cooled to room temperature after 3 minutes to form a double strand.
  • the obtained double-stranded solution was characterized by HPLC, and the content was determined by an ELISA instrument after the product purity was qualified, and lyophilized to obtain a solid powder for storage.
  • the obtained GalNAc-conjugated siRNA double-stranded sequence and molecular weight are shown in Table 2.
  • SS is the sense strand
  • AS is the antisense strand
  • resulting conjugated siRNA structure is as follows:
  • GaNAc compound is NAG0052, WO2023109938A1, page 100
  • GalNAc compound is GalNAc 1b, WO2023014938A1, page 145
  • GalNAc compound is GalNAc 2, WO2023049258A1, page 216.
  • Example 4 Inhibitory effect of GalNAc-conjugated siRNA on PCSK9 expression in mouse serum and liver and its effect on LDL-C levels
  • the siRNA conjugates in Table 2 were used to investigate the inhibitory rate of PCSK9 expression in mouse serum and liver and the effect on LDL-C levels.
  • the GalNAc-conjugated Inclisiran siRNA sequence enters the blood, it first specifically binds to the asialoglycoprotein receptor (ASGPR) on the liver cell membrane through GalNAc, thereby entering the liver cells.
  • the Inclisiran siRNA sequence enters the liver cells, it binds to the RNA-induced silencing complex (RISC), and binds to the mRNA encoding the PCSK9 protein under the mediation of the antisense strand, inhibiting the production of the PCSK9 protein.
  • RISC RNA-induced silencing complex
  • the reduction of PCSK9 protein in the liver promotes the circulation of LDL-R, thereby increasing the number of LDL-R receptors on the surface of liver cells, increasing the uptake and degradation of plasma LDL-C, and further reducing the plasma LDL-C level. Therefore, the higher the amount of Inclisiran siRNA sequence delivered to the liver, that is, the higher the GalNAc delivery efficiency, the lower the amount of PCSK9 protein in the liver and serum, and the lower the level of LDL-C in the liver.
  • the inhibition rate of PCSK9 in serum by inc-G5 increased by 14.2%, 13.1%, 14.5% and 51.2% on the 7th day, and by 10.2%, 10.7%, 10.4% and 43.0% on the 14th day, respectively;
  • the inhibition rate of PCSK9 in mouse liver increased by 11.1%, 13.2%, 11.0% and 44.0%, respectively;
  • the level of LDL-C reduction increased by 20.4%, 17.1%, 15.8% and 29.8% on the 7th day, and by 23.5%, 20.5%, 20.0% and 33.3% on the 14th day, respectively.
  • hPCSK9 transgenic mice SPF grade, purchased from Jiangsu Jicui Pharmaceutical Biotechnology Co., Ltd.
  • SPF grade purchased from Jiangsu Jicui Pharmaceutical Biotechnology Co., Ltd.
  • siRNA test drug group inc-G1 to inc-G13, G18-inc, inc-G25, G26-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 in Table 2 according to the serum PSCK9 protein content, with 5 mice in each group, all of which were male.
  • the drug was administered by a single subcutaneous injection.
  • the dosage was 6 mg/kg
  • the administration volume was 1 mL/kg
  • the administration concentration was 6 mg/mL
  • the day of administration was recorded as day 0.
  • the results of the PCSK9 inhibition efficiency in hPCSK9 mouse serum showed that the oligonucleotide conjugate prepared by the GalNAc compound of the present invention significantly improved the inhibition rate of PCSK9 protein expression in mouse serum compared with the prior art GalNAc.
  • the inhibition rate of inc-G5 on the 7th day increased by 14.2%, 13.1%, 14.5% and 51.2%, respectively, and the inhibition rate on the 14th day increased by 10.2%, 10.7%, 10.4% and 43.0%, respectively.
  • Inc-G4, Inc-G5, Inc-G6, Inc-G7, Inc-G11, Inc-G12, Inc-G13 and G18-inc had the highest inhibition rates on PCSK9 protein expression in mouse serum.
  • the inhibition rates of Inc-G5 reached 94.4% and 95.6% on the 7th and 14th days, respectively. This indicates that the cleverly designed connection structure can significantly improve the bioavailability of the drug and exert better efficacy.
  • the conjugates prepared by the GalNAc compound designed by the present invention have very different inhibitory effects on PCSK9 protein expression in mouse serum.
  • the inhibition rates of inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13 and G18-inc were significantly higher than those of other groups, and the inhibition rates exceeded 90% on the 7th and 14th days.
  • the highest inhibition rate was inc-G5, reaching 94.4% and 95.6% on the 7th and 14th days, respectively.
  • the inhibition rate of inc-G5 with the highest inhibition rate was increased by 38.5% and 35.5% on the 7th day and 14th day respectively compared with that of inc-G25 with the lowest inhibition rate, which was significantly different.
  • the GalNAc compounds with three antennae, one antennae or two antennae designed by the present invention are used to prepare conjugates with three or four GalNAc groups, all of which have very high inhibition rates. Moreover, the GalNAc compounds can effectively inhibit PCSK9 protein expression regardless of whether they are conjugated to the 3' end or the 5' end of the oligonucleotide.
  • the GalNAc compound YK-GAL-325 designed by the present invention has one antennae, and YK-GAL-326 has two antennae (see Table 1 in Example 2).
  • Inc-G12 is a conjugate having three GalNAc groups obtained by connecting YK-GAL-325 through two phosphodiester bonds.
  • Inc-G13 is a conjugate having four GalNAc groups obtained by connecting YK-GAL-326 through one phosphodiester bond.
  • inc-G12 and inc-G13 also have a significant inhibitory effect on the expression of PCSK9 protein in mouse serum, with inhibition rates of 93.8% and 94.2% on the 7th day, and 95.3% and 95.5% on the 14th day, respectively, which are equivalent to inc-G5.
  • the GalNAc ligand of G18-inc was conjugated to the 5' end of the oligonucleotide, while the GalNAc ligand of inc-G5 was conjugated to the 3' end of the oligonucleotide.
  • Activity test results showed that G18-inc also had a significant inhibitory effect on PCSK9 protein expression in mouse serum, with inhibition rates reaching 93.5% and 95.2% on the 7th and 14th days, respectively, which was comparable to that of inc-G5.
  • the oligonucleotide conjugates with 3 or 4 GalNAc groups prepared by the GalNAc compounds with 3 antennae, 1 antennae or 2 antennae designed by the present invention have very high delivery efficiency, and no matter conjugated to the 3' end or 5' end of the oligonucleotide, the oligonucleotide Inclisiran siRNA sequence can be efficiently delivered to the liver, achieving a significant inhibitory effect on the expression of PCSK9 protein in mouse serum.
  • the oligonucleotide conjugates prepared by the GaINAc compounds designed by the present invention significantly improved the inhibition rate of PCSK9 protein expression in mouse serum compared with inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 prepared by the prior art GalNAc compounds.
  • inc-G5 was 14.2% higher than inc-L96.
  • conjugates prepared from the prior art GalNAc compounds including inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2, inhibited PCSK9 protein expression in mouse serum by 80.2%, 81.3%, 79.9% and 43.2% on the 7th day, and by 85.4%, 84.9%, 85.2% and 52.6% on the 14th day, respectively.
  • the conjugates prepared by the GalNAc compound of the present invention including inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13 and G18-inc, are compared with the prior art GalNAc.
  • the inhibition rate of PCSK9 protein expression in mouse serum was significantly increased.
  • the inhibition rate of inc-G5 on day 7 was 14.2%, 13.1%, 14.5% and 51.2% higher than that of inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2, respectively, and on day 14 it was 10.2%, 10.7%, 10.4% and 43.0% higher, respectively.
  • Both inc-G25 and inc-GalNAc 2 are oligonucleotide conjugates with one GalNAc group, but the inhibition rate of inc-G25 was 12.7% higher than that of inc-GalNAc 2, which was significantly improved.
  • inc-G5 only replaces the prolinol structure in the main chain of inc-L96. Change to ribose ring
  • the other structures are exactly the same, but the inhibition rate of PCSK9 protein expression of inc-G5 is 14.2% higher than that of inc-L96, and the inhibitory activity is significantly improved.
  • inc-G12 Compared with GalNAc 1b, inc-G12 only differs in the atom connected to the 1’ position of the ribose ring.
  • GalNAc 1b is carbon, while inc-G12 is oxygen.
  • the connecting arm of inc-G12 is longer than that of GalNAc 1b.
  • the other structures are exactly the same, but the inhibition rate of inc-G12 is significantly increased by 13.9% compared with GalNAc 1b.
  • inc-G5 The only difference between inc-G5 and inc-G1 is the 2’ position of the ribose ring, which is a methoxy group while inc-G1 is a hydrogen group. However, the inhibition rate of inc-G5 is 21.4% higher than that of inc-G1.
  • GalNAc compounds with similar chemical structures do not necessarily have similar oligonucleotide delivery efficiencies.
  • the inhibitory effects of the GalNAc oligonucleotide conjugates prepared from them on the PCSK9 gene in mouse serum are not consistent and are likely to have very large differences.
  • the residual ethanol was dried at room temperature for 10 minutes, and 150 ⁇ L RNase-free ddH 2 O was added to dissolve.
  • the RNA concentration was detected using a micro-UV spectrophotometer.
  • the PCSK9 gene expression was detected by qPCR, and the mRNA was measured. The results are shown in Table 5.
  • Inc-G4, Inc-G5, Inc-G6, Inc-G7, Inc-G11, Inc-G12, Inc-G13 and G18-inc had the highest inhibition rates on PCSK9 in mouse liver.
  • Inc-G5, Inc-G6 and Inc-G12 all had inhibition rates of 90%. This indicates that cleverly designed connection structures can significantly improve the bioavailability of drugs and exert better efficacy.
  • the conjugates prepared by the GalNAc compound designed by the present invention have very different inhibition rates on PCSK9 gene expression in mouse liver.
  • Inc-G4, Inc-G5, Inc-G6, Inc-G7, Inc-G11, Inc-G12, Inc-G13 and G18-inc have the highest inhibition rates, all above 85%, among which Inc-G5, Inc-G6 and Inc-G12 have reached 90%.
  • Figure 3 the conjugates prepared by the GalNAc compound designed by the present invention have very different inhibition rates on PCSK9 gene expression in mouse liver.
  • the inhibition rates of inc-G2 and inc-G3 were also high, ranging from 80-85%.
  • the inhibition rates of inc-G8, inc-G9 and G26-inc were between 70-80%.
  • the inhibition rates of inc-G1, inc-G10 and inc-G25 were between 60-70%.
  • the highest inhibition rate of inc-G5 was 30.3% higher than that of inc-G10, which had the lowest inhibition rate. different.
  • the GalNAc compounds with three antennae, one antennae or two antennae designed by the present invention can prepare oligonucleotide conjugates with three or four GalNAc groups, all of which have very high inhibition rates, and these GalNAc compounds, whether conjugated to the 3' end or the 5' end of the oligonucleotide, can effectively inhibit PCSK9 gene expression.
  • the GalNAc compound YK-GAL-325 designed by the present invention has one antennae, and YK-GAL-326 has two antennae (see Table 1 in Example 2).
  • Inc-G12 is a conjugate having three GalNAc groups obtained by connecting YK-GAL-325 through two phosphodiester bonds.
  • Inc-G13 is a conjugate having four GalNAc groups obtained by connecting YK-GAL-326 through one phosphodiester bond.
  • the activity test results show that inc-G12 and inc-G13 also have a significant inhibitory effect on PCSK9 gene expression in mouse liver, with inhibition rates of 90.1% and 89.9%, respectively, which are equivalent to inc-G5.
  • the GalNAc ligand of G18-inc is conjugated to the 5' end of the oligonucleotide, while the GalNAc ligand of inc-G5 is conjugated to the 3' end of the oligonucleotide.
  • Activity test results showed that G18-inc also had a significant inhibitory effect on PCSK9 gene expression in mouse liver, with an inhibition rate of 89.7%, which was comparable to inc-G5.
  • the oligonucleotide conjugates with 3 or 4 GalNAc groups prepared by the GalNAc compounds with 3 antennae, 1 antennae or 2 antennae designed by the present invention have very high delivery efficiency, and no matter conjugated to the 3' end or 5' end of the oligonucleotide, the oligonucleotide Inclisiran siRNA sequence can be efficiently delivered to the liver, and has a significant inhibitory effect on PCSK9 gene expression in mouse liver.
  • the oligonucleotide conjugates prepared by the GalNAc compounds designed by the present invention have significantly improved inhibition rates compared to inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 prepared by the prior art GalNAc compounds.
  • inc-G5 is 11.1% higher than inc-L96.
  • conjugates prepared from the prior art GalNAc compounds had inhibition rates of 80.1%, 78.0%, 80.2% and 47.2% on PCSK9 gene expression in mouse liver, respectively.
  • the inhibition rate of inc-G5 was 11.1%, 13.2%, 11.0% and 44.0% higher than that of inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2, respectively.
  • Both inc-G25 and inc-GalNAc 2 are oligonucleotide conjugates with one GalNAc group, but the inhibition rate of inc-G25 is higher than that of inc-GalNAc 2 increased by 14.4%, a significant improvement.
  • inc-G5 only changes the prolinol structure in the main chain of inc-L96 into a ribose ring structure, and the other structures are exactly the same.
  • the inhibition rate of PCSK9 gene expression of inc-G5 can be increased by 11.1% compared with inc-L96, and the inhibitory activity is significantly improved.
  • inc-G12 Compared with GalNAc 1b, inc-G12 only differs in the atom connected to the 1’ position of the ribose ring.
  • GalNAc 1b is carbon, while inc-G12 is oxygen.
  • the connecting arm of inc-G12 is longer than that of GalNAc 1b.
  • the other structures are exactly the same, but the inhibition rate of inc-G12 is significantly increased by 9.9% compared with GalNAc 1b.
  • inc-G5 The only difference between inc-G5 and inc-G1 is the 2’ position of the ribose ring, which is a methoxy group while inc-G1 is a hydrogen group. However, the inhibition rate of inc-G5 is 21.3% higher than that of inc-G1.
  • inc-GalNAc 2 and inc-G25 are oligonucleotide conjugates with one GalNAc group, but the inhibition rate of inc-G25 was significantly increased by 14.4% compared with inc-GalNAc 2.
  • GalNAc compounds with similar chemical structures do not necessarily have similar oligonucleotide delivery efficiencies.
  • the GalNAc oligonucleotide conjugates prepared from them have different inhibitory effects on the PCSK9 gene in mouse liver and are likely to have very large differences.
  • Serum LDL-C (Mean ⁇ SD) was statistically analyzed and graphed using GraphPad Prism 9 software. The specific results are shown in Table 6.
  • Inc-G4 Inc-G5, Inc-G6, Inc-G7, Inc-G11, Inc-G12, Inc-G13 and G18-inc significantly reduced LDL-C levels compared to other groups.
  • Inc-G5 achieved 49.6% and 54.1% on the 7th and 14th days, respectively. This indicates that the cleverly designed connection structure can significantly improve the bioavailability of the drug and exert better efficacy.
  • the conjugates prepared by the GalNAc compound designed by the present invention had the highest reduction level on LDL-C in mouse serum, exceeding 35% on the 7th and 14th days, significantly higher than other experimental groups.
  • the highest reduction level was inc-G5, reaching 49.6% and 54.1% on the 7th and 14th days, respectively.
  • the reduction levels of inc-G2, inc-G3, and inc-G8 were between 30-35%.
  • the reduction levels of inc-G9, inc-G25, and G26-inc were between 20-30%.
  • the reduction levels of inc-G1 and inc-G10 were less than 20%, among which the reduction levels of inc-G1 were only 15.9% and 17.0% on the 7th day and 14th day, respectively.
  • the present invention designs three-antennary, one-antennary or two-antennary GalNAc compounds, and prepares oligonucleotide conjugates with three or four GalNAc groups, all of which have very high reduction levels, Furthermore, these GalNAc compounds, whether conjugated to the 3' or 5' end of the oligonucleotide, can effectively reduce LDL-C levels.
  • the GalNAc compound YK-GAL-325 designed by the present invention has one antennae, and YK-GAL-326 has two antennae (see Table 1 in Example 2).
  • Inc-G12 is a conjugate having three GalNAc groups obtained by connecting YK-GAL-325 through two phosphodiester bonds.
  • Inc-G13 is a conjugate having four GalNAc groups obtained by connecting YK-GAL-326 through one phosphodiester bond.
  • the activity test results show that inc-G12 and inc-G13 can also significantly reduce the LDL-C level in mouse serum, with the reduction levels being 48.5% and 47.3% on the 7th day, and 51.9% and 49.5% on the 14th day, respectively, which are equivalent to inc-G5.
  • the GalNAc ligand of G18-inc was conjugated to the 5' end of the oligonucleotide, while the GalNAc ligand of inc-G5 was conjugated to the 3' end of the oligonucleotide.
  • Activity test results showed that G18-inc could also significantly reduce the LDL-C level in mouse serum, with the reduction levels being 45.6% and 47.9% on the 7th and 14th days, respectively, which was comparable to inc-G5.
  • the GalNAc compounds with 3 antennae, 1 antennae or 2 antennae designed by the present invention can prepare oligonucleotide conjugates with 3 or 4 GalNAc groups, which have a significant inhibitory effect on PCSK9 gene expression, and no matter conjugated to the 3' end or 5' end of the oligonucleotide, the oligonucleotide Inclisiran siRNA sequence can be efficiently delivered to the liver, achieving a significant inhibitory effect on PCSK9 gene expression in mouse serum, thereby reducing LDL-C levels.
  • the oligonucleotide conjugates prepared by the GalNAc compound designed by the present invention significantly improved the level of LDL-C reduction in mouse serum compared with inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 prepared by the GalNAc compound of the prior art.
  • inc-G5 increased LDL-C by 20.4% and 23.5% on the 7th day and 14th day respectively compared with inc-L96.
  • the conjugates prepared from the GalNAc compound of the present invention including inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13 and G18-inc, significantly improve the level of LDL-C reduction in mouse serum compared with the prior art GalNAc.
  • the reduction levels of inc-G5 on day 7 were 20.4%, 17.1%, 15.8% and 29.8% higher than those of inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2, respectively, and on day 14 they were 23.5%, 20.5%, 20.0% and 33.3%, respectively.
  • Oligonucleotide conjugates prepared from GalNAc compounds with similar structures have an effect on the expression of The LDL-C lowering levels are likely to vary greatly; oligonucleotide conjugates prepared from GalNAc compounds with large structural differences are also likely to have very similar LDL-C lowering levels in mouse serum.
  • inc-G5 only changes the prolinol structure in the main chain of inc-L96 to a ribose ring structure, and the other structures are exactly the same.
  • inc-G5 can significantly improve the level of LDL-C reduction in serum by more than 20% compared with inc-L96.
  • inc-G12 only differs in the atom connected to the 1' position of the ribose ring. GalNAc 1b is carbon, while inc-G12 is oxygen. The connecting arm of inc-G12 is longer than that of GalNAc 1b.
  • inc-G12 is more than 15% higher than that of GalNAc 1b, which is significantly improved.
  • inc-G1 the only difference between inc-G5 and inc-G1 is the 2' position of the ribose ring.
  • Inc-G5 is a methoxy group
  • inc-G1 is a hydrogen group.
  • inc-G5 can reduce it by 50%, while inc-G1 only reduces it by about 15%.
  • the reduction level of inc-G5 is more than 30% higher than that of inc-G1, and the difference is significant.
  • GalNAc compounds with similar chemical structures do not necessarily have similar oligonucleotide delivery efficiencies.
  • the effects of GalNAc oligonucleotide conjugates prepared from them on LDL-C levels in mouse serum are not consistent and are likely to have very large differences.
  • the Inclisiran siRNA sequence coupled with the GalNAc ligand first partially enters the liver cells with the help of GalNAc, inhibiting the target gene.
  • the rest of the siRNA in the serum is cleared by the kidneys. Since the siRNA in the plasma is mainly cleared by the kidneys, the siRNA sequence is also distributed in the kidneys in addition to the liver.
  • Wild-type C57BL/6 mice of 6-8 weeks old were used, with 6 mice in each group.
  • Each group was given siRNA conjugates with Cy5 fluorescent groups, inc-G1, inc-G2, inc-G3, inc-G4, inc-G5, inc-G6, inc-G7, inc-G8, inc-G9, inc-G10, inc-G11, inc-G12, inc-G13, G18-inc, inc-G25, G26-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b, and inc-GalNAc 2, respectively.
  • the negative control group was not given any drug.
  • the mice were weighed and given subcutaneous injections at a dose of 6 mg/kg. The injection volume should not exceed 0.1-0.2mL.
  • the hair on the mouse abdomen was shaved clean, and the mouse was placed in a supine position in a small animal living imaging system after isoflurane anesthesia.
  • the imaging of the mouse was observed under the Cy5 channel 4 hours and 8 hours after drug administration.
  • the living imaging software Living Image was used to count the luminescence intensity of the mouse and compare the differences between different test groups.
  • liver fluorescence intensity of inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13 and G18-inc was significantly higher than that of other groups.
  • the highest inc-G5 had a fluorescence intensity of 9.12E+09 and 9.16E+09 at 4 hours and 8 hours, respectively. This indicates that the cleverly designed connection structure can significantly improve the delivery effect of oligonucleotide drugs.
  • the Cy5 fluorescently labeled oligonucleotides were distributed in the liver and kidney of mice.
  • the fluorescence intensity of the conjugates prepared by the GalNAc compound designed by the present invention is very different.
  • the fluorescence intensity of inc-G4, inc-G5, inc-G6, inc-G7, inc-G12, inc-G13 and G18-inc in the liver is significantly higher than that of other groups, that is, the relative content of oligonucleotides is significantly higher than that of other groups.
  • the highest fluorescence intensity is inc-G5, which reaches 9.12E+09 at 4 hours and 9.16E+09 at 8 hours. ( Figure 7)
  • the fluorescence intensities of inc-G2, inc-G3, and inc-G8 were also high, ranging from 8.00E+09 to 8.50E+09 at 4 and 8 hours.
  • the fluorescence intensities of inc-G9, inc-G10, and G26-inc were between 7.00E+09 and 8.00E+09 at 4 hours and between 6.50E+09 and 8.00E+09 at 8 hours.
  • the fluorescence intensities of inc-G1 and inc-G25 were between 5.00E+09 and 7.50E+09.
  • Inc-G5 with the highest fluorescence intensity can increase by 52.0% and 23.5% at 4 hours and 8 hours respectively compared with inc-G1 with the lowest fluorescence intensity, which is a significant improvement.
  • GalNAc compounds designed by the present invention with three antennae, one antennae or two antennae are used to prepare oligonucleotide conjugates with three or four GalNAc groups, all of which have very high fluorescence intensity in the liver. Moreover, these GalNAc compounds, whether conjugated to the 3' end or the 5' end of the oligonucleotide, can efficiently deliver the oligonucleotide to the liver.
  • the GalNAc compound YK-GAL-325 designed by the present invention has one antennae, and YK-GAL-326 has two antennae (see Table 1 in Example 2).
  • inc-G12 is a conjugate having three GalNAc groups obtained by connecting YK-GAL-325 through two phosphodiester bonds.
  • inc-G13 is a conjugate having four GalNAc groups obtained by connecting YK-GAL-326 through one phosphodiester bond.
  • the fluorescence intensities of inc-G12 and inc-G13 at 4 hours were 9.01E+09 and 8.98E+09, respectively, and at 8 hours were 9.09E+09 and 9.01E+09, respectively, which are comparable to inc-G5.
  • the GalNAc ligand of G18-inc was conjugated to the 5' end of the oligonucleotide, while the GalNAc ligand of inc-G5 was conjugated to the 3' end of the oligonucleotide.
  • the fluorescence intensity of G18-inc at 4 hours and 8 hours was 8.95E+09 and 9.13E+09, respectively, which was comparable to that of inc-G5.
  • the oligonucleotide conjugates with 3 or 4 GalNAc groups prepared by the GalNAc compounds with 3 antennae, 1 antennae or 2 antennae designed by the present invention have very high delivery efficiency, and no matter conjugated to the 3' end or 5' end of the oligonucleotide, they can efficiently deliver the oligonucleotide Inclisiran siRNA sequence to the liver.
  • the oligonucleotide conjugates prepared by the GalNAc compound designed by the present invention significantly improved the fluorescence absorption intensity of mouse liver compared with inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 prepared by the prior art GalNAc compounds.
  • inc-G5 was more than 50% higher than inc-L96.
  • oligonucleotides labeled with Cy5 fluorescence are distributed in the liver and kidney of mice.
  • the fluorescence intensity of inc-G4, inc-G5, inc-G6, inc-G7, inc-G12, inc-G13 and G18-inc in the liver is significantly higher than that of inc-L96, inc-NAG0052, inc-GalNAc1b and inc-GalNAc 2 at 4 hours and 8 hours.
  • liver fluorescence intensity of inc-G5 at 4 hours and 8 hours was 9.12E+09 and 9.16E+09, respectively, which was 10.9% and 52.9% higher than inc-L96, 13.9% and 40.5% higher than inc-NAG0052, 17.7% and 44.3% higher than inc-GalNAc 1b, and 110.6% and 127.3% higher than inc-GalNAc 2, which was a significant improvement.
  • the fluorescence intensities of inc-G6 at 4 hours and 8 hours were 8.92E+09 and 9.03E+09, respectively, which were significantly improved by 8.5% and 50.8% over inc-L96, 11.4% and 38.5% over inc-NAG0052, 15.1% and 42.2% over inc-GalNAc 1b, and 106.0% and 124.1% over inc-GalNAc 2.
  • Oligonucleotide conjugates prepared from GalNAc compounds with similar structures are likely to have very different efficiencies in delivering oligonucleotides to the liver; oligonucleotide conjugates prepared from GalNAc compounds with large structural differences are also likely to have very similar efficiencies in delivering oligonucleotides to the liver.
  • inc-G5 only changes the prolinol structure in the main chain of inc-L96 to a ribose ring structure, and the other structures are exactly the same.
  • the liver fluorescence intensity of inc-G5 can be increased by more than 50% compared with inc-L96, and the delivery efficiency is significantly improved.
  • inc-G12 Compared with GalNAc 1b, inc-G12 only differs in the atom connected to the 1’ position of the ribose ring.
  • GalNAc 1b is carbon, while inc-G12 is oxygen.
  • the connecting arm of inc-G12 is longer than that of GalNAc 1b.
  • the other structures are exactly the same, but the liver fluorescence intensity of inc-G12 is more than 40% higher than that of GalNAc 1b.
  • inc-G5 is a methoxy group while inc-G1 is a hydrogen group.
  • the liver fluorescence intensity of inc-G5 is more than 50% higher than that of inc-G1.
  • GalNAc compounds with similar chemical structures do not necessarily have similar oligonucleotide delivery efficiencies. On the contrary, they are likely to have very large differences.
  • the experimental animals used were 6-9 week old SD male rats, 30 rats in each group. Each group was given siRNA conjugates inc-G1, inc-G2, inc-G3, inc-G4, inc-G5, inc-G6, inc-G7, inc-G8, inc-G9, inc-G10, inc-G11, inc-G12, inc-G13, G18-inc, inc-G25, G26-inc, inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2.
  • the rats were weighed and given a dose of 5 mg/kg, subcutaneously, with a concentration of 1 mg/mL and a volume of 5 mL.
  • Tissue samples were collected at 9 time points, namely 6, 24, 72, 168, 336, 504, 672, 1008 and 1344 h after administration: the experimental animals were killed with carbon dioxide, the liver was removed and rinsed with pre-cooled saline, then dried with filter paper, weighed and transferred to a labeled tube, and homogenized at a ratio of 1:9 (1 g of tissue was added to 9 mL of homogenate) under ice-cold conditions (homogenate: 100 mM Tris, 10 mM EDTA, pH 8.0). About 800 ⁇ L of the homogenized sample was stored at -80°C, and the drug concentration in the liver was detected by LC-MS/MS.
  • the half-lives of the conjugates prepared by the GalNAc compounds designed by the present invention vary greatly.
  • the half-lives of inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13 and G18-inc are significantly improved compared with other groups.
  • the half-lives of inc-G5, inc-G6, inc-G7 and G18-inc reached 110 hours, 103 hours, 103 hours and 102 hours, respectively, and inc-G4, inc-G11 and inc-G13 also reached 85 hours. (Figure 8)
  • inc-G2, inc-G3, inc-G9, inc-G25 and G26-inc are between 70-85 hours.
  • the half-lives of inc-G8 and inc-G10 are between 60-70 hours.
  • the shortest half-life is inc-G1, which is 56 hours. ( Figure 9)
  • inc-G5 with the longest half-life and inc-G1 with the shortest half-life differ by 54 hours.
  • the half-life of inc-G5 is twice that of inc-G1, which is a very significant difference.
  • the GalNAc compounds with three antennae, one antennae or two antennae designed by the present invention are used to prepare conjugates with three or four GalNAc groups, all of which have a long half-life in mice, and the half-life is long regardless of whether the GalNAc compound is conjugated to the 3' end or the 5' end of the oligonucleotide.
  • the GalNAc compound YK-GAL-325 designed by the present invention has one antennae, and YK-GAL-326 has two antennae (see Table 1 in Example 2).
  • Inc-G12 is a conjugate having three GalNAc groups obtained by connecting YK-GAL-325 through two phosphodiester bonds.
  • Inc-G13 is a conjugate having four GalNAc groups obtained by connecting YK-GAL-326 through one phosphodiester bond.
  • the half-lives of inc-G12 and inc-G13 in mice are 101 hours and 95 hours, respectively, which are equivalent to inc-G5.
  • the GalNAc ligand of G18-inc is conjugated to the 5' end of the oligonucleotide, while the GalNAc ligand of inc-G5 is conjugated to the 3' end of the oligonucleotide.
  • the half-life of G18-inc in mice reached 102 hours, which is comparable to that of inc-G5.
  • the oligonucleotide conjugates with 3 or 4 GalNAc groups prepared by the GalNAc compounds with 3 antennae, 1 antennae or 2 antennae designed by the present invention are very stable in mice. The half-life was longer whether conjugated to the 3' or 5' end of the oligonucleotide.
  • the oligonucleotide conjugates prepared by the GalNAc compounds designed by the present invention have significantly improved half-life in mice compared with inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2 prepared by the GalNAc compounds of the prior art.
  • inc-G5 is 48.6% higher than inc-L96.
  • the conjugates prepared from the prior art GalNAc compounds including inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2, have half-lives in mice of 74 hours, 75 hours, 79 hours and 65 hours, respectively.
  • the conjugates prepared from the GalNAc compounds of the present invention including inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13 and G18-inc, have significantly improved half-lives in mice compared with the prior art GalNAc.
  • inc-G5 was significantly improved by 48.6%, 46.7%, 39.2% and 69.2% compared with inc-L96, inc-NAG0052, inc-GalNAc 1b and inc-GalNAc 2, respectively.
  • inc-G25 and inc-GalNAc 2 are oligonucleotide conjugates with one GalNAc group, but the half-life of inc-G25 is significantly increased by 15.4% compared with inc-GalNAc 2.
  • Oligonucleotide conjugates prepared from GalNAc compounds with similar structures are likely to have very different half-lives in mice; oligonucleotide conjugates prepared from GalNAc compounds with large structural differences are also likely to have very similar half-lives in mice.
  • inc-G5 only changes the prolinol structure in the main chain of inc-L96 to a ribose ring structure, and the other structures are exactly the same.
  • the half-life of inc-G5 can be increased by 48.6% compared with inc-L96, which is a significant improvement.
  • inc-G12 differs only in the atom connected to the 1' position of the ribose ring.
  • GalNAc1b is carbon, while inc-G12 is oxygen.
  • the connecting arm of inc-G12 is longer than that of GalNAc 1b.
  • the other structures are exactly the same, but the half-life of inc-G12 is significantly increased by 27.8% compared with GalNAc 1b.
  • inc-G5 is a methoxy group
  • inc-G1 is a hydrogen group
  • the half-life of inc-G5 is significantly increased by 96.4% compared with inc-G1.
  • oligonucleotide conjugates prepared from GalNAc compounds with similar chemical structures will have similar half-lives in mice. On the contrary, they are likely to have very large differences.
  • the present invention designs a series of novel GalNAc compounds, such as YK-GAL-304, YK-GAL-305, YK-GAL-306, YK-GAL-307, YK-GAL-311, YK-GAL-318, YK-GAL-325 and YK-GAL-326.
  • the GalNAc oligonucleotide conjugates prepared therefrom can achieve efficient liver-targeted delivery, and the activity and half-life are significantly improved compared with the representative GalNAc compounds in the prior art.
  • the designed GalNAc compound has a significantly different chemical structure compared to the prior art GalNAc compound.
  • the designed GalNAc compound of the present invention introduces a ribose ring structure into the linker arm and introduces an oxygen or sulfur atom into the 1' position of the ribose ring.
  • the oligonucleotide conjugates inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13 and G18-inc prepared from the GalNAc compounds designed by the present invention have significantly improved delivery efficiency and half-life compared with other groups. It shows that the cleverly designed connection structure can significantly improve the bioavailability of the drug and improve the pharmacokinetic properties of the drug, and exert better drug efficacy.
  • the GalNAc compounds with 3 antennae, 1 antennae or 2 antennae designed by the present invention are used to prepare conjugates with 3 or 4 GalNAc groups, all of which have high activity and long half-life.
  • oligonucleotide conjugates prepared from GalNAc compounds with similar structures are very likely to be very different; the activity and half-life of oligonucleotide conjugates prepared from GalNAc compounds with large structural differences are also very likely to be very close.
  • the GalNAc compounds with three antennae, one antennae or two antennae designed by the present invention are used to prepare conjugates with three or four GalNAc groups, all of which have very high inhibition rates. Moreover, the GalNAc compounds can effectively inhibit the expression of PCSK9 protein in serum regardless of whether they are conjugated to the 3' end or the 5' end of the oligonucleotide.
  • the GalNAc compounds with three antennae, one antennae or two antennae designed by the present invention can prepare oligonucleotide conjugates with three or four GalNAc groups, all of which have very high inhibition rates. Moreover, these GalNAc compounds, whether conjugated to the 3' end or the 5' end of the oligonucleotide, can effectively inhibit the expression of PCSK9 gene in the liver.
  • inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13 and G18-inc caused the LDL-C reduction level to be significantly higher than that of other groups.
  • the reduction level of inc-G5 on the 7th day and the 14th day reached 49.6% and 54.1%, respectively.
  • the LDL-C reduction level in mouse serum was significantly improved.
  • inc-G5 on the 7th day and the 14th day was 20.4% and 23.5% higher than that of inc-L96, respectively. This shows that the cleverly designed connection structure can significantly improve the bioavailability of the drug and exert better efficacy.
  • Oligonucleotide conjugates prepared from GalNAc compounds with similar structures are likely to have very different effects on the reduction of LDL-C in mouse serum; oligonucleotide conjugates prepared from GalNAc compounds with large structural differences are also likely to have very similar effects on the reduction of LDL-C in mouse serum.
  • the GalNAc compounds with three antennae, one antennae or two antennae designed in the present invention are used to prepare oligonucleotide conjugates with three or four GalNAc groups, all of which have very high fluorescence intensity. Moreover, these GalNAc compounds, whether conjugated to the 3' end or the 5' end of the oligonucleotide, can efficiently deliver the oligonucleotide to the liver.
  • Oligonucleotide conjugates prepared from GalNAc compounds with similar structures are likely to have very different efficiencies in delivering oligonucleotides to the liver; oligonucleotide conjugates prepared from GalNAc compounds with large structural differences are also likely to have very similar efficiencies in delivering oligonucleotides to the liver.
  • inc-G4, inc-G5, inc-G6, inc-G7, inc-G11, inc-G12, inc-G13 and G18-inc was significantly improved compared with other groups.
  • the half-life of inc-G5, inc-G6, inc-G7, inc-G12 and G18-inc reached 110 hours, 103 hours, 103 hours, 101 hours and 102 hours, respectively.
  • inc-NAG0052, inc-GalNAc1b and inc-GalNAc 2 prepared by the prior art GalNAc compounds the half-life in mice was significantly prolonged.
  • inc-G5 was 48.6% higher than inc-L96. This shows that the cleverly designed connection structure can significantly improve the pharmacokinetic properties of the drug in vivo.
  • the GalNAc compounds designed by the present invention with 3 antennae, 1 antennae or 2 antennae are used to prepare conjugates with 3 or 4 GalNAc groups, which have a long half-life in mice. Moreover, the half-life of the GalNAc compound is longer regardless of whether it is conjugated to the 3' end or the 5' end of the oligonucleotide.
  • Conjugates prepared from GalNAc compounds with similar structures are likely to have very different half-lives in mice; oligonucleotide conjugates prepared from GalNAc compounds with large structural differences are also likely to have very similar half-lives in mice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明提供了一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物。由本发明中提供的寡核苷酸缀合物,可实现高效的肝靶向递送,提高了药物疗效。

Description

一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物
本申请要求发明名称为“一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物”的中国专利申请202311118366.4的优选权,此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本发明涉及生物医药领域,具体涉及一种具有核糖环结构的GalNAc化合物,由其制备的GalNAc寡核苷酸缀合物。
背景技术
核酸药物尤其是寡核苷酸药物,由于其合成简单、活性较高而得到广泛应用。寡核苷酸药物通常包括反义寡核苷酸(ASO)、小干扰RNA(siRNA)、微小RNA(miRNA)和核酸适配体等。
寡核苷酸是一类短的DNA或RNA分子、寡聚体,寡核苷酸很容易以序列特异性的方式与它们各自的互补寡核苷酸、DNA或RNA结合,形成双链体,或者更不常见的是更高阶的杂合体。这种基本特性使得寡核苷酸在基因检测、靶向基因治疗的研究和医药学中具有广泛的应用。这些小片段的核酸可以制造为具有任何指定序列的单链分子。在自然界中,寡核苷酸通常是在基因表达调节中起作用的小RNA分子,或者是源自较大核酸分子分解的降解中间体。
RNA干涉是一个针对外源基因的自然防御机制。siRNA能够通过对特定序列的识别并分解目标mRNA的方式敲除目标基因。
N-乙酰半乳糖胺(GalNAc),是一种与肝表面去唾液酸糖蛋白受体(ASGPR)结合的配体。去唾液酸糖蛋白受体是肝细胞表面特异性表达的一种内吞型受体。近年来,利用ASGPR的高亲和性配体GalNAc作为靶向分子,在核酸药物的肝靶向递送方面取得了一定的进展。例如,阿尔尼拉姆公司(Alnylam pharmaceuticals,Inc.)报道了基于GalNAc缀合技术的siRNA在小鼠体内发挥基因沉默活性(Nair JK,et al.J.Am.Chem.Soc.2014,136,16958)。文中报道了GalNAc与siRNA的缀合物,在体内和体外实验中均展现 了良好的递送活性。通过皮下给药的小鼠体内实验,单一剂量的ED50确定为1mg/kg,单次注射剂量小于1mL。在长期给药实验中,每周皮下注射一次,可获得长达9个月的稳定干扰活性。研究发现,四触角和三触角GalNAc化合物,对ASGPR的亲和力要远远高于双触角和单触角GalNAc化合物。
前蛋白转化酶枯草溶菌素9(PCSK9)是一种由692个氨基酸组成的糖蛋白,属前蛋白转化酶(PCs)家族中的第九个成员,是一种分泌型丝氨酸蛋白酶,主要在肝脏和肠道等组织中表达,然后分泌到血液中。PCSK9进入血液循环后可与肝细胞表面的低密度脂蛋白受体(LDL-R)的表皮生长因子样结构域特异性结合,引导其进入肝细胞到达溶酶体,使LDL-R在溶酶体中降解,从而导致肝细胞表面LDL-R减少,进而降低肝脏结合和清除LDL-C的能力,最终导致血液中LDL-C水平升高。因此,可通过抑制PCSK9治疗高胆固醇血症。此外,最新研究显示,PCSK9升高与肥胖及2型糖尿病密切相关,也与肾病综合症及蛋白尿等慢性肾病密切相关,因此,通过抑制PCSK9可以成为预防和治疗这些与其相关的疾病的重要手段。
不同的GalNAc配体结构,对核酸递送效果差别很大。为了提高对肝靶向药物,例如PCSK9抑制剂类药物的递送效果,本领域仍然有开发新的GalNAc配体化合物的需求。
发明内容
本发明设计了一系列新型GalNAc化合物,通过固相合成方法,本发明的新型GalNAc化合物可以与寡核苷酸高效缀合,由其制备的GalNAc寡核苷酸缀合物,与现有技术结构类似的GalNAc化合物相比,显著提高了肝靶向递送效率。
第一方面,本发明提供式(I)化合物或其药学上可接受的盐:
其中,
R1为氧或硫,优选为氧;
R2为氢、C1-4烷基、C1-4烷氧基或卤素;
R3为氢、羟基保护基、含磷活性反应基团、或 -CO(CH2)xCOOH,其中x是1-10的整数,为可控孔玻璃或聚苯乙烯;
R4为氢或羟基保护基;
A为-(CH2)a-、-(CH2CH2O)b-、-((CH2)cNHCO)d-或-((CH2)cCONH)d-,其中,a是1-15的整数,优选为3-13的整数,b是1-7的整数,优选为2-5的整数,c为1-7的整数,优选为2-6的整数,d为1-5的整数,优选为1-3的整数;
B为-(CH2)e-,其中e为0-7的整数,优选为1-5的整数。
L为-CONH-或-NHCO-;
G为
其中,
T为羟基用酰基全保护的N-乙酰-半乳糖胺、羟基用酰基全保护的半乳糖、羟基用酰基全保护的半乳糖胺、羟基用酰基全保护的N-甲酰-半乳糖胺(N-formyl-galactosamine)、羟基用酰基全保护的N-丙酰-半乳糖胺(N-propionyl-galactosamine)、羟基用酰基全保护的N-正丁酰-半乳糖胺(N-n-butanoyl-galactosamine)或羟基用酰基全保护的N-异丁酰-半乳糖胺(N-isobutanoyl-galactosamine),优选为羟基用酰基全保护的N-乙酰-半乳糖胺,其中酰基例如为乙酰基或苯甲酰基,优选为乙酰基;
X1为-(CH2)f-或-(CH2CH2O)fCH2-,其中f是1-5的整数;
X2为-(CH2)g-,其中g是1-6的整数;
Y1为0或1;
Y2为0、1或2;
Y3为1、2或3;
m为0-4的整数,优选为0、1或2;
n为0-4的整数,优选为0、1或2。
在一种实施方案中,A为-(CH2)10-、-(CH2)7-、-(CH2)8-、-(CH2)9-、-(CH2)11-、-(CH2)12-、-(CH2CH2O)3-、-(CH2)4NHCO-或-(CH2)6NHCO-。
在一种实施方案中,B为-(CH2)0-、-CH2-、-(CH2)2-、-(CH2)4-或-(CH2)3-。
在一种实施方案中,R1为氧。
在一种实施方案中,R1为α构型或β构型。
在一种实施方案中,R2为氢或-OCH3
在一种实施方案中,R3为羟基保护基或含磷活性反应基团。优选地,R3为酰基、甲硅烷基(silyl)、三苯甲基(trityl)、单甲氧基三苯甲基、4,4′-二甲氧基三苯甲基或更优选地,R3为乙酰基、1,1,3,3-四异丙基二硅氧烷基(TIPDS,1,1,3,3-tetraisopropyldisiloxanylidene)、叔丁基二甲基甲硅烷基(t-butyldimethylsilyl)、苯基二甲基甲硅烷基、4,4′-二甲氧基三苯甲基或
在另一种实施方案中,R3在又一种实施方案中,R3为-CO(CH2)2COOH。
在一种实施方案中,R4为羟基保护基,优选为三苯甲基、单甲氧基三苯甲基或4,4′-二甲氧基三苯甲基,更优选为4,4′-二甲氧基三苯甲基。
在一种实施方案中,m为1。
在一种实施方案中,n为0。
在一种实施方案中,G为
在一种实施方案中,所述式(I)化合物为具有以下结构的化合物 YK-GAL-301、YK-GAL-302、YK-GAL-303、YK-GAL-304、YK-GAL-305、YK-GAL-306、YK-GAL-307、YK-GAL-308、YK-GAL-309、YK-GAL-310、YK-GAL-311、YK-GAL-312或YK-GAL-313:


其中为可控孔玻璃。
在另一种实施方案中,所述式(I)化合物为具有以下结构的化合物YK-GAL-314、YK-GAL-315、YK-GAL-316、YK-GAL-317、YK-GAL-318、YK-GAL-319、YK-GAL-320、YK-GAL-321、YK-GAL-322、YK-GAL-323、YK-GAL-324、YK-GAL-325或YK-GAL-326:


可选地,上述式(I)化合物或其药学上可接受的盐能够结合脱唾液酸糖蛋白受体(ASGPR)。
第二方面,本发明提供一种缀合物,其包含寡核苷酸和GalNAc部分, 具有如下所示结构:
其中,Oligo代表寡核苷酸,R1、R2、R3、R4、A、B、L、G、m和n如前所述。
可选地,在所述缀合物中的G的N-乙酰-半乳糖胺中的羟基保护基乙酰基被脱除。
可选地,所述寡核苷酸包括非硫代寡核苷酸和硫代寡核苷酸。在一种实施方案中,所述非硫代寡核苷酸和所述GalNAc部分通过磷酸酯键连接。在另一种实施方案中,所述硫代寡核苷酸和所述GalNAc部分通过硫代磷酸酯键连接。
可选地,所述寡核苷酸包括小干扰核苷酸(siRNA)、DNA、微小RNA(miRNA)、小激活RNA(saRNA)、小向导RNA(small guide RNA,sgRNA)、转运RNA(tRNA)、反义核苷酸(ASO)或适配体(Aptamer),优选为反义核苷酸(ASO)或小干扰核苷酸(siRNA)。在一种实施方案中,所述反义核苷酸(ASO)或小干扰核苷酸(siRNA)中每个核苷酸各自独立地为修饰或未修饰的核苷酸。
可选地,所述寡核苷酸调节靶基因的表达。
第三方面,本发明提供一种药物组合物,其包含上述第二方面的缀合物和至少一种药学上可接受的赋形剂。
第四方面,本发明提供上述第二方面的缀合物或上述第三方面的药物组合物在制备用于治疗和/或预防由肝细胞中特定基因的表达而引起的病理状况或疾病的药物中的用途,可选地,所述特定基因选自乙型肝炎病毒基因、血管生成素蛋白3基因或者载脂蛋白C3基因。
在一种实施方案中,所述疾病选自慢性肝病、肝炎、肝纤维化疾病、肝增生性疾病和血脂异常;可选地,所述血脂异常为高胆固醇血症、高甘油三 酯血症或动脉粥样硬化。
第五方面,本发明提供一种抑制肝细胞中特定基因表达的方法,包括将有效量的上述第二方面的缀合物或上述第三方面的药物组合物与所述肝细胞进行接触;
可选地,所述特定基因选自以下基因中的一种:前蛋白转化酶枯草溶菌素9基因(PCSK9)、ApoB、ApoC、ANGPTL3、SCD1、FVII、p53、HBV、HCV;
可选地,所述特定基因选自前蛋白转化酶枯草溶菌素9基因(PCSK9)、乙型肝炎病毒基因、血管生成素样蛋白3基因或者载脂蛋白C3基因。
第六方面,本发明提供一种试剂盒,其包括上述第二方面的缀合物。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1显示GalNAc缀合siRNA序列inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13、G18-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2在第7天和第14天对小鼠血清中PCSK9蛋白表达抑制率。
图2显示GalNAc缀合siRNA序列inc-G1、inc-G2、inc-G3、inc-G8、inc-G9、inc-G10、inc-G25、G26-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2在第7天和第14天对小鼠血清中PCSK9蛋白表达抑制率。
图3显示GalNAc缀合siRNA序列inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13、G18-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2在第14天对小鼠肝脏中PCSK9基因表达抑制率。
图4显示GalNAc缀合siRNA序列inc-G1、inc-G2、inc-G3、inc-G8、inc-G9、inc-G10、inc-G25、G26-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2在第14天对小鼠肝脏中PCSK9基因表达抑制率。
图5显示GalNAc缀合siRNA序列inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13、G18-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2在第7天和第14天对小鼠血清中LDL-C水平的影响。
图6显示GalNAc缀合siRNA序列inc-G1、inc-G2、inc-G3、inc-G8、inc-G9、 inc-G10、inc-G25、G26-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2在第7天和第14天对小鼠血清中LDL-C水平的影响。
图7显示GalNAc缀合siRNA序列inc-G5、inc-G7、inc-L96和inc-GalNAc 1b组给药8小时后,小鼠活性成像情况。(a:inc-G5;b:inc-G7;c:inc-L96;d:inc-GalNAc 1b)
图8显示GalNAc缀合siRNA序列inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13、G18-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2在小鼠肝脏中半衰期。
图9显示GalNAc缀合siRNA序列inc-G1、inc-G2、inc-G3、inc-G8、inc-G9、inc-G10、inc-G25、G26-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2在小鼠肝脏中半衰期。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明可在不偏离本发明基本属性的情况下以其它具体形式来实施。应该理解的是,在不冲突的前提下,本发明的任一和所有实施方案都可与任一其它实施方案或多个其它实施方案中的技术特征进行组合以得到另外的实施方案。本发明包括这样的组合得到的另外的实施方案。
本发明中提及的所有出版物和专利在此通过引用以它们的全部内容纳入本发明。如果通过引用纳入的任何出版物和专利中使用的用途或术语与本发明中使用的用途或术语冲突,那么以本发明的用途和术语为准。
本文所用的章节标题仅用于组织文章的目的,而不应被解释为对所述主题的限制。
除非另有规定,本文使用的所有技术术语和科学术语具有要求保护主题所属领域的通常含义。倘若对于某术语存在多个定义,则以本文定义为准。
除了在工作实施例中或另外指出之外,在说明书和权利要求中陈述的定量性质例如剂量的所有数字应理解为在所有情况中被术语“约”修饰。还应理 解的是,本申请列举的任何数字范围意在包括该范围内的所有的子范围和该范围或子范围的各个端点的任何组合。
本发明中使用的“包括”、“含有”或者“包含”等类似的词语意指出现该词前面的要素涵盖出现在该词后面列举的要素及其等同,而不排除未记载的要素。本文所用的术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由...组成”、或“由...组成”。
术语“药学上可接受的”在本申请中是指:化合物或组合物在化学上和/或在毒理学上与构成制剂的其它成分和/或与用其预防或治疗疾病或病症的人类或哺乳动物相容。
术语“药学上可接受的盐”是指本发明化合物的相对无毒、无机酸或有机酸加成盐。例如,参见S.M.Berge等人“Pharmaceutical Salts”,J.Pharm.Sci.1977,66,1-19。其中,无机酸例如盐酸、氢溴酸、氢碘酸、硫酸、磷酸或硝酸等;有机酸例如甲酸、乙酸、乙酰乙酸、丙酮酸、三氟乙酸、丙酸、丁酸、己酸、庚酸、十一酸、月桂酸、苯甲酸、水杨酸、2-(4-羟基苯甲酰基)-苯甲酸、樟脑酸、肉桂酸、环戊烷丙酸、二葡萄糖酸、3-羟基-2-萘甲酸、烟酸、巴莫酸、果胶酯酸、3-苯基丙酸、苦味酸、特戊酸、2-羟基乙磺酸、衣康酸、胺基磺酸、三氟甲磺酸、十二烷基硫酸、乙磺酸、苯磺酸、对-甲苯磺酸、甲磺酸、2-萘磺酸、萘二磺酸、樟脑磺酸、柠檬酸、酒石酸、硬脂酸、乳酸、草酸、丙二酸、琥珀酸、苹果酸、己二酸、海藻酸、马来酸、富马酸、D-葡萄糖酸、扁桃酸、抗坏血酸、葡庚糖酸、甘油磷酸、天冬胺酸、磺基水杨酸等。例如,可使用HCl(或盐酸)、HBr(或氢溴酸溶液)、甲磺酸、硫酸、酒石酸或富马酸与式(I)所示的化合物形成药学上可接受的盐。
术语“烷基”在本申请中是指包括具有规定碳原子数的支链和直链饱和脂族一价烃基。例如“C1-4烷基”包括甲基、乙基、丙基、异丙基、正丁基、异丁基、仲丁基和叔丁基。
术语“烷氧基”是指式-OR,其中R为本文所定义的烷基。烷氧基的非限制性列表为甲氧基、乙氧基、正丙氧基、1-甲基乙氧基(异丙氧基)、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基、苯氧基和苯甲酰氧基。在一些情况下,烷氧基可以是-OR,其中R为未取代的C1-4烷基。烷氧基可以是取代的或未取代的。
“卤素”是指氟(F)、氯(Cl)、溴(Br)和碘(I),优选地是氟(F)和氯(Cl)。 在一种实施方案中,卤素是氟。
本文所用的术语“保护基”是指引入分子中以防止分子中现有基团进行不期望的化学反应的任何原子或原子团,其可以被去除以留下未受保护的基团。
羟基保护基可以使用例如在RNA或其衍生物的合成中通常被用于保护核糖结构的羟基的保护基团,也可参照Green等在Protective Groups in Organic Synthesis,3rdEdition,1999,John Wiley&Sons,Inc.文献中记载的保护基团,例如:乙酰基、苯氧乙酰基、新戊酰基、苄基、4-甲氧基苄基、苯甲酰基、三苯基甲基、4,4’-二甲氧基三苯甲基(DMTr)、单甲氧基三苯甲基(MMTr,monomethoxytrityl)、9-苯基-呫吨-9-基(9-phenyl-xanthen-9-yl)、9-对甲苯基-呫吨-9-基(9-(p-tolyl)-xanthen-9-yl)、三甲基甲硅烷基、叔丁基二甲基甲硅烷基(TBDMS)、氰基甲氧基甲基、2-(氰基乙氧基)乙基、氰基乙氧基甲基等,优选4,4’-二甲氧基三苯甲基(DMTr,4,4′-dimethoxytrityl)。
本文所用术语“含磷活性反应基团”是指能够通过亲核攻击反应,与包含在另一个分子中、尤其是另一个核苷酸单元中或另一个核苷酸类似物中的羟基或胺基发生反应的含磷基团。通常,这样的反应产生核苷酸单元或核苷酸类似物单元与另一个核苷酸单元或核苷酸类似物单元连接的酯型核苷间键。这些含磷活性反应基团是本领域已知的并且包含PIII或PV价态的磷原子,所述含磷活性反应基团包括但不限于亚磷酰胺、H-膦酸酯、磷酸三酯和含磷手性助剂。含磷活性反应基团例如:
2-氰乙氧基-N,N-二异丙胺基磷基、
2-丙烯氧基--N,N-二异丙胺基磷基、
甲氧基-N,N-二异丙胺基膦基、
双二异丙胺基磷基等。在一种实施方案中,含磷活性反应 基团为
本文所述的可控孔玻璃(CPG)和聚苯乙烯(高度交联的聚苯乙烯微珠)是用于寡核苷酸合成的固体载体,其在合成过程中与寡核苷酸结合的不溶性颗粒,是可商购的。
本文所用的术语“核苷酸”包括天然存在的核苷酸和化学修饰的核苷酸。化学修饰的核苷酸是非天然存在的核苷酸,在本文中也称为“核苷酸类似物”。
本文中针对“T”描述的“羟基用酰基全保护的”是指半乳糖结构中除了用于与X1连接的羟基之外其它羟基都被酰基保护,其中酰基例如为乙酰基、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、异丁酰基或苯甲酰基。
式(I)化合物或其药学上可接受的盐
本发明提供式(I)化合物或其药学上可接受的盐:
其中,
R1为氧或硫,优选为氧;
R2为氢、C1-4烷基、C1-4烷氧基或卤素;
R3为氢、羟基保护基、含磷活性反应基团、或-CO(CH2)xCOOH,其中x是1-10的整数,为可控孔玻璃或聚苯乙烯;
R4为氢或羟基保护基;
A为-(CH2)a-、-(CH2CH2O)b-、-((CH2)cNHCO)d-或-((CH2)cCONH)d-,其中,a是1-15的整数,优选为3-13的整数,b是1-7的整数,优选为2-5的整数,c为1-7的整数,优选为2-6的整数,d为1-5的整数,优选为1-3的整数;
B为-(CH2)e-,其中e为0-7的整数,优选为1-5的整数。
L为-CONH-或-NHCO-;
G为
其中,
T为羟基用酰基全保护的N-乙酰-半乳糖胺、羟基用酰基全保护的半乳糖、羟基用酰基全保护的半乳糖胺、羟基用酰基全保护的N-甲酰-半乳糖胺(N-formyl-galactosamine)、羟基用酰基全保护的N-丙酰-半乳糖胺(N-propionyl-galactosamine)、羟基用酰基全保护的N-正丁酰-半乳糖胺(N-n-butanoyl-galactosamine)或羟基用酰基全保护的N-异丁酰-半乳糖胺(N-isobutanoyl-galactosamine)。例如,T为羟基用酰基全保护的N-乙酰-半乳糖胺,其中酰基为乙酰基或苯甲酰基,优选为乙酰基;
X1为-(CH2)f-或-(CH2CH2O)fCH2-,其中f是1-5的整数;
X2为-(CH2)g-,其中g是1-6的整数;
Y1为0或1;
Y2为0、1或2;
Y3为1、2或3;
m为0-4的整数,优选为0、1或2;
n为0-4的整数,优选为0、1或2。
在一种实施方案中,A为-(CH2)10-、-(CH2)7-、-(CH2)8-、-(CH2)9-、-(CH2)11-、-(CH2)12-、-(CH2CH2O)3-、-(CH2)4NHCO-或-(CH2)6NHCO-。
在一种实施方案中,B为-(CH2)0-、-CH2-、-(CH2)2-、-(CH2)4-或-(CH2)3-。
在一种实施方案中,R1为氧。
在一种实施方案中,R1为α构型或β构型。
在一种实施方案中,R2为氢或-OCH3
在一种实施方案中,R3为羟基保护基或含磷活性反应基团。羟基保护基例如可以为酰基(例如,乙酰基,苯氧乙酰基,4-异丙基苯氧乙酰基)、甲硅烷基(silyl)、三苯甲基(trityl)、单甲氧基三苯甲基(MMTr)或4,4′-二甲氧基三苯甲基(DMTr),含磷活性反应基团例如可以为 优选地,R3为乙酰基、1,1,3,3-四异丙基二硅氧烷基(TIPDS,1,1,3,3-tetraisopropyldisiloxanylidene)、叔丁基二甲基甲硅烷基(t-butyldimethylsilyl)、苯基二甲基甲硅烷基、4,4′-二甲氧基三苯甲基或更优选地,R3
在另一种实施方案中,R3在又一种实施方案中,R3为-CO(CH2)2COOH。
在一种实施方案中,R4为羟基保护基,优选为三苯甲基、单甲氧基三苯甲基或4,4′-二甲氧基三苯甲基,更优选为4,4′-二甲氧基三苯甲基。
在一种实施方案中,m为1。
在一种实施方案中,n为0。
在一种实施方案中,G为
在一种实施方案中,所述式(I)化合物为具有以下结构的化合物YK-GAL-301、YK-GAL-302、YK-GAL-303、YK-GAL-304、YK-GAL-305、YK-GAL-306、YK-GAL-307、YK-GAL-308、YK-GAL-309、YK-GAL-310、 YK-GAL-311、YK-GAL-312或YK-GAL-313:


其中为可控孔玻璃。
在另一种实施方案中,所述式(I)化合物为具有以下结构的化合物YK-GAL-314、YK-GAL-315、YK-GAL-316、YK-GAL-317、YK-GAL-318、YK-GAL-319、YK-GAL-320、YK-GAL-321、YK-GAL-322、YK-GAL-323、YK-GAL-324、YK-GAL-325或YK-GAL-326:


可选地,上述式(I)化合物或其药学上可接受的盐能够结合脱唾液酸糖蛋白受体(ASGPR)。
缀合物
本发明提供一种缀合物,其包含寡核苷酸和GalNAc部分,具有如下所示结构:
其中,Oligo代表寡核苷酸,R1、R2、R3、R4、A、B、L、G、m和n如前所述。
本发明的缀合物可以通过上述式(I)化合物或其药学上可接受的盐与寡核苷酸的固相合成反应制备。GalNAc与寡核苷酸缀合常规的方法是固相合成方法。一种方法是把GalNAc化合物连接到CPG(Controlled Pore Glass,可控微孔玻璃)柱上,通过固相合成实现GalNAc化合物与寡核苷酸的连接。另一种方法是将GalNAc化合物先制备成亚磷酰胺单体,通过固相合成实现GalNAc化合物与寡核苷酸任意位置的连接。
本申请中的寡核苷酸包括单链寡核苷酸(例如反义核苷酸,简称ASO)和双链寡核苷酸(例如小干扰核苷酸,简称siRNA)。在一种优选的实施方案中,寡核苷酸包含7-30个核苷酸。通过这样的寡核苷酸制得的缀合物将更具有治疗价值。
在一种实施方案中,寡核苷酸选自小干扰核苷酸、DNA、微小RNA(miRNA)、小激活RNA(saRNA)、小向导RNA(small guide RNA,sgRNA)、转运RNA(tRNA)、反义核苷酸或适配体(aptamer),优选寡核苷酸为反义核苷酸或小干扰核苷酸。
本申请中的寡核苷酸包括天然的寡核苷酸和化学修饰的寡核苷酸。此处的化学修饰包括核苷修饰(包括糖部分修饰和核碱基修饰)和核苷间键联修饰。寡核苷酸的化学修饰不包括仅在核碱基序列上有差异的情形。此处的天然是指天然存在的RNA或DNA对应的情形。
天然的寡核苷酸进入细胞困难,且易被胞内核酸酶降解,作用效果较差。通过对寡核苷酸的化学修饰,可以改善其特性,增加其生物利用度。在众多 修饰的寡核苷酸中,最具代表性的是硫代寡核苷酸,其中一种硫代方式为磷酸二酯键中的一个非桥氧原子被硫原子所取代,例如
硫代寡核苷酸可以是市售的,也可以通过常规的固相合成方法制备。可以使用氢化黄原素作为硫化剂。例如,可参考CN1479745A和CN113150041A合成硫代寡核苷酸。
可选地,在所述缀合物中的G的N-乙酰-半乳糖胺中的羟基保护基乙酰基被脱除,例如,通过在碱性溶液中水解得到羟基。
在一种实施方案中,缀合物的GalNAc部分具有结构
R1、R2、A、B、L、X1、X2、Y1、Y2、Y3、m和n如前所述。
例如,寡核苷酸和所述GalNAc部分通过键或可切割的连接体连接。此处的键可包括但不限于磷酸酯键和硫代磷酸酯键。
本申请中所用的可切割的连接体是指内化后由细胞内代谢进行切割的连接体,例如通过水解、还原或酶促反应进行切割。合适的连接体包括但不限于酸不稳定连接体、水解不稳定连接体、酶促可切割连接体和还原不稳定连接体。酸不稳定连接体可参考ADC药物(Mylotarg,Besponsas,Trodelvys)中的酸不稳定连接体。
可选地,所述寡核苷酸包括非硫代寡核苷酸和硫代寡核苷酸。在一种实施方案中,所述非硫代寡核苷酸和所述GalNAc部分通过磷酸酯键连接。在另一种实施方案中,所述硫代寡核苷酸和所述GalNAc部分通过硫代磷酸酯键连接。
可选地,所述寡核苷酸包括小干扰核苷酸(siRNA)、DNA、微小RNA(miRNA)、小激活RNA(saRNA)、小向导RNA(small guide RNA,sgRNA)、转运RNA(tRNA)、反义核苷酸(ASO)或适配体(Aptamer),优选为反义核苷酸(ASO)或小干扰核苷酸(siRNA)。在一种实施方案中,所述反义核苷酸(ASO)或小干扰核苷酸(siRNA)中每个核苷酸各自独立地为修饰或未修饰的核苷酸。
可选地,所述寡核苷酸调节靶基因的表达。
药物组合物
除缀合物外,本申请提供的组合物可以包括可用于药物组合物中的任何物质。例如,组合物可以包括一种或多种药学上可接受的赋形剂或辅助成分,如但不限于一种或多种溶剂、分散介质、稀释剂、分散助剂、悬浮助剂、造粒助剂、崩解剂、填充剂、助流剂、液体媒剂、粘合剂、表面活性剂、等渗剂、增稠剂或乳化剂、缓冲剂、润滑剂、油、防腐剂、调味剂、着色剂等。赋形剂例如淀粉、乳糖或糊精。药学上可接受的赋形剂是本领域中众所周知的(参见例如Remington’s The Science and Practice of Pharmacy,第21版,A.R.Gennaro;Lippincott,Williams&Wilkins,Baltimore,MD,2006)。
可药用的稀释剂包括磷酸盐缓冲盐水(PBS),例如是无菌磷酸盐缓冲盐水。在一些实施方案中,缀合物以50-500μM溶液的浓度用于可药用的稀释剂中。WO 2007/031091提供合适的可药用的稀释剂、载体和辅料,还提供了合适的剂量、制剂、施用途径、组合物、剂型、与其他治疗药组合、前药制剂(该文献通过引用的方式并入)。
本发明的寡核苷酸缀合物可以与可药用的活性物质或惰性物质混合以制备药物组合物或制剂,可以通过常规消毒技术消毒,或可以进行无菌过滤。
试剂盒
本申请还提供包含如上所述的缀合物的试剂盒。在一些实施方案中,本申请提供的试剂盒包含容器,其包含如上所述的缀合物。在一些实施方案中,本申请提供的试剂盒进一步包括药学上可接受的辅料,例如稳定剂或防腐剂。在一些实施方案中,所述试剂盒还包含用于将缀合物与药学上可接受的辅料或其它成分(如果存在)进行混合的说明书。
实施例
下面结合实施例对本发明作进一步描述。但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。本发明中具体实施例中,所使用的原料均可通过市售获得。除非另有说明,所有的温度以摄氏度给出。本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:GalNAc-CPG化合物的合成
以下缩写字母分别代表如下试剂:DCM:二氯甲烷;PE:石油醚;EA:乙酸乙酯;THF:四氢呋喃;DMF:N,N-二甲基甲酰胺;ACN:乙腈;BF3·Et2O:三氟化硼乙醚;LiOH·H2O:一水氢氧化锂;DMTrCl:4,4′-二甲氧基三苯基氯甲烷;TEAB:三乙胺碳酸氢铵水溶液;HBTU:O-苯并三氮唑-四甲基脲六氟磷酸盐;DIPEA:N,N-二异丙基乙胺;DMAP:4-二甲氨基吡啶;TMSOTf:三甲硅烷基三氟甲磺酸酯;TIPDSCl2:1,3-二氯-1,1,3,3-四异丙基二硅氧烷;TEA·3HF:三乙胺三氢氟酸盐;Proton sponge:1,8-双二甲氨基萘。
1.YK-GAL-301的合成
合成路线如下:
步骤1:G1-3的合成
往干燥的化合物G1-1(781mg,3.00mmol),干燥的化合物G1-2(0.50g,2.31mmol)和3A分子筛(2.0g)中加入二氯甲烷(20mL),降温至0℃后加入三氟化硼乙醚(656mg,4.62mmol),并继续搅拌2h。加入饱和碳酸氢钠水溶液(20mL)淬灭反应,用二氯甲烷(10mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得黄色油状物G1-3(1.17g,2.81mmol,α、β混合异构体,93.7%),经高压制备分离得G8-1(533.2mg,1.28mmol,α构型,42.7%),G1-3(625.6mg,1.5mmol,β构型,50.1%)。1HNMR(400MHz,CDCl3)δppm 5.23-5.13(m,2H),4.27(dd,J=11.0,5.6Hz,1H),4.23-4.15(m,1H),4.09(dd,J=11.0,6.4Hz,1H),3.69-3.63(m,4H),3.37-3.28(m,1H),2.39-2.33(m,1H),2.29(t,J=7.6Hz,2H),2.19-1.94(m,8H),1.65-1.56(m,2H),1.53-1.48(m,2H),1.32-1.21(m,11H)。MS(ESI)m/z[M+Na]+=439.1。
步骤2:G1-4的合成
将G1-3(0.12g,288μmol)溶解在四氢呋喃(3.0mL)中,加入一水氢氧化锂(38.7mg,921μmol)的水溶液1.5mL,15℃搅拌12h。反应液减压浓缩除去溶剂,得黄色固体。粗产物G1-4(92mg)直接用于下一步。MS(ESI)m/z[M+Na]+=341.2。
步骤3:G1-5的合成
粗产物G1-4(92mg,288μmol)和无水吡啶(20mL×3)共旋蒸除水。将干燥后的G1-4和4,4′-二甲氧基三苯基氯甲烷(195mg,576μmol)溶解在吡啶(3.0mL)中,氮气保护下15℃搅拌28h。加入甲醇(10mL)淬灭反应,减压浓缩除去溶剂,得粗产物。制备色谱纯化(H2O(10mM NH4HCO3)-ACN),得白色固体G1-5(109.5mg,176.5μmol),收率61.3%。1HNMR(400MHz,CDCl3)δppm 7.48-7.41(m,2H),7.37-7.27(m,6H),7.21(dd,J=8.2,6.2Hz,1H),6.88-6.78(m,4H),5.15(dd,J=5.3,2.2Hz,1H),4.43-4.39(m,1H),3.98-3.91(m,1H),3.79(s,6H),3.62-3.56(m,1H),3.35-3.23(m,2H),3.15(dd,J=9.4,6.8Hz,1H),2.33(t,J=7.4Hz,5H),2.21-2.15(m,2H),2.07-2.00(m,1H),1.66-1.59(m,2H),1.44-1.41(m,2H),1.29-1.22(m,10H)。MS(ESI)m/z[M+Na]+=643.4。
步骤4:G1-6的合成
将G1-5(40mg,64.4μmol),二异丙基乙胺(16.7mg,129μmol)和O- 苯并三氮唑-四甲基脲六氟磷酸盐(36.7mg,96.6μmol)溶解在N,N-二甲基甲酰胺(0.5mL)中,加入GalNAc-NH2.TFA(123mg,64.4μmol,TFA),氮气保护下15℃搅拌1h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1197.4。
步骤5:G1-7的合成
将G1-7(154mg,64.2μmol),4-二甲氨基吡啶(15.7mg,128μmol),二异丙基乙胺(16.6mg,128μmol),和丁二酸酐(64.4mg,642μmol)溶解在N,N-二甲基甲酰胺(2.0mL)中,氮气保护下30℃搅拌48h。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G1-7(59mg,26.7μmol),收率41.5%。1HNMR(400MHz,CDCl3)δppm 7.44(d,J=7.6Hz,2H),7.32(d,J=8.5Hz,3H),7.25-7.14(m,5H),6.97(t,J=6.3Hz,3H),6.78(dd,J=11.8,8.6Hz,6H),6.48(s,1H),5.33(d,J=3.2Hz,3H),5.19-5.15(m,5H),4.59(d,J=8.3Hz,3H),4.18-4.03(m,10H),3.95-3.88(m,6H),3.77(s,6H),3.68-3.61(m,13H),3.52-3.46(m,3H),3.39-3.09(m,15H),2.61-2.48(m,4H),2.42(t,J=5.8Hz,5H),2.31-2.09(m,20H),2.03-1.99(m,16H),1.98-1.93(m,21H),1.72-1.54(m,16H),1.41(s,2H),1.24-1.21(m,10H)。MS(ESI)m/z[M-2H]2-=1247.4。
步骤6:YK-GAL-301的合成
将G1-7(59mg,22.7μmol),4-二甲氨基吡啶(2.77mg,22.7μmol),二异丙基乙胺(23.5mg,182μmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(43.1mg,113μmol)溶解在N,N-二甲基甲酰胺(4.0mL)中,随后加入CPG-NH2(425mg),40℃搅拌12h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到4mL乙酸酐/吡啶(1∶5)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-301(338mg,载量27.0μmol/g)。
2.YK-GAL-302的合成
合成路线如下:
步骤1:G2-1的合成
将化合物G2(800mg,3.84mmol)溶解在甲醇(16mL)中,加入硫酸(1.18g,11.7mmol),70℃搅拌16h。加入10mL硫酸钠淬灭反应,减压浓缩除去溶剂,得粗产物。柱层析纯化(DCM/MeOH),得无色油状物G2-1(470mg,2.11mmol),收率55.0%。1HNMR(400MHz,CDCl3)δppm 4.17(s,2H),3.78-3.65(m,13H),3.61(dd,J=5.4,3.7Hz,2H),2.30(s,1H)
步骤2:G2-2的合成
往化合物G1-1(660mg,2.54mmol),化合物G2-1(470mg,2.11mmol)和4A分子筛(900mg)中加入二氯甲烷(9.0mL),降温至0℃后加入三氟化硼乙醚(600mg,4.23mmol),并继续搅拌2h。随后15℃搅拌3h。加入饱和碳酸氢钠水溶液(30mL)淬灭反应,用二氯甲烷(30mL×3)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化 (PE/EA),得黄色油状物G2-2(443.3mg,1.05mmol),收率49.8%。1HNMR(400MHz,CDCl3)δppm 5.24(d,J=5.4Hz,1H),5.04-5.00(m,1H),4.36-4.23(m,2H),4.19-4.14(m,3H),3.87-3.80(m,1H),3.75(s,3H),3.73-3.68(m,5H),3.67-3.64(m,6H),2.45-2.38(m,1H),2.11-2.01(m,7H)。MS(ESI)m/z[M+Na]+=445.0。
步骤3:G2-3的合成
将G2-2(320mg,757μmol)溶解在四氢呋喃(2.5mL)中,加入一水氢氧化锂(95.3mg,2.27mmol)的水溶液2.5mL,15℃搅拌16h。反应液减压浓缩除去溶剂,得白色固体。粗产物G2-3(245mg)直接用于下一步。MS(ESI)m/z[M+Na]+=346.9。
步骤4:G2-4的合成
将干燥的粗产物G2-3(245mg,755μmol)和4,4′-二甲氧基三苯基氯甲烷(511mg,1.51mmol)溶解在吡啶(3.0mL)中,氮气保护下15℃搅拌6h。加入甲醇(2mL)淬灭反应,减压浓缩除去溶剂,得粗产物。制备色谱纯化(H2O(10mM NH4HCO3)-ACN),得白色固体G2-4(309.1mg,494μmol,65.2%yield)。1HNMR(400MHz,CDCl3)δppm 7.47(d,J=7.6Hz,1H),7.39-7.33(m,4H),7.20-7.16(m,1H),6.82-6.80(m,4H),5.13(d,J=4.8Hz,1H),4.43-4.38(m,2H),4.05-4.38(m,5H),3.79-3.78(m,8H),3.67-3.52(m,10H),3.46-3.13(m,4H),2.13-2.16(m,1H),2.03-1.98(m,1H)。MS(ESI)m/z[M-H]-=625.4。
步骤5:G2-5的合成
将G2-4(80.0mg,127μmol),二异丙基乙胺(33.0mg,255μmol,44.4μL)和O-苯并三氮唑-四甲基脲六氟磷酸盐(72.6mg,191μmol)溶解在N,N-二甲基甲酰胺(2.0mL)中,加入GalNAc-NH2.TFA(206mg,108μmol,TFA),氮气保护下15℃搅拌4h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1200.3。
步骤6:G2-6的合成
将G2-5(305mg,126μmol),4-二甲氨基吡啶(62.0mg,507μmol),二异丙基乙胺(49.2mg,380μmol),和丁二酸酐(114mg,1.14mmol)溶解在N,N-二甲基甲酰胺(3.0mL)中,氮气保护下30℃搅拌48h。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G2-6(130mg,51.9μmol),收 率40.9%。1HNMR(400MHz,CDCl3)δppm 7.45(s,1H),7.43(s,1H),7.32(d,J=8.5Hz,4H),7.25-7.16(m,4H),6.95(dd,J=36.7,13.2Hz,4H),6.85-6.72(m,6H),5.35(d,J=3.4Hz,2H),5.22(td,J=11.0,10.3,4.0Hz,4H),4.63(dd,J=8.3,2.6Hz,2H),4.12(dtd,J=27.6,11.1,4.6Hz,9H),3.96-3.85(m,7H),3.78(d,J=2.6Hz,5H),3.71-3.62(m,14H),3.54(dd,J=25.9,6.2Hz,7H),3.33-3.16(m,12H),2.83(s,10H),2.67-2.53(m,4H),2.42(t,J=5.9Hz,4H),2.28-2.14(m,14H),2.11-1.93(m,26H),1.67(ddd,J=39.3,13.2,7.3Hz,16H),1.23(d,J=7.4Hz,15H)。MS(ESI)m/z[M-2H]2-=1250.3。
步骤7:YK-GAL-302的合成
将G2-6(130mg,51.9μmol)、4-二甲氨基吡啶(6.35mg,51.9μmol)、二异丙基乙胺(53.7mg,415μmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(98.7mg,259.5μmol)溶解在N,N-二甲基甲酰胺(6.0mL)中,随后加入CPG-NH2(830mg,1.41mmol),30℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到12mL乙酸酐/吡啶(1∶5)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-302(840mg,载量34.9μmol/g)。
3.YK-GAL-303的合成
合成路线如下:
步骤1:G3-2的合成
往干燥的化合物G1-1(1.19g,4.58mmol),干燥的化合物G3-1(663.2mg,3.52mmol)和3A分子筛(2.0g)中加入二氯甲烷(26mL),降温至0℃后加入三氟化硼乙醚(999.95mg,7.05mmol),随后25℃搅拌2h。加入饱和碳酸氢钠水溶液(30mL)淬灭反应,用二氯甲烷(30mL×3)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得黄色油状物G3-2(612.2mg,1.58mmol),收率44.8%。MS(ESI)m/z[M+Na]+=411.0。
步骤2:G3-3的合成
将G3-2(130mg,335μmol)溶解在四氢呋喃(2.0mL)中,加入一水氢氧化锂(44.9mg,1.07mmol)的水溶液1.0mL,室温搅拌16h。反应液减 压浓缩除去溶剂,得黄色固体。粗产物G3-3(97mg)直接用于下一步。MS(ESI)m/z[M-H]-=289.3。
步骤3:G3-4的合成
将干燥后的G3-3(97mg,335μmol)和4,4′-二甲氧基三苯基氯甲烷(406mg,1.2mmol)溶解在吡啶(4.0mL),氮气保护下室温搅拌16h。加入甲醇(10mL)淬灭反应,减压浓缩除去溶剂,得粗产物。柱层析纯化(DCM/MeOH),得白色固体G3-4(126.7mg,213.9μmol),收率63.86%。MS(ESI)m/z[M-H]-=591.5。
步骤4:G3-5的合成
将G3-4(85mg,143μmol),二异丙基乙胺(37.1mg,287μmol,49.9μL)和O-苯并三氮唑-四甲基脲六氟磷酸盐(81.6mg,215μmol)溶解在N,N-二甲基甲酰胺(3.0mL)中,加入GalNAc-NH2.TFA(274mg,143μmol,TFA),氮气保护下室温搅拌2h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1183.2。
步骤5:G3-6的合成
将G3-5(339mg,143μmol),4-二甲氨基吡啶(17.5mg,143μmol),二异丙基乙胺(74.1mg,573μmol)和丁二酸酐(71.7mg,717μmol)溶解在N,N-二甲基甲酰胺(3.0mL)中,氮气保护下30℃搅拌16h。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G3-6(187mg,75.7μmol),收率52.8%。1HNMR(400MHz,CDCl3)δppm 7.46-7.41(m,2H),7.34-7.27(m,5H),7.25-7.21(m,2H),7.19-7.14(m,1H),7.05(t,J=6.1Hz,2H),6.96(d,J=9.0Hz,2H),6.83-6.75(m,4H),6.50(d,J=5.4Hz,1H),5.34-5.31(m,2H),5.18(dt,J=11.3,3.9Hz,4H),4.60(dd,J=8.4,2.6Hz,3H),4.50(d,J=8.0Hz,1H),4.18-4.04(m,9H),3.95-3.88(m,5H),3.76(s,5H),3.69-3.58(m,12H),3.52-3.46(m,3H),3.32-3.11(m,14H),2.80(q,J=7.2Hz,8H),2.57-2.54(m,1H),2.48(t,J=6.5Hz,2H),2.41(t,J=5.8Hz,5H),2.29-2.06(m,18H),2.05-1.91(m,24H),1.76-1.51(m,18H),1.40(t,J=6.7Hz,2H),1.23-1.19(m,7H),1.16-1.13(m,12H)。MS(ESI)m/z[M-2H]2-=1233.3。
步骤6:YK-GAL-303的合成
将G3-6(50mg,19.1μmol),4-二甲氨基吡啶(2.34mg,19.1μmol),二异丙基乙胺(19.8mg,153μmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(36.3mg,95.7μmol)溶解在N,N-二甲基甲酰胺(4.0mL)中,随后加入CPG-NH2(332mg),40℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到4mL乙酸酐/吡啶(1∶4)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-303(292mg,载量31.7μmol/g)。
4.YK-GAL-304的合成
合成路线如下:
步骤1:G4-1的合成
将G4A(3.00g,18.7mmol),二异丙基乙胺(4.84g,37.4mmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(7.81g,20.6mmol)溶解在N,N-二甲基甲酰胺(30.0mL)中,加入G4A-1(1.50g,16.9mmol),15℃搅拌2h。 制备色谱纯化(H2O(0.1%TFA)-ACN),得白色固体G4-1(1.70g)。1HNMR(400MHz,DMSO-d6)δppm 7.73-7.75(m,1H),4.69(s,1H),3.62(s,3H),3.35-3.57(m,2H),2.99-3.02(m,2H),2.27-2.30(m,2H),2.04-2.05(m,2H),1.38-1.48(s,8H)。MS(ESI)m/z[M+H]+=231.9。
步骤2:G4-2的合成
往化合物G1-1(900mg,3.46mmol),化合物G4-1(880mg,3.80mmol)和4A分子筛(1.60g)中加入二氯甲烷(16.0mL),降温至0℃后加入三甲硅烷基三氟甲磺酸酯(1.54g,6.92mmol),并继续搅拌2h。加入饱和碳酸氢钠水溶液(20.0mL)淬灭反应,用二氯甲烷(20.0mL×3)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G4-2(617.7mg,1.43mmol),收率41.4%。1HNMR(400MHz,CDCl3)δppm 5.69-5.54(m,1H),5.30-5.17(m,1H),4.31-4.04(m,3H),3.75-3.62(m,4H),3.43-3.34(m,1H),3.31-3.19(m,2H),2.41-2.29(m,3H),2.21-2.16(m,3H),2.13-2.00(m,5H),1.72-1.51(m,10H)。MS(ESI)m/z[M+Na]+=454.0。
步骤3:G4-3的合成
将G4-2(160mg,371μmol)溶解在四氢呋喃(2.2mL)中,加入一水氢氧化锂(49.8mg,1.19mmol)的水溶液1.0mL,20℃搅拌16h。反应液减压浓缩除去溶剂,得白色固体。粗产物G4-3(123mg)直接用于下一步。
步骤4:G4-4的合成
将干燥的G4-3(123mg,369μmol)和4,4′-二甲氧基三苯基氯甲烷(463mg,1.37mmol)溶解在吡啶(1.50mL)中,氮气保护下25℃搅拌48h。加入甲醇(1.00mL)淬灭反应,减压浓缩除去溶剂,得粗产物。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G4-4(148mg,233μmol),收率62.8%。1HNMR(400MHz,CDCl3)δppm 7.19-7.41(m,9H),6.73-6.77(m,4H),5.81-5.65(m,2H),5.07-5.08(s,1H),4.31-4.34(m,1H),3.91-3.92(m,1H),3.54-3.71(m,6H),3.42-3.54(m,1H),3.16-3.17(m,1H),3.10-3.14(m,1H),3.06-3.09(m,4H),2.22-2.25(m,2H),1.92-2.10(m,4H),1.54-1.57(m,4H),1.12-1.16(m,4H)。MS(ESI)m/z[M-H]-=634.4。
步骤5:G4-5的合成
将G4-4(30.0mg,47.2μmol),二异丙基乙胺(12.2mg,94.4μmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(26.8mg,70.8μmol)溶解在N,N-二甲基甲酰胺(1.0mL)中,加入GalNAc-NH2.TFA(45.0mg,23.6μmol,TFA),氮气保护下25℃搅拌2h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1204.8。
步骤6:G4-6的合成
将G4-5(113mg,46.9μmol),4-二甲氨基吡啶(23.1mg,187μmol),二异丙基乙胺(66.7mg,515μmol),和丁二酸酐(42.2mg,421μmol,)溶解在N,N-二甲基甲酰胺(1.0mL)中,氮气保护下30℃搅拌48h。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G4-6(55.3mg,22μmol),收率47.0%。MS(ESI)m/z[M-2H]2-=1254.1。
步骤7:YK-GAL-304的合成
将G4-6(20mg,7.57μmol),4-二甲氨基吡啶(1.00mg,8.20μmol),二异丙基乙胺(7.82mg,60.5μmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(14.4mg,37.8μmol)溶解在N,N-二甲基甲酰胺(1.5mL)中,随后加入CPG-NH2(131mg),40℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到1.20mL乙酸酐/吡啶(1∶5)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-304(100mg,载量35.57μmol/g)。5.YK-GAL-305的合成
合成路线如下:
步骤1:G5-2的合成
往干燥的化合物G5-1(3.53g,11.1mmol),干燥的化合物G1-2(2.0g,9.25mmol)和3A分子筛(10.0g)中加入二氯甲烷(100.0mL),降温至0℃后加入三氟化硼乙醚(2.62g,18.5mmol),继续搅拌2h。加入三乙胺(2.7mL)淬灭反应,用饱和碳酸氢钠水溶液(50mL)洗,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G5-2(2.11g,4.46mmol),收率48.2%。1HNMR(400MHz,CDCl3)δppm 5.32(dd,J=6.7,4.8Hz,1H),5.25-5.18(m,1H),4.97(s,1H),4.39-4.22(m,2H),4.14-4.00(m,1H),3.73-3.60(m,4H),3.36(dt,J=9.3,6.7Hz,1H),2.29(t,J=7.5 Hz,2H),2.11-2.04(m,8H),1.64-1.52(m,5H),1.30-1.24(m,12H)。MS(ESI)m/z[M+Na]+=497.1。
步骤2:G5-3的合成
将G5-2(1.80g,3.79mmol)溶解在甲醇(10.0mL)中,加入甲醇钠(68.3mg,379μmol),15℃搅拌2h。加入氢离子交换树脂淬灭反应,过滤并减压浓缩滤液除去溶剂,得黄色固体。粗产物G5-3(1.32g)直接用于下一步。1HNMR(400MHz,CDCl3)δppm 4.91(s,1H),4.32(t,J=5.5Hz,1H),4.08-3.97(m,2H),3.76(dd,J=11.8,3.3Hz,1H),3.71-3.57(m,5H),3.41(dt,J=9.3,6.5Hz,1H),2.74(s,2H),2.27(t,J=7.5Hz,2H),1.55(dq,J=20.6,7.0Hz,5H),1.28-1.25(m,12H)。MS(ESI)m/z[M+Na]+=371.2。
步骤3:G5-4的合成
将G5-3(1.32g,3.79mmol)溶解在N,N-二甲基甲酰胺(10.0mL)中,加入1,3二氯-1,1,3,3-四异丙基二硅氧烷(1.31g,4.17mmol)和咪唑(645mg,9.47mmol),氮气保护下15℃搅拌2h。加入饱和碳酸氢钠水溶液(10.0mL)淬灭,用二氯甲烷(10mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G5-4(1.20g,2.03mmol),收率53.6%。1HNMR(400MHz,CDCl3)δppm 4.91(s,1H),4.51(t,J=5.3Hz,1H),4.06-3.97(m,3H),3.76(dd,J=10.4,8.7Hz,1H),3.66(s,3H),3.61(dt,J=9.6,6.8Hz,1H),3.34(dt,J=9.5,6.4Hz,1H),2.97(s,1H),2.30(t,J=7.5Hz,2H),1.61(t,J=7.4Hz,3H),1.51(q,J=6.8Hz,3H),1.27-1.32(m,12H),1.11-1.02(m,26H)。MS(ESI)m/z[M+Na]+=613.4。
步骤4:G5-5的合成
将G5-4(1.20g,2.03mmol)溶解在二氯甲烷(12.0mL)中,加入1,8-双(二甲基氨基)萘(1.18g,5.48mmol)和三甲基氧鎓四氟硼酸(751mg,5.08mmol),氮气保护下15℃搅拌16h。加入氯化铵水溶液(10.0mL)淬灭,用二氯甲烷(10mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G5-5(1.05g,1.74mmol),收率85.5%)。1HNMR(400MHz,CDCl3)δppm 4.84(s,1H),4.49(dd,J=7.6,4.3Hz,1H),3.98(dq,J=9.0,3.1Hz,2H),3.86(dd,J=12.6,6.6Hz,1H),3.69-3.54(m,8H),3.40-3.27(m,1H),2.30(t,J=7.5Hz,2H),1.65-1.57(m,2H),1.53-1.48(m,2H),1.33-1.24(m,12H),1.11-0.97(m,28H)。MS(ESI)m/z [M+Na]+=627.4。
步骤5:G5-6的合成
将G5-5(1.05g,1.74mmol)溶解在四氢呋喃(10.0mL)中,加入三乙胺三氢氟酸(839mg,5.20mmol),15℃搅拌16h。加入饱和碳酸氢钠水溶液(10.0mL)淬灭,用二氯甲烷(10mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物G5-6(0.63g),直接用于下一步。1HNMR(400MHz,CDCl3)δppm 4.93(d,J=1.3Hz,1H),4.25(t,J=5.2Hz,1H),4.02-3.94(m,1H),3.75-3.54(m,6H),3.48-3.31(m,4H),2.55(brs,1H),2.23(t,J=7.5Hz,2H),1.53(dp,J=14.1,7.0Hz,4H),1.22(d,J=5.8Hz,12H),0.99(dq,J=5.8,3.1,2.6Hz,2H)。MS(ESI)m/z[M+Na]+=385.2。
步骤6:G5-7的合成
将干燥的G5-6(0.63g,1.74mmol)和4,4′-二甲氧基三苯基氯甲烷(618mg,1.83mmol)溶解在吡啶(10.0mL)中,氮气保护下15℃搅拌16h。加入饱和碳酸氢钠水溶液(10.00mL)淬灭反应,用二氯甲烷(15.0mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得白色固体G5-7(1.01g,1.52mmol),收率87.4%。1HNMR(400MHz,CDCl3)δppm 7.52-7.46(m,2H),7.40-7.34(m,4H),7.29-7.24(m,2H),7.22-7.16(m,1H),6.83-6.78(m,4H),5.02(d,J=1.4Hz,1H),4.19(dt,J=8.3,5.5Hz,1H),4.04(td,J=5.8,3.8Hz,1H),3.78(brs,6H),3.76-3.63(m,6H),3.50(s,3H),3.38(dt,J=9.4,6.8Hz,1H),3.27(dd,J=9.9,3.8Hz,1H),3.14(dd,J=9.9,5.6Hz,1H),2.48(d,J=8.4Hz,1H),2.29(t,J=7.6Hz,2H),1.60(d,J=14.7Hz,2H),1.28-1.23(m,11H)。MS(ESI)m/z[M-H]-=663.6。
步骤7:G5-8的合成
将G5-7(1.00g,1.50mmol)溶解在四氢呋喃(12.0mL)中,加入一水氢氧化锂(94.7mg,2.26mmol)的水溶液6.0mL,15℃搅拌12h。反应液减压浓缩除去溶剂,得黄色固体。粗产物G5-8(0.98g)直接用于下一步。1HNMR(400MHz,CDCl3)δppm 7.53-7.45(m,2H),7.35(d,J=8.50Hz,4H),7.23(t,J=7.19Hz,2H),7.19-7.14(m,1H),6.84-6.73(m,4H),5.04(s,1H),4.26-4.00(m,2H),3.80-3.63(m,8H),3.45(s,3H),3.39(s,1H),3.30-3.20 (m,1H),3.12(br s,1H),2.12-2.05(m,1H),2.04-1.98(m,3H),1.58-1.41(m,4H),1.19(br s,12H),。MS(ESI)m/z[M-H]-=649.6。
步骤8:G5-9的合成
将G5-8(0.97g,1.49mmol),二异丙基乙胺(385mg,2.98mmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(848mg,2.24mmol)溶解在N,N-二甲基甲酰胺(35.0mL)中,加入GalNAc-NH2.TFA(2.84g,1.49mmol,TFA),氮气保护下15℃搅拌1h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1212.4。
步骤9:G5-10的合成
将G5-9(3.62g,1.49mmol),4-二甲氨基吡啶(364mg,2.98mmol),二异丙基乙胺(771mg,5.97mmol),和丁二酸酐(896mg,8.95mmol)溶解在N,N-二甲基甲酰胺(35.0mL)中,氮气保护下30℃搅拌48h。制备色谱纯化(H2O(50mM TEAB)-ACN),得白色固体G5-10(2.10g,937μmol),收率62.8%。1HNMR(400MHz,CDCl3)δppm 7.48-7.41(m,2H),7.33(d,J=8.6Hz,3H),7.28-7.21(m,5H),7.17(t,J=7.2Hz,1H),6.99(t,J=6.3Hz,2H),6.87-6.77(m,5H),6.49(d,J=6.0Hz,1H),5.34(d,J=3.3Hz,3H),5.21-5.13(m,3H),4.98(d,J=2.3Hz,1H),4.61(d,J=8.5Hz,2H),4.23(q,J=4.9Hz,1H),4.19-4.01(m,8H),3.91(dt,J=13.1,5.6Hz,6H),3.77(s,5H),3.68(d,J=7.6Hz,11H),3.55-3.44(m,3H),3.39-3.19(m,14H),3.11(dd,J=9.9,5.0Hz,1H),2.80-2.59(m,13H),2.49(t,J=7.4Hz,2H),2.42(t,J=5.7Hz,5H),2.30-2.06(m,16H),2.06-1.91(m,22H),1.81-1.44(m,19H),1.31-1.19(m,10H),1.11(t,J=7.2Hz,16H)。MS(ESI)m/z[M-2H]2-=1262.5。
步骤10:YK-GAL-305的合成
将G5-10(1.00g,380μmol),4-二甲氨基吡啶(46.5mg,381μmol),二异丙基乙胺(393mg,3.04mmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(722mg,1.90mmol)溶解在N,N-二甲基甲酰胺(65.0mL)中,随后加入CPG-NH2(6.60g),40℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到65mL乙酸酐/吡啶(1∶5)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-305(7.05g,载量34.4μmol/g)。
6.YK-GAL-306的合成
合成路线如下:
步骤1:G6-1的合成
往干燥的化合物G5-1(1.58g,4.95mmol),干燥的化合物G2-1(1.00g,4.50mmol)和3A分子筛(1.50g,4.50mmol)中加入二氯甲烷(15.0mL),降温至0℃后加入三氟化硼乙醚(1.28g,9.00mmol),继续搅拌2h。随后升温至15℃继续搅拌2h。加入三乙胺(1.32mL)淬灭反应,用饱和碳酸氢钠水溶液(30.0mL×2)洗,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得黄色油状物G6-1(1.60g,3.33mmol),收率74.0%。1HNMR(400MHz,CDCl3)δppm 5.34(dd,J=6.7,4.8Hz,1H),5.26(d,J=4.8Hz,1H),4.37-4.25(m,2H),4.12(dd,J=11.3,5.9Hz,2H),3.89-3.77(m,1H),3.75-3.56(m,16H),2.10(s,3H),2.08(s,3H),2.04(s,3H)。MS(ESI)m/z[M+Na]+=503.0。
步骤2:G6-2的合成
将G6-1(1.60g,3.33mmol)溶解在甲醇(16.0mL)中,加入甲醇钠(60.0mg,333μmol),15℃搅拌2h。加入氢离子交换树脂淬灭反应,过滤并减压浓缩滤液除去溶剂,得白色固体。粗产物G6-2(1.18g)直接用于下一步。1H NMR(400MHz,MeOH-d4)δ4.89(s,1H),4.13(dd,J=7.1,4.7Hz,1H),3.99-3.89(m,2H),3.88-3.80(m,1H),3.78-3.53(m,18H)。MS(ESI)m/z[M+Na]+=376.9。
步骤3:G6-3的合成
将G6-2(1.18g,3.33mmol)溶解在N,N-二甲基甲酰胺(12.0mL)中,加入1,3二氯-1,1,3,3-四异丙基二硅氧烷(1.16g,3.66mmol)和咪唑(567mg,8.33mmol),氮气保护下15℃搅拌2h。加入饱和碳酸氢钠水溶液(10.0mL)淬灭,用二氯甲烷(10mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G6-3(1.38g,2.27mmol),收率68.0%。1HNMR(400MHz,MeOH-d4)δppm 4.52(t,J=5.4Hz,1H),4.09-3.97(m,3H),3.80-3.54(m,20H),1.09-1.02(m,28H)。
步骤4:G6-4的合成
将G6-3(1.25g,2.09mmol)溶解在二氯甲烷(17.0mL)中,加入1,8-双(二甲基氨基)萘(1.48g,6.91mmol)和三甲基氧鎓四氟硼酸(929mg,6.28mmol),氮气保护下15℃搅拌6h。加入氯化铵水溶液(30.0mL)淬灭,用二氯甲烷(15mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G6-4(1.11g,1.82mmol),收率86%。1HNMR(400MHz,MeOH-d4)δppm 4.43(dd,J=8.1,4.3Hz,1H),3.95-3.44(m,26H),1.03-0.95(m,28H)。
步骤5:G6-5的合成
将G6-4(1.11g,1.82mmol)溶解在四氢呋喃(20.0mL)中,加入三乙胺三氢氟酸(1.46g,9.09mmol),20℃搅拌2h。加入饱和碳酸氢钠水溶液(10.0mL)淬灭,用二氯甲烷(25mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得到无色油状物。粗产物G6-5(0.67g)直接用于下一步。
步骤6:G6-6的合成
将干燥的G6-5(0.67g,1.82mmol)和4,4′-二甲氧基三苯基氯甲烷(616mg,1.82mmol)溶解在吡啶(10.0mL)中,氮气保护下25℃搅拌2h。加入甲醇 (1.00mL)淬灭反应,减压浓缩除去溶剂,得粗产物。制备色谱纯化(H2O(10mM NH4HCO3)-ACN),得白色固体G6-6(1.05g,1.57mmol),收率86.0%。1HNMR(400MHz,CD3CN)δppm 7.46-7.36(m,2H),7.31-7.25(m,4H),7.22-7.16(m,2H),7.15-7.06(m,1H),6.79-6.71(m,4H),4.15(s,1H),4.08(s,2H),3.97(td,J=6.1,3.8Hz,1H),3.77-3.42(m,27H),3.21(dd,J=9.9,3.7Hz,1H),3.08(dd,J=9.9,5.8Hz,1H)。MS(ESI)m/z[M-H]-=669.4。
步骤7:G6-7的合成
将G6-6(195mg,291umol)溶解在四氢呋喃(1.0mL)中,加入一水氢氧化锂(60.0mg,333μmol)的水溶液1.0mL,25℃搅拌12h。反应液减压浓缩除去溶剂,得白色固体。粗产物G6-7(190mg)直接用于下一步。1HNMR(400MHz,MeOH-d4)δppm 7.52-7.45(m,2H),7.39-7.31(m,4H),7.31-7.24(m,2H),7.24-7.15(m,1H),6.92-6.80(m,4H),4.22(dd,J=7.2,4.7Hz,1H),4.07-4.03(m,1H),3.86-3.68(m,10H),3.65-3.51(m,12H),3.49(s,3H),3.27(dd,J=10.0,3.1Hz,1H),3.12(dd,J=10.0,5.8Hz,1H)。MS(ESI)m/z[M-H]-=655.4。
步骤8:G6-8的合成
将G6-7(190mg,293μmol),二异丙基乙胺(112mg,868μmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(165mg,433μmol)溶解在N,N-二甲基甲酰胺(5.0mL)中,加入GalNAc-NH2.TFA(442mg,232μmol,0.8eq,TFA),氮气保护下15℃搅拌2h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1215.0。
步骤9:G6-9的合成
将G6-8(703mg,289μmol),4-二甲氨基吡啶(70.6mg,578μmol),二异丙基乙胺(261mg,2.02mmol),和丁二酸酐(173mg,1.73mmol)溶解在N,N-二甲基甲酰胺(1.0mL)中,氮气保护下30℃搅拌48h。制备色谱纯化(H2O(50mM TEAB)-ACN),得白色固体G6-9(300mg,118mol),收率50.0%。MS(ESI)m/z[M-2H]2-=1265.3。
步骤10:YK-GAL-306的合成
将G6-9(300mg,110μmol),4-二甲氨基吡啶(13.4mg,109μmol),二异丙基乙胺(113mg,877μmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(208mg,548μmol)溶解在N,N-二甲基甲酰胺(16.0mL)中,随后加入 CPG-NH2(1.9g),40℃搅拌12h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到20mL乙酸酐/吡啶(1∶5)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-306(1.94g,载量37.43μmol/g)。
7.YK-GAL-307的合成
合成路线如下:
步骤1:G7-1的合成
往干燥的化合物G5-1(5.00g,15.7mmol),干燥的化合物G4-1(3.50g,15.1mmol)和4A分子筛(1.0g)中加入二氯甲烷(70.0mL),降温至0℃后加入三氟化硼乙醚(4.30g,30.2mmol),继续搅拌2h。加入三乙胺(3.06g,30.2mmol)淬灭反应,用饱和碳酸氢钠水溶液(20mL)洗,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G7-1(3.70g,7.56mmol),收率50.1%。1HNMR(400MHz,CDCl3)δppm 5.74(d,J=31.1Hz,1H),5.33-5.14(m,1H),4.98(d,J=13.6Hz,1H), 4.30-4.26(m,1H),4.19-4.03(m,2H),3.87-3.61(m,4H),3.43-3.37(m1H),3.33-3.18(m,2H),2.35-2.31(m,2H),2.23-1.98(m,11H),1.71-1.50(m,9H)。MS(ESI)m/z[M+Na]+=512.1。
步骤2:G7-2的合成
将G7-1(3.10g,6.33mmol)溶解在甲醇(30.0mL)中,加入甲醇钠(114mg,633μmol),25℃搅拌2h。加入氢离子交换树脂淬灭反应,过滤并减压浓缩滤液除去溶剂,得黄色油状物。粗产物G7-2(2.20g)直接用于下一步。MS(ESI)m/z[M-H]-=362.2。
步骤3:G7-3的合成
将G7-2(2.20g,6.05mmol)溶解在N,N-二甲基甲酰胺(20.0mL)中,加入1,3二氯-1,1,3,3-四异丙基二硅氧烷(2.10g,6.66mmol)和咪唑(1.03g,15.1mmol),氮气保护下25℃搅拌2h。加入饱和碳酸氢钠水溶液(10.0mL)淬灭,用二氯甲烷(10mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得黄色油状物G7-3(2.15g,3.56mmol),收率58.8%。1HNMR(400MHz,CDCl3)δppm 5.59(s,1H),4.90(s,1H),4.49(t,J=5.4Hz,1H),4.08-3.91(m,3H),3.80-3.60(m,6H),3.40-3.35(m,1H),3.26(q,J=6.4Hz,2H),2.35-2.32(m,2H),2.22-2.15(m,2H),1.68-1.64(p,J=3.7Hz,4H),1.59-1.54(m,4H),1.10-1.02(m,28H)。MS(ESI)m/z[M+H]+=606.4。
步骤4:G7-4的合成
将G7-3(1.0g,1.65mmol)溶解在二氯甲烷(15.0mL)中,加入1,8-双(二甲基氨基)萘(955mg,4.46mmol)和三甲基氧鎓四氟硼酸(610mg,4.13mmol),氮气保护下15℃搅拌6h。加入氯化铵水溶液(10.0mL)淬灭,用二氯甲烷(10mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G7-4(890.2mg,1.43mmol),收率87.1%。1HNMR(400MHz,CDCl3)δppm 5.59(d,J=6.1Hz,1H),4.53-4.42(m,1H),4.08-3.85(m,3H),3.80-3.60(m,5H),3.58(d,J=7.2Hz,2H),3.47-3.31(m,3H),3.27-3.20(m,2H),2.38-2.29(m,2H),2.18(q,J=6.2,5.0Hz,2H),1.66(h,J=3.8Hz,4H),1.60-1.51(m,4H),1.17-0.89(m,28H)。MS(ESI)m/z[M+H]+=620.5。
步骤5:G7-5的合成
将G7-4(300mg,484μmol)溶解在四氢呋喃(10.0mL)中,加入三乙胺三氢氟酸(390mg,2.42mmol),25℃搅拌3h。加入饱和碳酸氢钠水溶液(10.0mL)淬灭,用二氯甲烷(20mL×3)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得黄色油状物。粗产物G7-6(182mg)直接用于下一步。MS(ESI)m/z[M+H]+=378.2。
步骤6:G7-6的合成
将干燥的G7-5(180mg,477μmol)和4,4′-二甲氧基三苯基氯甲烷(161mg,477μmol)溶解在吡啶(2.0mL)中,氮气保护下25℃搅拌3h。加入甲醇(2.00mL)淬灭反应,减压浓缩除去溶剂,得粗产物。制备色谱纯化(H2O(10mM NH4HCO3)-ACN),得白色固体G7-6(262mg,385.7μmol),收率80.85%。1HNMR(400MHz,CDCl3)δppm 7.52-7.45(m,2H),7.40-7.32(m,4H),7.30-7.26(m,2H),7.19(dd,J=14.1,8.0Hz,1H),6.87-6.78(m,4H),5.38(s,1H),5.01(d,J=1.5Hz,1H),4.26-4.17(m,1H),4.07-4.03(m,1H),3.82-3.71(m,7H),3.66(d,J=6.2Hz,4H),3.51(d,J=2.2Hz,3H),3.41(dd,J=9.7,5.9Hz,1H),3.30(dd,J=10.0,3.7Hz,1H),3.22-3.07(m,3H),2.48(d,J=8.3Hz,1H),2.34-2.29(m,2H),2.07-1.98(m,2H),1.60-1.47(m,8H)。MS(ESI)m/z[M-H]-=678.5。
步骤7:G7-7的合成
将G7-6(100mg,147μmol)溶解在四氢呋喃(2.5mL)中,加入一水氢氧化锂(9.26mg,220μmol)的水溶液2.5mL,15℃搅拌16h。反应液减压浓缩除去溶剂,得黄色固体。粗产物G7-7(0.95g)直接用于下一步。MS(ESI)m/z[M-H]-=664.5。
步骤8:G7-8的合成
将G7-7(90.0mg,135μmol),二异丙基乙胺(34.9mg,270μmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(76.9mg,202μmol)溶解在N,N-二甲基甲酰胺(2.0mL)中,加入GalNAc-NH2.TFA(206mg,108μmol,TFA),氮气保护下15℃搅拌4h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1219.9。
步骤9:G7-9的合成
将G7-8(280mg,114μmol),4-二甲氨基吡啶(28.0mg,229μmol),二异丙基乙胺(44.4mg,344μmol),和丁二酸酐(91.8mg,917μmol)溶解 在N,N-二甲基甲酰胺(2.0mL)中,氮气保护下30℃搅拌48h。制备色谱纯化(H2O(50mM TEAB)-ACN),得黄色固体G7-9(172mg,68.1μmol),收率59.7%。1HNMR(400MHz,CDCl3)δppm 7.54-7.45(m,4H),7.38-7.24(m,7H),7.23-7.20(m,1H),7.15-7.07(m,5H),6.83(dd,J=8.8,3.8Hz,4H),5.37(d,J=3.8Hz,2H),5.24-5.16(m,3H),5.01(t,J=3.1Hz,1H),4.65(dd,J=8.4,3.9Hz,2H),4.26(t,J=4.7Hz,1H),4.21-4.07(m,8H),3.99-3.91(m,6H),3.81-3.75(m,8H),3.70-3.65(m,11H),3.55-3.50(m,2H),3.40(d,J=3.9Hz,3H),3.29-3.25(m,12H),2.81-2.64(m,16H),2.52(dd,J=7.8,4.0Hz,2H),2.46-2.42(m,5H),2.26-2.16(m,16H),2.09-1.94(m,26H),1.75-1.54(m,14H),1.16-1.11(m,18H)。MS(ESI)m/z[M-2H]2-=1269.9。
步骤10:YK-GAL-307的合成
将G7-9(120mg,47.2μmol),4-二甲氨基吡啶(5.77mg,47.2μmol),二异丙基乙胺(48.8mg,377μmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(89.5mg,236μmol)溶解在N,N-二甲基甲酰胺(10.0mL)中,随后加入CPG-NH2(790mg),40℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到12mL乙酸酐/吡啶(1∶5)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-307(810mg,载量38.9μmol/g)。
8.YK-GAL-308的合成
合成路线如下:
步骤1:G8-2的合成
将G8-1(0.34g,816μmol)溶解在四氢呋喃(8.0mL)中,加入一水氢氧化锂(109mg,2.61mmol)的水溶液4.0mL,15℃搅拌12h。反应液减压浓缩除去溶剂,得黄色固体。粗产物G8-2(0.26g)直接用于下一步。MS(ESI)m/z[M+Na]+=341.2。
步骤2:G8-3的合成
粗产物G8-2(0.26g,816μmol)和无水吡啶(20mL×3)共旋蒸除水。将干燥后的G8-2和4,4′-二甲氧基三苯基氯甲烷(580mg,1714μmol)溶解在吡啶(6.0mL)中,氮气保护下15℃搅拌36h。加入甲醇(20mL)淬灭反应,减压浓缩除去溶剂,得粗产物。制备色谱纯化(H2O(10mM NH4HCO3)-ACN),得白色固体G8-3(401.9mg,647.9μmol),收率79.4%。MS(ESI)m/z[M+Na]+=643.4。
步骤3:G8-4的合成
将G8-3(90mg,145μmol),二异丙基乙胺(37.5mg,290μmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(82.5mg,217μmol)溶解在N,N-二甲基甲酰胺(3.0mL)中,加入GalNAc-NH2.TFA(331.3mg,174μmol,1.2eq,TFA), 氮气保护下15℃搅拌2h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1197.3。
步骤4:G8-5的合成
将G8-4,4-二甲氨基吡啶(35.4mg,289μmol),二异丙基乙胺(149.8mg,1158μmol),和丁二酸酐(159.4mg,1592μmol)溶解在N,N-二甲基甲酰胺(3.0mL)中,氮气保护下30℃搅拌48h。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G8-5(190mg,85.9μmol),收率59.4%。1HNMR(400MHz,CDCl3)δppm 7.44-7.37(m,2H),7.34-7.26(m,8H),7.20(d,J=7.1Hz,2H),6.99(d,J=5.7Hz,4H),6.81(d,J=8.7Hz,4H),6.72(d,J=8.9Hz,2H),6.57(s,1H),5.35(d,J=3.3Hz,2H),5.26(d,J=5.1Hz,1H),5.23-5.12(m,4H),4.61(d,J=8.4Hz,3H),4.23-4.04(m,10H),3.95-3.89(m,6H),3.78(s,6H),3.73-3.62(m,14H),3.53-3.47(m,4H),3.43-3.35(m,2H),3.30-3.24(m,12H),3.17(dd,J=9.9,4.0Hz,2H),2.62-2.57(m,4H),2.43(d,J=5.7Hz,6H),2.28-2.15(m,13H),2.10-1.92(m,30H),1.74-1.51(m,22H),1.238-1.26(m,14H)。MS(ESI)m/z[M-2H]2-=1247.4。
步骤5:YK-GAL-308的合成
将G8-5(190mg,76.1μmol),4-二甲氨基吡啶(9.30mg,76.1μmol),二异丙基乙胺(78.7mg,609μmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(144mg,381μmol)溶解在N,N-二甲基甲酰胺(12mL)中,随后加入CPG-NH2(1.27g),40℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到12mL乙酸酐/吡啶(1∶5)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-308(1.24g,载量29.7μmol/g)。
9.YK-GAL-309的合成
合成路线如下:
步骤1:G9-2的合成
往干燥的化合物G1-1(734mg,2.82mmol),干燥的化合物G9-1(0.50g,2.17mmol)和3A分子筛(2.0g)中加入二氯甲烷(20mL),降温至0℃后加入三氟化硼乙醚(616mg,4.34mmol),并继续搅拌2h。加入饱和碳酸氢钠水溶液(20mL)淬灭反应,用二氯甲烷(10mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得黄色油状物G9-2(589mg,1.37mmol),收率48.5%。MS(ESI)m/z[M+Na]+=453.1。
步骤2:G9-3的合成
将G9-2(0.30g,696μmol)溶解在四氢呋喃(4.0mL)中,加入一水氢氧化锂(93.6mg,2.23mmol)的水溶液2.0mL,15℃搅拌12h。反应液减压浓缩除去溶剂,得黄色固体。粗产物G9-3(0.23g)直接用于下一步。MS(ESI) m/z[M+Na]+=355.0。
步骤3:G9-4的合成
粗产物G9-3(0.23g,692μmol)和无水吡啶(20mL x 3)共旋蒸除水。将干燥后的G9-3和4,4′-二甲氧基三苯基氯甲烷(534.58mg,1579.8μmol)溶解在吡啶(5.0mL)中,氮气保护下15℃搅拌28h。加入甲醇(10mL)淬灭反应,减压浓缩除去溶剂,得粗产物。制备色谱纯化(H2O(10mM NH4HCO3)-ACN),得白色固体G9-4(337.3mg,531.7μmol),收率76.84%。MS(ESI)m/z[M-H]-=633.5。
步骤4:G9-5的合成
将G9-4(30mg,47.3μmol),二异丙基乙胺(12.2mg,94.5μmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(26.9mg,70.9μmol)溶解在N,N-二甲基甲酰胺(0.5mL)中,加入GalNAc-NH2.TFA(90.2mg,47.3μmol,TFA),氮气保护下15℃搅拌1h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1204.3。
步骤5:G9-6的合成
将G9-5(114mg,47.3μmol),4-二甲氨基吡啶(11.55mg,94.58μmol),二异丙基乙胺(55.1mg,425.45μmol),和丁二酸酐(52.1mg,519μmol)溶解在N,N-二甲基甲酰胺(2.0mL)中,氮气保护下30℃搅拌36h。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G9-6(56.7mg,22.6μmol),收率47.8%。1HNMR(400MHz,CDCl3)δppm 7.44-7.38(m,2H),7.33-7.26(m,6H),7.24-7.17(m,1H),6.86-6.79(m,4H),5.24(d,J=4.3Hz,1H),4.27-4.21(m,1H),4.19(d,J=5.6Hz,1H),3.79(s,6H),3.74(dd,J=9.6,6.8Hz,1H),3.40(dt,J=9.6,6.5Hz,2H),3.27(s,1H),3.16-3.07(m,3H),2.33(t,J=7.4Hz,2H),2.21-2.15(m,1H),2.02(d,J=13.3Hz,1H),1.67-1.52(m,4H),1.23-1.30(d,J=13.9Hz,13H)。MS(ESI)m/z[M-2H]2-=1254.4。
步骤6:YK-GAL-309的合成
将G9-6(32mg,12.7μmol),4-二甲氨基吡啶(1.56mg,12.7μmol),二异丙基乙胺(13.2mg,102μmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(24.2mg,63.7μmol)溶解在N,N-二甲基甲酰胺(4.0mL)中,随后加入CPG-NH2(221mg),40℃搅拌12h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到4mL乙酸酐/吡啶(1∶5)溶液中, 40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-309(103mg,载量24.5μmol/g)。
10.YK-GAL-310的合成
合成路线如下:
步骤1:G10-2的合成
往干燥的化合物G1-1(692mg,2.66mmol),干燥的化合物G10-1(500mg,2.05mmol)和3A分子筛(2.0g)中加入二氯甲烷(20mL),降温至0℃后加入三氟化硼乙醚(581mg,4.09mmol),随后升温至25℃并继续搅拌2h。加入饱和碳酸氢钠水溶液(20mL)淬灭反应,用二氯甲烷(10mL×2)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G10-2(576.6mg,1.30mmol),收率48.8%。MS(ESI)m/z[M+Na]+=467.1。
步骤2:G10-3的合成
将G10-2(69mg,155μmol)溶解在四氢呋喃(2.0mL)中,加入一水氢氧化锂(20.8mg,497μmol)的水溶液1.0mL,室温搅拌16h。反应液减压浓缩除去溶剂,得黄色油状物。粗产物G10-3(53.8mg)直接用于下一步。MS(ESI)m/z[M+Na]+=369.0。
步骤3:G10-4的合成
粗产物G10-3(53.8mg,155μmol)和无水吡啶(20mL×3)共旋蒸除水。将干燥后的G10-3和4,4′-二甲氧基三苯基氯甲烷(189mg,559μmol)溶解在吡啶(3.0mL)中,氮气保护下室温搅拌16h。加入甲醇(10mL)淬灭反应,减压浓缩除去溶剂,得粗产物。柱层析纯化(DCM/MeOH),得淡黄色固体G10-4(79.1mg,122μmol),收率78.7%。MS(ESI)m/z[M-H]-=647.5。
步骤4:G10-5的合成
将G10-4(39mg,60.1μmol),二异丙基乙胺(15.5mg,120μmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(34.2mg,90.2μmol)溶解在N,N-二甲基甲酰胺(1.5mL)中,加入GalNAc-NH2.TFA(115mg,60.1μmol),氮气保护下室温搅拌1h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1211.3。
步骤5:G10-6的合成
将G10-5(146mg,60.1μmol),4-二甲氨基吡啶(7.34mg,60.1μmol),二异丙基乙胺(31.1mg,240μmol),和丁二酸酐(30.1mg,301μmol)溶解在N,N-二甲基甲酰胺(1.5mL)中,氮气保护下30℃搅拌16h。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G10-6(74.2mg,49.4μmol),收率48.9%。1HNMR(400MHz,CDCl3)δppm 7.49-7.42(m,2H),7.36-7.31(m,4H),7.28-7.23(m,8H),7.21-7.16(m,1H),6.99(t,J=6.0Hz,3H),6.79(dd,J=11.8,8.8Hz,6H),6.47(d,J=9.6Hz,1H),5.35(d,J=3.3Hz,2H),5.23-5.17(dt,J=11.2,3.8Hz,4H),4.61(d,J=8.5Hz,2H),4.19-4.04(m,9H),3.99-3.86(m,6H),3.78(d,J=2.1Hz,6H),3.69-3.60(m,11H),3.53-3.48(m,3H),3.35-3.14(m,15H),2.60-2.50(m,4H),2.43(t,J=5.7Hz,7H),2.29-2.13(m,24H),2.10(d,J=5.0Hz,3H),2.04(s,9H),1.99(s,9H),1.94(d,J=2.5Hz,8H),1.75-1.55(m,18H),1.42(s,2H),1.26-1.21(d,J=3.6Hz,15H)。MS(ESI)m/z[M-2H]2-=1261.1。
步骤6:YK-GAL-310的合成
将G10-6(59mg,22.1μmol),4-二甲氨基吡啶(2.70mg,22.13μmol),二异丙基乙胺(22.88mg,177.01μmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(41.96mg,110.63μmol)溶解在N,N-二甲基甲酰胺(4.0mL)中,随后加入CPG-NH2(383mg),40℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到4mL乙酸酐/吡啶(1∶4)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-310(362mg,载量30.2μmol/g)。
11.YK-GAL-311的合成
合成路线如下:
步骤1:G11-1的合成
将G11A(2.00g,13.7mmol,1.72mL),二异丙基乙胺(3.54g,27.3mmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(5.71g,15.0mmol)溶解在N,N-二甲基甲酰胺(20.0mL)中,加入G11A-1(1.92g,16.4mmol),15℃搅拌2h。制备色谱纯化(H2O(0.1%TFA)-ACN),得白色固体G11-1(2.00g,8.15mmol),收率59.5%。1HNMR(400MHz,DMSO-d6)δppm 7.76-7.73(m,1H), 4.38-4.30(m,1H),3.57(s,3H),3.36(t,J=6.4Hz,2H),3.02-2.97(m,2H),2.28(t,J=7.6Hz,2H),2.69(t,J=7.2Hz,2H),1.76-1.68(m,2H),1.42-1.18(m,8H)。MS(ESI)m/z[M+H]+=245.9。
步骤2:G11-2的合成
往化合物G1-1(500mg,1.92mmol),化合物G11-1(565mg,2.31mmol)和4A分子筛(1.0g)中加入二氯甲烷(10.0mL),降温至0℃后加入三甲硅烷基三氟甲磺酸酯(854mg,3.84mmol),并继续搅拌2h。加入饱和碳酸氢钠水溶液(30.0mL)淬灭反应,用二氯甲烷(15.0mL×3)萃取,有机相用无水硫酸钠干燥,减压浓缩除去溶剂,得粗产物。柱层析纯化(PE/EA),得无色油状物G11-2(400mg,899μmol),收率46.8%。1HNMR(400MHz,CDCl3)δppm 5.61-5.54(m,1H),5.24-5.20(m,1H),4.32-4.00(m,3H),3.67(d,J=1.0Hz,4H),3.34(dt,J=9.4,6.6Hz,1H),3.27-3.19(m,2H),2.42-2.30(m,3H),2.27-2.02(m,9H),2.02-1.90(m,3H),1.57-1.45(m,4H),1.37-1.31(m,4H)。MS(ESI)m/z[M+H]+=446.0。
步骤3:G11-3的合成
将G11-2(180mg,404μmol,1.0eq)溶解在四氢呋喃(1.8mL)中,加入一水氢氧化锂(67.8mg,1.62mmol,4.0eq)的水溶液0.9mL,35℃搅拌16h。反应液减压浓缩除去溶剂,得棕色油状物。粗产物G11-3(140.36mg)直接用于下一步。
步骤4:G11-4的合成
将干燥的G11-3(40.0mg,115μmol)和4,4′-二甲氧基三苯基氯甲烷(65.0mg,191μmol)溶解在吡啶(1.00mL)中,氮气保护下15℃搅拌8h。加入甲醇(2.00mL)淬灭反应,减压浓缩除去溶剂,得粗产物。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G11-4(54.7mg,84.3μmol),收率73.3%。1HNMR(400MHz,CDCl3)δppm 7.38(d,J=7.7Hz,2H),7.29-7.20(m,6H),7.13(t,J=7.3Hz,1H),6.75(d,J=8.6Hz,4H),5.60(s,1H),5.08(dd,J=5.5,2.3Hz,1H),4.34(q,J=6.2Hz,1H),3.89(q,J=5.6Hz,1H),3.72(s,6H),3.56-3.50(m,1H),3.29-3.17(m,3H),3.16-3.06(m,3H),2.33(d,J=7.0Hz,3H),2.18(t,J=7.2Hz,3H),2.01-1.95(m,1H),1.88(t,J=7.0Hz,2H),1.40-1.31(m,4H),1.21-1.15(m,4H)。MS(ESI)m/z[M-H]-=648.2。
步骤5:G11-5的合成
将G11-4(17.0mg,26.1μmol),二异丙基乙胺(6.76mg,52.3μmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(14.8mg,39.2μmol)溶解在N,N-二甲基甲酰胺(0.3mL)中,加入GalNAc-NH2.TFA(62.4mg,27.4μmol,TFA),氮气保护下15℃搅拌6h。反应液直接用于下一步。MS(ESI)m/z[M-2H]2-=1211.6。
步骤6:G11-6的合成
将G11-5(63.0mg,25.9μmol),4-二甲氨基吡啶(6.35mg,51.9μmol),二异丙基乙胺(6.71mg,51.9μmol),和丁二酸酐(13.0mg,129μmol)溶解在N,N-二甲基甲酰胺(0.5mL)中,氮气保护下30℃搅拌16h。制备色谱纯化(H2O(10mM TEAB)-ACN),得白色固体G11-6(35.0mg,13.8μmol),收率53.3%。1HNMR(400MHz,CDCl3)δppm 7.49-7.44(m,5H),7.35-7.31(m,4H),7.28(s,1H),7.24(s,1H),7.17(d,J=7.5Hz,1H),7.01-7.00(m,3H),6.91(d,J=9.0Hz,2H),6.83-6.72(m,6H),5.35(d,J=3.3Hz,2H),5.19(dd,J=10.9,3.3Hz,5H),4.62(d,J=8.3Hz,3H),4.18-4.05(m,10H),3.95-3.89(m,6H),3.78(s,7H),3.67-3.61(m,12H),3.50(s,4H),3.31-3.15(m,17H),2.57(d,J=6.3Hz,2H),2.51(d,J=6.7Hz,2H),2.41(t,J=5.8Hz,6H),2.28-2.12(m,21H),2.12-1.84(m,34H),1.75-1.61(m,20H),1.25(s,4H)。MS(ESI)m/z[M-2H]2-=1261.9。
步骤7:YK-GAL-311的合成
将G11-7(35.0mg,13.8μmol),4-二甲氨基吡啶(1.69mg,13.8μmol),二异丙基乙胺(14.3mg,110μmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(26.2mg,69.3μmol)溶解在N,N-二甲基甲酰胺(2.0mL)中,随后加入CPG-NH2(220mg),40℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到12.0mL乙酸酐/吡啶(1∶5)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得淡黄色固体化合物YK-GAL-311(205mg,载量32.4μmol/g)。
12.YK-GAL-312的合成
合成路线如下:
步骤1:G12-1的合成
将G5-8(1.3g,2.0mmol),二异丙基乙胺(517mg,4.0mmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(1.14g,3.0mmol)溶解在N,N-二甲基甲酰胺(100.0mL)中,加入GalNAc-NH2(该化合物按照专利CN115315263A的合成方法进行合成,总收率20.18%)(1.24g,2.0mmol),氮气保护下15℃搅拌1h。反应液直接用于下一步。MS(ESI)m/z[M-H]-=1249.9。
步骤2:G12-2的合成
将G12-1(2.0mmol),4-二甲氨基吡啶(488.7mg,4.0mmol),二异丙基乙胺(1.03g,8.0mmol),和丁二酸酐(1.2g,12.0mmol)溶解在N,N-二甲基甲酰胺(100.0mL)中,氮气保护下30℃搅拌48h。制备色谱纯化(H2O(50mM TEAB)-ACN),得白色固体G12-2(1.9g,1.31mmol),收率65.5%。MS(ESI)m/z[M-H]-=1350.1。
步骤3:YK-GAL-312的合成
将G12-2(1.9g,1.31mmol),4-二甲氨基吡啶(160mg,1.31mmol),二异丙基乙胺(1.35g,10.48mmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(2.48g,6.55mmol)溶解在N,N-二甲基甲酰胺(210mL)中,随后加入CPG-NH2(13.6g),40℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到124mL乙酸酐/吡啶(1∶5)溶液中,40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-312(24.3g,载量36.2μmol/g)。
13.YK-GAL-313的合成
合成路线如下:
步骤1:G13-1的合成
将G5-8(1.3g,2.0mmol),二异丙基乙胺(517mg,4.0mmol)和O-苯并三氮唑-四甲基脲六氟磷酸盐(1.14g,3.0mmol)溶解在N,N-二甲基甲酰胺(100.0mL)中,加入GalNAc-NH2(该化合物按照专利WO2023288033A1的合成方法进行合成,总收率2.1%)(2.41g,2.0mmol),氮气保护下15℃搅拌1h。反应液直接用于下一步。MS(ESI)m/z[M-H]-=1837.5。
步骤2:G13-2的合成
将G13-1(2.0mmol),4-二甲氨基吡啶(488.7mg,4.0mmol),二异丙基乙胺(1.03g,8.0mmol),和丁二酸酐(1.2g,12.0mmol)溶解在N,N-二甲基甲酰胺(100.0mL)中,氮气保护下30℃搅拌48h。制备色谱纯化(H2O(50mM TEAB)-ACN),得白色固体G13-2(2.66g,1.29mmol),收率64.5%。MS(ESI)m/z[M-H]-=1937.2。
步骤3:YK-GAL-313的合成
将G13-2(2.66g,1.29mmol),4-二甲氨基吡啶(157.6mg,1.29mmol),二异丙基乙胺(1.33g,10.32mmol),和O-苯并三氮唑-四甲基脲六氟磷酸盐(2.45g,6.45mmol)溶解在N,N-二甲基甲酰胺(210.0mL)中,随后加入CPG-NH2(18.9g),40℃搅拌16h。反应液过滤,过滤物依次用甲醇和二氯甲烷洗涤,真空干燥。再将过滤物加到173mL乙酸酐/吡啶(1∶5)溶液中, 40℃搅拌0.5h。过滤,依次用二氯甲烷和甲醇洗涤,过滤物真空干燥12h,得白色固体化合物YK-GAL-313(26.3g,载量37.1μmol/g)。
14.NAG0052的合成
按照WO2023109938A1第100页中NAG0052的合成方法,得到产物288mg,总收率1.26%,载量31.5μmol/g。
实施例2:GalNAc亚磷酰胺化合物的合成
1.YK-GAL-318的合成
将化合物G5-9(2.43g,1.0mmol)和DCM(25mL)加入反应瓶,搅拌至溶解,依次加入3-双(二异丙基氨基)膦酰氧基丙腈(0.75g,2.5mmol)和4,5-二氰基咪唑(0.24g,2.0mmol),10℃搅拌2h。反应液用DCM(100mL)稀释并用NaHCO3(100mL)洗涤2次。有机相用无水Na2SO4干燥,并浓缩去除溶剂得残留物。将残留物溶于DCM(30mL),于10-15℃条件下用正庚烷/甲基叔丁基醚(5/1)打浆10min,共打浆3次,得白色固体2.39g,收率91%。MS(ESI)m/z[M+H]+=2626.8。
2.其它GalNAc亚磷酰胺化合物的合成
分别以G1-6、G2-5、G3-5、G4-5、G6-8、G7-8、G8-4、G9-5、G10-5、G11-5、G12-1和G13-1为起始原料,按照合成YK-GAL-318的方法,合成出表1中所列其它GalNAc亚磷酰胺化合物。
表1:GalNAc亚磷酰胺化合物

3.GalNAc 1b的合成
按照WO2023014938A1第145页中GalNAc 1b的合成方法,得到产物377.2mg,总收率0.58%,MS(ESI)m/z[M+H]+=1137.9。
4.GalNAc 2的合成
按照WO2023049258A1第216页中GalNAc 2的合成方法,得到产物468.5mg,总收率1.75%,MS(ESI)m/z[M+H]+=1217.7。
实施例3:GalNAc化合物与寡核苷酸的偶联
本实施例中使用同一个siRNA序列进行合成,缀合的siRNA序列为编号为inc的序列,inc序列如下:
正义链(inc-SS):
5’-Cms-Ums-Am-Gm-Am-Cm-Cf-Um-Gf-Um-dT-Um-Um-Gm-Cm-Um-Um-Um-Um-Gm-Um-3’(SEQ ID NO:1),
反义链(inc-AS):
5’-Ams-Cfs-Am-Af-Af-Af-Gm-Cf-Am-Af-Am-Af-Cm-Af-Gm-Gf-Um-Cf-Um-Am-Gms-Ams-Am-3’(SEQ ID NO:2)。
其中,A、U、C、G代表核苷酸的碱基组成;dT表示脱氧胸腺嘧啶核苷酸;m代表m左侧相邻的核苷酸为2’-OMe修饰;f代表m左侧相邻的核苷酸为2’-F修饰;s代表s左右相邻的两个核苷酸之间为硫代磷酸酯基连接。
序列来自于公开序列,为国外已上市siRNA药物inclisiran的寡核苷酸序列。
Inclisiran序列是一种合成的化学修饰的双链小干扰核糖核酸(siRNA),通过靶向结合编码PCSK9蛋白的mRNA,通过RNA干扰机制抑制PCSK9蛋白 的生成,从而调控LDL受体的回收和再利用增强其与LDL的结合,达到降低血液中LDL的目的。
1.制备GalNAc缀合的siRNA正义链
根据亚磷酰胺化学法在固相载体上合成寡核苷酸GalNAc缀合物。
合成缀合物1-11和18(序列编号为inc-G1、inc-G2、inc-G3、inc-G4、inc-G5、inc-G6、inc-G7、inc-G8、inc-G9、inc-G10、inc-G11和inc-NAG0052)时,使用实施例1中所合成的GalNAc-CPG化合物(包括YK-GAL-301、YK-GAL-302、YK-GAL-303、YK-GAL-304、YK-GAL-305、YK-GAL-306、YK-GAL-307、YK-GAL-308、YK-GAL-309、YK-GAL-310、YK-GAL-311和NAG0052)作为固相载体;合成缀合物17(序列编号为inc-L96)时,使用购买的CPG-L96(购自天津药明康德新药开发有限公司,L96为US10465194B2中公开,权利要求10)作为固相载体,其中固相载体合成规模1μmol。这些GalNAc化合物都缀合到寡核苷酸的3’末端。
合成缀合物12-16、19和20(序列编号为inc-G12、inc-G13、G18-inc、inc-G25、G26-inc、inc-GalNAc 1b和inc-GalNAc 2)时,使用通用CPG固相载体,将实施例2中合成的GalNAc亚磷酰胺化合物(YK-GAL-318、YK-GAL-325、YK-GAL-326、inc-GalNAc 1b和inc-GalNAc 2)作为第一个单体或最后一个单体进行固相合成,其中固相载体合成规模1μmol。其中缀合物12(序列编号为inc-G12)、13(序列编号为inc-G13)、15(序列编号为inc-G25)、19(序列编号为inc-GalNAc 1b)和20(序列编号为inc-GalNAc 2),是GalNAc配体化合物缀合到寡核苷酸的3’末端,缀合物14(序列编号为G18-inc)和16(序列编号为G26-inc),是GalNAc配体化合物缀合到寡核苷酸的5’末端。
(1)试剂和单体准备
通过采用单体的乙腈溶液(1/20,w/v),0.25M的5-苄硫基四氮唑的乙腈溶液作为活化剂,0.2M的氢化黄原素的乙腈/吡啶(1/4,v/v)溶液作为硫代试剂,0.05M的碘的水/吡啶(1/9,v/v)溶液作为氧化试剂,20%的乙酸酐在乙腈中(v/v)作为盖帽剂A,20/30/50(1-甲基咪唑/吡啶/乙腈,v/v/v)作为盖帽剂B,20%的二乙胺在乙腈中(v/v)作为脱氰乙基试剂,3%的二氯乙酸在甲苯中(v/v)作为脱DMT试剂。并装入192 P型号DNA/RNA自动合成 仪中指定的试剂位置中。
(2)粗品合成
输入指定的寡核苷酸序列,并设定好合成程序,检查无误后,开始循环寡核苷酸的合成。单体偶合时间约1分钟,其中氧代时间约30-45秒,硫代时间约2分钟。循环结束后,完成寡核苷酸的固相合成。
(3)脱保护
在合成结束后,将固相载体转移至反应器中,在50-60℃条件下用浓氨水(25-28%)从固相载体上裂解寡核苷酸16-24小时,体系降至室温,然后过滤,用纯化水与乙醇的混合溶液进行淋洗,合并滤液,滤液低温浓缩,得粗品残留物。
(4)纯化
将脱保护后的粗品残留物用纯化水溶解,进行HPLC纯化,收集产物峰溶液并用酶标仪测含量,并且通过ESI MS证实分子量。
该步骤将实施例1所合成的GalNAc-CPG化合物和实施例2所合成的GalNAc亚磷酰胺化合物缀合到siRNA的正义链3’或5’末端。
合成缀合物12时使用YK-GAL-325作为亚磷酰胺单体,因为YK-GAL-325具有单触角,因此在合成序列中重复3次,使合成的缀合物12具有3个GalNAc修饰基团。
合成缀合物13时使用YK-GAL-326作为亚磷酰胺单体,因为YK-GAL-326是具有双触角,因此在合成序列中重复2次,使合成的缀合物13具有4个GalNAc修饰基团。
2.制备无GalNAc缀合的siRNA反义链
按照合成siRNA正义链的方法合成siRNA反义链,其中使用通用CPG固相载体,每个与正义链互补反义链的合成规模为1μmol。
3.制备缀合的双链siRNA
将siRNA正义链和互补反义链按照紫外吸收含量1∶1混合,加热至95℃,3分钟后冷却至室温,形成双链。将所得双链溶液用HPLC表征产品纯度合格后用酶标仪测定含量,冻干得到固体粉末保存备用。所得到GalNAc缀合的siRNA双链序列及分子量如表2所示。
表2:GalNAc缀合的双链siRNA
其中:SS为正义链,AS为反义链,所得缀合的siRNA结构如下:



(GalNAc化合物为L96,在US10465194B2中公开,权利要求10化合物),
(GalNAc化合物为NAG0052,WO2023109938A1,第100页),
(GalNAc化合物为GalNAc 1b,WO2023014938A1,第145页),
(GalNAc化合物为GalNAc 2,WO2023049258A1,第216页)。
实施例4:GalNAc缀合siRNA对小鼠血清及肝脏中PCSK9表达的抑制作用及对LDL-C水平的影响
本实施例将表2中的siRNA缀合物对小鼠血清及肝脏中PCSK9表达的抑制率及对LDL-C水平影响进行考察。GalNAc缀合的Inclisiran siRNA序列进入血液后,首先通过GaINAc与肝细胞膜上的去唾液酸糖蛋白受体(ASGPR)进行特异性结合,从而进入肝细胞内。Inclisiran siRNA序列进入肝细胞后,与RNA诱导沉默复合体(RISC)结合,并在反义链的介导下与编码PCSK9蛋白的mRNA结合,抑制PCSK9蛋白的产生。肝脏中PCSK9蛋白的减少促进LDL-R的循环,从而通过增加肝细胞表面LDL-R受体数量,增加对血浆LDL-C的摄取和降解,进一步能够降低血浆LDL-C水平。因此递送至肝脏的Inclisiran siRNA序列量越高,即GalNAc递送效率越高,则肝脏中和血清中PCSK9蛋白量越低,肝脏中LDL-C的水平也越低。
结果显示,与现有技术GalNAc寡核苷酸缀合物相比,inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc实验组,小鼠血清及 肝脏中PCSK9表达抑制率和LDL-C降低水平均显著提升。例如,与inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,inc-G5对血清中PCSK9抑制率,第7天分别提高了14.2%、13.1%、14.5%和51.2%,第14天分别提高了10.2%、10.7%、10.4%和43.0%;对小鼠肝脏中PCSK9抑制率分别提高了11.1%、13.2%、11.0%和44.0%;LDL-C降低水平,第7天分别提高了20.4%、17.1%、15.8%和29.8%,第14天分别提高了23.5%、20.5%、20.0%和33.3%。
动物准备:
首先将hPCSK9转基因小鼠(等级SPF,购自江苏集萃药康生物科技股份有限公司)适应性饲养后,按血清PSCK9蛋白含量随机分为阴性对照组(不给药)、siRNA受试药组(表2中inc-G1至inc-G13、G18-inc、inc-G25、G26-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2),每组5只,均为雄性。
给药方式及给药剂量:
通过皮下单次注射给药,给药剂量为6mg/kg,给药体积为1mL/kg,给药浓度为6mg/mL,给药当天记为第0天。
1.不同GalNAc缀合的siRNA对hPCSK9小鼠血清中PCSK9抑制效率
对hPCSK9小鼠血清中PCSK9抑制效率结果表明,本发明GalNAc化合物制备的寡核苷酸缀合物与现有技术GalNAc相比,对小鼠血清中PCSK9蛋白表达抑制率显著提升。例如,与inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,inc-G5第7天抑制率分别提高了14.2%、13.1%、14.5%和51.2%,第14天抑制率分别提高了10.2%、10.7%、10.4%和43.0%。
实验过程:
实验动物给药前(D0)、给药后7天(D7)和给药后14天(D14),眼眶静脉丛取血约200μL(不抗凝)。全血样品离心前冰盒中暂存,于4℃条件下4000r/min离心10min分离血清,采用ELISA kit(Sino Biological公司)检测血清中PCSK9蛋白水平。
实验结果:
阴性对照组和各受试药组给药后7天和给药后14天对血清中PCSK9蛋白抑制率如表4所示。利用GraphPad Prism 9软件进行数据统计及分析。
1)结构区别
GalNAc寡核苷酸缀合物结构区别见表3:
表3:GalNAc寡核苷酸缀合物结构对比
2)对hPCSK9小鼠血清中PCSK9抑制效率
表4:小鼠血清中PCSK9蛋白表达抑制率
1)inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc对小鼠血清中PCSK9蛋白表达抑制率最高。例如,inc-G5第7天和第14天抑制率分别达到了94.4%和95.6%。说明巧妙设计的连接结构可显著提高药物的生物利用度,发挥更好的药效。
从表4可以看出,由本发明设计的GalNAc化合物制备的缀合物,对小鼠血清中PCSK9蛋白表达抑制效果差别很大。inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc抑制率显著高于其它组,在第7天和第14天抑制率均超过了90%。抑制率最高的是inc-G5,第7天和第14天分别达到了94.4%和95.6%。(图1)
inc-G2、inc-G3、inc-G8和inc-G9的抑制率也较高,在85%左右。inc-G1、inc-G10和G26-inc抑制率在70-80%之间。抑制率最低的是inc-G25,为55.9%。(图2)
抑制率最高的inc-G5在第7天和第14天分别比抑制率最低的inc-G25提高了38.5%和35.5%,具有显著差异。
2)由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的缀合物,均具有非常高的抑制率,并且GalNAc化合物无论缀合到寡核苷酸的3’末端还是5’末端,均可高效抑制PCSK9蛋白表达。
本发明设计的GalNAc化合物YK-GAL-325有1个触角,YK-GAL-326有2个触角(见实施例2中表1)。inc-G12是将YK-GAL-325通过2个磷酸二酯键连接,得到具有3个GalNAc基团的缀合物。inc-G13是将YK-GAL-326通过1个磷酸二酯键连接,得到具有4个GalNAc基团的缀合物。活性检测结果表明,inc-G12和inc-G13对小鼠血清中PCSK9蛋白表达也具有显著抑制作用,第7天抑制率分别达到了93.8%和94.2%,第14天抑制率分别达到了95.3%和95.5%,与inc-G5相当。
G18-inc的GalNAc配体与寡核苷酸5’末端缀合,而inc-G5的GalNAc配体与寡核苷酸3’末端缀合。活性检测结果显示,G18-inc对小鼠血清中PCSK9蛋白表达也具有显著抑制效果,在第7天和第14天抑制率分别达到了93.5%和95.2%,抑制率与inc-G5相当。
由此可知,由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,均具有非常高的递送效率,并且无论缀合到寡核苷酸的3’末端还是5’末端,均可高效递送寡核苷酸Inclisiran siRNA序列至肝脏,实现对小鼠血清中PCSK9蛋白表达的显著抑制作用。
3)由本发明设计的GaINAc化合物制备的寡核苷酸缀合物,与现有技术GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,对小鼠血清中PCSK9蛋白表达抑制率显著提升。例如,inc-G5比inc-L96提高14.2%。
由现有技术GalNAc化合物制备的缀合物,包括inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2,对小鼠血清中PCSK9蛋白表达抑制率第7天分别为80.2%、81.3%、79.9%和43.2%,第14天分别为85.4%、84.9%、85.2%和52.6%。
本发明GalNAc化合物制备的缀合物,包括inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc,与现有技术GalNAc相比,对 小鼠血清中PCSK9蛋白表达抑制率显著提升。
例如,inc-G5第7天抑制率分别比inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2提高了14.2%、13.1%、14.5%和51.2%,第14天分别提高了10.2%、10.7%、10.4%和43.0%。inc-G25与inc-GalNAc 2均是具有1个GalNAc基团的寡核苷酸缀合物,但inc-G25抑制率比inc-GalNAc 2提高了12.7%,显著提升。
4)结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中PCSK9蛋白表达抑制率极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中PCSK9蛋白表达抑制率也极有可能非常接近。
从GalNAc寡核苷酸缀合物结构图(实施例3)和表3中结构对比可以看出,本发明设计的此系列GalNAc化合物之间结构非常相近,仅各别基团稍有差别,与现有技术GalNAc化合物L-96、NAG0052、GalNAc 1b和GalNAc 2结构也都非常类似。但是,由这些结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中PCSK9蛋白表达抑制率,有的接近,有的却相差非常大。
例如,inc-G5与inc-L96相比,仅是将inc-L96主链中脯氨醇结构改变为核糖环其它结构完全相同,但是对PCSK9蛋白表达抑制率,inc-G5可比inc-L96提高14.2%,抑制活性显著提升。
inc-G12与GalNAc 1b相比,仅是与核糖环1’位相连的原子不同,GalNAc 1b是碳,而inc-G12是氧,inc-G12的连接臂比GalNAc 1b要长,其它结构完全相同,但是inc-G12的抑制率比GalNAc 1b提高了13.9%,显著提升。
inc-G5与inc-G1相比仅是核糖环2’位不同,inc-G5是甲氧基,而inc-G1是氢,但是inc-G5抑制率比inc-G1提高了21.4%。
因此,并不是化学结构相近的GalNAc化合物对寡核苷酸递送效率就一定接近,由其制备的GalNAc寡核苷酸缀合物对小鼠血清中PCSK9基因抑制效果并不一致,极有可能具有非常巨大的差异。
2.不同GalNAc缀合的siRNA对hPCSK9小鼠肝脏中PCSK9抑制效率
实验过程:
实验动物给药后第14天(D14)将试验动物麻醉处死后进行灌流,收集肝脏。
按组织重量:RNA裂解液(trizol,Ambion公司)=100mg∶1mL,快速放入准备好盛有1mL RNA裂解液(trizol)的1.5mL无RNA酶的EP管中,向管中加入3颗3mm钢珠(经无RNA处理),放入组织匀浆仪中,50Hz运行30秒,间停10秒,运行3次,制备成组织匀浆。
4℃离心,12,000×g3分钟,将400μL匀浆上清转移至1.5mL无RNA酶的EP管中,置于冰上。每管加入80μL氯仿,剧烈振荡15秒,室温静置5分钟。4℃离心,12,000×g15分钟,取上清150μL至新EP管中。
加入等体积异丙醇,将管中液体上下颠倒轻轻混匀,-20℃静置10分钟,4℃离心,12,000×g15分钟,弃上清。
加入1mL 75%乙醇,轻轻洗涤RNA沉淀,4℃ 7,500×g离心5分钟,吸去上清。重复漂洗一次,4℃ 7,500×g5分钟,用微量枪头将残留乙醇去除干净。
室温晾干残留乙醇10分钟,加入150μL RNase-free ddH2O,溶解。使用微量紫外分光光度计对RNA浓度进行检测。通过qPCR检测PCSK9基因表达情况,测定的是mRNA,结果见表5。
实验结果:
通过对qPCR结果(Mean±SD)统计,利用GraphPad Prism 9软件进行绘图及数据分析,具体结果见表5。
表5小鼠肝脏中给药后第14天PCSK9基因表达抑制率
1)inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc对小鼠肝脏中PCSK9抑制率最高。例如,inc-G5、inc-G6和inc-G12抑制率均达到了90%。说明巧妙设计的连接结构可显著提高药物的生物利用度,发挥更好的药效。
从表5可以看出,由本发明设计的GalNAc化合物制备的缀合物,对小鼠肝脏中PCSK9基因表达抑制率差别很大。inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc抑制率最高,均在85%以上,其中inc-G5、inc-G6和inc-G12,达到了90%。(图3)
inc-G2和inc-G3抑制率也较高,在80-85%之间。inc-G8、inc-G9和G26-inc抑制率在70-80%之间。inc-G1、inc-G10和inc-G25抑制率在60-70%之间。(图4)
抑制率最高的inc-G5比抑制率最低的inc-G10提高了30.3%,具有显著差 异。
2)本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,均具有非常高的抑制率,并且这些GalNAc化合物,无论缀合到寡核苷酸的3’末端还是5’末端,均可高效抑制PCSK9基因表达。
本发明设计的GalNAc化合物YK-GAL-325有1个触角,YK-GAL-326有2个触角(见实施例2中表1)。inc-G12是将YK-GAL-325通过2个磷酸二酯键连接,得到具有3个GalNAc基团的缀合物。inc-G13是将YK-GAL-326通过1个磷酸二酯键连接,得到具有4个GalNAc基团的缀合物。活性检测结果表明,inc-G12和inc-G13对小鼠肝脏中PCSK9基因表达也具有显著抑制效果,抑制率分别为90.1%和89.9%,与inc-G5相当。
G18-inc的GalNAc配体与寡核苷酸5’末端缀合,而inc-G5的GalNAc配体与寡核苷酸3’末端缀合。活性检测结果显示,G18-inc对小鼠肝脏中PCSK9基因表达也具有显著抑制效果,抑制率为89.7%,与inc-G5相当。
由此可知,由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,均具有非常高的递送效率,并且无论缀合到寡核苷酸的3’末端还是5’末端,均可高效递送寡核苷酸Inclisiran siRNA序列至肝脏,对小鼠肝脏中PCSK9基因表达具有显著抑制作用。
3)由本发明设计的GalNAc化合物制备的寡核苷酸缀合物,与现有技术GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,抑制率显著提升。例如,inc-G5比inc-L96提高11.1%。
由现有技术GalNAc化合物制备的缀合物,包括inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2,对小鼠肝脏中PCSK9基因表达抑制率分别为80.1%、78.0%、80.2%和47.2%。
本发明GalNAc化合物制备的缀合物,包括inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc,与现有技术GalNAc相比,对小鼠肝脏中PCSK9基因表达抑制率显著提升。
例如,inc-G5抑制率分别比inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2提高了11.1%、13.2%、11.0%和44.0%。inc-G25与inc-GalNAc 2均是具有1个GalNAc基团的寡核苷酸缀合物,但inc-G25抑制率比inc-GalNAc  2提高了14.4%,显著提升。
4)结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠肝脏中PCSK9基因表达抑制率极可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,对小鼠肝脏中PCSK9基因表达抑制率也极有可能非常接近。
从GalNAc寡核苷酸缀合物结构图(实施例3)和表3中结构对比可以看出,本发明设计的此系列GalNAc化合物之间结构非常接近,仅各别基团稍有差别,与现有技术GalNAc化合物L-96、NAG0052、GalNAc 1b和GalNAc 2结构也都非常接近。但是,由这些结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠肝脏中PCSK9基因表达抑制率,有的接近,有的却相差非常大。
例如,inc-G5与inc-L96相比,仅是将inc-L96主链中脯氨醇结构改变为核糖环结构,其它结构完全相同,但是对PCSK9基因表达抑制率,inc-G5可比inc-L96提高11.1%,抑制活性显著提升。
inc-G12与GalNAc 1b相比,仅是与核糖环1’位相连的原子不同,GalNAc 1b是碳,而inc-G12是氧,inc-G12的连接臂比GalNAc 1b要长,其它结构完全相同,但是inc-G12的抑制率比GalNAc 1b提高了9.9%,显著提升。
inc-G5与inc-G1相比仅是核糖环2’位不同,inc-G5是甲氧基,而inc-G1是氢,但是inc-G5抑制率比inc-G1提高了21.3%。
inc-GalNAc 2与inc-G25中均是具有1个GalNAc基团的寡核苷酸缀合物,但inc-G25抑制率比inc-GalNAc 2提高了14.4%,显著提升。
因此,并不是化学结构相近的GalNAc化合物对寡核苷酸递送效率就一定接近,由其制备的GalNAc寡核苷酸缀合物对小鼠肝脏中PCSK9基因抑制效果并不一致,极有可能具有非常巨大的差异。
3.不同GalNAC缀合的siRNA对hPCSK9小鼠LDL-C水平的影响
实验过程:
实验动物给药前(D0)、给药后第7天(D7)、给药后14天(D14),眼眶静脉丛取血约200μL(不抗凝)。全血样品离心前冰盒中暂存,于4℃条件下4000r/min离心10分钟分离血清,对血清LDL-C的水平进行检测。
实验结果:
通过对血清LDL-C(Mean±SD)统计,利用GraphPad Prism 9软件进行绘图及数据分析,具体结果见表6。
表6:各实验组血清中LDL-C降低水平
1)inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc对LDL-C降低水平显著高于其它组。例如,inc-G5第7天和第14天分别达到了49.6%和54.1%。说明巧妙设计的连接结构可显著提高药物的生物利用度,发挥更好的药效。
从表6可以看出,由本发明设计的GalNAc化合物制备的缀合物,inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc对小鼠血清中LDL-C降低水平最高,在第7天和第14天均超过了35%,显著高于其它实验组。其中降低水平最高的是inc-G5,第7天和第14天分别达到了49.6%和54.1%。(图5)
inc-G2、inc-G3和inc-G8降低水平在30-35%之间。inc-G9、inc-G25和G26-inc降低水平均在20-30%之间,。inc-G1和inc-G10降低水平低于20%,其中inc-G1第7天和第14天分别仅为15.9%和17.0%。(图6)
降低水平最高的inc-G5比最低的inc-G1提高了30%以上,差异显著。
2)本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,均具有非常高的降低水平, 并且这些GalNAc化合物,无论缀合到寡核苷酸的3’末端还是5’末端,均可高效降低LDL-C水平。
本发明设计的GalNAc化合物YK-GAL-325有1个触角,YK-GAL-326有2个触角(见实施例2中表1)。inc-G12是将YK-GAL-325通过2个磷酸二酯键连接,得到具有3个GalNAc基团的缀合物。inc-G13是将YK-GAL-326通过1个磷酸二酯键连接,得到具有4个GalNAc基团的缀合物。活性检测结果表明,inc-G12和inc-G13也可显著降低小鼠血清中LDL-C水平,在第7天降低水平分别为48.5%和47.3%,第14天分别为51.9%和49.5%,与inc-G5相当。
G18-inc的GalNAc配体与寡核苷酸5’末端缀合,而inc-G5的GalNAc配体与寡核苷酸3’末端缀合。活性检测结果显示,G18-inc也可显著降低小鼠血清中LDL-C水平,在第7天和第14天降低水平分别为45.6%和47.9%,与inc-G5相当。
由此可知,由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,对PCSK9基因表达均具有显著抑制效果,并且无论缀合到寡核苷酸的3’末端还是5’末端,均可高效递送寡核苷酸Inclisiran siRNA序列至肝脏,实现对小鼠血清中PCSK9基因表达的显著抑制作用,进而降低LDL-C水平。
3)由本发明设计的GalNAc化合物制备的寡核苷酸缀合物,与现有技术GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,小鼠血清中LDL-C降低水平显著提升。例如,inc-G5第7天和第14天分别比inc-L96提高20.4%和23.5%。
由现有技术GalNAc化合物制备的缀合物中,inc-L96、inc-NAG0052和inc-GalNAc 1b的降低水平在25-35%之间,inc-GalNAc 2的降低水平在20%左右。
本发明GalNAc化合物制备的缀合物,包括inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc,与现有技术GalNAc相比,对小鼠血清中LDL-C降低水平显著提升。
例如,inc-G5第7天降低水平分别比inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2提高了20.4%、17.1%、15.8%和29.8%,第14天分别提高了23.5%、20.5%、20.0%和33.3%。
4)结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中 LDL-C降低水平极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中LDL-C降低水平也极有可能非常接近。
从GalNAc寡核苷酸缀合物结构图(实施例3)和表3中结构对比可以看出,本发明设计的此系列GalNAc化合物之间结构非常接近,仅各别基团稍有差别,与现有技术GalNAc化合物L-96、NAG0052、GalNAc 1b和GalNAc 2结构也都非常类似。但是,由这些结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中LDL-C水平的影响,有的接近,有的却相差非常大。
例如,inc-G5与inc-L96相比,仅是将inc-L96主链中脯氨醇结构改变为核糖环结构,其它结构完全相同,但是对血清中LDL-C降低水平,inc-G5可比inc-L96提高20%以上,显著提升。inc-G12与GalNAc 1b相比,仅是与核糖环1’位相连的原子不同,GalNAc 1b是碳,而inc-G12是氧,inc-G12的连接臂比GalNAc 1b要长,其它结构完全相同,但是inc-G12的降低水平比GalNAc 1b提高了15%以上,显著提升。inc-G5与inc-G1相比仅是核糖环2’位不同,inc-G5是甲氧基,而inc-G1是氢,但是对小鼠血清中LDL-C水平影响,inc-G5可降低50%,而inc-G1仅降低15%左右,降低水平inc-G5比inc-G1提高30%以上,差异显著。
因此,并不是化学结构相近的GalNAc化合物对寡核苷酸递送效率就一定接近,由其制备的GalNAc寡核苷酸缀合物对小鼠血清中LDL-C水平的影响并不一致,极有可能具有非常巨大的差异。
实施例5:不同GalNAc缀合的siRNA在小鼠体内不同组织器官的分布情况
偶联GalNAc配体的Inclisiran siRNA序列进入血液后首先在GalNAc的帮助下部分进入肝细胞,对目标基因起到抑制作用。其余在血清中的siRNA则通过肾脏清除。由于血浆中的siRNA主要通过肾脏清除,因此除了肝脏外,siRNA序列在肾脏中也有分布。
实验过程:
使用6-8周野生型C57BL/6小鼠,每组6只小鼠。每组分别给予带Cy5荧光基团的siRNA缀合物inc-G1、inc-G2、inc-G3、inc-G4、inc-G5、inc-G6、inc-G7、inc-G8、inc-G9、inc-G10、inc-G11、inc-G12、inc-G13、G18-inc、inc-G25、G26-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2。阴性对照组不给药。小鼠称重后按照6mg/kg剂量给药,皮下注射给药,根据给药体 积确定,注射量不超过0.1-0.2mL。
给药后将小鼠腹部毛推净,异氟烷麻醉后以仰式将小鼠置于小动物活体成像系统中,Cy5通道下观察给药后4小时和8小时后小鼠成像情况。利用活体成像软件Living Image统计小鼠发光强度,比较不同受试组间差异。
实验结果:
小鼠肝脏及肾脏中荧光强度(可以代表寡核酸相对含量)检测结果见表7。
表7:小鼠肝脏及肾脏中荧光强度
1)inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc肝脏荧光强度显著高于其它组。例如,最高的inc-G5在4小时和8小时荧光强度分别可达9.12E+09和9.16E+09。说明巧妙设计的连接结构可显著改善寡核苷酸药物的递送效果。
从表7可以看出,采用Cy5荧光标记的寡核苷酸在小鼠肝脏和肾脏均中分 布,由本发明设计的GalNAc化合物制备的缀合物,荧光强度差别很大。inc-G4、inc-G5、inc-G6、inc-G7、inc-G12、inc-G13和G18-inc在肝中荧光强度显著高于其它组,即寡核苷酸相对含量显著高于其它组。其中荧光强度最高的是inc-G5,在4小时达到了9.12E+09,在8小时达到了9.16E+09。(图7)
inc-G2、inc-G3和inc-G8的荧光强度也较高,4小时和8小时均在8.00E+09至8.50E+09之间。inc-G9、inc-G10和G26-inc荧光强度在4小时为7.00E+09至8.00E+09之间,在8小时为6.50E+09至8.00E+09之间。inc-G1和inc-G25荧光强度在5.00E+09至7.50E+09之间。
荧光强度最高的inc-G5,在4小时和8小时,可分别比荧光强度最低的inc-G1提高52.0%和23.5%,显著提升。
2)本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,肝脏均具有非常高的荧光强度,并且这些GalNAc化合物,无论缀合到寡核苷酸的3’末端还是5’末端,均可高效递送寡核苷酸至肝脏。
本发明设计的GalNAc化合物YK-GAL-325有1个触角,YK-GAL-326有2个触角(见实施例2中表1)。inc-G12是将YK-GAL-325通过2个磷酸二酯键连接,得到具有3个GalNAc基团的缀合物。inc-G13是将YK-GAL-326通过1个磷酸二酯键连接,得到具有4个GalNAc基团的缀合物。inc-G12和inc-G13在4小时荧光强度分别为9.01E+09和8.98E+09,在8小时荧光强度分别为9.09E+09和9.01E+09,与inc-G5相当。
G18-inc的GalNAc配体与寡核苷酸5’末端缀合,而inc-G5的GalNAc配体与寡核苷酸3’末端缀合。G18-inc在4小时和8小时荧光强度分别为8.95E+09和9.13E+09,与inc-G5相当。
由此可知,由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,均具有非常高的递送效率,并且无论缀合到寡核苷酸的3’末端还是5’末端,均可高效递送寡核苷酸Inclisiran siRNA序列至肝脏。
3)由本发明设计的GalNAc化合物制备的寡核苷酸缀合物,与现有技术GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,小鼠肝脏荧光吸收强度显著提升。例如,inc-G5比inc-L96提高50%以上。
从表7和图7可以看出,采用Cy5荧光标记的寡核苷酸在小鼠肝脏和肾脏中分布,inc-G4、inc-G5、inc-G6、inc-G7、inc-G12、inc-G13和G18-inc在肝中荧光强度,在4小时和8小时均显著高于inc-L96、inc-NAG0052、inc-GalNAc1b和inc-GalNAc 2。例如,inc-G5在4小时和8小时肝脏荧光强度分别为9.12E+09和9.16E+09,比inc-L96提高了10.9%和52.9%,比inc-NAG0052提高了13.9%和40.5%,比inc-GalNAc 1b提高了17.7%和44.3%,比inc-GalNAc 2提高了110.6%和127.3%,显著提升。inc-G6在4小时和8小时荧光强度分别为8.92E+09和9.03E+09,比inc-L96提高了8.5%和50.8%,比inc-NAG0052提高了11.4%和38.5%,比inc-GalNAc 1b提高了15.1%和42.2%,比inc-GalNAc 2提高了106.0%和124.1%,显著提升。
4)结构相近的GalNAc化合物制备的寡核苷酸缀合物,将寡核苷酸递送至肝脏效率极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,将寡核苷酸递送至肝脏效率也极有可能非常接近。
从GalNAc寡核苷酸缀合物结构图(实施例3)和表3中结构对比可以看出,本发明设计的此系列GalNAc化合物之间结构非常相近,仅各别基团稍有差别,与现有技术GalNAc化合物L-96、NAG0052、GalNAc 1b和GalNAc 2结构也都非常类似。但是,由这些结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中PCSK9蛋白表达抑制率,有的接近,有的却相差非常大。
例如,inc-G5与inc-L96相比,仅是将inc-L96主链中脯氨醇结构改变为核糖环结构,其它结构完全相同,但是inc-G5肝脏荧光强度可比inc-L96提高50%以上,递送效率显著提升。
inc-G12与GalNAc 1b相比,仅是与核糖环1’位相连的原子不同,GalNAc 1b是碳,而inc-G12是氧,inc-G12的连接臂比GalNAc 1b要长,其它结构完全相同,但是inc-G12肝脏荧光强度比GalNAc 1b提高了40%以上。
inc-G5与inc-G1相比仅是核糖环2’位不同,inc-G5是甲氧基,而inc-G1是氢,但inc-G5肝脏荧光强度比inc-G1提高了50%以上。
因此,并不是化学结构相近的GalNAc化合物对寡核苷酸递送效率就一定接近,相反,极有可能具有非常巨大的差异。
实施例6:不同GalNAc缀合的siRNA在动物肝脏中的药代动力学
实验过程:
实验动物采用6-9周的SD雄性大鼠,每组30只大鼠。每组分别给予siRNA缀合物inc-G1、inc-G2、inc-G3、inc-G4、inc-G5、inc-G6、inc-G7、inc-G8、inc-G9、inc-G10、inc-G11、inc-G12、inc-G13、G18-inc、inc-G25、G26-inc、inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2。大鼠称重后按照5mg/kg剂量给药,皮下注射给药,给药浓度为1mg/mL,给药体积为5mL。取给药后6、24、72、168、336、504、672、1008和1344h共9个时间点进行组织样品收集:将试验动物用二氧化碳处死后,取肝脏并用预冷的生理盐水冲洗后用滤纸擦干,称重后转移至贴有标签的管中,在冰冷条件下按照1∶9(1g组织加入9mL匀浆液)匀浆(匀浆液:100mM Tris,10mMEDTA,pH8.0),匀浆后的样品取约800μL储存在-80℃中,之后用LC-MS/MS检测肝脏中药物浓度。
实验结果:半衰期、药峰浓度和药-时曲线下面积数据见表8。
表8:半衰期、药峰浓度和药-时曲线下面积数据
1)inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc半衰期与其它组相比显著提升。例如,inc-G5、inc-G6、inc-G7、inc-G12和G18-inc半衰期分别达到了110小时、103小时、103小时、101小时和102小时。说明巧妙设计的连接结构可显著改善药物的体内药代动力学特性。
从表8可以看出,由本发明设计的GalNAc化合物制备的缀合物半衰期差别很大。inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc半衰期与其它组相比显著提升。例如,inc-G5、inc-G6、inc-G7和G18-inc半衰期分别达到了110小时、103小时、103小时和102小时,inc-G4、inc-G11和inc-G13也均达到了85小时。(图8)
inc-G2、inc-G3、inc-G9、inc-G25和G26-inc半衰期在70-85小时之间。inc-G8和inc-G10半衰期在60-70小时之间。半衰期最短的是inc-G1,为56小时。(图9)
半衰期最长的inc-G5和最短的inc-G1相差54小时,inc-G5达到了inc-G1的2倍,差异非常显著。
各受试药物组药峰浓度和药-时曲线下面积升高或降低趋势也与半衰期一致。
2)由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的缀合物,在小鼠体内均具有较长半衰期,并且GalNAc化合物无论缀合到寡核苷酸的3’末端还是5’末端,半衰期均较长。
本发明设计的GalNAc化合物YK-GAL-325有1个触角,YK-GAL-326有2个触角(见实施例2中表1)。inc-G12是将YK-GAL-325通过2个磷酸二酯键连接,得到具有3个GalNAc基团的缀合物。inc-G13是将YK-GAL-326通过1个磷酸二酯键连接,得到具有4个GalNAc基团的缀合物。inc-G12和inc-G13在小鼠体内半衰期分别为101小时和95小时,与inc-G5相当。
G18-inc的GalNAc配体与寡核苷酸5’末端缀合,而inc-G5的GalNAc配体与寡核苷酸3’末端缀合。G18-inc在小鼠体内半衰期达到了102小时,与inc-G5相当。
由此可知,由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,在小鼠体内均很稳 定,并且无论缀合到寡核苷酸的3’末端还是5’末端,半衰期均较长。
各受试药物组药峰浓度和药-时曲线下面积升高或降低趋势也与半衰期一致。
3)由本发明设计的GalNAc化合物制备的寡核苷酸缀合物,与现有技术GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,在小鼠体内半衰期显著提升。例如,inc-G5比inc-L96提高48.6%。
由现有技术GalNAc化合物制备的缀合物,包括inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2,在小鼠体内半衰期分别为74小时、75小时、79小时和65小时。本发明GalNAc化合物制备的缀合物,包括inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc,与现有技术GalNAc相比,在小鼠体内半衰期显著提升。
例如,inc-G5半衰期分别比inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2提高了48.6%、46.7%、39.2%和69.2%,显著提升。
inc-G25与inc-GalNAc 2均是具有1个GalNAc基团的寡核苷酸缀合物,但inc-G25半衰期比inc-GalNAc 2提高了15.4%,显著提升。
各受试药物组药峰浓度和药-时曲线下面积升高或降低趋势也与半衰期一致。
4)结构相近的GalNAc化合物制备的寡核苷酸缀合物,在小鼠体内半衰期极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,在小鼠体内半衰期也极有可能非常接近。
从GalNAc寡核苷酸缀合物结构图(实施例3)和表3中结构对比可以看出,本发明设计的此系列GalNAc化合物之间结构非常相近,仅各别基团稍有差别,与现有技术GalNAc化合物L-96、NAG0052、GalNAc 1b和GalNAc 2结构也都非常类似。但是,由这些结构相近的GalNAc化合物制备的寡核苷酸缀合物,在小鼠体内半衰期,有的却相差非常大。
例如,inc-G5与inc-L96相比,仅是将inc-L96主链中脯氨醇结构改变为核糖环结构,其它结构完全相同,但是inc-G5半衰期可比inc-L96提高48.6%,显著提升。
inc-G12与GalNAc 1b相比,仅是与核糖环1’位相连的原子不同,GalNAc1b是碳,而inc-G12是氧,inc-G12的连接臂比GalNAc 1b要长,其它结构完全相同,但是inc-G12的半衰期比GalNAc 1b提高了27.8%,显著提升。
inc-G5与inc-G1相比仅是核糖环2’位不同,inc-G5是甲氧基,而inc-G1是氢,但是inc-G5半衰期比inc-G1提高了96.4%%,显著提升。
因此,并不是化学结构相近的GalNAc化合物制备的寡核苷酸缀合物,在小鼠体内半衰期就一定接近,相反,极有可能具有非常巨大的差异。
各受试药物组药峰浓度和药-时曲线下面积升高或降低趋势也与半衰期一致。
本发明设计了一系列新型GalNAc化合物,例如YK-GAL-304、YK-GAL-305、YK-GAL-306、YK-GAL-307、YK-GAL-311、YK-GAL-318、YK-GAL-325和YK-GAL-326,由其制备的GalNAc寡核苷酸缀合物,可以实现高效肝靶向递送,相比于现有技术代表性GalNAc化合物活性及半衰期显著提升。
1.设计的GalNAc化合物,与现有技术GalNAc化合物相比,化学结构显著不同。本发明设计的GalNAc化合物,在连接臂中引入了核糖环结构,并在核糖环的1’位引入了氧或硫原子。
2.本发明设计的GalNAc化合物制备的寡核苷酸缀合物inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc,递送效率和半衰期与其它组相比显著提升。说明巧妙设计的连接结构可显著提高药物的生物利用度和改善药物的药代动力学特性,发挥更好的药效。由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的缀合物,均具有高活性和长半衰期。并且,结构相近的GalNAc化合物制备的寡核苷酸缀合物,活性和半衰期极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,活性和半衰期也极有可能非常接近。
具体如下:
1)对小鼠血清中PCSK9蛋白表达抑制率
I.inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc对小鼠血清中PCSK9蛋白表达抑制率显著高于其它组。例如,inc-G5第7天和第14天抑制率分别达到了94.4%和95.6%。并且,与现有技术代表性GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,对小鼠血清中PCSK9蛋白表达抑制率显著提升。例如,inc-G5比inc-L96提高14.2%。说明巧妙设计的连接结构可显著提高药物的生物利用度,发挥更好的药效。
II.由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的缀合物,均具有非常高的抑制率,并且GalNAc化合物无论缀合到寡核苷酸的3’末端还是5’末端,均可高效抑制血清中PCSK9蛋白表达。
III.结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中PCSK9蛋白表达抑制率极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中PCSK9蛋白表达抑制率也极有可能非常接近。
2)对小鼠肝脏中PCSK9基因表达抑制率
I.inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc对小鼠肝脏中PCSK9基因表达抑制率显著高于其它组。例如,inc-G5、inc-G6和inc-G12抑制率均达到了90%。并且,与现有技术GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,抑制率显著提升。例如,inc-G5比inc-L96提高11.1%。说明巧妙设计的连接结构可显著提高药物的生物利用度,发挥更好的药效。
II.本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,均具有非常高的抑制率,并且这些GalNAc化合物,无论缀合到寡核苷酸的3’末端还是5’末端,均可高效抑制肝脏中PCSK9基因表达。
III.结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠肝脏中PCSK9蛋白表达抑制率极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,对小鼠肝脏中PCSK9基因表达抑制率也极有可能非常接近。
3)对小鼠LDL-C水平的影响
I.inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc导致LDL-C下降水平显著高于其它组。例如,inc-G5第7天和第14天下降水平分别达到了49.6%和54.1%。并且,与现有技术GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,小鼠血清中LDL-C降低水平显著提升。例如,inc-G5第7天和第14天分别比inc-L96提高20.4%和23.5%。说明巧妙设计的连接结构可显著提高药物的生物利用度,发挥更好的药效。
II.本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,均具有非常高的降低水平,并且这些GalNAc化合物,无论缀合到寡核苷酸的3’末端还是5’末端,均可高效降低LDL-C水平。
III.结构相近的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中LDL-C降低水平极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,对小鼠血清中LDL-C降低水平也极有可能非常接近。
4)在小鼠肝脏的分布情况
I.inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc荧光强度显著高于其它组。例如,inc-G5在4小时和8小时荧光强度分别可达9.12E+09和9.16E+09。并且,与现有技术GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc 1b和inc-GalNAc 2相比,小鼠肝脏荧光吸收强度显著提升。例如,inc-G5比inc-L96提高50%以上。说明巧妙设计的连接结构可显著提高药物的生物利用度,发挥更好的药效。
II.本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的寡核苷酸缀合物,均具有非常高的荧光强度,并且这些GalNAc化合物,无论缀合到寡核苷酸的3’末端还是5’末端,均可高效递送寡核苷酸至肝脏。
III.结构相近的GalNAc化合物制备的寡核苷酸缀合物,将寡核苷酸递送至肝脏效率极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,将寡核苷酸递送至肝脏效率也极有可能非常接近。
5)在小鼠体内半衰期
I.inc-G4、inc-G5、inc-G6、inc-G7、inc-G11、inc-G12、inc-G13和G18-inc半衰期与其它组相比显著提升。例如,inc-G5、inc-G6、inc-G7、inc-G12和G18-inc半衰期分别达到了110小时、103小时、103小时、101小时和102小时。并且,与现有技术GalNAc化合物制备的inc-L96、inc-NAG0052、inc-GalNAc1b和inc-GalNAc 2相比,在小鼠体内半衰期显著延长。例如,inc-G5比inc-L96提高48.6%。说明巧妙设计的连接结构可显著改善药物的体内药代动力学特性。
II.由本发明设计的具有3触角、1触角或2触角的GalNAc化合物,制备得到具有3个或4个GalNAc基团的缀合物,在小鼠体内均具有较长半衰期, 并且GalNAc化合物无论缀合到寡核苷酸的3’末端还是5’末端,半衰期均较长。
III.结构相近的GalNAc化合物制备的缀合物,在小鼠体内半衰期极有可能差异巨大;结构差异大的GalNAc化合物制备的寡核苷酸缀合物,在小鼠体内半衰期也极有可能非常接近。

Claims (31)

  1. 式(I)化合物或其药学上可接受的盐:
    其中,
    R1为氧或硫;
    R2为氢、C1-4烷基、C1-4烷氧基或卤素;
    R3为氢、羟基保护基、含磷活性反应基团、或-CO(CH2)xCOOH,其中x是1-10的整数,为可控孔玻璃或聚苯乙烯;
    R4为氢或羟基保护基;
    A为-(CH2)a-、-(CH2CH2O)b-、-((CH2)cNHCO)d-或-((CH2)cCONH)d-,其中,a是1-15的整数,b是1-7的整数,c为1-7的整数,d为1-5的整数;
    B为-(CH2)e-,其中e为0-7的整数;
    L为-CONH-或-NHCO-;
    G为
    其中,
    T为羟基用酰基全保护的N-乙酰-半乳糖胺、羟基用酰基全保护的半乳糖、羟基用酰基全保护的半乳糖胺、羟基用酰基全保护的N-甲酰-半乳糖胺、羟基用酰基全保护的N-丙酰-半乳糖胺、羟基用酰基全保护的N-正丁酰-半乳糖胺或羟基用酰基全保护的N-异丁酰-半乳糖胺,其中酰基为乙酰基或苯甲酰基;
    X1为-(CH2)f-或-(CH2CH2O)fCH2-,其中f是1-5的整数;
    X2为-(CH2)g-,其中g是1-6的整数;
    Y1为0或1;
    Y2为0、1或2;
    Y3为1、2或3;
    m为0-4的整数;
    n为0-4的整数。
  2. 根据权利要求1所述的式(I)化合物或其药学上可接受的盐,其中A为-(CH2)10-、-(CH2)7-、-(CH2)8-、-(CH2)9-、-(CH2)11-、-(CH2)12-、-(CH2CH2O)3-、-(CH2)4NHCO-或-(CH2)6NHCO-。
  3. 根据权利要求1所述的式(I)化合物或其药学上可接受的盐,其中B为-(CH2)0-、-CH2-、-(CH2)2-、-(CH2)4-或-(CH2)3-。
  4. 根据权利要求1所述的式(I)化合物或其药学上可接受的盐,其中R1为氧。
  5. 根据权利要求1所述的式(I)化合物或其药学上可接受的盐,其中R1为α构型或β构型。
  6. 根据权利要求1所述的式(I)化合物或其药学上可接受的盐,其中R2为氢或-OCH3
  7. 根据权利要求1-6任一项所述的式(I)化合物或其药学上可接受的盐,其中R3为羟基保护基或含磷活性反应基团。
  8. 根据权利要求7所述的式(I)化合物或其药学上可接受的盐,其中R3为乙酰基、1,1,3,3-四异丙基二硅氧烷基、叔丁基二甲基甲硅烷基、苯基二甲基甲硅烷基、4,4′-二甲氧基三苯甲基或
  9. 根据权利要求1-6任一项所述的式(I)化合物或其药学上可接受的盐,其中R3
  10. 根据权利要求1-6任一项所述的式(I)化合物或其药学上可接受的盐,其中R3为-CO(CH2)2COOH。
  11. 根据权利要求1-6任一项所述的式(I)化合物或其药学上可接受的盐,其中R4为羟基保护基。
  12. 根据权利要求11所述的式(I)化合物或其药学上可接受的盐,其中R4为三苯甲基、单甲氧基三苯甲基或4,4′-二甲氧基三苯甲基。
  13. 根据权利要求1-6任一项所述的式(I)化合物或其药学上可接受的盐,其中m为1。
  14. 根据权利要求1-6任一项所述的式(I)化合物或其药学上可接受的盐,其中n为0。
  15. 根据权利要求1-6任一项所述的式(I)化合物或其药学上可接受的盐,其中G为
  16. 根据权利要求1所述的式(I)化合物或其药学上可接受的盐,所述式(I)化合物为具有以下结构的化合物YK-GAL-301、YK-GAL-302、YK-GAL-303、YK-GAL-304、YK-GAL-305、YK-GAL-306、YK-GAL-307、YK-GAL-308、YK-GAL-309、YK-GAL-310、YK-GAL-311、YK-GAL-312或YK-GAL-313:



    其中为可控孔玻璃。
  17. 根据权利要求1所述的式(I)化合物或其药学上可接受的盐,所述式(I)化合物为具有以下结构的化合物YK-GAL-314、YK-GAL-315、YK-GAL-316、YK-GAL-317、YK-GAL-318、YK-GAL-319、YK-GAL-320、YK-GAL-321、YK-GAL-322、YK-GAL-323、YK-GAL-324、YK-GAL-325或YK-GAL-326:


  18. 根据权利要求1-6中任一项所述的式(I)化合物或其药学上可接受 的盐,其能够结合脱唾液酸糖蛋白受体(ASGPR)。
  19. 一种缀合物,其包含寡核苷酸和GalNAc部分,具有如下所示结构:
    其中,Oligo代表寡核苷酸,R1、R2、R3、R4、A、B、L、G、m和n同权利要求1。
  20. 根据权利要求19所述的缀合物,其中G的N-乙酰-半乳糖胺中的羟基保护基乙酰基被脱除。
  21. 根据权利要求19或20所述的缀合物,其中所述寡核苷酸包括非硫代寡核苷酸和硫代寡核苷酸。
  22. 根据权利要求21所述的缀合物,其中所述非硫代寡核苷酸和所述GalNAc部分通过磷酸酯键连接。
  23. 根据权利要求21所述的缀合物,其中所述硫代寡核苷酸和所述GalNAc部分通过硫代磷酸酯键连接。
  24. 根据权利要求21所述的缀合物,其中所述寡核苷酸包括小干扰核苷酸(siRNA)、DNA、微小RNA(miRNA)、小激活RNA(saRNA)、小向导RNA(small guide RNA,sgRNA)、转运RNA(tRNA)、反义核苷酸(ASO)或适配体(Aptamer)。
  25. 根据权利要求24所述的缀合物,其中所述反义核苷酸(ASO)或小干扰核苷酸(siRNA)中每个核苷酸各自独立地为修饰或未修饰的核苷酸。
  26. 根据权利要求21所述的缀合物,其中所述寡核苷酸调节靶基因的表达。
  27. 一种药物组合物,其包含权利要求19-26中任一项所述的缀合物和至少一种药学上可接受的赋形剂。
  28. 根据权利要求19-26中任一项所述的缀合物或根据权利要求27所述的药物组合物在制备用于治疗和/或预防由肝细胞中特定基因的表达而引起 的病理状况或疾病的药物中的用途,可选地,所述特定基因选自乙型肝炎病毒基因、血管生成素蛋白3基因或者载脂蛋白C3基因。
  29. 根据权利要求28所述的用途,其中,所述疾病选自慢性肝病、肝炎、肝纤维化疾病、肝增生性疾病和血脂异常;可选地,所述血脂异常为高胆固醇血症、高甘油三酯血症或动脉粥样硬化。
  30. 一种抑制肝细胞中特定基因表达的方法,包括将有效量的根据权利要求19-26中任一项所述的缀合物或根据权利要求27所述的药物组合物与所述肝细胞进行接触;
    可选地,所述特定基因选自以下基因中的一种:前蛋白转化酶枯草溶菌素9基因(PCSK9)、ApoB、ApoC、ANGPTL3、SCD1、FVII、p53、HBV、HCV;
    可选地,所述特定基因选自前蛋白转化酶枯草溶菌素9基因(PCSK9)、乙型肝炎病毒基因、血管生成素样蛋白3基因或者载脂蛋白C3基因。
  31. 一种试剂盒,该试剂盒包括根据权利要求19-26中任一项所述的缀合物。
PCT/CN2023/135929 2023-09-01 2023-12-01 一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物 WO2025043931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202311118366.4A CN116854754B (zh) 2023-09-01 2023-09-01 一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物
CN202311118366.4 2023-09-01

Publications (1)

Publication Number Publication Date
WO2025043931A1 true WO2025043931A1 (zh) 2025-03-06

Family

ID=88232668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135929 WO2025043931A1 (zh) 2023-09-01 2023-12-01 一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物

Country Status (2)

Country Link
CN (2) CN116854754B (zh)
WO (1) WO2025043931A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116854754B (zh) * 2023-09-01 2023-12-12 北京悦康科创医药科技股份有限公司 一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物
CN118146284B (zh) * 2024-05-08 2024-07-26 北京悦康科创医药科技股份有限公司 一种GalNAc化合物、其与寡核苷酸缀合物及制备方法
CN118638166B (zh) * 2024-08-15 2024-12-17 北京悦康科创医药科技股份有限公司 含有三氮唑结构的GalNAc化合物及其寡核苷酸缀合物
CN119318643A (zh) * 2024-12-19 2025-01-17 北京悦康科创医药科技股份有限公司 一种含核糖环结构的GalNAc化合物偶联核酸脂质纳米粒及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016100401A1 (en) * 2014-12-15 2016-06-23 Dicerna Pharmaceuticals, Inc. Ligand-modified double-stranded nucleic acids
WO2022266316A1 (en) * 2021-06-18 2022-12-22 Hongene Biotech Corporation Functionalized n-acetylgalactosamine nucleosides
WO2023274395A1 (zh) * 2021-07-02 2023-01-05 上海拓界生物医药科技有限公司 一种核酸配体及其缀合物、其制备方法和用途
WO2023283434A1 (en) * 2021-07-09 2023-01-12 Alnylam Pharmaceuticals, Inc. Aminooxy click chemistry (aocc): a versatile bioconjugation approach
WO2023014938A1 (en) * 2021-08-05 2023-02-09 Sanegene Bio Usa Inc. 1'-alkyl modified ribose derivatives and methods of use
WO2023049258A1 (en) * 2021-09-22 2023-03-30 Sanegene Bio Usa Inc. 2'-alkyl or 3'- alkyl modified ribose derivatives for use in the in-vivo delivery of oligonucleotides
WO2023109938A1 (zh) * 2021-12-16 2023-06-22 上海拓界生物医药科技有限公司 一种dsRNA、其制备方法及应用
WO2023109932A1 (zh) * 2021-12-16 2023-06-22 上海拓界生物医药科技有限公司 一种dsRNA、其制备方法及应用
WO2023138659A1 (zh) * 2022-01-20 2023-07-27 上海拓界生物医药科技有限公司 一种dsRNA、其应用及制备方法
CN116854754A (zh) * 2023-09-01 2023-10-10 北京悦康科创医药科技股份有限公司 一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2929031T4 (pl) * 2012-12-05 2022-06-27 Alnylam Pharmaceuticals, Inc. Kompozycje iRNA PCSK9 i sposoby ich zastosowania
US9879265B2 (en) * 2013-06-27 2018-01-30 Roche Innovation Center Copenhagen A/S Oligonucleotide conjugates
CN113286888B (zh) * 2019-05-22 2023-12-22 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN112759620A (zh) * 2019-10-21 2021-05-07 苏州瑞博生物技术股份有限公司 肝靶向化合物及寡核苷酸缀合物
IL295496A (en) * 2020-02-18 2022-10-01 Alnylam Pharmaceuticals Inc Apolipoprotein c3 (apoc3) irna preparations and methods of using them
CN113683651A (zh) * 2020-05-19 2021-11-23 上海京新生物医药有限公司 一种GalNAc中间体的制备方法
IL299357A (en) * 2020-06-24 2023-02-01 Sapreme Tech Bv Conjugate of galnac and saponin, therapeutic composition comprising said conjugate and a galnac-oligonucleotide conjugate
WO2022055352A1 (en) * 2020-09-10 2022-03-17 Sapreme Technologies B.V. Semicarbazone-based saponin conjugate
CN114853828A (zh) * 2021-01-20 2022-08-05 阿格纳生物制药有限公司 化合物、缀合物及其用途
AU2022226098A1 (en) * 2021-02-26 2023-08-24 Alnylam Pharmaceuticals, Inc. KETOHEXOKINASE (KHK) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
CN115920065A (zh) * 2021-08-02 2023-04-07 南方科技大学 一种可靶向去唾液酸糖蛋白受体的配体及其缀合物与用途
EP4384528A2 (en) * 2021-08-09 2024-06-19 Lerna Biopharma Pte. Ltd. Galnac-monomers and galnac-nucleic acid conjugates

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016100401A1 (en) * 2014-12-15 2016-06-23 Dicerna Pharmaceuticals, Inc. Ligand-modified double-stranded nucleic acids
WO2022266316A1 (en) * 2021-06-18 2022-12-22 Hongene Biotech Corporation Functionalized n-acetylgalactosamine nucleosides
WO2023274395A1 (zh) * 2021-07-02 2023-01-05 上海拓界生物医药科技有限公司 一种核酸配体及其缀合物、其制备方法和用途
WO2023283434A1 (en) * 2021-07-09 2023-01-12 Alnylam Pharmaceuticals, Inc. Aminooxy click chemistry (aocc): a versatile bioconjugation approach
WO2023014938A1 (en) * 2021-08-05 2023-02-09 Sanegene Bio Usa Inc. 1'-alkyl modified ribose derivatives and methods of use
WO2023049258A1 (en) * 2021-09-22 2023-03-30 Sanegene Bio Usa Inc. 2'-alkyl or 3'- alkyl modified ribose derivatives for use in the in-vivo delivery of oligonucleotides
WO2023109938A1 (zh) * 2021-12-16 2023-06-22 上海拓界生物医药科技有限公司 一种dsRNA、其制备方法及应用
WO2023109932A1 (zh) * 2021-12-16 2023-06-22 上海拓界生物医药科技有限公司 一种dsRNA、其制备方法及应用
WO2023138659A1 (zh) * 2022-01-20 2023-07-27 上海拓界生物医药科技有限公司 一种dsRNA、其应用及制备方法
CN116854754A (zh) * 2023-09-01 2023-10-10 北京悦康科创医药科技股份有限公司 一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物

Also Published As

Publication number Publication date
CN117563009A (zh) 2024-02-20
CN116854754A (zh) 2023-10-10
CN116854754B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2025043931A1 (zh) 一种含有核糖环或其衍生结构的GalNAc化合物及其寡核苷酸缀合物
JP6647430B2 (ja) アンチセンス核酸
CN111164091B (zh) 寡核苷酸组合物及其使用方法
KR102403408B1 (ko) 표적화 리간드
JP6482475B2 (ja) アンチセンスオリゴヌクレオチド及び糖誘導体を含む二本鎖オリゴヌクレオチド
CN109069529B (zh) 用于治疗性化合物的靶向配体
TWI733751B (zh) 核酸複合體
CN112004928A (zh) 寡核苷酸组合物及其使用方法
JP7190794B2 (ja) 核酸医薬及び多分岐脂質の複合体
TW201842183A (zh) 靶向組合物
US20220298508A1 (en) Galnac cluster phosphoramidite and targeted therapeutic nucleosides
BR112021004689A2 (pt) conjugados glp-1 liberáveis
TW202123973A (zh) 用於肝臟遞送之GalNAc-寡核苷酸結合物及製造方法
CN111246855A (zh) 用于分子的跨膜递送的化合物和方法
CN113613661A (zh) 用于抑制HIF-2α(EPAS1)的表达的RNAi试剂、其组合物和使用方法
CN117858883A (zh) GalNAc单体和GalNAc寡核苷酸缀合物
KR20250031204A (ko) 올리고뉴클레오티드 전달 강화 화합물, 약학적 조성물 및 이를 사용하는 방법
WO2024140101A1 (zh) 修饰的双链寡核苷酸分子、修饰的双链寡核苷酸缀合物及其用途
JP2023063434A (ja) オリゴヌクレオチド誘導体またはその塩
TW202510851A (zh) 一種含有核糖環或其衍生結構的GalNAc化合物及其寡核苷酸綴合物
EP2720540A1 (en) Disubstituted maleic anhydrides with altered kinetics of ring closure
CN116444589B (zh) 新型GalNAc化合物及其硫代寡核苷酸缀合物和偶联方法
WO2024002045A1 (en) Oligonucleotide delivery agents, pharmaceutical compositions and methods using the same
CN119241620B (zh) 一种双链siRNA及其制备方法,药物组合物和用途
US20250064944A1 (en) Multivalent cargo-carrying complexes and uses thereof