[go: up one dir, main page]

WO2022224499A1 - 硫酸コバルトの製造方法 - Google Patents

硫酸コバルトの製造方法 Download PDF

Info

Publication number
WO2022224499A1
WO2022224499A1 PCT/JP2022/000255 JP2022000255W WO2022224499A1 WO 2022224499 A1 WO2022224499 A1 WO 2022224499A1 JP 2022000255 W JP2022000255 W JP 2022000255W WO 2022224499 A1 WO2022224499 A1 WO 2022224499A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
chloride solution
solution
solvent
extraction step
Prior art date
Application number
PCT/JP2022/000255
Other languages
English (en)
French (fr)
Inventor
寛人 渡邉
秀樹 大原
敬司 工藤
高志 金子
達也 檜垣
菜月 近藤
伸一 平郡
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP22777940.2A priority Critical patent/EP4116262A4/en
Priority to US17/925,577 priority patent/US20230183091A1/en
Priority to CN202280006328.7A priority patent/CN116056774B/zh
Priority to KR1020227037958A priority patent/KR102785026B1/ko
Publication of WO2022224499A1 publication Critical patent/WO2022224499A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/01Preparation or separation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0492Applications, solvents used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0488Flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • B01D9/0022Evaporation of components of the mixture to be separated by reducing pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • C22B3/324Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • C22B3/326Ramified chain carboxylic acids or derivatives thereof, e.g. "versatic" acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3842Phosphinic acid, e.g. H2P(O)(OH)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing cobalt sulfate. More particularly, it relates to a production method for obtaining high-purity cobalt sulfate by removing impurity elements contained in a cobalt chloride solution.
  • Cobalt is a valuable metal that is widely used in industrial applications as a raw material for magnetic materials and lithium-ion secondary batteries, in addition to being used as an additive element in special alloys.
  • lithium ion secondary batteries have been widely used as batteries for mobile devices and electric vehicles, and along with this, the demand for cobalt is rapidly expanding.
  • most of cobalt is produced as a by-product of nickel smelting and copper smelting, so separation from impurities such as nickel and copper is an important elemental technology in cobalt production. .
  • the raw material when recovering cobalt as a by-product in nickel hydrometallurgy, first, in order to obtain a solution containing nickel and cobalt, the raw material is leached or extracted into a solution using a mineral acid or an oxidizing agent, or is subjected to a dissolution treatment. attached. Furthermore, nickel and cobalt contained in the obtained acidic solution are often separated and recovered by a conventionally known method by solvent extraction using various organic extractants. However, the obtained cobalt solution often contains various impurities originating from the processing raw material.
  • Patent Documents 1 and 2 disclose conventional techniques for removing impurity elements in a cobalt solution.
  • Patent Document 1 describes (1) adding a sulfiding agent to a cobalt solution, adjusting the oxidation-reduction potential (ORP) (based on Ag/AgCl electrode) to 50 mV or less and pH to 0.3 to 2.4, and sulfiding (2) adding an oxidizing agent and a neutralizing agent to the copper-removing purification solution, and increasing the oxidation-reduction potential (based on Ag/AgCl electrode) to 950 to 1050 mV and the pH; 2.4 to 3.0 to obtain a manganese precipitate and a demanganized purified liquid;
  • a method for purifying a cobalt solution is disclosed that includes a solvent extraction step to extract zinc, calcium and trace impurities.
  • Patent Document 2 a cobalt chloride solution with a hydrochloric acid concentration of 2 to 6 mol/L is brought into contact with an anion exchange resin, and iron and zinc that form a complex having a partition coefficient with respect to the anion exchange resin greater than that of the cobalt chloride complex. , a technique of adsorbing and separating metal impurities such as tin.
  • the solvent extraction method using alkyl phosphoric acid as an extractant described in Patent Document 1 has high separation performance for zinc and calcium.
  • the ion exchange method using an anion exchange resin and the solvent extraction method using an amine-based extractant are better than the solvent extraction method using the above-mentioned alkyl phosphoric acid. It has higher zinc and cobalt separation performance. Further, when removing a very small amount of zinc in a cobalt chloride solution, the ion exchange method is more efficient and economical because the steps and operations are simpler.
  • Patent Document 3 The method for producing high-purity cobalt chloride described in paragraph 0022 of Patent Document 3 includes a solvent extraction step for separating nickel and cobalt, a demanganization step for removing manganese, a decoppering step for removing copper, and a dezincing step for removing zinc. and electrolysis steps.
  • the cobalt chloride aqueous solution obtained in the decopperization step is brought into contact with an anion exchange resin to adsorb and remove zinc.
  • the electrolysis step the high-purity cobalt chloride aqueous solution obtained in the dezincification step is used as an electrolysis supply liquid to produce metallic cobalt (also called electrolytic cobalt).
  • plate-like metallic cobalt has a slow dissolution rate in sulfuric acid as it is used in corrosion-resistant alloys, and in order to dissolve it in a short time, it is necessary to powderize the plate-like metallic cobalt by atomizing treatment or the like. . Therefore, there has been a demand for a method of directly obtaining a cobalt sulfate solution from a cobalt chloride solution without going through metallic cobalt.
  • JP-A-2004-285368 Japanese Patent Application Laid-Open No. 2001-020021 JP 2020-19664 A
  • the present invention has been proposed in view of the above circumstances, and provides a method for producing cobalt sulfate of high purity by separating impurities and cobalt from a cobalt chloride solution containing impurities without using an electrolysis step. With the goal.
  • the method for producing cobalt sulfate of the first invention comprises bringing an organic solvent containing an alkyl phosphate-based extractant into contact with a cobalt chloride solution containing one or more impurities of copper, zinc, manganese, calcium and magnesium, and A first solvent extraction step of extracting and separating and removing zinc, manganese and calcium, and decoppering of adding a sulfiding agent to the cobalt chloride solution that has undergone the first solvent extraction step to generate a precipitate of copper sulfide and separate and remove it.
  • a solvent extraction step is performed in order.
  • the method for producing cobalt sulfate according to the second invention is characterized in that, in the first invention, in the first solvent extraction step, the alkyl phosphate-based extractant is bis(2-ethylhexyl) hydrogen phosphate, and the cobalt chloride solution has a pH of 1. 0.5 to 3.0 and subjected to solvent extraction using the extractant to extract the impurity elements into the organic solvent.
  • a method for producing cobalt sulfate according to a third aspect of the invention is the first or second aspect of the invention, wherein in the decoppering step, an oxidizing agent and a neutralizing agent are added to a cobalt chloride solution to which a sulfiding agent has been added to reduce the oxidation-reduction potential to ⁇ 100. It is characterized by adjusting to ⁇ 200 mV (Ag/AgCl electrode standard) and pH to 1.3 to 3.0.
  • a fourth aspect of the invention is a method for producing cobalt sulfate, wherein in the first, second or third aspect of the invention, an alkaline solution is added to the cobalt chloride solution from which copper, zinc, manganese and calcium have been removed in the second solvent extraction step. and adjusting the pH to 5.0 to 7.0, and performing a cobalt extraction step of extracting cobalt into an organic solvent using a carboxylic acid-based extractant.
  • a method for producing cobalt sulfate according to a fifth aspect of the invention is, in the first, second, or third aspect, wherein, following the cobalt extraction step in the second solvent extraction step, a sulfuric acid solution is brought into contact with the organic solvent from which cobalt has been extracted.
  • a method for producing cobalt sulfate according to a sixth invention is characterized in that, in the first invention, the cobalt sulfate solution obtained through the second solvent extraction step is subjected to a crystallization step to obtain crystals of cobalt sulfate.
  • a method for producing cobalt sulfate according to a seventh aspect of the invention is the first, second, third, fourth, fifth or sixth aspect of the invention, wherein the second solvent extraction step includes solvent recovery treatment, and the solvent recovery process includes In the treatment, the cobalt chloride solution after extracting cobalt and the organic solvent after back-extracting cobalt with the sulfuric acid solution are brought into contact with each other, the pH is adjusted to 2.0 or more and 4.0 or less, and the carbon in the cobalt chloride solution is It is characterized by being a treatment for separating an acid-based extractant.
  • a first solvent extraction step of separating and removing zinc, manganese and calcium from a cobalt chloride solution containing impurities a decoppering step of precipitating copper as sulfide, and a second solvent extraction step of separating and removing magnesium.
  • a high-purity cobalt sulfate solution from which impurities have been removed can be obtained. Therefore, high-purity cobalt sulfate can be directly produced by separating impurities from cobalt without using an electrolytic process.
  • the second invention by adjusting the pH to 1.5 to 3.0, zinc, manganese and calcium can be extracted and separated from cobalt while cobalt remains in the aqueous phase.
  • copper sulfide can be precipitated and sufficiently removed from the cobalt chloride solution, and co-precipitation of cobalt can be suppressed.
  • the cobalt can be extracted into the organic phase by bringing it into contact with the organic solvent containing the carboxylic acid-based extractant.
  • the cobalt extracted in the organic phase is brought into contact with the sulfuric acid solution to adjust the pH to 2.0 to 4.5, whereby the cobalt can be back-extracted into the sulfuric acid solution. A high-purity cobalt sulfate solution is thus obtained.
  • high-purity cobalt sulfate crystals can be obtained from the cobalt sulfate solution by further performing the crystallization step.
  • the seventh invention by executing the solvent recovery step of separating the carboxylic acid-based extractant in the cobalt chloride solution, the organic solvent contained in the cobalt chloride solution after extraction is lost, and the environmental load in wastewater is reduced. can be suppressed.
  • FIG. 3 is a detailed process diagram of a first solvent extraction step S1 shown in FIG. 2;
  • FIG. 3 is a detailed process diagram of a second solvent extraction step S3 shown in FIG. 2;
  • a method for producing cobalt sulfate according to the present invention will be described with reference to FIG.
  • This manufacturing method is characterized by sequentially executing the following steps. (1) Contacting a cobalt chloride solution containing one or more impurities of copper, zinc, manganese, calcium and magnesium with an organic solvent containing an alkyl phosphate-based extractant to extract zinc, manganese and calcium into the organic solvent.
  • a crystallization step S4 of precipitating crystals from a cobalt sulfate solution is carried out as necessary after each of the steps S1 to S3.
  • an activated carbon column is used to separate and remove organic components mixed in the liquid.
  • the cobalt chloride solution used as the starting material in the present invention contains one or more of copper, zinc, manganese, calcium and magnesium as impurity elements.
  • the application of the present invention is not limited at all as long as the cobalt chloride solution contains such impurities. It is preferably applied to a cobalt chloride solution after nickel has been separated and recovered by an amine-based extractant.
  • the first solvent extraction step S1 separates and removes zinc, manganese, and calcium from the cobalt chloride solution containing impurities
  • the copper removal step S2 produces copper sulfide precipitates to remove copper
  • a high-purity cobalt sulfate solution can be obtained by separating and removing magnesium in the second solvent extraction step S3. Therefore, a high-purity cobalt sulfate solution can be directly produced by separating impurities and cobalt without using an electrolytic process.
  • the carboxylic acid-based extractant can be separated and recovered by the solvent recovery processing S32 included in the second solvent extraction step S3.
  • FIG. 2 summarizes the details of steps S1 to S3 shown in FIG.
  • First solvent extraction step S1 1st solvent extraction process S1 is demonstrated based on FIG.2 and FIG.3.
  • a cobalt chloride solution containing one or more impurities of copper, zinc, manganese, calcium and magnesium, which is a starting material is brought into contact with an organic solvent containing an alkyl phosphate-based extractant, and the organic solvent is This is the process of extracting and separating and removing zinc, manganese and calcium. Note that part of the copper can also be extracted and separated and removed.
  • an alkyl phosphate-based extractant diluted with a diluent is used.
  • alkyl phosphate-based extractants bis(2-ethylhexyl) hydrogen phosphate (trade name D2EHPA), (2-ethylhexyl) 2-ethylhexyl phosphonate (trade name PC-88A), di(2,4,4-trimethyl) pentyl)phosphinic acid (trade name CYANEX272).
  • bis(2-ethylhexyl) hydrogen phosphate is preferably used as an extractant because it is highly separable from cobalt when zinc, manganese and calcium are separated from a cobalt chloride solution from which copper has been removed.
  • the diluent is not particularly limited as long as it can dissolve the extractant.
  • a diluent for example, a naphthenic solvent or an aromatic solvent can be used.
  • the concentration of the extractant is preferably adjusted to 10-60% by volume, more preferably 20-50% by volume. When the concentration of the extracting agent is within this range, both high-concentration impurity elements and low distribution ratios (concentration of element in organic substance/concentration of element in solution) can be sufficiently extracted. On the other hand, if the concentration of the extracting agent is less than 10%, impurity elements with high concentration and impurity elements with low distribution ratio cannot be sufficiently extracted and tend to remain in the cobalt chloride solution. On the other hand, when the concentration of the extractant exceeds 60%, the viscosity of the organic solvent increases, and the phase separation between the organic solvent (organic phase) and the cobalt chloride solution (aqueous phase) deteriorates after the extraction operation.
  • An acidic extractant such as an alkyl phosphate-based extractant extracts metal ions by replacing the -H of the extractant with cations in the aqueous phase to form a metal salt, as shown in Equation 4. It is an extractant that In general, the higher the pH, the easier it is for metal ions to be extracted into the organic phase, and the lower the pH, the more the reaction of formula 4 proceeds in the opposite direction, and the more likely it is that the metal ions extracted into the organic phase will be back-extracted into the aqueous phase. . Since the extracted pH differs depending on the type of metal ion, the target element and the impurity element are separated by controlling the pH in the solvent extraction step using an acidic extractant.
  • RH is an acidic extractant
  • Mn+ is an n-valent metal ion
  • org is an organic phase
  • aq is an aqueous phase.
  • the first solvent extraction step S1 it is desirable to adjust the pH of the cobalt chloride solution to 1.5 to 3.0.
  • the pH range In this pH range, the extractability of zinc, manganese and calcium tends to be higher than that of cobalt, leaving cobalt in the aqueous phase and extracting these impurity elements into the organic phase to separate them from cobalt. It is possible. If the pH is less than 1.5, the extraction rate of these impurities is low, making it difficult to separate them from cobalt. .
  • the pH is adjusted to 1.5 to 3.0, some of the cobalt may be extracted, but the organic phase after the extraction is brought into contact with a hydrochloric acid solution having a pH lower than that of the extraction to back-extract the cobalt.
  • Cobalt loss can also be reduced. Furthermore, when this organic phase is brought into contact with an acidic solution having a pH of 1 or less, most of the extracted metal ions can be back-extracted into the aqueous phase, and the organic phase after back-extraction can be reused.
  • the copper removal step S2 will be explained based on FIG.
  • the copper removal step S2 is performed by adding a sulfiding agent to the cobalt chloride solution that has passed through the first solvent extraction step S1. Also, an oxidizing agent and a neutralizing agent are added to adjust the oxidation-reduction potential of the cobalt chloride solution to ⁇ 100 to 200 mV (based on Ag/AgCl electrode) and the pH to 1.3 to 3.0. By this step, a precipitate of copper sulfide is generated and separated from the cobalt chloride solution, and a cobalt chloride solution from which copper has been removed can be obtained.
  • Copper in the cobalt chloride solution is removed from the solution by forming a precipitate of copper sulfide according to Equation 1, Equation 2 or Equation 3 below.
  • CuCl 2 +H 2 S ⁇ CuS ⁇ +2HCl (Formula 1)
  • CuCl 2 +Na 2 S ⁇ CuS ⁇ +2NaCl (Formula 2)
  • the redox potential of the cobalt chloride solution is adjusted to ⁇ 100 to 200 mV (based on the Ag/AgCl electrode) and the pH is adjusted to 1.3 to 3.0 to remove copper as sulfide. It can be sufficiently removed and, moreover, the co-precipitation of cobalt can be suppressed. If the oxidation-reduction potential exceeds 200 mV, the removal of copper in the solution becomes insufficient, and if the oxidation-reduction potential is less than -100 mV, the amount of co-precipitation of cobalt increases, which is not preferable.
  • the oxidation-reduction potential can be adjusted by adjusting the amount of the sulfiding agent added.
  • the sulfiding agent is not particularly limited, but hydrogen sulfide gas, crystals or aqueous solutions of sodium sulfide or sodium hydrosulfide can be used.
  • the pH is adjusted by adjusting the addition amount of the sulfiding agent and adding a neutralizing agent.
  • the neutralizing agent is not particularly limited, and alkali salts such as sodium hydroxide, calcium hydroxide, sodium carbonate and cobalt carbonate can be used.
  • the oxidation-reduction potential becomes lower than the desired value due to the introduction of the sulfurizing agent, it can be adjusted by adding the oxidizing agent.
  • it can be adjusted by introducing air into the solution and stirring it, or by adding a hydrogen peroxide solution.
  • the second solvent extraction step S3 will be explained based on FIGS. 2, 4 and 5.
  • a solvent recovery process S32 for separating and recovering a carboxylic acid-based extractant from the cobalt chloride solution after extracting cobalt and a process for back-extracting cobalt with sulfuric acid (hereinafter referred to as a cobalt back-extraction process S33) are performed in parallel. It is a process that is carried out to obtain a cobalt sulfate solution.
  • a carboxylic acid-based extractant diluted with a diluent is used as the organic solvent.
  • Carboxylic acid extractants include versatic acid and naphthenic acid. These are acidic extractants with COOH groups.
  • the carboxylic acid-based extractant When extracting metal ions, the carboxylic acid-based extractant releases protons corresponding to the valence of the metal into the aqueous phase, and the metal ions are coordinated to carbonyl oxygen. Many carboxylic acids form dimers and trimers with each other through hydrogen bonding in nonpolar solvents. In addition, when extracting metal ions, carboxylic acids that are not acid-dissociated may be coordinated so as to remove water of hydration that is coordinated to the metal ions. For example, the reaction in which a hexacoordinated divalent metal ion M 2+ is extracted by a dimeric carboxylic acid extractant R 2 H 2 is expressed as Equation 5.
  • Cobalt extraction step S31 In the cobalt extraction step S31, an alkaline solution is added as a neutralizing agent to the cobalt chloride solution from which copper, zinc, manganese and calcium have been removed to adjust the pH to 5.0 to 7.0. When the pH is within this range, cobalt can be extracted into the organic phase by contact with an organic solvent containing a carboxylic acid-based extractant. At this time, magnesium is not extracted and remains in the aqueous phase. If the pH is less than 5, extraction of cobalt is difficult, while if the pH exceeds 7, the solubility of cobalt decreases and precipitation may occur.
  • the alkaline solution specifically, a solution of sodium hydroxide or potassium hydroxide can be used. Also, in order to prevent oxidation during extraction, bubbling may be performed using an inert gas such as nitrogen gas, argon gas, or carbon dioxide gas.
  • an inert gas such as nitrogen gas, argon gas, or carbon dioxide gas.
  • solvent recovery process S32 and cobalt back extraction process S33 As shown in FIG. 2, the solvent recovery process S32 and the cobalt back-extraction process S33 are performed in parallel after the cobalt extraction process S31.
  • solvent recovery processing S32 A part of the carboxylic acid-based extractant may be dissolved in the cobalt chloride solution (aqueous phase), which is the remaining liquid after cobalt is extracted in the cobalt extraction step S31 shown in FIG. This results in a loss of the extractant, and when the aqueous phase is subjected to wastewater treatment and discharged into the sea, etc., the TOC (total organic carbon) caused by the extractant causes an impact on the environment, etc., which is not preferable. .
  • the cobalt chloride solution (residual solution) after the cobalt extraction is brought into contact with one or more of the organic solvent, the carboxylic acid-based extractant, and the diluent after the back extraction.
  • a neutralizing agent or acid is added to adjust the pH to 2.0 or more and 4.0 or less, and the carboxylic acid extractant in the cobalt chloride solution is separated and recovered.
  • this solvent recovery processing S32 is performed on the residual liquid in the cobalt extraction step S31 using the organic solvent (extractant) obtained in the cobalt back extraction step S33.
  • Cobalt back extraction step S33 As shown in FIG. 4, in the cobalt back-extraction step S33, the cobalt extracted with the carboxylic acid-based extractant obtained in the cobalt extraction step S31 is brought into contact with the sulfuric acid solution to adjust the pH to 2.0 to 4.5. adjust to This allows the cobalt to be back-extracted into the sulfuric acid solution. A high-purity cobalt sulfate solution is thus obtained. Reverse extraction is possible even if the pH is less than 2, but even if the pH is lowered too much, the recovery amount does not change much and the effect obtained is small. On the other hand, it is not preferable because the amount of back-extraction of trace impurities extracted at a pH lower than that of cobalt increases.
  • the pH since there is also a problem such as the cost of chemicals, it is preferable to set the pH to 2.0 or more. On the other hand, if the pH exceeds 4.5, the reverse extraction rate of cobalt decreases, and the recovery amount of cobalt decreases, which is not preferable.
  • a washing step may be added to remove the water phases before back extraction.
  • a cobalt sulfate solution can be used for the aqueous phase of the washing step.
  • the back-extracted organic solvent obtained in the cobalt back-extraction step S33 can be reused as the organic solvent used in the solvent recovery step S32.
  • a high-purity cobalt sulfate solution containing few impurities can be produced by the above method.
  • Crystallization step S4 The crystallization step S4 will be explained based on FIG. In the crystallization step S4, crystals of cobalt sulfate are precipitated from the cobalt sulfate solution obtained in the second solvent extraction step S3.
  • the crystallization method is not particularly limited, and a general crystallization method can be used.
  • crystallizer deposits crystals by evaporating water in the cobalt sulfate solution under a predetermined pressure.
  • a rotary evaporator or a double propeller type crystallizer is used.
  • the internal pressure is reduced by a vacuum pump or the like, and crystallization proceeds while rotating the flask with a rotary evaporator and stirring with a double propeller.
  • the cobalt sulfate solution is mixed with cobalt sulfate crystals to form a slurry.
  • the slurry discharged from the crystallizer is subjected to solid-liquid separation into cobalt sulfate crystals and a mother liquor by a filter, a centrifugal separator, or the like. After that, the cobalt sulfate crystals are dried in a dryer to remove water. Cobalt sulfate crystals can be produced from a cobalt sulfate solution in the manner described above. Of course, since the cobalt sulfate solution contains few impurities and is of high purity, the obtained cobalt sulfate crystals are also of high purity with few impurities.
  • Example 1 (First solvent extraction step S1) Organic diluted with a diluent (trade name Teclean N20, JX Nikko Nisseki Energy Co., Ltd.) so that the concentration of alkyl phosphate-based extractant (trade name D2EHPA, manufactured by Daihachi Chemical Co., Ltd.) is 40% by volume
  • a diluent trade name Teclean N20, JX Nikko Nisseki Energy Co., Ltd.
  • D2EHPA manufactured by Daihachi Chemical Co., Ltd.
  • An organic phase was prepared by diluting a carboxylic acid-based extractant (trade name: Versatic Acid 10, manufactured by Oxalis Chemicals) with a diluent (Tekleen N20) to a concentration of 30% by volume.
  • 0.44 L of the aqueous phase consisting of the cobalt chloride solution obtained in the decoppering step S2 and 1 L of the organic phase are mixed, and a sodium hydroxide solution is added to adjust the pH to 6.5, and cobalt is added to the organic phase.
  • extracted to 0.6 L of the extracted organic phase and 0.6 L of a cobalt chloride solution having a cobalt concentration of 10 g/L were mixed to wash the aqueous phase mixed in the extracted organic phase.
  • Example 2 The oxidation-reduction potential was adjusted to 150 mV (Ag/AgCl electrode reference) in the copper removal step S2, and the aqueous phase obtained by diluting the cobalt chloride solution obtained in the copper removal step S2 twice with pure water in the second solvent extraction step S3. 0.44 L was mixed with the organic phase, 0.6 L of the extracted organic phase was mixed with 0.6 L of a cobalt chloride solution having a cobalt concentration of 10 g/L, and the aqueous phase mixed in the extracted organic phase was washed.
  • Example 3 A cobalt sulfate solution was obtained in the same manner as in Example 1, except that the solvent recovery process S32 was performed.
  • sulfuric acid was added to the cobalt chloride solution having a pH of 6.5 after cobalt was extracted in the cobalt extraction step S31, and the pH was adjusted to 2 to 4 to separate and recover the carboxylic acid-based extractant. .
  • the TOC concentration in the cobalt chloride solution was measured using a known method. As shown in Table 5, by reducing the pH to 4 or less, the TOC content of 260 mg/l can be reduced to a level of 100 mg/l, i.e., the carboxylic acid extractant can be separated from the cobalt chloride solution. rice field. As a result, it was possible to suppress the loss of the extracting agent, and to reduce the environmental load when the extracted cobalt chloride solution was treated as waste water and discharged into the sea.
  • the high-purity cobalt sulfate crystals obtained by the present invention can be used as a raw material for lithium-ion secondary batteries, as well as for various other purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

不純物を含む塩化コバルト溶液から、電解工程を用いることなく不純物とコバルトを分離し、純度の高い硫酸コバルトを製造する方法を提供する。 不純物を含む塩化コバルト溶液にアルキルリン酸系抽出剤を含む有機溶媒を接触させ、有機溶媒に亜鉛、マンガンおよびカルシウムを抽出して分離除去する第1溶媒抽出工程(S1)、塩化コバルト溶液に硫化剤を添加し、銅の硫化物の沈殿を生成させて分離除去する脱銅工程(S2)、塩化コバルト溶液にカルボン酸抽出剤を含む有機溶媒を接触させ、有機溶媒にコバルトを抽出させた後、硫酸でコバルトを逆抽出して硫酸コバルト溶液を得る第2溶媒抽出工程(S3)、第2溶媒抽出工程(S3)を経て得た硫酸コバルト溶液を晶析工程(S4)、を順に実行する。電解工程を用いることなく、マグネシウムを含む不純物とコバルトを分離し、直接に高純度の硫酸コバルトを製造することができる。

Description

硫酸コバルトの製造方法
 本発明は、硫酸コバルトの製造方法に関する。更に詳しくは、塩化コバルト溶液中に含まれる不純物元素を除去して、純度の高い硫酸コバルトを得る製造方法に関する。
 コバルトは、特殊合金の添加元素としての用途以外に、磁性材料やリチウムイオン二次電池の原料として工業的用途に広く使用されている有価金属である。とくに最近では、リチウムイオン二次電池がモバイル機器や電気自動車のバッテリーとして多く用いられ、これに伴ってコバルトの需要も急速に拡大している。しかしながらコバルトはニッケル製錬や銅製錬の副産物として産出されるものが大半を占めているため、コバルトの製造においてはニッケルや銅を始めとする不純物との分離が重要な要素技術でとなっている。
 たとえば、ニッケルの湿式製錬において副産物としてのコバルトを回収する場合、まずニッケルとコバルトを含む溶液を得るため、原料を鉱酸や酸化剤等を用いて溶液に浸出または抽出するかもしくは溶解処理に付される。さらに、得られた酸性溶液中に含まれるニッケルとコバルトは、従来から公知の方法により各種の有機抽出剤を用いた溶媒抽出法によって分離回収されることが多い。
 しかし、得られたコバルト溶液には処理原料に由来する各種不純物が含有されることが多い。
 そこで、上記溶媒抽出法によってニッケルが分離回収された後のコバルト溶液から、更にマンガン、銅、亜鉛、カルシウムおよびマグネシウム等の不純物元素を除去することが必要になる。
 しかも、不純物含有量の少ない高純度コバルト製品を製造するためには、予めコバルトを含有するニッケル溶液から分離回収されたコバルト溶液中の不純物元素を除去した後、電解工程あるいは晶析等によってコバルトを製品化する必要があった。
 コバルト溶液中の不純物元素の除去方法として、特許文献1、2に記載の従来技術がある。
 特許文献1には、(1)コバルト溶液に硫化剤を添加し、酸化還元電位(ORP)(Ag/AgCl電極基準)を50mV以下且つpHを0.3~2.4に調整して、硫化銅沈殿と脱銅精製液とを得る脱銅工程、(2)該脱銅精製液に酸化剤と中和剤を添加し、酸化還元電位(Ag/AgCl電極基準)を950~1050mV且つpHを2.4~3.0に調整して、マンガン沈殿と脱マンガン精製液とを得る脱マンガン工程、(3)該脱マンガン精製液に抽出剤としてアルキルリン酸を用い、脱マンガン精製液中の亜鉛、カルシウム及び微量不純物を抽出分離する溶媒抽出工程、を含むコバルト溶液の精製方法が開示されている。
 特許文献2には、塩酸濃度2~6mol/Lの塩化コバルト溶液を陰イオン交換樹脂に接触させ、陰イオン交換樹脂に対する分配係数がコバルト塩化物錯体のそれよりも大きい錯体を形成する鉄、亜鉛、スズ等の金属不純物を吸着させて分離する技術が記載されている。
 上記特許文献1に記載された抽出剤としてアルキルリン酸を用いる溶媒抽出方法は、亜鉛やカルシウムに対して高い分離性能を有している。しかし、塩酸濃度2~6mol/Lの塩化コバルト溶液の場合には、陰イオン交換樹脂によるイオン交換法やアミン系抽出剤による溶媒抽出法の方が、上記アルキルリン酸を用いる溶媒抽出法に比べてより高い亜鉛とコバルトの分離性能を有している。
 また、塩化コバルト溶液中のごく微量の亜鉛を除去する場合は、イオン交換法による方が工程及び操作が簡単であるため、効率的且つ経済的である。
 このような観点から、マンガン、銅、亜鉛を含有する塩化コバルト溶液から、これら不純物元素を除去する方法として、上記特許文献1の精製方法と特許文献2の分離技術を組み合わせた方法が提案されている(たとえば特許文献3)。
 特許文献3の段落0022に記載する高純度塩化コバルト製造方法は、ニッケルとコバルトを分離する溶媒抽出工程、マンガンを除去する脱マンガン工程、銅を除去する脱銅工程、亜鉛を除去する脱亜鉛工程および電解工程を含んでいる。
 脱亜鉛工程では、脱銅工程で得られた塩化コバルト水溶液を陰イオン交換樹脂に接触させて亜鉛を吸着除去する。電解工程では脱亜鉛工程で得た高純度塩化コバルト水溶液を電解給液として用い、金属コバルト(電気コバルトともいわれる)を製造するものである。
 一方、前述したように、最近ではリチウムイオン二次電池の原料用としてコバルトの需要が拡大し、硫酸コバルト溶液あるいは硫酸コバルト結晶の形態が望まれる。
 特許文献3の従来技術で得られた金属コバルトから硫酸コバルト結晶を得ようとすれば、金属コバルトを硫酸で溶解して硫酸コバルト溶液を得、さらにこの溶液を晶析すれば、硫酸コバルト結晶を得ることができる。しかしながら、この製法を用いると、工程の増加や薬剤費の増加により製造コストが高くなる。また、板状の金属コバルトは、耐蝕合金に用いられるように硫酸への溶解速度が遅く、短時間で溶解するためには、板状の金属コバルトをアトマイズ処理等によって粉末状にする必要がある。
 このため、金属コバルトを経由することなく、直接的に塩化コバルト溶液から硫酸コバルト溶液を得る方法が望まれてきた。
特開2004-285368号公報 特開2001-020021号公報 特開2020-19664号公報
 本発明は、上記実情に鑑みて提案されたものであり、不純物を含む塩化コバルト溶液から、電解工程を用いることなく不純物とコバルトを分離し、純度の高い硫酸コバルトを製造する方法を提供することを目的とする。
 第1発明の硫酸コバルトの製造方法は、銅、亜鉛、マンガン、カルシウムおよびマグネシウムの1種類以上の不純物を含む塩化コバルト溶液にアルキルリン酸系抽出剤を含む有機溶媒を接触させ、該有機溶媒に亜鉛、マンガンおよびカルシウムを抽出して分離除去する第1溶媒抽出工程、前記第1溶媒抽出工程を経た塩化コバルト溶液に硫化剤を添加し銅の硫化物の沈殿を生成させて分離除去する脱銅工程、前記脱銅工程を経た塩化コバルト溶液にカルボン酸抽出剤を含む有機溶媒を接触させ、該有機溶媒にコバルトを抽出させた後、硫酸でコバルトを逆抽出して硫酸コバルト溶液を得る第2溶媒抽出工程、を順に実行することを特徴とする。
 第2発明の硫酸コバルトの製造方法は、第1発明において、前記第1溶媒抽出工程において、アルキルリン酸系抽出剤がリン酸水素ビス(2-エチルヘキシル)であり、塩化コバルト溶液のpHを1.5~3.0に調整して前記抽出剤を用いた溶媒抽出に付し、不純物元素を有機溶媒中に抽出することを特徴とする。
 第3発明の硫酸コバルトの製造方法は、第1または第2発明において、前記脱銅工程において、硫化剤を添加した塩化コバルド溶液に酸化剤および中和剤を添加して酸化還元電位を-100~200mV(Ag/AgCl電極基準)に、かつpHを1.3~3.0に調整することを特徴とする。
 第4発明の硫酸コバルトの製造方法は、第1、第2または第3発明において、前記第2溶媒抽出工程において、銅、亜鉛、マンガンおよびカルシウムが除去された塩化コバルト溶液にアルカリ溶液を添加して、pHを5.0~7.0に調整し、コバルトをカルボン酸系抽出剤を用いた有機溶媒中に抽出するコバルト抽出工程を実行することを特徴とする。
 第5発明の硫酸コバルトの製造方法は、第1、第2または第3発明において、前記第2溶媒抽出工程における前記コバルト抽出工程に続けて、コバルトを抽出した有機溶媒に硫酸溶液を接触させて、pHを2.0~4.5に調整し、コバルトを硫酸溶液に逆抽出するコバルト逆抽出工程を実行することを特徴とする。
 第6発明の硫酸コバルトの製造方法は、第1発明において、前記第2溶媒抽出工程を経て得た硫酸コバルト溶液を晶析工程に付し、硫酸コバルトの結晶を得ることを特徴とする。
 第7発明の硫酸コバルトの製造方法は、第1、第2、第3、第4、第5または第6発明において、前記第2溶媒抽出工程に溶媒回収処理が含まれており、該溶媒回収処理は、コバルトを抽出した後の塩化コバルト溶液とコバルトを硫酸溶液に逆抽出後の有機溶媒とを接触させて、pHを2.0以上4.0以下に調整し、塩化コバルト溶液中のカルボン酸系抽出剤を分離する処理であることを特徴とする。
 第1発明によれば、不純物を含む塩化コバルト溶液から、亜鉛、マンガンおよびカルシウムを分離除去させる第1溶媒抽出工程、銅を硫化物沈殿させる脱銅工程およびマグネシウムを分離除去させる第2溶媒抽出工程によって不純物が除去された高純度の硫酸コバルト溶液を得ることができる。したがって、電解工程を用いることなく不純物とコバルトを分離して直接に高純度の硫酸コバルトを製造することができる。
 第2発明によれば、pHを1.5~3.0に調整することで、コバルトを水相に残して、亜鉛、マンガンおよびカルシウムを抽出してコバルトと分離することができる。
 第3発明によれば、塩化コバルト溶液から銅の硫化物を沈殿させて充分に除去することができ、しかもコバルトの共沈殿を抑制することができる。
 第4発明によれば、pHを5.0~7.0に調整することで、カルボン酸系抽出剤を含む有機溶媒に接触させて、コバルトを有機相に抽出することができる。
 第5発明によれば、有機相に抽出されたコバルトと硫酸溶液を接触させpHを2.0~4.5に調整することで、コバルトを硫酸溶液に逆抽出することができる。こうして高純度の硫酸コバルト溶液が得られる。
 第6発明によれば、さらに晶析工程を実行することで硫酸コバルト溶液から高純度の硫酸コバルト結晶を得ることができる。
 第7発明によれば、塩化コバルト溶液中のカルボン酸系抽出剤を分離する溶媒回収工程を実行することで、抽出後の塩化コバルト溶液に含有され有機溶媒のロスとなったり排水での環境負荷を増加することを抑制できる。
本発明に係る硫酸コバルトの製造方法を示す工程図である。 本発明の一実施形態に係る硫酸コバルトの製造方法を示す工程図である。 図2に示す第1溶媒抽出工程S1の詳細工程図である。 図2に示す第2溶媒抽出工程S3の詳細工程図である。 溶媒回収処理S32の詳細工程図である。
 以下、本発明の具体的な実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
(本発明の基本原理)
 本発明に係る硫酸コバルトの製造方法を図1に基づき説明する。
 この製造方法は以下の工程を順に実行することを特徴とする。
(1)銅、亜鉛、マンガン、カルシウムおよびマグネシウムの1種類以上の不純物を含む塩化コバルト溶液に、アルキルリン酸系抽出剤を含む有機溶媒を接触させ、この有機溶媒に亜鉛、マンガンおよびカルシウムを抽出して分離除去する第1溶媒抽出工程S1、
(2)第1溶媒抽出S1により亜鉛、マンガン、カルシウムが除去された塩化コバルト溶液に硫化剤を添加し銅の硫化物の沈殿を生成させて分離除去する脱銅工程S2、
(3)脱銅工程S2により銅、亜鉛、マンガンおよびカルシウムが除去された塩化コバルト溶液にカルボン酸を含む有機溶媒を接触させ、この有機溶媒にコバルトを抽出させた後、硫酸でコバルトを逆抽出して硫酸コバルト溶液を得る第2溶媒抽出工程S3、を順に実行する。そして、前記第2溶媒抽出工程S3には溶媒回収処理S32を含めることが好ましい。
 本発明では、前記各工程S1~S3の後で、必要に応じて硫酸コバルト溶液から結晶を析出させる晶析工程S4を実行する。
 なお、図1には図示していないが、第1溶媒抽出工程S1の後、および(または)第2溶媒抽出工程S3の後で、液中に混入した有機成分を分離除去するために活性炭カラム等の油水分離装置に供する工程を追加してもよい。
 本発明において出発原料とする塩化コバルト溶液は、不純物元素として銅、亜鉛、マンガン、カルシウムおよびマグネシウムのうち1種類以上を含んでいる。このような不純物を含む塩化コバルト溶液であれば本発明の適用に何ら限定されるものではないが、とくにニッケル製錬の溶媒抽出工程において、コバルトを含有したニッケル溶液からアルキルリン酸系抽出剤やアミン系抽出剤によってニッケルが分離回収された後の塩化コバルト溶液に好適に適用される。
 本発明によれば、不純物を含む塩化コバルト溶液から、第1溶媒抽出工程S1により亜鉛、マンガンおよびカルシウムを分離除去し、脱銅工程S2により銅の硫化物沈殿を生成させて銅を除去し、第2溶媒抽出工程S3によりマグネシウムを分離除去して、高純度の硫酸コバルト溶液を得ることができる。したがって、電解工程を用いることなく不純物とコバルトを分離して直接に高純度の硫酸コバルト溶液を製造することができる。そして、第2溶媒抽出工程S3に含まれている溶媒回収処理S32により、カルボン酸系抽出剤を分離回収することができる。
 また、本発明によれば、前記各工程S1~S3を経た後の硫酸コバルト溶液を晶析工程S4に付すことで、溶液から結晶を析出させて硫酸コバルト結晶を得ることができる。
(実施形態)
 以下、硫酸コバルトの製造方法の実施形態について図2~図5に基づき説明する。図2は、図1に示す工程S1~S3の詳細をまとめて示したものである。
(第1溶媒抽出工程S1)
 第1溶媒抽出工程S1を図2および図3に基づき説明する。
 第1溶媒抽出工程S1は、出発原料である銅、亜鉛、マンガン、カルシウムおよびマグネシウムの1種類以上の不純物を含む塩化コバルト溶液にアルキルリン酸系抽出剤を含む有機溶媒を接触させ、この有機溶媒に亜鉛、マンガンおよびカルシウムを抽出して分離除去する工程である。なお、銅の一部も抽出され分離除去できる。
 有機溶媒としては、アルキルリン酸系抽出剤を希釈剤で希釈したものが用いられる。アルキルリン酸系抽出剤として、リン酸水素ビス(2-エチルヘキシル)(商品名D2EHPA)、(2-エチルヘキシル)ホスホン酸2-エチルヘキシル(商品名PC-88A)、ジ(2,4,4-トリメチルペンチル)ホスフィン酸(商品名CYANEX272)が挙げられる。これらの中でも、銅が除去された塩化コバルト溶液から、亜鉛、マンガンおよびカルシウムを分離する場合、コバルトとの分離性が高いリン酸水素ビス(2-エチルヘキシル)を抽出剤として用いることが好ましい。
 希釈剤は抽出剤を溶解可能なものであれば、とくに限定されない。希釈剤として、たとえば、ナフテン系溶剤、芳香族系溶剤を用いることができる。抽出剤の濃度は、10~60体積%に調整することが好ましく、20~50%体積%に調整することがより望ましい。抽出剤の濃度がこの範囲であると、濃度の高い不純物元素も分配比(有機中の元素濃度/溶液中の元素濃度)が低い不純物元素も充分に抽出できる。一方、抽出剤の濃度が10%未満では、濃度の高い不純物元素や分配比が低い不純物元素を充分に抽出できず、塩化コバルト溶液に残留しやすくなる。また、抽出剤の濃度が60%を超えると有機溶媒の粘度が高くなり、有機溶媒(有機相)と塩化コバルト溶液(水相)の抽出操作後の相分離性が悪化する。
 アルキルリン酸系抽出剤のような酸性抽出剤は、式4に示すように、その抽出剤の持つ-Hが水相中の陽イオンと置換して金属塩を形成することによって金属イオンを抽出する抽出剤である。一般的に、pHが高くなると金属イオンが有機相に抽出されやすくなり、pHを低くすると式4の反応が逆方向に進み、有機相に抽出された金属イオンが水相に逆抽出されやすくなる。
 金属イオンの種類によって、抽出されるpHが異なため、酸性抽出剤を用いた溶媒抽出工程ではpHを制御することで目的の元素と不純物元素の分離を行う。
 nRHorg + Mn+ aq → MRnorg + nH aq・・・(式4)
 ここで、式中のRHは酸性抽出剤、Mn+はn価の金属イオン、orgは有機相、aqは水相を示す。
 そこで、第1溶媒抽出工程S1では、塩化コバルト溶液のpHを1.5~3.0に調整することが望ましい。このpH領域では、亜鉛、マンガンおよびカルシウムの抽出率は、コバルトの抽出率より高い傾向を示し、コバルトを水相に残し、これらの不純物元素を有機相に抽出することでコバルトと分離することが可能である。
 pHが1.5未満では、これらの不純物の抽出率が低く、コバルトとの分離が困難となり、pHが3.0を超えると、コバルトの抽出率も大きくなり、不純物との分離性が低下する。pHが1.5~3.0に調整した場合、コバルトの一部が抽出される場合もあるが、抽出後の有機相を抽出時より低いpHの塩酸溶液と接触させ、コバルトを逆抽出して回収し、コバルトのロスを低減することもできる。
 さらに、この有機相とpH1以下の酸性溶液を接触させると、抽出されたほとんどの金属イオンを水相に逆抽出することができ、逆抽出後の有機相を再利用できる。
(脱銅工程S2)
 脱銅工程S2を図2に基づき説明する。
 脱銅工程S2は、第1溶媒抽出工程S1を経た塩化コバルト溶液に硫化剤を添加することにより行う。また、酸化剤および中和剤を添加して、塩化コバルト溶液の酸化還元電位を-100~200mV(Ag/AgCl電極基準)に、かつpHを1.3~3.0に調整する。
 本工程により、塩化コバルト溶液から銅の硫化物の沈殿を生成させて分離し、銅が除去された塩化コバルト溶液を得ることができる。
 塩化コバルト溶液中の銅は、下記式1、式2あるいは式3に従って硫化銅の沈殿物を生成して、溶液中から除去される。
 CuCl+HS→CuS↓+2HCl・・・(式1)
 CuCl+NaS→CuS↓+2NaCl・・・(式2)
 CuCl+NaHS→CuS↓+NaCl+HCl・・・(式3)
 上記脱銅工程S2では、塩化コバルト溶液の酸化還元電位を-100~200mV(Ag/AgCl電極基準)に、かつpHを1.3~3.0に調整しておくと、硫化物として銅を充分に除去することができ、しかもコバルトの共沈殿を抑制することができる。
 仮に、酸化還元電位が200mVを超えると溶液中の銅の除去が不充分となり、酸化還元電位が-100mV未満ではコバルトの共沈殿量が増加するため好ましくない。また、pHが1.3未満では、溶液中の銅の除去が不充分となると共に、生成する硫化物沈殿のろ過性が悪化する。pHが3.0を超えると、銅の除去に伴うコバルト共沈殿量が増加するため好ましくない。
 上記酸化還元電位の調整は、硫化剤の添加量を調整することにより行うことができる。硫化剤としては、とくに限定されるものではないが、硫化水素ガス、硫化ナトリウムや水硫化ナトリウムの結晶や水溶液等を用いることができる。
 また、上記pHの調整は、硫化剤として硫化水素や水硫化ナトリウムを用いる場合は、硫化剤の添加量調整と中和剤の添加によって行われる。中和剤としては、とくに限定されるものではなく、水酸化ナトリウム、水酸化カルシウム、炭酸ナトリウム、炭酸コバルト等のアルカリ塩を用いることができる。また、硫化剤の投入により、酸化還元電位が所望した値より低くなった場合、酸化剤の添加により調整できる。例えば、溶液中に空気を導入して撹拌する、あるいは過酸化水素溶液を添加する、ことで調整できる。
(第2溶媒抽出工程S3)
 第2溶媒抽出工程S3を図2、図4および図5に基づき説明する。
 第2溶媒抽出工程S3は、前記脱銅工程S2を経た塩化コバルト溶液にカルボン酸系抽出剤を含む有機溶媒を接触させ、この有機溶媒にコバルトを抽出させ(以下、コバルト抽出工程S31という)、ついでコバルトを抽出した後の塩化コバルト溶液からカルボン酸系抽出剤を分離回収する溶媒回収処理S32と、硫酸でコバルトを逆抽出する工程(以下、コバルト逆抽出工程S33という)、とを並行的に実行して硫酸コバルト溶液を得るに至る工程である。
 有機溶媒としては、カルボン酸系抽出剤を希釈剤で希釈したものが用いられる。カルボン酸系抽出剤としては、バーサチック酸やナフテン酸が挙げられる。これらは、COOH其を有する酸性抽出剤である。
 カルボン酸系抽出剤は、金属イオンを抽出さる際、金属の価数に応じたプロトンを水相に放出し、金属イオンはカルボニル酸素に配位する。多くのカルボン酸は、無極性溶媒中でお互いに水素結合によって2量体、3量体を形成している。また、金属イオンを抽出する際、金属イオンに配位している水和水を除去するように酸解離していないカルボン酸が配位することがある。たとえば、6配位の2価の金属イオンM2+が2量体のカルボン酸抽出剤Rにより抽出される反応は、式5のように表される。
 [M(HO)2+ aq+3(Rorg
     → (MR・4RH)org+2H aq+6Haq・・・(式5)
 ここで、式中のorgは有機相、aqは水相を示す。
(コバルト抽出工程S31)
 コバルト抽出工程S31では、銅、亜鉛、マンガン、カルシウムが除去された塩化コバルト溶液に中和剤としてアルカリ溶液を添加して、pHを5.0~7.0に調整する。pHがこの範囲であると、カルボン酸系抽出剤を含む有機溶媒に接触させて、コバルトを有機相に抽出することができる。
 このときマグネシウムは抽出されず水相に残留する。pHが5未満では、コバルトの抽出が困難であり、一方pHが7を超えると、コバルトの溶解度が低下し、沈殿が発生することがある。
 なお、アルカリ溶液として具体的には水酸化ナトリウムや水酸化カリウムの溶液を用いることができる。
 また、抽出中の酸化を防ぐために、窒素ガスやアルゴンガスや炭酸ガスなどの不活性ガスを用いてバブリングを行っても良い。
(溶媒回収処理S32とコバルト逆抽出工程S33)
 図2に示すように、コバルト抽出工程S31の後で溶媒回収処理S32とコバルト逆抽出工程S33が並行して実行される。
(溶媒回収処理S32)
 図4に示すコバルト抽出工程S31でコバルトを抽出した後の残液となる塩化コバルト溶液(水相)には、カルボン酸系抽出剤が一部溶解することがある。これは抽出剤のロスになるとともに、水相を排水処理に付して海域等に放流する際に、抽出剤に起因するTOC(全有機体炭素)による環境等への影響も生じ、好ましくない。このためには、カルボン酸系抽出剤を分離回収する溶媒回収処理S32を行うとよい。
 溶媒回収処理S32は、図5に示すように、コバルト抽出後の塩化コバルト溶液(残液)と、逆抽出後の有機溶媒、カルボン酸系抽出剤、希釈剤のいずれか1種類以上とを接触させるとともに、中和剤あるいは酸を添加してpHを2.0以上4.0以下に調整し、塩化コバルト溶液中のカルボン酸系抽出剤を分離回収する処理である。そして、この溶媒回収処理S32は、図4に示すように、コバルト抽出工程S31における残液について、コバルト逆抽出工程S33で得られた有機溶媒(抽出剤)を用いて行われる。
 この溶媒回収処理S32を実行することにより、有機溶媒のロスを防止でき、排水での環境負荷(水相中へのカルボン酸系抽出剤の溶解によるTOC濃度の上昇)を抑えることもできる。
(コバルト逆抽出工程S33)
 図4に示すように、コバルト逆抽出工程S33では、コバルト抽出工程S31で得られたカルボン酸系抽出剤に抽出されているコバルトと硫酸溶液を接触させて、pHを2.0~4.5に調整する。これによりコバルトを硫酸溶液に逆抽出することができる。こうして高純度の硫酸コバルト溶液が得られる。
 pHが2未満でも逆抽出可能であるが、pHをあまり下げても回収量はあまり変わらず得られる効果が少ない。一方で、コバルトより低いpHで抽出された微量の不純物の逆抽出量が増加するため好ましくない。さらに薬剤コストがかかるなどの課題もあるので、pHは2.0以上とすることが良い。一方pHが4.5を超えるとコバルトを逆抽出率が低下し、コバルトの回収量が減少するので好ましくない。
 なお、抽出後の有機相には、分相後も微細な水相が混入しているため、逆抽出の前にこの水相を除去するための洗浄工程を追加してもよい。洗浄工程の水相には、たとえば硫酸コバルト溶液を用いることができる。また、コバルト逆抽出工程S33で得られた逆抽出後の有機溶媒は、溶媒回収処理S32で用いる有機溶媒として再利用できる。
 上記の方法で、不純物の少ない高純度の硫酸コバルト溶液を製造することができる。
(晶析工程S4)
 晶析工程S4を図1に基づき説明する。
 晶析工程S4では、第2溶媒抽出工程S3で得られた硫酸コバルト溶液から硫酸コバルトの結晶を析出させる。晶析方法はとくに限定されるものではなく、一般的な結晶化方法を用いて行うことができる。
 たとえば、硫酸コバルト溶液を晶析缶に収容し、その晶析缶内で晶析することにより結晶を得る方法が挙げられる。晶析缶は、所定圧力下で硫酸コバルト溶液中の水分を蒸発させることにより結晶を析出させるものであり、たとえば、ロータリーエバポレーターやダブルプロペラ型の晶析缶が用いられる。真空ポンプ等により内部の圧力を減圧し、ロータリーエバポレーターではフラスコを回転しながら、ダブルプロペラで撹拌しながら晶析が進行する。なお、晶析缶内では、硫酸コバルト溶液に硫酸コバルトの結晶が混合したスラリーとなっている。
 晶析缶から排出されたスラリーは、濾過器や遠心分離機等により硫酸コバルトの結晶と母液とに固液分離される。その後、硫酸コバルトの結晶を乾燥機で乾燥し、水分を除去する。
 上記の方法で、硫酸コバルト溶液から硫酸コバルト結晶を製造することができる。もちろん、硫酸コバルト溶液は不純物の小なり高純度なものなので、得られる硫酸コバルト結晶も不純物の少ない高純度なものとなっている。
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
(実施例1)
(第1溶媒抽出工程S1)
 アルキルリン酸系抽出剤(商品名D2EHPA、大八化学工業株式会社製)の濃度が40体積%となるように希釈剤(商品名テクリーンN20、JX日鉱日石エネルギー株式会社製)で希釈した有機相を準備した。表1の元液Aに示す組成からなる塩化コバルト溶液からなる水相0.9Lと有機相1.8Lを混合し、pHが1.7になるように水酸化ナトリウム溶液を添加して調整し、不純物を抽出した。抽出後の水相0.9Lと新たな有機相1.8Lで同様の抽出操作を繰り返し、合計3回の抽出操作を行なった。その結果、表1の第1SX後Bに示す組成の塩化コバルト溶液を得た。亜鉛、マンガンおよびカルシウムの濃度は、いずれも0.001g/L以下であり、これらの不純物を分離除去することができた。
(脱銅工程S2)
 第1溶媒抽出工程S1で得られた塩化コバルト溶液0.9LをpH2.5になるように水酸化ナトリウム溶液を添加して調整後、硫化剤として水硫化ナトリウム溶液を添加して、酸化還元電位を-50mV(Ag/AgCl電極基準)に調整して、銅の硫化物の沈殿を生成させた。濾過器で沈殿物を分離除去し、表1の硫化後Cに示す組成の濾液を得た。銅の濃度は0.001g/L未満であり、銅を分離除去することができた。
(第2溶媒抽出工程S3)
 カルボン酸系抽出剤(商品名Versatic Acid 10、オクサリスケミカルズ社製)の濃度が30体積%となるように希釈剤(テクリーンN20)で希釈した有機相を準備した。脱銅工程S2で得られた塩化コバルト溶液からなる水相0.44Lと有機相1Lを混合し、pHが6.5になるように水酸化ナトリウム溶液を添加して調整し、コバルトを有機相に抽出した。
 抽出した有機相0.6Lとコバルト濃度10g/Lの塩化コバルト溶液0.6Lを混合し、抽出後の有機相に混入していた水相を洗浄した。続いて、この有機相と純水0.09Lの純水を混合し、硫酸を添加してpH4に調整し、コバルトを逆抽出した。その結果、表1の第2SX後Dに示す組成の硫酸コバルト溶液を得た。マグネシウム濃度は0.001g/L未満であり、マグネシウムを分離除去することができた。
 以上の方法により高純度の硫酸コバルト溶液を得た。
Figure JPOXMLDOC01-appb-T000001
(晶析工程S4)
 ロータリーエバポレーターに硫酸コバルト溶液を挿入し、内部を真空ポンプで減圧にするとともに、温度40℃に維持してフラスコ部を回転しながら水分を蒸発させ、硫酸コバルトの結晶を析出させた。固液分離後、得た硫酸コバルトの結晶を乾燥機で乾燥した。その結果、表2に示すような高純度の硫酸コバルト結晶を得た。
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 脱銅工程S2において酸化還元電位を150mV(Ag/AgCl電極基準)に調整したこと、第2溶媒抽出工程S3において脱銅工程S2において得られた塩化コバルト溶液を純水で2倍希釈した水相0.44Lと有機相を混合したこと、抽出した有機相0.6Lとコバルト濃度10g/Lの塩化コバルト溶液0.6Lを混合し抽出後の有機相に混入していた水相を洗浄したこと、およびこの有機相と0.08Lの純水とを混合し硫酸を添加してpH4に調整してコバルトを逆抽出したこと以外は、実施例1と同様の方法で硫酸コバルト溶液を得た。
 この場合の組成を表3に示す。表3の第2SX後Dに示すように、高純度の硫酸コバルト溶液を得ることができた。
Figure JPOXMLDOC01-appb-T000003
 続いて実施例1と同様の方法で晶析を行なったところ、表4に示すような高純度の硫酸コバルト結晶を得た。
Figure JPOXMLDOC01-appb-T000004
(実施例3)
 溶媒回収処理S32を実行した以外は、実施例1と同様にして硫酸コバルト溶液を得た。溶媒回収処理S32では、コバルト抽出工程S31でコバルトを抽出した後のpH6.5を示した塩化コバルト溶液に硫酸を添加し、pHを2~4に調整してカルボン酸系抽出剤を分離回収した。
 そして、塩化コバルト溶液中のTOC濃度を公知の方法を用いて測定した。表5に示したように、pHを4以下に低減することで、260mg/l含有したTOCを100mg/lレベルにまで減少させ、すなわちカルボン酸系抽出剤を塩化コバルト溶液から分離することができた。その結果、抽出剤のロスを抑制できたり、抽出後の塩化コバルト溶液を排水処理し、海域等に放流する際の環境負荷を低減することができた。
Figure JPOXMLDOC01-appb-T000005
 以上の実施例1、2および3の結果から、本発明によれば、不純物を充分に除去できた純度の高い硫酸コバルトを得ることが分かる。また、溶媒回収処理S32を実行すると、抽出剤のロスを抑制できたり、抽出後の塩化コバルト溶液を排水処理し、海域等に放流する際の環境負荷を低減することができることが分かる。
 本発明により得られた純度の高い硫酸コバルト結晶は、リチウムイオン二次電池の原料として利用できるほか、様々な用途に利用できる。
 S1 第1溶媒抽出工程
 S2 脱銅工程
 S3 第2溶媒抽出工程
 S4 晶析工程
 S31 コバルト抽出工程
 S32 溶媒回収処理
 S33 コバルト逆抽出工程

Claims (7)

  1.  銅、亜鉛、マンガン、カルシウムおよびマグネシウムの1種類以上の不純物を含む塩化コバルト溶液にアルキルリン酸系抽出剤を含む有機溶媒を接触させ、該有機溶媒に亜鉛、マンガンおよびカルシウムを抽出して分離除去する第1溶媒抽出工程、
    前記第1溶媒抽出工程を経た塩化コバルト溶液に硫化剤を添加し銅の硫化物の沈殿を生成させて分離除去する脱銅工程、
    前記脱銅工程を経た塩化コバルト溶液にカルボン酸抽出剤を含む有機溶媒を接触させ、該有機溶媒にコバルトを抽出させた後、硫酸でコバルトを逆抽出して硫酸コバルト溶液を得る第2溶媒抽出工程、
    を順に実行する
    ことを特徴とする硫酸コバルトの製造方法。
  2.  前記第1溶媒抽出工程において、アルキルリン酸系抽出剤がリン酸水素ビス(2-エチルヘキシル)であり、
    塩化コバルト溶液のpHを1.5~3.0に調整して前記抽出剤を用いた溶媒抽出に付し、不純物元素を有機溶媒中に抽出する
    ことを特徴とする請求項1記載の硫酸コバルトの製造方法。
  3.  前記脱銅工程において、硫化剤を添加した塩化コバルド溶液に酸化剤および中和剤を添加して酸化還元電位を-100~200mV(Ag/AgCl電極基準)に、かつpHを1.3~3.0に調整する
    ことを特徴とする請求項1または2記載の硫酸コバルトの製造方法。
  4.  前記第2溶媒抽出工程において、銅、亜鉛、マンガンおよびカルシウムが除去された塩化コバルト溶液にアルカリ溶液を添加して、pHを5.0~7.0に調整し、コバルトをカルボン酸系抽出剤を用いた有機溶媒中に抽出するコバルト抽出工程を実行する
    ことを特徴とする請求項1、2または3記載の硫酸コバルトの製造方法。
  5.  前記第2溶媒抽出工程における前記コバルト抽出工程に続けて、コバルトを抽出した有機溶媒に硫酸溶液を接触させて、pHを2.0~4.5に調整し、コバルトを硫酸溶液に逆抽出するコバルト逆抽出工程を実行する
    ことを特徴とする請求項1、2または3記載の硫酸コバルトの製造方法。
  6.  前記第2溶媒抽出工程を経て得た硫酸コバルト溶液を晶析工程に付し、硫酸コバルトの結晶を得る
    ことを特徴とする請求項1記載の硫酸コバルトの製造方法。
  7.  前記第2溶媒抽出工程に溶媒回収処理が含まれており、該溶媒回収処理は、コバルトを抽出した後の塩化コバルト溶液とコバルトを硫酸溶液に逆抽出後の有機溶媒とを接触させて、pHを2.0以上4.0以下に調整し、塩化コバルト溶液中のカルボン酸系抽出剤を分離する処理である
    ことを特徴とする請求項1、2、3、4、5または6記載の硫酸コバルトの製造方法。
PCT/JP2022/000255 2021-04-22 2022-01-06 硫酸コバルトの製造方法 WO2022224499A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22777940.2A EP4116262A4 (en) 2021-04-22 2022-01-06 PROCESS FOR THE PRODUCTION OF COBALT SULFATE
US17/925,577 US20230183091A1 (en) 2021-04-22 2022-01-06 Production method for cobalt sulfate
CN202280006328.7A CN116056774B (zh) 2021-04-22 2022-01-06 硫酸钴的制造方法
KR1020227037958A KR102785026B1 (ko) 2021-04-22 2022-01-06 황산코발트의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021072806 2021-04-22
JP2021-072806 2021-04-22
JP2021-183837 2021-11-11
JP2021183837A JP7156491B1 (ja) 2021-04-22 2021-11-11 硫酸コバルトの製造方法

Publications (1)

Publication Number Publication Date
WO2022224499A1 true WO2022224499A1 (ja) 2022-10-27

Family

ID=83688452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000255 WO2022224499A1 (ja) 2021-04-22 2022-01-06 硫酸コバルトの製造方法

Country Status (7)

Country Link
US (1) US20230183091A1 (ja)
EP (1) EP4116262A4 (ja)
JP (1) JP7156491B1 (ja)
KR (1) KR102785026B1 (ja)
CN (1) CN116056774B (ja)
TW (1) TWI809665B (ja)
WO (1) WO2022224499A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117070751A (zh) * 2023-07-20 2023-11-17 金川集团股份有限公司 一种低酸氯化铜锰混合溶液除铜除杂的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719340A (en) * 1980-07-07 1982-02-01 Nippon Mining Co Ltd Organic solvent for extracting metal
JPS60231420A (ja) * 1983-12-28 1985-11-18 Daihachi Kagaku Kogyosho:Kk コバルトおよびニッケルを含有する水溶液からコバルトを分離する方法
JPH1150167A (ja) * 1997-07-31 1999-02-23 Sumitomo Metal Mining Co Ltd 高純度コバルト溶液の製造方法
JP2001020021A (ja) 1999-07-02 2001-01-23 Kojundo Chem Lab Co Ltd 高純度コバルトの製造方法
JP2004285368A (ja) 2003-03-19 2004-10-14 Sumitomo Metal Mining Co Ltd コバルト水溶液の精製方法
JP2017186198A (ja) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 塩化コバルト水溶液の精製方法
JP2017226568A (ja) * 2016-06-21 2017-12-28 住友金属鉱山株式会社 高純度硫酸コバルト水溶液の製造方法
JP2019143223A (ja) * 2018-02-23 2019-08-29 住友金属鉱山株式会社 塩化コバルト水溶液からの不純物除去方法
JP2020019664A (ja) 2018-07-31 2020-02-06 住友金属鉱山株式会社 高純度塩化コバルト水溶液の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100552061C (zh) * 2007-09-30 2009-10-21 浙江华友钴业股份有限公司 一种从铜钴矿浸出液萃取除钙镁的方法
CN102126761B (zh) * 2011-04-22 2012-11-21 桂金鸣 硫酸钴的制备方法
CN102234721B (zh) * 2011-06-15 2013-05-01 金川集团有限公司 一种镍钴物料的处理方法
PH12014500886A1 (en) * 2011-10-24 2022-05-11 Sumitomo Metal Mining Co Method for producing high-purity cobalt sulfate aqueous solution
AU2012359454B2 (en) * 2011-12-26 2016-06-23 Sumitomo Metal Mining Co., Ltd. Method for producing cobalt sulfate
JP6759882B2 (ja) * 2016-09-05 2020-09-23 住友金属鉱山株式会社 ニッケル、コバルトを含有する溶液の製造方法
CN108011149B (zh) * 2017-12-04 2019-07-09 长沙理工大学 一种从废弃动力电池中回收钴镍锂的方法
JP7070209B2 (ja) * 2018-07-31 2022-05-18 住友金属鉱山株式会社 高純度塩化コバルト水溶液の製造方法
CN111455174A (zh) * 2020-06-09 2020-07-28 矿冶科技集团有限公司 一种从混合氢氧化镍钴制备电池级硫酸镍、硫酸钴的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719340A (en) * 1980-07-07 1982-02-01 Nippon Mining Co Ltd Organic solvent for extracting metal
JPS60231420A (ja) * 1983-12-28 1985-11-18 Daihachi Kagaku Kogyosho:Kk コバルトおよびニッケルを含有する水溶液からコバルトを分離する方法
JPH1150167A (ja) * 1997-07-31 1999-02-23 Sumitomo Metal Mining Co Ltd 高純度コバルト溶液の製造方法
JP2001020021A (ja) 1999-07-02 2001-01-23 Kojundo Chem Lab Co Ltd 高純度コバルトの製造方法
JP2004285368A (ja) 2003-03-19 2004-10-14 Sumitomo Metal Mining Co Ltd コバルト水溶液の精製方法
JP2017186198A (ja) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 塩化コバルト水溶液の精製方法
JP2017226568A (ja) * 2016-06-21 2017-12-28 住友金属鉱山株式会社 高純度硫酸コバルト水溶液の製造方法
JP2019143223A (ja) * 2018-02-23 2019-08-29 住友金属鉱山株式会社 塩化コバルト水溶液からの不純物除去方法
JP2020019664A (ja) 2018-07-31 2020-02-06 住友金属鉱山株式会社 高純度塩化コバルト水溶液の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116262A4

Also Published As

Publication number Publication date
JP7156491B1 (ja) 2022-10-19
KR20230028717A (ko) 2023-03-02
US20230183091A1 (en) 2023-06-15
JP2022167760A (ja) 2022-11-04
CN116056774B (zh) 2024-10-01
KR102785026B1 (ko) 2025-03-20
CN116056774A (zh) 2023-05-02
EP4116262A4 (en) 2024-09-04
TWI809665B (zh) 2023-07-21
TW202241815A (zh) 2022-11-01
EP4116262A1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
JP6471912B2 (ja) 高純度硫酸コバルト水溶液の製造方法
JP7552487B2 (ja) 硫酸コバルトの製造方法
WO2013099551A1 (ja) 硫酸コバルトの製造方法
AU2013238535A1 (en) Method for producing high-purity nickel sulfate
WO2022269962A1 (ja) 硫酸コバルトの製造方法
JP2022138401A (ja) 塩化コバルトの製造方法
JP7156491B1 (ja) 硫酸コバルトの製造方法
JP7707876B2 (ja) 硫酸コバルトの製造方法
JP7673528B2 (ja) 硫酸コバルトの製造方法
JP7559565B2 (ja) 硫酸コバルトの製造方法
JP7559566B2 (ja) 硫酸コバルトの製造方法
JP2023067663A (ja) 硫酸コバルトの製造方法
JP7616510B2 (ja) 硫酸コバルトの製造方法
JP7600851B2 (ja) 硫酸コバルトの製造方法
JP7605003B2 (ja) 硫酸コバルトの製造方法
JP2023065146A (ja) 硫酸コバルトの製造方法
JP7360091B2 (ja) 溶媒抽出方法およびコバルト水溶液の製造方法
JP2023161557A (ja) 硫酸コバルトの製造方法
JP7347085B2 (ja) 高純度酸化スカンジウムの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022777940

Country of ref document: EP

Effective date: 20221007

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22777940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE