WO2018015840A1 - 表示方法、表示装置、電子機器、非一時的記憶媒体およびプログラム - Google Patents
表示方法、表示装置、電子機器、非一時的記憶媒体およびプログラム Download PDFInfo
- Publication number
- WO2018015840A1 WO2018015840A1 PCT/IB2017/054187 IB2017054187W WO2018015840A1 WO 2018015840 A1 WO2018015840 A1 WO 2018015840A1 IB 2017054187 W IB2017054187 W IB 2017054187W WO 2018015840 A1 WO2018015840 A1 WO 2018015840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display
- layer
- pixel
- display device
- displayed
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
Definitions
- One embodiment of the present invention relates to a display method, a display device, an electronic device, a non-transitory storage medium, and a program.
- one embodiment of the present invention is not limited to the above technical field.
- the technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
- one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, the technical field of one embodiment of the present invention disclosed in this specification and the like more specifically includes a semiconductor device, a display device, a light-emitting device, a power storage device, a memory device, a driving method thereof, or a manufacturing method thereof. Can be mentioned as an example.
- a technique is disclosed in which a person who uses a display device is detected and the refresh rate of a display other than the portion of the image displayed on the display device that is not being watched by the user is reduced. Thereby, the power consumption of a display apparatus can be reduced (refer patent document 1).
- the power consumption of the display device increases.
- an object of one embodiment of the present invention is to provide a display method and a display device that can reduce power consumption. Another object is to provide a display method and a display device capable of displaying a high-quality image. Another object is to provide a display method and a display device capable of suppressing a rapid change in image quality. Another object is to provide a display method or a display device that can operate at high speed. Another object is to provide a novel display method and display device.
- One embodiment of the present invention is a portion of a display device including a display portion including a first pixel including a liquid crystal element and a second pixel including a light-emitting element, which is watched by a person using the display device.
- An image displayed on the part using the second pixel, and an image displayed on the part other than the first part and not in the vicinity of the first part using the first pixel Is the method.
- size and shape of the part of the vicinity of a 1st part may be set with the magnitude
- the ratio of the second pixel contributing to image display may be increased as the portion is closer to the first portion.
- the ratio of the first pixels contributing to image display may be increased as the distance from the first part increases in the vicinity of the first part.
- a person using the display device is gazing.
- the described text is not the text described in the row or column to which the text included in the first part belongs, but the line or column to which the text included in the first part belongs.
- text that is not text written in a nearby line is displayed using a first pixel.
- the text described in one line before and after the line to which the text included in the first part belongs may be changed to the text described in the line near the line to which the text included in the first part belongs. Good.
- the text described in one column before and after the column to which the text included in the first part belongs may be changed to the text described in the column near the column to which the text included in the first part belongs. Good.
- the first portion may be calculated based on the distance between the person who uses the display device and the display unit.
- the first pixel and the second pixel may be stacked.
- the light emitting element may be an OLED.
- a display device having a function of displaying an image by the display method of one embodiment of the present invention is also one embodiment of the present invention.
- a display device including a transistor and an infrared source is also one embodiment of the present invention.
- the transistor may include a metal oxide in a channel formation region.
- An electronic device including the display device of one embodiment of the present invention and an operation button or a battery is also one embodiment of the present invention.
- a non-transitory storage medium in which a program having a function of executing the display method of one embodiment of the present invention is also one embodiment of the present invention.
- a program having a function of executing the display method of one embodiment of the present invention is also one embodiment of the present invention.
- One embodiment of the present invention can provide a display method and a display device capable of reducing power consumption.
- a display method and a display device that can display a high-quality image can be provided.
- a display method and a display device that can suppress a rapid change in image quality can be provided.
- a display method or a display device that can operate at high speed can be provided.
- a novel display method and display device can be provided.
- FIG. 9 is a block diagram illustrating a structure example of a display device.
- FIG. 9 is a block diagram illustrating a structure example of a display device.
- FIG. 10 is a schematic diagram illustrating a configuration example of a display device. The flowchart explaining an example of the display method. 4A and 4B each illustrate a portion of a display portion included in a display device. The figure explaining the case where the display part which a display apparatus has is displaying the text.
- FIG. 10 is a schematic diagram illustrating a configuration example of a display device. The flowchart explaining an example of the display method.
- FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
- FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
- FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
- FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
- FIG. 10 is a top view illustrating a structure example of a display device.
- FIG. 9 is a circuit diagram illustrating a configuration example of a pixel.
- FIG. 6 is a circuit diagram and a block diagram illustrating a structural example of a pixel.
- FIG. 10 is a top view illustrating a structure example of a display device.
- FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
- FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
- FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
- FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
- FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
- FIG. 6 illustrates a configuration example of a display module.
- 10A and 10B each illustrate an electronic device.
- 10A and 10B each illustrate an electronic device.
- the terms “source” and “drain” of a transistor interchange with each other depending on the polarity of the transistor or the level of potential applied to each terminal.
- a terminal to which a low potential is applied is called a source
- a terminal to which a high potential is applied is called a drain
- a terminal to which a high potential is applied is called a source.
- the connection relationship between transistors may be described on the assumption that the source and the drain are fixed. Actually, however, the source and drain are called according to the above-described potential relationship. Change.
- the source of a transistor means a source region that is part of a semiconductor film functioning as a semiconductor layer or a source electrode connected to the semiconductor film.
- a drain of a transistor means a drain region that is part of the semiconductor film or a drain electrode connected to the semiconductor film.
- the gate means a gate electrode.
- a state in which transistors are connected in series refers to a state in which, for example, only one of a source and a drain of a first transistor is connected to only one of a source and a drain of a second transistor.
- the state where the transistors are connected in parallel means that one of the source and the drain of the first transistor is connected to one of the source and the drain of the second transistor, and the other of the source and the drain of the first transistor is connected. It means a state of being connected to the other of the source and the drain of the second transistor.
- connection means electrical connection and corresponds to a state where current, voltage, or potential can be supplied or transmitted. Therefore, the connected state does not necessarily indicate a directly connected state, and a wiring, a resistor, a diode, a transistor, or the like is provided so that current, voltage, or potential can be supplied or transmitted.
- the state of being indirectly connected through a circuit element is also included in the category.
- connection includes such a case where one conductive film has functions of a plurality of components.
- one of a first electrode and a second electrode of a transistor refers to a source electrode, and the other refers to a drain electrode.
- X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
- an element that enables electrical connection between X and Y for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.
- Element, light-emitting element, load, etc. are not connected between X and Y, and elements (for example, switches, transistors, capacitive elements, inductors) that enable electrical connection between X and Y
- elements for example, switches, transistors, capacitive elements, inductors
- an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.
- the switch has a function of controlling on / off. That is, the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current. Alternatively, the switch has a function of selecting and switching a path through which a current flows.
- the case where X and Y are electrically connected includes the case where X and Y are directly connected.
- a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
- Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes signal potential level, etc.), voltage source, current source, switching Circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, storage circuit, control circuit, etc.)
- a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
- Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down
- X and Y are functionally connected.
- the case where X and Y are functionally connected includes the case where X and Y are directly connected and the case where X and Y are electrically connected.
- the source (or the first terminal or the like) of the transistor is electrically connected to X through (or not through) Z1, and the drain (or the second terminal or the like) of the transistor is connected to Z2.
- the transistor source (or the first terminal or the like) is directly connected to a part of Z1 and another part of Z1. Is directly connected to X, the drain (or the second terminal, etc.) of the transistor is directly connected to a part of Z2, and another part of Z2 is directly connected to Y. Then, it can be expressed as follows.
- X and Y, and the source (or the first terminal or the like) and the drain (or the second terminal or the like) of the transistor are electrically connected to each other. Terminal, etc.), the drain of the transistor (or the second terminal, etc.) and Y are electrically connected in this order.
- the source (or the first terminal or the like) of the transistor is electrically connected to X
- the drain (or the second terminal or the like) of the transistor is electrically connected to Y
- X and the source Alternatively, the first terminal and the like, the drain of the transistor (or the second terminal and the like), and Y are electrically connected in this order.
- X is electrically connected to Y through the source (or first terminal or the like) and the drain (or second terminal or the like) of the transistor, and X is the source of the transistor (or the first terminal). Terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order.
- Terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order.
- a source (or a first terminal or the like) of a transistor is electrically connected to X through at least a first connection path, and the first connection path is The second connection path does not have a second connection path, and the second connection path is connected between the source of the transistor (or the first terminal or the like) and the drain of the transistor (or the second terminal or the like) through the transistor.
- the first connection path is a path through Z1
- the drain (or the second terminal, etc.) of the transistor is electrically connected to Y through at least the third connection path.
- the third connection path is connected and does not have the second connection path, and the third connection path is a path through Z2.
- the source (or the first terminal or the like) of the transistor is electrically connected to X via Z1 through at least a first connection path, and the first connection path is a second connection path.
- the second connection path has a connection path through the transistor, and the drain (or the second terminal or the like) of the transistor is at least connected to Z2 by the third connection path.
- Y, and the third connection path does not have the second connection path.
- the source of the transistor (or the first terminal or the like) is electrically connected to X through Z1 by at least a first electrical path, and the first electrical path is a second electrical path
- the second electrical path is an electrical path from the source (or the first terminal or the like) of the transistor to the drain (or the second terminal or the like) of the transistor;
- the drain (or the second terminal or the like) of the transistor is electrically connected to Y through Z2 by at least a third electrical path, and the third electrical path is a fourth electrical path.
- the fourth electrical path is an electrical path from the drain (or the second terminal or the like) of the transistor to the source (or the first terminal or the like) of the transistor. can do.
- X, Y, Z1, and Z2 are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, and the like).
- the term “electrically connected” in this specification includes in its category such a case where one conductive film has functions of a plurality of components.
- One embodiment of the present invention relates to a display method and a display device having a function of changing a display portion that performs display according to a portion in which a user is gazing and a portion in which the user is not gazing.
- a high-quality image can be displayed in a portion where the user is gazing, and an image can be displayed in the other portions with low power consumption.
- a high-quality image can be displayed on a portion that is being watched by the user and a portion in the vicinity thereof, and an image can be displayed on the other portions with low power consumption.
- the power consumption of the display device of one embodiment of the present invention can be reduced without degrading the display quality of an image recognized by the user.
- the display device of one embodiment of the present invention may have a function of displaying text.
- the display device can also have a function of changing a display unit that performs display according to a portion that the user is watching and a portion that is not watching.
- text is displayed on the display device, for example, only the text displayed in the row or column to which the text that the user is gazing belongs is displayed in high quality and displayed in the other rows or columns.
- Text can be displayed with low power consumption. For example, only the text displayed in the row or column to which the text the user is gazing and the neighboring row or column are displayed with high quality, and the text displayed in the other rows or columns is low.
- the power can be displayed. As described above, power consumption of the display device of one embodiment of the present invention can be reduced without degrading display quality of text recognized by the user.
- image may include text
- FIG. 1A is a block diagram illustrating a configuration example of the display device 10.
- the display device 10 includes a display unit 11a, a display unit 11b, a sensor 13, a storage circuit 14, a calculation circuit 15, a source driver circuit 17a, a source driver circuit 17b, a gate driver circuit 18a, and a gate driver circuit. 18b.
- the display unit 11a is provided with a plurality of pixels 12a arranged in a matrix
- the display unit 11b is provided with a plurality of pixels 12b arranged in a matrix.
- the display unit 11a has a function of displaying an image using the pixel 12a
- the display unit 11b has a function of displaying an image using the pixel 12b.
- the display unit 11a and the display unit 11b may be collectively referred to as the display unit 11.
- the pixel 12a has a first display element.
- a first display element for example, a reflective liquid crystal element can be used.
- a transmissive liquid crystal element or a transflective liquid crystal element can be used as the first display element.
- a reflective display element other than a liquid crystal element can be used as the first display element.
- the pixel 12a may include an electronic shutter, a mechanical shutter, and the like.
- the pixel 12a may include a piezo element.
- the piezo element has a piezoelectric body and has a function of converting a voltage applied to the piezoelectric body into a force.
- the piezo element has a function of operating, for example, a mechanical shutter.
- the pixel 12b has a second display element.
- a light-emitting element having a function of emitting light can be used as the second display element.
- an OLED Organic Light Emitting Diode
- an LED Light Emitting Diode
- a QLED Quadantum-dot Light Emitting Diode
- IEL Inorganic-Electric Semiconductor
- the light emitting element can be used.
- the luminance and chromaticity of light emitted from a display element having a light emitting element as described above are not affected by external light. Therefore, an image with high color reproducibility (wide color gamut) and high contrast can be displayed on the display unit 11b. That is, a high-quality image can be displayed on the display unit 11b.
- the display unit 11 can display an image in various display modes. For example, the entire display unit 11 can display an image using only the pixels 12a. That is, an image can be displayed only on the display unit 11a. Further, for example, the entire display unit 11 can display an image using only the pixels 12b. That is, an image can be displayed only on the display unit 11b. Further, for example, in the entire display unit 11, an image can be displayed using both the pixel 12a and the pixel 12b. That is, an image can be displayed on both the display unit 11a and the display unit 11b.
- an image is displayed using only the pixel 12 b or both the pixel 12 a and the pixel 12 b, and an image is displayed using only the pixel 12 a for other parts of the display unit 11.
- some display modes are displayed only on the display unit 11b or both the display unit 11a and the display unit 11b, and the other display modes are displayed only on the display unit 11a.
- the display mode for example, an image can be displayed using only the pixel 12b in a part of the display unit 11, and an image can be displayed using only the pixel 12a for other parts of the display unit 11. That is, part of the image displayed on the display unit 11 can be displayed only on the display unit 11b, and the other can be displayed only on the display unit 11a.
- an image can be displayed using both the pixel 12 a and the pixel 12 b, and for the other part of the display unit 11, an image can be displayed using only the pixel 12 a. That is, part of the image displayed on the display unit 11 can be displayed on both the display unit 11a and the display unit 11b, and the other can be displayed only on the display unit 11a.
- an image is displayed using only the pixel 12b in a part of the display unit 11, an image is displayed using both the pixel 12a and the pixel 12b in another part of the display unit 11, and the other part is displayed.
- An image can be displayed using only the pixel 12a. That is, part of the image displayed on the display unit 11 is displayed only on the display unit 11b, the other part is displayed on both the display unit 11a and the display unit 11b, and the other part is displayed on the display unit 11a. Can only be displayed.
- a part of the image may be displayed using only the pixel 12a, or a part may be displayed using only the pixel 12b. May be.
- the sensor 13 has a function of photographing a landscape around the display device 10 by detecting visible light, for example.
- the sensor 13 may have a function of capturing an infrared image of the scenery around the display device 10 by, for example, having a function of detecting infrared rays.
- the sensor 13 may have a function of detecting the brightness of external light.
- the sensor 13 can be configured to include, for example, a photoelectric conversion element.
- the memory circuit 14 has a function of holding a program having information on the display method of the display device 10, for example.
- a non-transitory storage medium can be used as the storage circuit 14.
- a nonvolatile memory such as a ROM (Read Only Memory) can be used.
- ROM Read Only Memory
- OTPROM One Time Programmable Read Only Memory
- EPROM Erasable Programmable Read Only Memory
- EPROM in addition to UV-EPROM (Ultra-Violet Erasable Programmable Read Only Memory) capable of erasing stored data by ultraviolet irradiation, EEPROM (Electrically Erasable Programmable Read Only Memory) or the like can be used.
- the memory circuit 14 may be a memory including a transistor using a metal oxide in a region where a channel is formed, for example.
- Metal oxide has a wider band gap and lower carrier density than silicon. Therefore, a transistor using a metal oxide for a channel formation region has a smaller off current than a transistor using silicon for a channel formation region. Therefore, even when the supply of power to the storage circuit 14 is stopped, data can be held in the storage circuit 14, and the storage circuit 14 has a function as a non-temporary storage medium.
- a metal oxide is a metal oxide in a broad expression.
- Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), and oxide semiconductors (also referred to as oxide semiconductors or simply OS).
- oxide semiconductors also referred to as oxide semiconductors or simply OS.
- the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide has at least one of an amplifying function, a rectifying function, and a switching function, the metal oxide can be referred to as a metal oxide semiconductor, or OS for short.
- OS FET it can be said to be a transistor including a metal oxide or an oxide semiconductor.
- metal oxides containing nitrogen may be collectively referred to as metal oxides.
- a metal oxide containing nitrogen may be referred to as a metal oxynitride.
- CAAC c-axis aligned crystal
- CAC Cloud-aligned Composite
- a CAC-OS or a CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material is a semiconductor. It has the function of. Note that in the case where a CAC-OS or a CAC-metal oxide is used for a semiconductor layer of a transistor, the conductive function is a function of flowing electrons (or holes) serving as carriers, and the insulating function is an electron serving as carriers. It is a function that does not flow. A function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.
- CAC-OS or CAC-metal oxide includes a conductive region and an insulating region.
- the conductive region has the above-described conductive function
- the insulating region has the above-described insulating function.
- the conductive region and the insulating region may be separated at the nanoparticle level.
- the conductive region and the insulating region may be unevenly distributed in the material, respectively.
- the conductive region may be observed with the periphery blurred and connected in a cloud shape.
- the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
- CAC-OS or CAC-metal oxide is composed of components having different band gaps.
- CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
- the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
- the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel region of a transistor, high current driving capability, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
- CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
- the arithmetic circuit 15 has a function of reading a program having information related to the display method of the display device 10 held in the storage circuit 14 and operating the display device 10 based on the program. For example, it has a function of analyzing an image of a surrounding landscape photographed by the sensor 13. For example, the part of the display unit 11 that the person using the display device 10 is gazing at based on an image of the surrounding landscape photographed by the sensor 13, and each part of the display unit 11 is obtained based on this. It has a function of determining pixels used for image display.
- the arithmetic circuit 15 has a function of generating display data corresponding to an image displayed by the display unit 11.
- a CPU Central Processing Unit
- DSP Digital Signal Processor
- GPU Graphics Processing Unit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- FPAA Field Programmable Analog Array
- the source driver circuit 17a has a function of D / A converting the display data generated by the arithmetic circuit 15 and transmitting the D / A converted display data to the pixel 12a.
- the source driver circuit 17b has a function of D / A converting the display data generated by the arithmetic circuit 15 and transmitting the D / A converted display data to the pixel 12b.
- the gate driver circuit 18a has a function of supplying a selection signal to the pixel 12a.
- the gate driver circuit 18b has a function of supplying a selection signal to the pixel 12b.
- FIG. 1 illustrates a structure in which two source driver circuits are provided and two gate driver circuits are provided
- the display device of one embodiment of the present invention is not limited thereto.
- one source driver circuit and one gate driver circuit may be provided.
- three or more source driver circuits and three or more gate driver circuits may be provided.
- two source driver circuits and one gate driver circuit may be provided.
- one source driver circuit and two gate driver circuits may be provided.
- the pixel 12 can be configured to include sub-pixels.
- the pixel 12 can have a structure including three types of sub-pixels: a sub-pixel 12R, a sub-pixel 12G, and a sub-pixel 12B.
- each of the subpixel 12R, the subpixel 12G, and the subpixel 12B is provided with a display element having a function of displaying white, and the subpixel 12R is provided with a colored layer that transmits red light (wavelength of 620 nm or more and 750 nm or less).
- the subpixel 12G can be provided with a colored layer that transmits green (wavelength of 500 nm or more and less than 570 nm), and the subpixel 12B can be provided with a colored layer that transmits blue (wavelength of 450 nm or more and less than 500 nm).
- the subpixel 12R has a function of emitting red light, for example
- the subpixel 12G has a function of emitting green light, for example
- the subpixel 12B has a function of emitting blue light, for example.
- subpixels having a function of emitting light such as purple (380 nm or more and less than 590 nm), yellow (570 nm or more and less than 590 nm), or orange (590 nm or more and less than 620 nm) are subpixels 12R, 12G, or 12B. May be provided in place of any of the above, or may be provided in addition to the subpixel 12R, the subpixel 12G, and the subpixel 12B.
- the pixel 12a and the pixel 12b may be collectively referred to as a pixel 12.
- the pixel 12 may include a sub-pixel 12W in addition to the sub-pixel 12R, the sub-pixel 12G, and the sub-pixel 12B.
- the subpixel 12W can be provided with a display element having a function of displaying white and without a colored layer. With this configuration, the sub-pixel 12W has a function of emitting white light. Thereby, the brightness of the image displayed on the display part 11 can be raised.
- the display elements included in the sub-pixel 12R, the sub-pixel 12G, and the sub-pixel 12B may not have a function of displaying white.
- a display element having a function of displaying red is provided in the subpixel 12R
- a display element having a function of displaying green is provided in the subpixel 12G
- a display element having a function of displaying blue is provided in the subpixel 12B.
- the pixel 12 can be configured to have no colored layer.
- part or all of one or both of the pixel 12a and the pixel 12b do not have the sub-pixel 12R, the sub-pixel 12G, and the sub-pixel 12B, but have only the sub-pixel 12W, as shown in FIG. It is good also as a structure. That is, part or all of one or both of the pixel 12a and the pixel 12b may have a function of emitting only white light. For example, all the pixels 12a may have a function of emitting only white light. As described above, the brightness of the image displayed on the display unit 11 can be increased.
- the display unit 11a and the display unit 11b are stacked as shown in FIG. Therefore, the pixel 12a and the pixel 12b are stacked.
- FIGS. 3A, 3 ⁇ / b> B, and 3 ⁇ / b> C are schematic diagrams illustrating a configuration example of the display device 10. 3A, 3B, and 3C, components other than the display unit 11, the pixel 12, and the sensor 13 are omitted.
- the sensor 13 can be two or more sensors. Thereby, for example, the distance between the person who uses the display device 10 and the display unit 11 can be calculated. Thereby, the part of the display part 11 which the person using the display apparatus 10 is gazing at can be calculated correctly.
- the display device 10 includes two sensors, a sensor 13a and a sensor 13b, and may be provided on the upper left and upper right of the display device 10, respectively.
- the display device 10 has four sensors, that is, a sensor 13a, a sensor 13b, a sensor 13c, and a sensor 13d, in the upper left, upper right, lower left, and lower right of the display device 10, respectively. It may be provided.
- the sensor 13 may have three sensors or five or more sensors.
- the display device 10 may include only one sensor 13.
- the sensor 13 can be provided on the upper portion of the display device 10. Even when the display device 10 has only one sensor 13, for example, one of the eyes of the person using the display device 10 and the other eye of the person using the display device 10 in the image captured by the sensor 13. The distance between the person who uses the display device 10 and the display unit 11 can be calculated.
- the sensor 13 can be provided at an arbitrary position.
- the sensor 13 may include, for example, a fixed focus type or variable focus type optical device (such as a lens) and an image sensor that can detect two-dimensionally visible light.
- FIG. 4 is a flowchart for explaining an example of a program that executes the display method of the display device 10 having the configuration shown in FIG.
- step S01 the landscape observed from the display unit 11 of the display device 10 is photographed by the sensor 13 (step S01).
- the image taken by the sensor 13 is analyzed by the arithmetic circuit 15 (step S02). For example, it is determined whether the image of the person using the display device 10 is included in the image captured by the sensor 13 (step S03).
- step S03 it is determined whether the image of the person using the display device 10 is included in the image captured by the sensor 13.
- the display unit 11 is not included in the field of view of the person using the display device 10. For this reason, for example, it is not necessary to display an image on either the display unit 11a or the display unit 11b (step S04). Thereby, the power consumption of the display apparatus 10 can be reduced.
- the arithmetic circuit 15 analyzes the pupil included in the eye (step S05). For example, it is determined whether or not a pupil included in the eyes of the person using the display device 10 is detected from an image captured by the sensor 13 (step S06). When the pupil is not detected, it can be considered that the person who uses the display device 10 is far away from the display unit 11. In this case, there is no major problem even if the image displayed on the display unit 11 is not high quality, and for example, the image can be displayed only on the display unit 11a (step S07). Thereby, the power consumption of the display apparatus 10 can be reduced. Or in step S07, it is not necessary to display an image on either the display part 11a or the display part 11b. In this case, the power consumption of the display device 10 can be further reduced.
- the calculation circuit 15 analyzes the direction and position of the pupil, the distance to the display unit 11, and the like, and calculates the portion that the person using the display device 10 is gazing at ( Step S08).
- the distance from the pupil to the display unit 11 is the pupil included in one eye of the person using the display device 10 and the pupil included in the other eye of the person using the display device 10 in the image taken by the sensor 13. It can calculate based on the distance between.
- the sensor 13 includes two or more sensors, the distance from the pupil to the display unit 11 can be calculated even when only the pupil included in one of the eyes of the person using the display device 10 is detected. it can.
- step S09 it is determined whether or not the display unit 11 includes a portion that is being watched by a person using the display device 10 (step S09).
- the display unit 11 is included in the field of view of the person using the display device 10, but it is assumed that the attention of the person using the display device 10 deviates from the display unit 11. Can do.
- the image displayed on the display unit 11 is not high quality, and for example, the image can be displayed only on the display unit 11a (step S10). Thereby, the power consumption of the display apparatus 10 can be reduced.
- step S11 When the display unit 11 includes a portion that is being watched by a person using the display device 10, it is determined whether or not text is displayed on the portion that is being watched (step S11). When no text is displayed, for example, some of the images displayed on the display unit 11 are displayed only on the display unit 11b or both on the display unit 11a and the display unit 11b, and others are displayed on the display unit. An image can be displayed only at 11a (step S12). For example, an image displayed on a portion being watched by a person using the display device 10 and a portion in the vicinity thereof is displayed only on the display unit 11b or on both the display unit 11a and the display unit 11b, and is displayed on other portions. The displayed image can be displayed only on the display unit 11a.
- the term text indicates a group of characters displayed on the display unit 11.
- the display mode in which the image displayed on each part of the display unit 11 is displayed can be determined based on the brightness of external light, for example. For example, when the outside light is bright, a part of the image displayed on the display unit 11 can be displayed on both the display unit 11a and the display unit 11b. For example, when the outside light is dark, a part of the image displayed on the display unit 11 can be displayed only on the display unit 11b, and the other can be displayed only on the display unit 11a.
- step S12 for example, a person using the display device 10 may arbitrarily set in which display mode an image displayed on each part of the display unit 11 is displayed.
- Step S12 will be described in detail with reference to FIG.
- FIG. 5 shows a portion 20a on which the person who uses the display device 10 is gazing, a portion 20b in the vicinity of the portion 20a, and a portion 20c that is a portion other than the portion 20a and the portion 20b.
- FIG. 5 shows a portion 20a on which the person who uses the display device 10 is gazing, a portion 20b in the vicinity of the portion 20a, and a portion 20c that is a portion other than the portion 20a and the portion 20b.
- the portion 20a can be calculated by step S08 as described above.
- the part 20b can be a specific part outside the part 20a.
- the portion 20b may have a circular shape in which the center is the same as the portion 20a and a numerical value x (x is 0 or more) is added to the radius of the portion 20a.
- the numerical value x may be fixed, may be arbitrarily set by a person using the display device 10, or may be automatically set according to some condition such as the brightness of outside light. .
- the shape of the portion 20a is not limited to a circle, and may be an ellipse, a rectangle, a triangle, a quadrangle, a polygon, or the like.
- the shape of the portion 20b can be set according to the shape of the portion 20a.
- the image displayed on the part 20a and the image displayed on the part 20b can be displayed only on the display unit 11b, and the image displayed on the part 20c can be displayed only on the display unit 11a. That is, in the portion 20a and the portion 20b, an image can be displayed using only the pixel 12b, and in the portion 20c, an image can be displayed using only the pixel 12a.
- the entire image displayed in the portion 20b may not be displayed only on the display unit 11b, but a part of the image may be displayed only on the display unit 11a.
- the pixels 12 provided in the portion 20b not all of the pixels 12 may display an image using only the pixel 12b, but a part of the image may be displayed using only the pixel 12a.
- the closer to the portion 20a the higher the ratio of the pixels 12 that display an image using only the pixel 12b, and the closer to the portion 20c (away from the portion 20a), the more the pixel 12 that displays an image using only the pixel 12a.
- the ratio of can be increased.
- the image displayed on the part 20a and the image displayed on the part 20b can be displayed on both the display unit 11a and the display unit 11b, and the image displayed on the part 20c can be displayed only on the display unit 11a. That is, in the portion 20a and the portion 20b, an image can be displayed using both the pixel 12a and the pixel 12b, and in the portion 20c, an image can be displayed using only the pixel 12a.
- the entire image displayed on the portion 20b may not be displayed on both the display unit 11a and the display unit 11b, but a part of the image may be displayed only on the display unit 11a. That is, among the pixels 12 provided in the portion 20b, not all of the pixels 12 are displayed using both the pixel 12a and the pixel 12b, but a part of the image is displayed using only the pixel 12a. Also good. For example, the closer to the portion 20a, the higher the ratio of the pixels 12 that display the image using the pixels 12a and 12b, and the closer to the portion 20c (away from the portion 20a), the more the image is displayed using only the pixel 12a. The ratio of the pixels 12 can be increased.
- part of the image displayed on the display unit 11 is displayed only on the display unit 11b, the other part is displayed on both the display unit 11a and the display unit 11b, and the other part is displayed on the display unit.
- the case where only 11a is displayed is demonstrated.
- the image displayed on the part 20a is displayed only on the display unit 11b
- the image displayed on the part 20b is displayed on both the display unit 11a and the display unit 11b
- the image displayed on the part 20c is displayed on the display unit 11a. Can only be displayed.
- an image is displayed using only the pixel 12b
- an image is displayed using both the pixel 12a and the pixel 12b
- an image is displayed using only the pixel 12a. it can.
- the entire image displayed on the portion 20b may not be displayed on both the display unit 11a and the display unit 11b, but a part thereof may be displayed only on the display unit 11a.
- you may display a part of image displayed on the part 20b only on the display part 11b. That is, an image may be displayed by using only the pixel 12b for a part of the pixels 12 provided in the portion 20b.
- the closer to the portion 20a the higher the ratio of the pixels 12 that display the image using only the pixel 12b, and the closer to the portion 20c (away from the portion 20a), the more the image is displayed using both the pixel 12a and the pixel 12b.
- the ratio of the pixels 12 to be displayed can be increased.
- the closer to the portion 20a the smaller the ratio of the pixels 12a contributing to the image display, and the closer to the portion 20c (away from the portion 20a), the greater the proportion of the pixels 12a contributing to the image display. it can. As a result, it is possible to suppress a sudden change in image quality at the boundary between the portion 20a and the portion 20b.
- step S12 even when the part 20b and the part 20c are displayed on any display part (displayed only on the display part 11a, displayed only on the display part 11b, and displayed on both the display part 11a and the display part 11b), Part of the part 20b and / or part of the part 20c may be displayed only on the display unit 11a, may be displayed only on the display unit 11b, or both the display unit 11a and the display unit 11b are used. It may be displayed. That is, an image is displayed by using only the pixel 12a for some of the pixels 12 provided in a part of the part 20b and / or a part of the pixels 12 provided in a part of the part 20c. Alternatively, the image may be displayed using only the pixel 12b, or the image may be displayed using both the pixel 12a and the pixel 12b.
- step S11 when the text is displayed in the part which the person who uses the display apparatus 10 is gazing, it is determined whether the text is horizontal writing or vertical writing (step S13).
- the text is displayed in horizontal writing, for example, the text described in some lines is displayed only on the display unit 11b or on both the display unit 11a and the display unit 11b, and the text described on the other lines. Can be displayed only on the display unit 11a (step S14).
- the text is displayed in vertical writing, for example, the text described in a part of the column is displayed only on the display unit 11b or on both the display unit 11a and the display unit 11b and described in the other column.
- the text can be displayed only on the display unit 11a (step S15).
- step S14 and step S15 the display mode in which the text displayed on each part of the display unit 11 is displayed can be determined based on, for example, the brightness of external light. For example, when the outside light is bright, the text written in some rows or columns of the display unit 11 can be displayed on both the display unit 11a and the display unit 11b. For example, when the outside light is dark, the text written in some rows or columns of the display unit 11 can be displayed only on the display unit 11b, and the other can be displayed only on the display unit 11a.
- step S14 and step S15 for example, a person using the display device 10 may arbitrarily set in which display mode the text displayed in each part of the display unit 11 is displayed. Moreover, even if the text is written on the same line in the case of horizontal writing and on the same column in the case of vertical writing, the display unit for displaying may be changed for each character.
- Step S14 will be described in detail with reference to FIG.
- FIG. 6 shows the display unit 11 that displays text horizontally.
- the part 20a shows the part which the person who uses the display apparatus 10 is gazing at as described in FIG.
- the text described in the line to which the text included in the part 20a belongs can be displayed only on the display unit 11b, and the text described in the other line can be displayed only on the display unit 11a.
- the reference numerals such as [1] and [2] are used.
- the reference numerals such as [1] and [2] are used.
- the reference numerals such as [1] and [2] are used.
- they are distinguished by being described as a portion 20a [1], a portion 20a [2], and the like.
- the user of the display device 10 may not be gazing at all of the plurality of portions 20a, but may be observing, for example, one portion 20a.
- the portion 20a [1] illustrated in FIG. 6 is a portion being watched by a person using the display device 10.
- the part 20a [1] includes a part of “Where”.
- “Where 'tis novelr in the mind to buffer” can be displayed only on the display unit 11b, and other text can be displayed only on the display unit 11a.
- “Where 'tis nobleer in the mind to buffer” can be displayed using only the pixel 12b, and other text can be displayed using only the pixel 12a.
- the text described in the adjacent line is displayed only on the display unit 11b, and the text described in the other line is displayed in the display unit. It can be displayed only in 11a.
- one line before and after the text described in the line to which the text included in the portion 20a belongs can be set as a neighboring line.
- the part 20a [1] is a part that is being watched by a person using the display device 10, “To be, or not to be: what is the request:” and “The slings and arrows of outlookous forth, "Can be a line in the vicinity of” Where 'tis novelr in the mind to buffer "that is a line including the portion 20a [1].
- the line to which the text included in the portion 20a [1] belongs and the lines in the vicinity thereof (3 lines in total) are described as line 22 [1].
- the text described in the line 22 [1] can be displayed only on the display unit 11b, and the text described in another line can be displayed only on the display unit 11a. That is, for example, the text described in the row 22 [1] can be displayed using only the pixel 12b, and the text described in another row can be displayed using only the pixel 12a.
- two lines before and after the text described in the line to which the text included in the portion 20a belongs may be set as neighboring lines, and three or more lines may be set as neighboring lines.
- the text included in the portion 20a may not be one line.
- two lines of text may be included as in the portion 20a [2].
- the portion 20a may include three or more lines of text.
- the portion 20a [2] shown in FIG. 6 is a portion being watched by a person using the display device 10.
- “And by popping end theme? To die: to Sleep;” and “No more; and by by sleep to say we end” are displayed only in the display unit 11b, and other text is displayed in the display unit 11a.
- the text described in the line 22 [2] can be displayed only on the display unit 11b, and the text described in another line can be displayed only on the display unit 11a. That is, for example, the text described in the row 22 [2] can be displayed using only the pixel 12b, and the text described in another row can be displayed using only the pixel 12a.
- the display unit for displaying the text is displayed for each line as in the case where the text of the one part or two lines is included in the part 20a. Can be determined.
- step S14 the text described in some lines may be displayed by both the display unit 11a and the display unit 11b.
- the text that is displayed only on the display unit 11b in the above description can be displayed on both the display unit 11a and the display unit 11b.
- the text described in the line to which the text included in the portion 20a belongs can be displayed by both the display unit 11a and the display unit 11b, and the text described in the other line can be displayed only by the display unit 11a. That is, for example, the text described in the line to which the text included in the portion 20a belongs can be displayed using both the pixel 12a and the pixel 12b, and the text described in the other line can be displayed only in the pixel 12a.
- the text described in the adjacent line is displayed on both the display unit 11a and the display unit 11b and described in the other line.
- the text can be displayed only on the display unit 11a. That is, for example, in addition to the text described in the line to which the text included in the portion 20a belongs, the text described in the neighboring line is displayed using both the pixel 12a and the pixel 12b, and is described in the other line. Text can be displayed using only the pixels 12a.
- a part may be displayed only on the display unit 11b, or the display unit 11a And the display unit 11b.
- step S15 In the case where the display device 10 is operated according to the procedure shown in step S15, that is, in the case where the vertically written text is displayed in the portion being watched by the person using the display device 10, “row” is referred to as “column”. By replacing, the description of step S14 can be referred to.
- step S03 is an example of a program that executes the display method of the display device 10.
- step S06 determines whether the display method of the display device 10.
- step S09 executes the display method of the display device 10.
- step S11 executes the display method of the display device 10.
- step S13 can be performed using, for example, AI (Artificial Intelligence).
- AI Artificial Intelligence
- step S05 the pupil included in the eyes of the person using the display device 10 is not analyzed, and instead, the distance between the eyes of the person using the display device 10 and the display unit 11 is calculated. Also good.
- the distance from the eyes of the person using the display device 10 to the display unit 11 is, for example, one of the eyes of the person using the display device 10 and the eyes of the person using the display device 10 in the image taken by the sensor 13. It can be calculated based on the distance between the other. When the sensor 13 includes two or more sensors, the distance from the pupil to the display unit 11 can be calculated even when only one eye of the person using the display device 10 is detected.
- step S06 it is determined whether or not the distance between the eyes of the person using the display device 10 and the display unit 11 is equal to or greater than a specified value. If the distance is equal to or greater than the specified value, the process proceeds to step S07. For example, an image can be displayed only on the display unit 11a. On the other hand, if it is less than the specified value, the process proceeds to step S08, and the person using the display device 10 pays attention based on the eye position of the person using the display device 10, the distance to the display unit 11, and the like. The part which is doing can be calculated.
- a high-quality image is displayed on a portion that is being watched by a person using the display device 10, and an image can be displayed on the other portion with low power consumption. it can.
- a high-quality image is displayed in a portion that is being watched by a person using the display device 10 and a portion in the vicinity thereof, and an image is displayed with low power consumption in the other portions. can do.
- the power consumption of the display device 10 can be reduced without degrading the display quality of the image recognized by the person using the display device 10.
- the text when text is displayed on a portion being watched by a person using the display device 10, the text is displayed on a row or column to which the text being watched by the user belongs.
- the text displayed on the screen is displayed with high quality, and the text displayed on the other rows or columns can be displayed with low power consumption.
- only the text displayed in the row or column to which the text the user is watching and the row or column in the vicinity thereof is displayed with high quality, and the other rows or columns are displayed.
- the text displayed in the column can be displayed with low power consumption.
- the power consumption of the display device 10 can be reduced without degrading the display quality of the text recognized by the person using the display device 10.
- the display device 10 may be operated using infrared rays.
- 7A and 7B are examples of schematic views of the display device 10 in the case where an infrared source 21 is provided in the display device 10 illustrated in FIG. 3B.
- one infrared source 21 can be provided in the display device 10.
- an infrared source 21 can be provided on the upper portion of the display device 10.
- the infrared source 21 can be two or more infrared sources.
- the infrared source 21 a can be provided on the left side of the display device 10
- the infrared source 21 b can be provided on the right side of the display device 10.
- the number of infrared sources included in the infrared source 21 may be three or more.
- the display apparatus 10 can have the function of an infrared source 21 described later, an infrared source can be provided at an arbitrary position.
- the infrared source 21 has a function of emitting light such as infrared rays.
- the infrared source 21 has a function of emitting near infrared rays, for example.
- the infrared source 21 has a function of emitting light having a wavelength of 0.9 ⁇ m to 1.6 ⁇ m, for example.
- a semiconductor laser or the like can be used as the infrared source 21. By using a laser as the infrared source 21, the spectral width of the light emitted from the infrared source 21 can be made extremely small.
- the light emitted from the infrared source 21 can be detected by, for example, the sensor 13.
- the light emitted from the infrared source 21 is reflected when it hits the user of the display device 10, and the reflected light can be detected by the sensor 13.
- the display device 10 may be provided with a dedicated sensor for detecting infrared rays or the like, for example, and the light emitted from the infrared source 21 can be detected by the sensor.
- a filter that selectively transmits light having a wavelength emitted from the infrared source 21 may be provided in part or all of the sensor having a function of detecting light emitted from the infrared source 21. Thereby, the noise by the infrared rays etc. which exist in the external world can be suppressed.
- FIG. 8 is a flowchart for explaining an example of a program for executing the display method of the display device 10 provided with the infrared source 21.
- the infrared source 21 is turned on, and the scenery observed from the display unit 11 of the display device 10 is infrared-captured by the sensor 13 (step S21).
- the infrared image captured by the sensor 13 is analyzed by the arithmetic circuit 15 (step S22). For example, it is determined whether or not the image captured by the sensor 13 includes an eye pupil of the person using the display device 10 (step S23).
- the human pupil has a very high reflectance of light with wavelengths from red to near infrared. For this reason, even if it does not detect the eyes of the person who uses display device 10, the pupil contained in the eyes can be detected accurately. In addition, since the pupil included in the eyes can be detected in a short time without detecting the eyes of the person using the display device 10, the operation of the display device 10 can be speeded up.
- the display unit 11 is not included in the field of view of the person using the display device 10. Can do. For this reason, it is not necessary to display an image on either the display part 11a or the display part 11b (step S24). Thereby, the power consumption of the display apparatus 10 can be reduced.
- the display unit 11 is included in the field of view of the person using the display device 10.
- the distance from the pupil to the display unit 11 is calculated by the arithmetic circuit 15, and when the distance is equal to or greater than a specified value, for example, an image can be displayed only on the display unit 11a (step S26).
- the power consumption of the display apparatus 10 can be reduced.
- step S26 it is not necessary to display an image on either the display part 11a or the display part 11b. In this case, the power consumption of the display device 10 can be further reduced.
- the distance from the pupil to the display unit 11 is, for example, the pupil included in one of the eyes of the person using the display device 10 in the image captured by the sensor 13 and the person using the display device 10. It can be calculated on the basis of the distance to the pupil included in the other eye.
- the sensor 13 includes two or more sensors, the distance from the pupil to the display unit 11 can be calculated even when only the pupil included in one of the eyes of the person using the display device 10 is detected. it can.
- the portion that the person using the display device 10 is gazing at based on the orientation and position of the pupil and the distance to the display unit 11 Is calculated (step S27).
- Steps S28 to S34 which are operations after step S27, can be the same operations as steps S09 to S15 shown in FIG.
- step S23 determinations shown in step S23, step S25, step S28, step S30, and step S32 can be performed using AI, for example.
- Each step shown in FIG. 4 and FIG. 8 can be appropriately added, omitted, and changed in order as long as the function of the display device 10 is not impaired.
- a first display panel provided with a pixel 12a including a liquid crystal element and a second display panel provided with a pixel 12b including a light-emitting element are provided with an adhesive layer interposed therebetween. It has a laminated structure.
- the liquid crystal element for example, a reflective liquid crystal element, a transmissive liquid crystal element, a transflective liquid crystal element, or the like can be used.
- gradation can be expressed by controlling the amount of reflected light.
- the light-emitting element can express gradation by controlling the amount of light emitted.
- the display device performs display using only reflected light, performs display using only light from the light emitting element, and performs display using both reflected light and light from the light emitting element. be able to.
- the first display panel is provided on the viewing side, and the second display panel is provided on the side opposite to the viewing side.
- the first display panel has a first resin layer located closest to the adhesive layer.
- the second display panel has a second resin layer located closest to the adhesive layer.
- a third resin layer is provided on the display surface side of the first display panel and a fourth resin layer is provided on the back surface side (the side opposite to the display surface side) of the second display panel.
- the first resin layer to the fourth resin layer are extremely thin. More specifically, the thickness is preferably 0.1 ⁇ m or more and 3 ⁇ m or less. Therefore, even if it is the structure which laminated
- the resin layer can be formed as follows, for example. That is, a low-viscosity thermosetting resin material is applied on a support substrate and cured by heat treatment to form a resin layer. Then, a structure is formed on the resin layer. Then, one surface of the resin layer is exposed by peeling between the resin layer and the support substrate.
- a method for reducing the adhesion is to irradiate a laser beam.
- a linear laser as the laser beam and scanning it.
- the process time at the time of enlarging the area of a support substrate can be shortened.
- the laser light an excimer laser having a wavelength of 308 nm can be suitably used.
- thermosetting polyimide A typical example of a material that can be used for the resin layer is thermosetting polyimide. It is particularly preferable to use photosensitive polyimide. Since photosensitive polyimide is a material that is suitably used for a planarization film or the like of a display panel, a forming apparatus and a material can be shared. Therefore, no new device or material is required to realize the structure of one embodiment of the present invention.
- the resin layer can be processed by performing exposure and development processing. For example, an opening can be formed or an unnecessary portion can be removed. Further, by optimizing the exposure method and exposure conditions, it is possible to form a concavo-convex shape on the surface. For example, an exposure technique using a halftone mask or a gray tone mask, a multiple exposure technique, or the like may be used.
- a non-photosensitive resin material may be used.
- a method of forming a resist mask or a hard mask on the resin layer to form an opening or an uneven shape can also be used.
- the resin layer located on the light path from the light emitting element it is preferable to partially remove the resin layer located on the light path from the light emitting element. That is, an opening overlapping the light emitting element is provided in the first resin layer and the second resin layer. Thereby, the fall of the color reproducibility accompanying a part of light from a light emitting element being absorbed by the resin layer, and the fall of light extraction efficiency can be suppressed.
- the resin layer may have two portions with different thicknesses, and the thin portion may overlap the light emitting element. Even with this configuration, absorption of light from the light emitting element by the resin layer can be reduced.
- the first display panel includes the third resin layer
- the first display panel includes the third resin layer
- a light absorption layer is formed on the support substrate, a resin layer having an opening is formed on the light absorption layer, and a light-transmitting layer covering the opening is formed.
- the light absorption layer is a layer that emits a gas such as hydrogen or oxygen when heated by absorbing light. Therefore, by irradiating light from the support substrate side and releasing the gas from the light absorption layer, the adhesion between the light absorption layer and the support substrate or between the light absorption layer and the light transmitting layer is reduced. , Peeling can occur. Alternatively, the light absorption layer itself can be broken and peeled off.
- the following method can also be used. That is, the portion that becomes the opening of the resin layer is partially formed thin, and the support substrate and the resin layer are peeled off by the method described above. When the resin layer is thinned by performing plasma treatment or the like on the surface from which the resin layer is peeled, an opening can be formed in a thin portion of the resin layer.
- Each of the pixel 12a and the pixel 12b preferably includes a transistor.
- a metal oxide is preferably used as a semiconductor that forms a channel of the transistor.
- a metal oxide can achieve a high on-state current and ensure high reliability even when the maximum temperature in the manufacturing process of the transistor is reduced (for example, 400 ° C. or lower, preferably 350 ° C. or lower).
- high heat resistance is not required as a material used for the resin layer located on the formation surface side of the transistor, so that the range of selection of materials can be widened. For example, it can also serve as a resin material used as a planarizing film.
- LTPS Low Temperature Poly-Silicon
- high field-effect mobility can be obtained, but laser crystallization process, crystallization pretreatment baking process, impurity activity
- a baking step or the like is required, and the maximum temperature required for the manufacturing process of the transistor is higher than that in the case where the metal oxide is used (for example, 500 ° C. or higher, 550 ° C. or higher, or 600 ° C. or higher). Therefore, high heat resistance is required for the resin layer located on the formation surface side of the transistor.
- the resin layer is also irradiated with laser, and thus the resin layer needs to be formed relatively thick (for example, 10 ⁇ m or more, or 20 ⁇ m or more).
- the metal oxide has a wide band gap (for example, 2.5 eV or more, or 3.0 eV or more) and has a property of transmitting light. Therefore, in the step of peeling the support substrate and the resin layer, even if the laser light is irradiated to the metal oxide, it is difficult to absorb, so that the influence on the electrical characteristics can be suppressed. Therefore, the resin layer can be thinly formed as described above.
- One embodiment of the present invention is a resin layer that is thinly formed using a low-viscosity photosensitive resin material typified by photosensitive polyimide, and a metal oxide that can realize a transistor with excellent electrical characteristics even at low temperatures. By combining these, a display device with extremely high productivity can be realized.
- the display device 10 preferably includes a first driving unit that drives the pixel 12a and a second driving unit that drives the pixel 12b. It is preferable that the first driving unit is provided in the first display panel and the second driving unit is provided in the second display panel.
- the first driver is provided with a source driver circuit 17a and a gate driver circuit 18a
- the second driver is provided with a source driver circuit 17b and a gate driver circuit 18b.
- the pixels 12a and 12b are preferably arranged in the display area at the same cycle as shown in FIG. 2 of the first embodiment. Furthermore, it is preferable that the pixel 12a and the pixel 12b are mixedly arranged in the display area of the display device. Thus, as will be described later, an image displayed with only the plurality of pixels 12a, an image displayed with only the plurality of pixels 12b, and an image displayed with both the plurality of pixels 12a and the plurality of pixels 12b are respectively Can be displayed in the same display area.
- the transistor provided in the pixel 12a of the first display panel and the transistor provided in the pixel 12b of the second display panel may be transistors having the same configuration or different transistors.
- a bottom-gate transistor has a gate electrode on the lower side (formation surface side) than the semiconductor layer. Further, for example, the source electrode and the drain electrode are provided in contact with the upper surface and the side end portion of the semiconductor layer.
- a top-gate transistor As another structure of the transistor, for example, a top-gate transistor can be given.
- a top-gate transistor has a gate electrode above the semiconductor layer (on the side opposite to the formation surface).
- the first source electrode and the first drain electrode are provided over the insulating layer that covers a part of the upper surface and the side end portion of the semiconductor layer, and the semiconductor layer is provided through the opening provided in the insulating layer. It is electrically connected to.
- the transistor preferably includes a first gate electrode and a second gate electrode which are provided to face each other with a semiconductor layer interposed therebetween.
- FIG. 9 shows a schematic cross-sectional view of the display device 10.
- the display device 10 has a configuration in which the display panel 100 and the display panel 200 are bonded together with an adhesive layer 50.
- the display device 10 includes a substrate 611 on the back side (the side opposite to the viewing side) and a substrate 612 on the front side (viewing side).
- the display panel 100 includes a transistor 110 and a light emitting element 120 between a resin layer 101 and a resin layer 102.
- the display panel 200 includes a transistor 210 and a liquid crystal element 220 between a resin layer 201 and a resin layer 202.
- the resin layer 101 is bonded to the substrate 611 through the adhesive layer 51.
- the resin layer 202 is bonded to the substrate 612 through the adhesive layer 52.
- the resin layer 102, the resin layer 201, and the resin layer 202 are each provided with an opening.
- a region 81 illustrated in FIG. 9 is a region overlapping with the light emitting element 120 and overlapping with the opening of the resin layer 102, the opening of the resin layer 201, and the opening of the resin layer 202.
- the resin layer 101 includes a transistor 110, a light-emitting element 120, an insulating layer 131, an insulating layer 132, an insulating layer 133, an insulating layer 134, an insulating layer 135, and the like.
- the resin layer 102 is provided with a light shielding layer 153, a colored layer 152, and the like.
- the resin layer 101 and the resin layer 102 are bonded by an adhesive layer 151.
- the transistor 110 is provided over the insulating layer 131 and functions as one of a conductive layer 111 functioning as a gate electrode, a part of the insulating layer 132 functioning as a gate insulating layer, the semiconductor layer 112, and a source or drain electrode.
- a conductive layer 113a that functions as the other of the source electrode and the drain electrode.
- the semiconductor layer 112 preferably contains a metal oxide.
- the insulating layer 133 and the insulating layer 134 are provided so as to cover the transistor 110.
- the insulating layer 134 functions as a planarization layer.
- the light-emitting element 120 has a structure in which a conductive layer 121, an EL layer 122, and a conductive layer 123 are stacked.
- the conductive layer 121 has a function of reflecting visible light
- the conductive layer 123 has a function of transmitting visible light. Therefore, the light-emitting element 120 is a top-emission type (also referred to as top-emission type) light-emitting element that emits light to the side opposite to the surface to be formed.
- the conductive layer 121 is electrically connected to the conductive layer 113b through an opening provided in the insulating layer 134 and the insulating layer 133.
- the insulating layer 135 is provided with an opening so as to cover an end portion of the conductive layer 121 and to expose an upper surface of the conductive layer 121.
- the EL layer 122 and the conductive layer 123 are sequentially provided so as to cover the exposed portions of the insulating layer 135 and the conductive layer 121.
- An insulating layer 141 is provided on the resin layer 101 side of the resin layer 102.
- a light shielding layer 153 and a colored layer 152 are provided on the resin layer 101 side of the insulating layer 141.
- the coloring layer 152 is provided in a region overlapping with the light emitting element 120.
- the light shielding layer 153 has an opening in a portion overlapping with the light emitting element 120.
- the insulating layer 141 is provided so as to cover the opening of the resin layer 102. Further, the portion of the insulating layer 141 that overlaps the opening of the resin layer 102 is in contact with the adhesive layer 50.
- the resin layer 201 includes a transistor 210, a conductive layer 221, an alignment film 224a, an insulating layer 231, an insulating layer 232, an insulating layer 233, an insulating layer 234, and the like.
- the resin layer 202 is provided with an insulating layer 204, a conductive layer 223, an alignment film 224b, and the like.
- a liquid crystal 222 is sandwiched between the alignment film 224a and the alignment film 224b.
- the resin layer 201 and the resin layer 202 are bonded by an adhesive layer in a region not shown.
- the transistor 210 is provided over the insulating layer 231 and functions as a conductive layer 211 functioning as a gate electrode, a part of the insulating layer 232 functioning as a gate insulating layer, the semiconductor layer 212, and one of a source electrode and a drain electrode.
- a conductive layer 213a that functions as the other of the source electrode and the drain electrode.
- the semiconductor layer 212 preferably contains a metal oxide.
- the insulating layer 233 and the insulating layer 234 are provided so as to cover the transistor 210.
- the insulating layer 234 functions as a planarization layer.
- the liquid crystal element 220 includes a conductive layer 221, a conductive layer 223, and a liquid crystal 222 positioned therebetween.
- the conductive layer 221 has a function of reflecting visible light
- the conductive layer 223 has a function of transmitting visible light. Therefore, the liquid crystal element 220 having the structure shown in FIG. 9 can be a reflective liquid crystal element. Note that in the case where the conductive layer 221 is a conductive layer having a function of transmitting visible light, the liquid crystal element 220 can be a transmissive liquid crystal element.
- the conductive layer 211 is electrically connected to the conductive layer 213b through an opening provided in the insulating layer 234 and the insulating layer 233.
- the alignment film 224 a is provided so as to cover the surfaces of the conductive layer 211 and the insulating layer 234.
- a conductive layer 223 and an alignment film 224b are stacked on the resin layer 201 side of the resin layer 202. Note that an insulating layer 204 is provided between the resin layer 202 and the conductive layer 223. Further, a colored layer for coloring the reflected light of the liquid crystal element 220 may be provided.
- the insulating layer 231 is provided so as to cover the opening of the resin layer 201. Further, the portion of the insulating layer 231 that overlaps the opening of the resin layer 202 is provided in contact with the adhesive layer 50.
- the insulating layer 204 is provided so as to cover the opening of the resin layer 202. A portion of the insulating layer 204 that overlaps with the opening of the resin layer 202 is provided in contact with the adhesive layer 52.
- the display device 10 includes a portion where the light emitting element 120 does not overlap with the liquid crystal element 220 when viewed from above. As a result, as shown in FIG. 9, the light emission 621 colored by the colored layer 152 is emitted from the light emitting element 120 to the viewing side. In the liquid crystal element 220, the reflected light 622, which is reflected from the outside light by the conductive layer 221, is emitted through the liquid crystal 222.
- the light emission 621 emitted from the light emitting element 120 is emitted to the viewing side through the opening of the resin layer 102, the opening of the resin layer 201, and the opening of the resin layer 202. Therefore, even when the resin layer 102, the resin layer 201, and the resin layer 202 absorb part of visible light, these resin layers are not present on the optical path of the light emission 621, so that the light extraction efficiency and color reproduction are The property can be made high.
- the substrate 612 functions as a polarizing plate or a circular polarizing plate.
- a polarizing plate or a circular polarizing plate may be provided outside the substrate 612.
- the display panel 200 does not have a colored layer and does not perform color display.
- a color layer may be provided on the resin layer 202 side to enable color display.
- the opening is provided in the resin layer located on the light path from the light emitting element 120, but the opening may also be provided in the resin layer located on the light path in the liquid crystal element 220. Good.
- FIG. 10 shows an example having a region 82 in addition to the region 81.
- the region 82 is a region overlapping with the opening of the resin layer 202 and the liquid crystal element 220.
- FIG. 10 illustrates an example in which the resin layer 202 is provided with one opening including both the light-emitting element 120 and the liquid crystal element 220; however, the opening overlapping the light-emitting element 120, the liquid crystal element 220, It is good also as a structure by which the opening part which overlaps was provided separately.
- the display device 10 illustrated in FIG. 9 is an example in which a bottom-gate transistor is applied to both the transistor 110 and the transistor 210.
- the conductive layer 111 functioning as a gate electrode is located on the formation surface side (resin layer 101 side) of the semiconductor layer 112.
- An insulating layer 132 is provided to cover the conductive layer 111.
- the semiconductor layer 112 is provided so as to cover the conductive layer 111.
- a region of the semiconductor layer 112 that overlaps with the conductive layer 111 corresponds to a channel formation region.
- the conductive layer 113a and the conductive layer 113b are provided in contact with the upper surface and side end portions of the semiconductor layer 112, respectively.
- the transistor 110 illustrates an example in which the width of the semiconductor layer 112 is larger than that of the conductive layer 111.
- the semiconductor layer 112 is disposed between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b, so that the parasitic capacitance between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b is reduced. Can do.
- the transistor 110 is a channel-etched transistor and can be suitably used for a high-definition display device because it is relatively easy to reduce the area occupied by the transistor.
- the transistor 210 has characteristics in common with the transistor 110.
- transistors that can be applied to the transistor 110 and the transistor 210 are described.
- a transistor 110 a illustrated in FIG. 11A is different from the transistor 110 in that the transistor 110 a includes a conductive layer 114 and an insulating layer 136.
- the conductive layer 114 is provided over the insulating layer 133 and has a region overlapping with the semiconductor layer 112.
- the insulating layer 136 is provided so as to cover the conductive layer 114 and the insulating layer 133.
- the conductive layer 114 is located on the side opposite to the conductive layer 111 with the semiconductor layer 112 interposed therebetween.
- the conductive layer 111 is a first gate electrode
- the conductive layer 114 can function as a second gate electrode.
- the on-state current of the transistor 110a can be increased.
- the threshold voltage of the transistor 110a can be controlled.
- a conductive material containing an oxide is preferably used for the conductive layer 114.
- oxygen can be supplied to the insulating layer 133 by forming the conductive film that forms the conductive layer 114 in an atmosphere containing oxygen.
- the proportion of oxygen gas in the film forming gas is in the range of 90% to 100%.
- Oxygen supplied to the insulating layer 133 is supplied to the semiconductor layer 112 by a subsequent heat treatment, so that oxygen vacancies in the semiconductor layer 112 can be reduced.
- a metal oxide with reduced resistance is preferably used for the conductive layer 114.
- an insulating film that releases hydrogen for example, a silicon nitride film or the like is preferably used for the insulating layer 136. Hydrogen is supplied into the conductive layer 114 during the formation of the insulating layer 136 or by heat treatment thereafter, so that the electrical resistance of the conductive layer 114 can be effectively reduced.
- a transistor 110b illustrated in FIG. 11B is a top-gate transistor.
- the conductive layer 111 functioning as a gate electrode is provided above the semiconductor layer 112 (on the side opposite to the formation surface).
- the semiconductor layer 112 is formed over the insulating layer 131.
- an insulating layer 132 and a conductive layer 111 are stacked over the semiconductor layer 112.
- the insulating layer 133 is provided so as to cover the upper surface and side edges of the semiconductor layer 112, the side surface of the insulating layer 133, and the conductive layer 111.
- the conductive layer 113 a and the conductive layer 113 b are provided over the insulating layer 133.
- the conductive layer 113 a and the conductive layer 113 b are electrically connected to the top surface of the semiconductor layer 112 through an opening provided in the insulating layer 133.
- the insulating layer 132 may be provided so as to cover the top surface and the side edge of the semiconductor layer 112. .
- the transistor 110b can easily separate a physical distance between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b, parasitic capacitance between the conductive layer 111 and the conductive layer 113a can be reduced.
- a transistor 110c illustrated in FIG. 11C is different from the transistor 110b in that the transistor 110c includes a conductive layer 115 and an insulating layer 137.
- the conductive layer 115 is provided over the insulating layer 131 and has a region overlapping with the semiconductor layer 112.
- the insulating layer 137 is provided so as to cover the conductive layer 115 and the insulating layer 131.
- the conductive layer 115 functions as a second gate electrode like the conductive layer 114. For this reason, it is possible to increase the on-current, control the threshold voltage, and the like.
- the transistor included in the display panel 100 and the transistor included in the display panel 200 may be configured with different transistors.
- a transistor that is electrically connected to the light-emitting element 120 needs to pass a relatively large current; therefore, the transistor 110a or the transistor 110c is used, and the other transistors are used to reduce the area occupied by the transistor.
- the transistor 110 can be applied.
- FIG. 12 illustrates an example in which the transistor 110 a is applied instead of the transistor 210 in FIG. 9 and the transistor 110 c is applied instead of the transistor 110.
- a display device exemplified below is a display device including both a liquid crystal element and a light-emitting element.
- the pixel 12 described in Embodiment 1 includes a liquid crystal element and a light-emitting element.
- the liquid crystal element and the light emitting element have portions that overlap each other.
- FIG. 13A illustrates a configuration example of the electrode 311 included in the pixel 12.
- the electrode 311 functions as a reflective electrode of the liquid crystal element in the pixel 12.
- the electrode 311 is provided with an opening 451.
- the light-emitting element 120 located in a region overlapping with the electrode 311 is indicated by a broken line.
- the light emitting element 120 is disposed so as to overlap with the opening 451 included in the electrode 311. Thereby, the light emitted from the light emitting element 120 is emitted to the display surface side through the opening 451.
- the pixels 12 adjacent in the direction R are pixels corresponding to different colors.
- the openings 451 are provided at different positions so that the electrodes 311 are not arranged in a line. Accordingly, the two light emitting elements 120 can be separated from each other, and a phenomenon (also referred to as crosstalk) in which light emitted from the light emitting elements 120 enters the colored layer of the adjacent pixel 12 can be suppressed.
- the two adjacent light emitting elements 120 can be arranged apart from each other, a display device with high definition can be realized even when the EL layer of the light emitting element 120 is separately formed using a shadow mask or the like.
- the display using the liquid crystal element becomes dark. If the ratio of the total area of the openings 451 to the total area of the non-openings is too small, the display using the light emitting element 120 will be dark.
- the shape of the opening 451 can be, for example, a polygon, a rectangle, an ellipse, a circle, a cross, or the like. Moreover, it is good also as an elongated streak shape, a slit shape, and a checkered shape. Further, the opening 451 may be arranged close to adjacent pixels. Preferably, the opening 451 is arranged close to other pixels displaying the same color. Thereby, crosstalk can be suppressed.
- FIG. 14 is a circuit diagram illustrating a configuration example of the pixel 12.
- the pixel 12 includes the pixel 12a and the pixel 12b.
- the pixel 12a includes a switch SW1, a capacitor C1, a liquid crystal element 220 (a liquid crystal element 220R, a liquid crystal element 220G, a liquid crystal element 220B, and a liquid crystal element 220W) and the like.
- the pixel 12b includes a switch SW2, a transistor M, a capacitor C2, a light emitting element 120 (light emitting element 120R, light emitting element 120G, light emitting element 120B, and light emitting element 120W) and the like.
- a wiring Ga1, a wiring Ga2, a wiring CSCOM, a wiring Sa1, and a wiring Sa2 are electrically connected to the pixel 12a.
- a wiring Gb1, a wiring Gb2, a wiring ANO, a wiring Sb1, and a wiring Sb2 are electrically connected to the pixel 12b.
- FIG. 14 illustrates the wiring VCOM1 that is electrically connected to the liquid crystal element 220R, the liquid crystal element 220G, the liquid crystal element 220B, and the liquid crystal element 220W.
- the light-emitting element 120R, the light-emitting element 120G, the light-emitting element 120B, and the wiring VCOM2 electrically connected to the light-emitting element 120W are illustrated.
- FIG. 14 shows an example in which transistors are used for the switch SW1 and the switch SW2.
- the switch SW1 has a gate connected to the wiring Ga1 or the wiring Ga2, one of the source or the drain connected to the wiring Sa1 or the wiring Sa2, and the other of the source or the drain connected to one electrode of the capacitor C1, the liquid crystal element 220R, and the liquid crystal It is connected to one electrode of the element 220G, the liquid crystal element 220B, or the liquid crystal element 220W.
- the other electrode of the capacitor C1 is connected to the wiring CSCOM.
- the other electrode of the liquid crystal element 220R, the liquid crystal element 220G, the liquid crystal element 220B, and the liquid crystal element 220W is connected to the wiring VCOM1.
- the switch SW2 has a gate connected to the wiring Gb1 or the wiring Gb2, one of a source or a drain connected to the wiring Sb1 or the wiring Sb2, and the other of the source or the drain connected to one electrode of the capacitor C2 and the gate of the transistor M. Connected with.
- the other electrode of the capacitor C2 is connected to one of the source and the drain of the transistor M and the wiring ANO.
- the other of the source and the drain of the transistor M is connected to one electrode of the light emitting element 120R, the light emitting element 120G, the light emitting element 120B, or the light emitting element 120W.
- the other electrode of each of the light emitting element 120R, the light emitting element 120G, the light emitting element 120B, and the light emitting element 120W is connected to the wiring VCOM2.
- FIG. 14 shows an example in which the transistor M has two gates sandwiching a semiconductor and these are connected. As a result, the current that can be passed by the transistor M can be increased.
- a signal for controlling the switch SW1 to be in a conductive state or a non-conductive state can be supplied to the wiring Ga1 and the wiring Ga2.
- a predetermined potential can be applied to the wiring VCOM1 and the wiring CSCOM.
- a signal for controlling the alignment state of the liquid crystal included in the liquid crystal element 220R, the liquid crystal element 220G, the liquid crystal element 220B, and the liquid crystal element 220W can be supplied to the wiring Sa1 and the wiring Sa2.
- a signal for controlling the alignment state of the liquid crystal included in the liquid crystal element 220R and the liquid crystal element 220B can be given to the wiring Sa1, and the alignment state of the liquid crystal included in the liquid crystal element 220G and the liquid crystal element 220W can be controlled in the wiring Sa2. This shows a case where a signal can be given.
- a signal for controlling the switch SW2 to be in a conductive state or a non-conductive state can be supplied to the wiring Gb1 and the wiring Gb2.
- the wiring VCOM2 and the wiring ANO can each be supplied with a potential that causes a potential difference between the light emitting element 120R, the light emitting element 120G, the light emitting element 120B, and the light emitting element 120W.
- a signal for controlling the conduction state of the transistor M can be supplied to the wiring Sb1 and the wiring Sb2.
- the pixel 12 illustrated in FIG. 14 is driven by signals given to the wiring Ga1, the wiring Ga2, the wiring Sa1, and the wiring Sa2, and the liquid crystal element 220R, the liquid crystal element 220G, and the liquid crystal Display can be performed using optical modulation by the element 220B and the liquid crystal element 220W.
- the pixel 12b is driven by a signal given to the wiring Gb1, the wiring Gb2, the wiring Sb1, and the wiring Sb2, and the light emitting element 120R, the light emitting element 120G, the light emitting element 120B, and the light emitting element 120W are driven. Can be displayed.
- the liquid crystal element 220R and the light emitting element 120R are display elements that exhibit red
- the liquid crystal element 220G and the light emitting element 120G are display elements that exhibit green
- the liquid crystal element 220B and the light emitting element 120B are blue.
- the liquid crystal element 220W and the light emitting element 120W can be white display elements.
- one pixel 12 includes four liquid crystal elements 220 (liquid crystal element 220R, liquid crystal element 220G, liquid crystal element 220B, and liquid crystal element 220W) and four light emitting elements 120 (light emitting element 120R, light emitting element 120G, and light emitting element 120B). , And the light emitting element 120W) are shown, but the invention is not limited to this.
- FIG. 15A illustrates an example in which one pixel 12 includes one liquid crystal element 220 and four light-emitting elements 120 (light-emitting element 120R, light-emitting element 120G, light-emitting element 120B, and light-emitting element 120W).
- a white display with high reflectance can be performed.
- the wiring Ga2 and the wiring Sa2 can be omitted.
- FIG. 15B illustrates a configuration example of the pixel 12 having the configuration illustrated in FIG.
- the pixel 12 includes a light emitting element 120W that overlaps with an opening of the electrode 311 and a light emitting element 120R, a light emitting element 120G, and a light emitting element 120B that are arranged around the electrode 311. It is preferable that the light emitting element 120R, the light emitting element 120G, and the light emitting element 120B have substantially the same light emitting area.
- the pixel 12 having the configuration illustrated in FIG. 14 may not include the liquid crystal element 220W and the light-emitting element 120W. Further, the pixel 12 having the configuration illustrated in FIGS. 15A and 15B may be configured without the light emitting element 120W. As described above, the area occupied by one pixel 12 can be reduced, and the resolution of an image displayed by the display device 10 can be increased.
- the number of elements such as transistors and capacitors included in the pixel 12 can be changed as necessary or appropriate.
- the number of wirings electrically connected to the pixels 12 can be changed as necessary or appropriate.
- FIG. 16 is an example of a schematic perspective view of the display device 10 of one embodiment of the present invention.
- the display device 10 has a configuration in which a substrate 351 and a substrate 361 are bonded to each other.
- the substrate 361 is indicated by a broken line.
- the display device 10 includes a circuit portion 364, a wiring 365, a circuit portion 366, a wiring 367, and the like in addition to the display portion 11 described in Embodiment 1.
- the substrate 351 is provided with, for example, a circuit portion 364, a wiring 365, a circuit portion 366, a wiring 367, an electrode 311 that functions as a pixel electrode, and the like.
- FIG. 16 illustrates an example in which an IC 373, an FPC 372, an IC 375, and an FPC 374 are mounted on the substrate 351. Therefore, the structure illustrated in FIG. 16 can also be referred to as a display module including the display device 10 and the IC 373, the FPC 372, the IC 375, and the FPC 374.
- circuit portion 364 for example, a circuit functioning as a gate driver can be used.
- the wiring 365 has a function of supplying a signal and power to the display portion and the circuit portion 364.
- the signal and power are input to the wiring 365 from the outside or the IC 373 via the FPC 372.
- FIG. 16 illustrates an example in which the IC 373 is provided on the substrate 351 by a COG (Chip On Glass) method or the like.
- the IC 373 for example, an IC having a function as a gate driver or a source driver can be applied.
- the display device 10 includes a circuit that functions as a gate driver and a source driver, or when a circuit that functions as a gate driver or a source driver is provided outside and a signal for driving the display device 10 is input via the FPC 372
- the IC 373 may not be provided.
- the IC 373 may be mounted on the FPC 372 by a COF (Chip On Film) method or the like.
- FIG. 16 shows an enlarged view of a part of the display unit 11.
- electrodes 311 included in a plurality of display elements are arranged in a matrix.
- the electrode 311 has a function of reflecting visible light, and functions as a reflective electrode of the liquid crystal element 220.
- the electrode 311 has an opening. Further, the light-emitting element 120 is provided on the substrate 351 side of the electrode 311. Light from the light emitting element 120 is emitted to the substrate 361 side through the opening of the electrode 311.
- FIG. 17 illustrates part of the region including the FPC 372, part of the region including the circuit portion 364, part of the region including the display portion 11, and part of the region including the circuit portion 366 of the display device illustrated in FIG. , And an example of a cross section when part of a region including the FPC 374 is cut.
- the display device illustrated in FIG. 17 has a structure in which a display panel 100 and a display panel 200 are stacked.
- the display panel 100 includes a resin layer 101 and a resin layer 102.
- the display panel 200 includes a resin layer 201 and a resin layer 202.
- the resin layer 102 and the resin layer 201 are bonded by an adhesive layer 50.
- the resin layer 101 is bonded to the substrate 351 by the adhesive layer 51.
- the resin layer 202 is bonded to the substrate 361 by the adhesive layer 52.
- the display panel 100 includes a resin layer 101, an insulating layer 478, a plurality of transistors, a capacitor 405, a wiring 407, an insulating layer 411, an insulating layer 412, an insulating layer 413, an insulating layer 414, an insulating layer 415, a light emitting element 120, and a spacer 416. , An adhesive layer 417, a colored layer 425, a light shielding layer 426, an insulating layer 476, and a resin layer 102.
- the resin layer 102 has an opening in a region overlapping with the light emitting element 120.
- the circuit portion 364 includes a transistor 401.
- the display unit 11 includes a transistor 402 and a transistor 403.
- Each transistor includes a gate, an insulating layer 411, a semiconductor layer, a source, and a drain.
- the gate and the semiconductor layer overlap with each other with the insulating layer 411 interposed therebetween.
- Part of the insulating layer 411 functions as a gate insulating layer, and the other part functions as a dielectric of the capacitor 405.
- a conductive layer functioning as a source or a drain of the transistor 402 also serves as one electrode of the capacitor 405.
- FIG. 17 illustrates a bottom-gate transistor.
- the circuit portion 364 and the display portion 11 may have different transistor structures.
- Each of the circuit portion 364 and the display portion 11 may include a plurality of types of transistors.
- the capacitor 405 includes a pair of electrodes and a dielectric between them.
- the capacitor 405 includes the same material as the gate of the transistor and a conductive layer formed in the same process, and the same material as the source and drain of the transistor and a conductive layer formed in the same process.
- the insulating layer 412, the insulating layer 413, and the insulating layer 414 are each provided so as to cover the transistor and the like.
- the number of insulating layers covering the transistors and the like is not particularly limited.
- the insulating layer 414 functions as a planarization layer. It is preferable that at least one layer of the insulating layer 412, the insulating layer 413, and the insulating layer 414 be formed using a material that does not easily diffuse impurities such as water or hydrogen. It becomes possible to effectively suppress the diffusion of impurities from the outside into the transistor, and the reliability of the display device can be improved.
- the insulating layer 414 In the case where an organic material is used for the insulating layer 414, impurities such as moisture may enter the light-emitting element 120 or the like from the outside of the display device through the insulating layer 414 exposed at the end portion of the display device. When the light emitting element 120 is deteriorated due to the entry of impurities, the display device is deteriorated. Therefore, as illustrated in FIG. 17, it is preferable that the insulating layer 414 not be positioned at the end portion of the display device. In the structure of FIG. 17, since the insulating layer using an organic material is not located at the end portion of the display device, entry of impurities into the light-emitting element 120 can be suppressed.
- the light-emitting element 120 includes an electrode 421, an EL layer 422, and an electrode 423.
- the light emitting element 120 may have an optical adjustment layer 424.
- the light emitting element 120 has a top emission structure that emits light to the colored layer 425 side.
- the aperture ratio of the display portion 11 can be increased.
- One of the electrode 421 and the electrode 423 functions as an anode, and the other functions as a cathode.
- a voltage higher than the threshold voltage of the light emitting element 120 is applied between the electrode 421 and the electrode 423, holes are injected into the EL layer 422 from the anode side and electrons are injected from the cathode side.
- the injected electrons and holes are recombined in the EL layer 422, and the light-emitting substance contained in the EL layer 422 emits light.
- the electrode 421 is electrically connected to the source or drain of the transistor 403. These may be directly connected or may be connected via another conductive layer.
- the electrode 421 functions as a pixel electrode and is provided for each light emitting element 120. Two adjacent electrodes 421 are electrically insulated by an insulating layer 415.
- the EL layer 422 is a layer containing a light-emitting substance.
- the electrode 423 functions as a common electrode and is provided across the plurality of light emitting elements 120. A constant potential is supplied to the electrode 423.
- the light emitting element 120 overlaps with the colored layer 425 with the adhesive layer 417 interposed therebetween.
- the spacer 416 overlaps the light shielding layer 426 with the adhesive layer 417 interposed therebetween.
- FIG. 17 shows a case where there is a gap between the electrode 423 and the light shielding layer 426, these may be in contact with each other.
- FIG. 17 illustrates the structure in which the spacer 416 is provided on the substrate 471 side; however, the spacer 416 may be provided on the substrate 472 side (for example, on the substrate 471 side with respect to the light shielding layer 426).
- the color filter colored layer 425) and the microcavity structure (optical adjustment layer 424)
- light with high color purity can be extracted from the display device.
- the film thickness of the optical adjustment layer 424 is changed according to the color of each pixel.
- the colored layer 425 is a colored layer that transmits light in a specific wavelength range.
- a color filter that transmits light in a red, green, blue, or yellow wavelength range can be used.
- one embodiment of the present invention is not limited to the color filter method, and a color separation method, a color conversion method, a quantum dot method, or the like may be applied.
- the light shielding layer 426 is provided between the adjacent colored layers 425.
- the light blocking layer 426 blocks light from the adjacent light emitting elements 404 and suppresses color mixing between the adjacent light emitting elements 120.
- light leakage can be suppressed by providing the end portion of the colored layer 425 so as to overlap the light shielding layer 426.
- As the light-blocking layer 426 a material that blocks light emitted from the light-emitting element 120 can be used. Note that it is preferable that the light-blocking layer 426 be provided in a region other than the display portion 11 such as the circuit portion 364 because unintended light leakage due to guided light or the like can be suppressed.
- An insulating layer 478 is formed on one surface of the resin layer 101.
- An insulating layer 476 is formed on one surface of the resin layer 102. It is preferable to use a highly moisture-proof film for the insulating layers 476 and 478.
- the light-emitting element 120, a transistor, and the like are preferably provided between the pair of highly moisture-proof insulating layers, so that impurities such as water can be prevented from entering these elements, and the reliability of the display device is increased.
- the highly moisture-proof insulating film examples include a film containing nitrogen and silicon such as a silicon nitride film and a silicon nitride oxide film, and a film containing nitrogen and aluminum such as an aluminum nitride film.
- a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
- the moisture permeation amount of the highly moisture-proof insulating film is 1 ⁇ 10 ⁇ 5 [g / (m 2 ⁇ day)] or less, preferably 1 ⁇ 10 ⁇ 6 [g / (m 2 ⁇ day)] or less, More preferably, it is 1 ⁇ 10 ⁇ 7 [g / (m 2 ⁇ day)] or less, and further preferably 1 ⁇ 10 ⁇ 8 [g / (m 2 ⁇ day)] or less.
- the connection unit 406 includes a wiring 365.
- the wiring 365 can be formed using the same material and the same process as the source and drain of the transistor.
- the connection unit 406 is electrically connected to an external input terminal that transmits an external signal or potential to the circuit unit 364.
- an FPC 372 is provided as an external input terminal is shown.
- the FPC 372 and the connection portion 406 are electrically connected through the connection layer 419.
- connection layer 419 various anisotropic conductive films (ACF: Anisotropic Conductive Film), anisotropic conductive pastes (ACP: Anisotropic Conductive Paste), and the like can be used.
- ACF Anisotropic Conductive Film
- ACP Anisotropic Conductive Paste
- the display panel 200 is a liquid crystal display device to which a vertical electric field method is applied.
- the display panel 200 includes a resin layer 201, an insulating layer 578, a plurality of transistors, a capacitor 505, a wiring 367, an insulating layer 511, an insulating layer 512, an insulating layer 513, an insulating layer 514, a liquid crystal element 220, an alignment film 564a, and an alignment film. 564b, an adhesive layer 517, an insulating layer 576, and a resin layer 202 are provided.
- the resin layer 201 and the resin layer 202 are bonded together by an adhesive layer 517.
- a liquid crystal 563 is sealed in a region surrounded by the resin layer 201, the resin layer 202, and the adhesive layer 517.
- a polarizing plate 599 is located on the outer surface of the substrate 572.
- the resin layer 201 is provided with an opening overlapping the light emitting element 120.
- the resin layer 202 is provided with an opening overlapping the liquid crystal element 220 and the light emitting element 120.
- the liquid crystal element 220 includes an electrode 311, an electrode 562, and a liquid crystal 563.
- the electrode 311 functions as a pixel electrode.
- the electrode 562 functions as a common electrode.
- the alignment of the liquid crystal 563 can be controlled by an electric field generated between the electrode 311 and the electrode 562.
- An alignment film 564 a is provided between the liquid crystal 563 and the electrode 311.
- An alignment film 564b is provided between the liquid crystal 563 and the electrode 562.
- the resin layer 202 is provided with an insulating layer 576, an electrode 562, an alignment film 564b, and the like.
- the resin layer 201 is provided with an electrode 311, an alignment film 564 a, a transistor 501, a transistor 503, a capacitor 505, a connection portion 506, a wiring 367, and the like.
- insulating layers such as an insulating layer 511, an insulating layer 512, an insulating layer 513, and an insulating layer 514 are provided.
- the conductive layer which is not electrically connected to the electrode 311 among the source and the drain of the transistor 503 may function as part of the signal line.
- the conductive layer functioning as the gate of the transistor 503 may function as part of the scan line.
- the liquid crystal element 220 is an element that performs monochrome gradation display.
- FIG. 17 illustrates an example in which a transistor 501 is provided as an example of the circuit portion 366.
- At least one of the insulating layer 512 and the insulating layer 513 that covers each transistor is preferably formed using a material in which impurities such as water and hydrogen hardly diffuse.
- An electrode 311 is provided over the insulating layer 514.
- the electrode 311 is electrically connected to one of a source and a drain of the transistor 503 through an opening formed in the insulating layer 514, the insulating layer 513, the insulating layer 512, and the like.
- the electrode 311 is electrically connected to one electrode of the capacitor 505.
- the display panel 200 is a reflective liquid crystal display device
- a conductive material that reflects visible light is used for the electrode 311
- a conductive material that transmits visible light is used for the electrode 562.
- a conductive material that transmits visible light is used for the electrode 311.
- a material containing one kind selected from indium (In), zinc (Zn), and tin (Sn) may be used.
- indium oxide, indium tin oxide (ITO: Indium Tin Oxide) indium zinc oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, Indium tin oxide containing titanium oxide, indium tin oxide containing silicon oxide (ITSO), zinc oxide, zinc oxide containing gallium, and the like can be given.
- a film containing graphene can also be used. The film containing graphene can be formed, for example, by reducing a film containing graphene oxide formed in a film shape.
- Examples of the conductive material that reflects visible light include aluminum, silver, and alloys containing these metal materials.
- a metal material such as gold, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium, or an alloy containing these metal materials can be used.
- lanthanum, neodymium, germanium, or the like may be added to the metal material or alloy.
- a linear polarizing plate may be used as the polarizing plate 599, but a circular polarizing plate may also be used.
- a circularly-polarizing plate what laminated
- a desired contrast may be realized by adjusting a cell gap, an alignment, a driving voltage, or the like of the liquid crystal element used for the liquid crystal element 220 in accordance with the type of the polarizing plate 599.
- the electrode 562 is electrically connected to a conductive layer provided on the resin layer 201 side by a connection body 543 in a portion near the end of the resin layer 202. Accordingly, a potential or a signal can be supplied to the electrode 562 from the FPC 374, IC, or the like disposed on the resin layer 201 side.
- connection body 543 for example, conductive particles can be used.
- conductive particles particles obtained by coating the surface of particles such as organic resin or silica with a metal material can be used. It is preferable to use nickel or gold as the metal material because the contact resistance can be reduced. In addition, it is preferable to use particles in which two or more kinds of metal materials are coated in layers, such as further coating nickel with gold.
- a material that is elastically deformed or plastically deformed is preferably used as the connection body 543 which is conductive particles may have a shape crushed in the vertical direction as shown in FIG. By doing so, the contact area between the connection body 543 and the conductive layer electrically connected to the connection body 543 can be increased, the contact resistance can be reduced, and the occurrence of defects such as poor connection can be suppressed.
- connection body 543 is preferably arranged so as to be covered with the adhesive layer 517.
- the connection body 543 may be dispersed in the adhesive layer 517 before curing.
- connection portion 506 is provided in a region near the end portion of the resin layer 201.
- the connection portion 506 is electrically connected to the FPC 374 through the connection layer 519.
- the structure illustrated in FIG. 17 illustrates an example in which the connection portion 506 is formed by stacking part of the wiring 367 and a conductive layer obtained by processing the same conductive film as the electrode 311.
- a substrate having a flat surface can be used for the substrate included in the display panel.
- a material that transmits the light is used for the substrate from which light from the display element is extracted.
- materials such as glass, quartz, ceramic, sapphire, and organic resin can be used.
- the display panel can be reduced in weight and thickness. Furthermore, a flexible display panel can be realized by using a flexible substrate.
- the substrate on the side from which light emission is not extracted does not have to be translucent, a metal substrate or the like can be used in addition to the above-described substrates.
- a metal substrate is preferable because it has high thermal conductivity and can easily conduct heat to the entire substrate, which can suppress a local temperature increase of the display panel.
- the thickness of the metal substrate is preferably 10 ⁇ m or more and 400 ⁇ m or less, and more preferably 20 ⁇ m or more and 50 ⁇ m or less.
- metals such as aluminum, copper, nickel, aluminum alloys, alloys, such as stainless steel, etc. can be used conveniently.
- a substrate that has been subjected to an insulation process by oxidizing the surface of the metal substrate or forming an insulating film on the surface may be used.
- an insulating film may be formed by using a coating method such as a spin coating method or a dip method, an electrodeposition method, a vapor deposition method, or a sputtering method, or it may be left in an oxygen atmosphere or heated, or an anodic oxidation method.
- a coating method such as a spin coating method or a dip method, an electrodeposition method, a vapor deposition method, or a sputtering method, or it may be left in an oxygen atmosphere or heated, or an anodic oxidation method.
- an oxide film may be formed on the surface of the substrate.
- Examples of the material having flexibility and transparency to visible light include, for example, glass having a thickness having flexibility, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and polyacrylonitrile resin. , Polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin, polyethersulfone (PES) resin, polyamide resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyvinyl chloride resin, polytetrafluoroethylene (PTFE) resin Etc.
- a material having a low thermal expansion coefficient is preferably used.
- a polyamideimide resin, a polyimide resin, PET, or the like having a thermal expansion coefficient of 30 ⁇ 10 ⁇ 6 / K or less can be suitably used.
- a substrate in which glass fiber is impregnated with an organic resin, or a substrate in which an inorganic filler is mixed with an organic resin to reduce the thermal expansion coefficient can be used. Since a substrate using such a material is light in weight, a display panel using the substrate can be lightweight.
- a high-strength fiber of an organic compound or an inorganic compound is used for the fibrous body.
- the high-strength fiber specifically refers to a fiber having a high tensile modulus or Young's modulus, and representative examples include polyvinyl alcohol fiber, polyester fiber, polyamide fiber, polyethylene fiber, aramid fiber, Examples include polyparaphenylene benzobisoxazole fibers, glass fibers, and carbon fibers.
- the glass fiber include glass fibers using E glass, S glass, D glass, Q glass, and the like.
- a structure obtained by impregnating the fiber body with a resin and curing the resin may be used as a flexible substrate.
- a structure made of a fibrous body and a resin is used as the flexible substrate, it is preferable because reliability against breakage due to bending or local pressing is improved.
- glass, metal, or the like thin enough to have flexibility can be used for the substrate.
- a composite material in which glass and a resin material are bonded to each other with an adhesive layer may be used.
- a hard coat layer for example, silicon nitride, aluminum oxide
- a layer of a material that can disperse the pressure for example, an aramid resin
- an insulating film with low water permeability may be stacked over a flexible substrate.
- an inorganic insulating material such as silicon nitride, silicon oxynitride, silicon nitride oxide, aluminum oxide, or aluminum nitride can be used.
- the substrate can be used by stacking a plurality of layers.
- the barrier property against water and oxygen can be improved and a highly reliable display panel can be obtained.
- the transistor includes a conductive layer that functions as a gate electrode, a semiconductor layer, a conductive layer that functions as a source electrode, a conductive layer that functions as a drain electrode, and an insulating layer that functions as a gate insulating layer.
- the above shows the case where a bottom-gate transistor is applied.
- the structure of the transistor included in the display device of one embodiment of the present invention there is no particular limitation on the structure of the transistor included in the display device of one embodiment of the present invention.
- a planar transistor, a staggered transistor, or an inverted staggered transistor may be used.
- a top-gate or bottom-gate transistor structure may be employed.
- gate electrodes may be provided above and below the channel.
- crystallinity of the semiconductor material used for the transistor there is no particular limitation on the crystallinity of the semiconductor material used for the transistor, and either an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) is used. May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
- a metal oxide can be used as a semiconductor material used for the transistor.
- a metal oxide containing indium can be used.
- a transistor using a metal oxide having a larger band gap than silicon can hold charge accumulated in a capacitor connected in series with the transistor for a long time due to its low off-state current. .
- the driving circuit can be stopped while maintaining the gradation of each pixel. As a result, a display device with extremely reduced power consumption can be realized.
- the semiconductor layer may be at least indium, zinc and M (gallium, aluminum, silicon, titanium, germanium, boron, yttrium, copper, vanadium, beryllium, iron, nickel, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, It is preferable to include a film represented by an In-M-Zn-based oxide containing a metal such as tungsten or magnesium. In addition, in order to reduce variation in electric characteristics of the transistor using the metal oxide, it is preferable to include a stabilizer together with them.
- Examples of the stabilizer include the metals described in M above, and examples thereof include lanthanoids such as praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
- lanthanoids such as praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
- an In—Ga—Zn-based oxide means an oxide containing In, Ga, and Zn as its main components, and there is no limitation on the ratio of In, Ga, and Zn. Moreover, metal elements other than In, Ga, and Zn may be contained.
- the semiconductor layer and the conductive layer may have the same metal element among the above oxides.
- Manufacturing costs can be reduced by using the same metal element for the semiconductor layer and the conductive layer.
- the manufacturing cost can be reduced by using metal oxide targets having the same metal composition.
- an etching gas or an etching solution for processing the semiconductor layer and the conductive layer can be used in common.
- the semiconductor layer and the conductive layer may have different compositions even if they have the same metal element. For example, a metal element in a film may be detached during a manufacturing process of a transistor and a capacitor to have a different metal composition.
- the metal oxide constituting the semiconductor layer preferably has an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more. In this manner, off-state current of a transistor can be reduced by using a metal oxide having a wide energy gap.
- the atomic ratio of the metal element of the sputtering target used for forming the In-M-Zn oxide is In ⁇ M, Zn It is preferable to satisfy ⁇ M.
- the atomic ratio of the semiconductor layer to be formed includes a variation of plus or minus 40% of the atomic ratio of the metal element contained in the sputtering target.
- the bottom-gate transistor described in this embodiment is preferable because the number of manufacturing steps can be reduced.
- a metal oxide it is possible to use a material having low heat resistance as a material of a wiring, an electrode, or a substrate below the semiconductor layer, which can be formed at a temperature lower than that of polycrystalline silicon. Can widen the choice of materials. For example, a glass substrate having a very large area can be suitably used.
- Conductive layer In addition to the gate, source, and drain of a transistor, materials that can be used for conductive layers such as various wirings and electrodes constituting a display device include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, A metal such as tantalum or tungsten, or an alloy containing this as a main component can be used. A film containing any of these materials can be used as a single layer or a stacked structure.
- Two-layer structure to stack, two-layer structure to stack copper film on titanium film, two-layer structure to stack copper film on tungsten film, titanium film or titanium nitride film, and aluminum film or copper film on top of it A three-layer structure for forming a titanium film or a titanium nitride film thereon, a molybdenum film or a molybdenum nitride film, and an aluminum film or a copper film stacked thereon, and a molybdenum film or a There is a three-layer structure for forming a molybdenum nitride film.
- an oxide such as indium oxide, tin oxide, or zinc oxide may be used. Further, it is
- conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide to which gallium is added, or graphene
- a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, or titanium, or an alloy material containing the metal material
- a nitride eg, titanium nitride
- a metal material or an alloy material (or a nitride thereof) it may be thin enough to have a light-transmitting property.
- a stacked film of the above materials can be used as a conductive layer.
- a laminated film of an alloy of silver and magnesium and indium tin oxide because the conductivity can be increased.
- conductive layers such as various wirings and electrodes constituting the display device and conductive layers (conductive layers functioning as pixel electrodes and common electrodes) included in the display element.
- Insulating material for example, polyimide, acrylic, epoxy, silicone resin, and the like, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide are used. You can also
- the light-emitting element is preferably provided between a pair of insulating films with low water permeability. Thereby, impurities such as water can be prevented from entering the light emitting element, and a decrease in reliability of the apparatus can be suppressed.
- the low water-permeable insulating film examples include a film containing nitrogen and silicon such as a silicon nitride film and a silicon nitride oxide film, and a film containing nitrogen and aluminum such as an aluminum nitride film.
- a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
- the water vapor transmission rate of an insulating film with low water permeability is 1 ⁇ 10 ⁇ 5 [g / (m 2 ⁇ day)] or less, preferably 1 ⁇ 10 ⁇ 6 [g / (m 2 ⁇ day)] or less, More preferably, it is 1 ⁇ 10 ⁇ 7 [g / (m 2 ⁇ day)] or less, and further preferably 1 ⁇ 10 ⁇ 8 [g / (m 2 ⁇ day)] or less.
- Display elements As the display element included in the pixel 12a, for example, an element that reflects and displays external light can be used. Since such an element does not have a light source, power consumption during display can be extremely reduced. As the display element included in the pixel 12a, a reflective liquid crystal element can be typically used. Alternatively, as a display element included in the pixel 12a, in addition to a shutter-type MEMS (Micro Electro Mechanical System) element and an optical interference-type MEMS element, a microcapsule method, an electrophoresis method, an electrowetting method, an electronic powder fluid (registered trademark) ) A device or the like to which a method or the like is applied can be used.
- a shutter-type MEMS Micro Electro Mechanical System
- an optical interference-type MEMS element a microcapsule method, an electrophoresis method, an electrowetting method, an electronic powder fluid (registered trademark)
- the display element included in the pixel 12b includes a light source, and an element that performs display using light from the light source can be used.
- the light emitted from such a pixel is not affected by external light in brightness and chromaticity, and therefore has high color reproducibility (wide color gamut) and high contrast, that is, high High-quality display can be performed.
- a self-luminous light-emitting element such as an OLED, LED, QLED, IEL, or semiconductor laser can be used as described above.
- a combination of a backlight that is a light source and a transmissive liquid crystal element that controls the amount of light transmitted through the backlight may be used as described above.
- liquid crystal element for example, a liquid crystal element to which a vertical alignment (VA: Vertical Alignment) mode is applied can be used.
- VA Vertical Alignment
- MVA Multi-Domain Vertical Alignment
- PVA Power Planed Vertical Alignment
- ASV Advanced Super View
- liquid crystal elements to which various modes are applied can be used.
- VA mode Transmission Nematic
- IPS In-Plane-Switching
- FFS Ringe Field Switching
- ASM Analy Symmetrical Aligned Micro-cell
- FLC Ferroelectric Liquid Crystal
- AFLC Antiferroelectric Liquid Crystal
- a liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal.
- the optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, or an oblique electric field).
- a thermotropic liquid crystal a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal (PDLC), a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like is used.
- PDLC polymer dispersed liquid crystal
- ferroelectric liquid crystal an antiferroelectric liquid crystal, or the like
- These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
- liquid crystal material either a positive type liquid crystal or a negative type liquid crystal may be used, and an optimal liquid crystal material may be used according to an applied mode or design.
- An alignment film can be provided to control the alignment of the liquid crystal.
- liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used.
- the blue phase is one of the liquid crystal phases.
- a liquid crystal composition mixed with several percent by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range.
- a liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic.
- a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency. Further, since it is not necessary to provide an alignment film, a rubbing process is not required, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the liquid crystal display device during the manufacturing process can be reduced. .
- a reflective liquid crystal element can be used.
- a transmissive liquid crystal element, a transflective liquid crystal element, or the like may be used.
- a polarizing plate is provided on the display surface side. Separately from this, it is preferable to arrange a light diffusing plate on the display surface side because the visibility can be improved.
- Light emitting element an element capable of self-emission can be used as described above, and an element whose luminance is controlled by current or voltage is included in its category.
- a top-emission light-emitting element is particularly preferably used as the light-emitting element.
- a conductive film that transmits visible light is used for the electrode from which light is extracted.
- a conductive film that reflects visible light is preferably used for the electrode from which light is not extracted.
- the EL layer has at least a light-emitting layer.
- the EL layer is a layer other than the light-emitting layer, such as a substance having a high hole-injecting property, a substance having a high hole-transporting property, a hole blocking material, a substance having a high electron-transporting property, a substance having a high electron-injecting property, or a bipolar
- a layer including a substance (a substance having a high electron transporting property and a high hole transporting property) or the like may be further included.
- Either a low molecular compound or a high molecular compound can be used for the EL layer, and an inorganic compound may be included.
- the layers constituting the EL layer can be formed by a method such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an ink jet method, or a coating method.
- the EL layer preferably includes two or more light-emitting substances.
- white light emission can be obtained by selecting the light emitting material so that the light emission of each of the two or more light emitting materials has a complementary color relationship.
- a light emitting material that emits light such as R (red), G (green), B (blue), Y (yellow), and O (orange), or spectral components of two or more colors of R, G, and B It is preferable that 2 or more are included among the luminescent substances which show light emission containing.
- a light-emitting element whose emission spectrum from the light-emitting element has two or more peaks within a wavelength range of visible light (for example, 350 nm to 750 nm).
- the emission spectrum of the material having a peak in the yellow wavelength region is preferably a material having spectral components in the green and red wavelength regions.
- the EL layer preferably has a structure in which a light-emitting layer including a light-emitting material that emits one color and a light-emitting layer including a light-emitting material that emits another color are stacked.
- the plurality of light emitting layers in the EL layer may be stacked in contact with each other, or may be stacked through a region not including any light emitting material.
- a region including the same material (for example, a host material or an assist material) as the fluorescent light emitting layer or the phosphorescent light emitting layer and not including any light emitting material is provided between the fluorescent light emitting layer and the phosphorescent light emitting layer. Also good. This facilitates the production of the light emitting element and reduces the driving voltage.
- the light-emitting element may be a single element having one EL layer or a tandem element in which a plurality of EL layers are stacked with a charge generation layer interposed therebetween.
- the above-described light-emitting layer and a layer containing a substance having a high hole-injecting property, a substance having a high hole-transporting property, a substance having a high electron-transporting property, a substance having a high electron-injecting property, a bipolar substance may have an inorganic compound such as a quantum dot or a polymer compound (oligomer, dendrimer, polymer, etc.).
- a quantum dot can be used for a light emitting layer to function as a light emitting material.
- a light-emitting element using quantum dots in the light-emitting layer is called a QLED.
- a quantum dot is a semiconductor nanocrystal having a size of several nm, and is composed of about 1 ⁇ 10 3 to 1 ⁇ 10 6 atoms. Quantum dots shift their energy depending on their size, so even if the quantum dots are made of the same material, the emission wavelength differs depending on the size, and the emission wavelength can be easily adjusted by changing the size of the quantum dots used be able to.
- the quantum dot since the quantum dot has a narrow emission spectrum peak width, light emission with good color purity can be obtained. Furthermore, the theoretical external quantum efficiency of quantum dots is said to be almost 100%, which is much higher than 25% of organic compounds that exhibit fluorescence and is equivalent to organic compounds that exhibit phosphorescence. For this reason, a light-emitting element with high emission efficiency can be obtained by using quantum dots as a light-emitting material. In addition, since the quantum dot which is an inorganic compound is excellent in the essential stability, a preferable light-emitting element can be obtained from the viewpoint of life.
- Materials constituting the quantum dot include periodic table group 14 element, periodic table group 15 element, periodic table group 16 element, compound composed of a plurality of periodic table group 14 elements, periodic table group 4 to periodic table.
- Compound of group 14 element and periodic table group 16 element, periodic table group 2 element and periodic table group 16 element, periodic table group 13 element and periodic table group 15 element A compound of a periodic table group 13 element and a periodic table group 17 element, a compound of a periodic table group 14 element and a periodic table group 15 element, a periodic table group 11 element and a periodic table group 17 element
- Examples thereof include compounds, iron oxides, titanium oxides, chalcogenide spinels, and various semiconductor clusters.
- an alloy type quantum dot whose composition is represented by arbitrary ratios.
- an alloy type quantum dot of cadmium, selenium, and sulfur is one of effective means for obtaining blue light emission because the emission wavelength can be changed by changing the content ratio of elements.
- the structure of the quantum dot includes a core type, a core-shell type, a core-multishell type, and any of them may be used, but the shell is covered with another inorganic material that covers the core and has a wider band gap.
- the shell material include zinc sulfide and zinc oxide.
- the quantum dots have a high ratio of surface atoms, they are highly reactive and tend to aggregate. Therefore, it is preferable that a protective agent is attached to the surface of the quantum dot or a protective group is provided. Aggregation can be prevented and solubility in a solvent can be increased by attaching the protective agent or providing a protective group. It is also possible to reduce the reactivity and improve the electrical stability.
- Examples of the protective agent include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, tripropylphosphine, tributylphosphine, trihexylphosphine, Trialkylphosphines such as octylphosphine, polyoxyethylene alkylphenyl ethers such as polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, tri (n-hexyl) amine, tri (n-octyl) Tertiary amines such as amine, tri (n-decyl) amine, tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphine Organic phosphorus compounds such as oxyoxide, tridecylphosphin
- the size of the quantum dot is appropriately adjusted so that light having a desired wavelength can be obtained.
- the emission of quantum dots shifts to the blue side, that is, to the higher energy side, so changing the size of the quantum dots changes the wavelength of the spectrum in the ultraviolet, visible, and infrared regions.
- the emission wavelength can be adjusted over a region.
- the size (diameter) of the quantum dots is usually 0.5 nm to 20 nm, preferably 1 nm to 10 nm.
- the quantum dot has a narrower size distribution, the emission spectrum becomes narrower and light emission with good color purity can be obtained.
- the shape of the quantum dots is not particularly limited, and may be spherical, rod-shaped, disk-shaped, or other shapes.
- the quantum rod which is a rod-shaped quantum dot exhibits the light which has the directivity polarized in the c-axis direction, the light emitting element with more favorable external quantum efficiency can be obtained by using a quantum rod as a luminescent material. .
- EL elements increase luminous efficiency by dispersing a light emitting material in a host material, but the host material needs to be a substance having a singlet excitation energy or triplet excitation energy higher than that of the light emitting material. is there.
- the quantum dots can maintain the light emission efficiency even if the light emitting layer is composed of only the quantum dots without using a host material, a light emitting element that is preferable from this point of view can also be obtained.
- the quantum dots preferably have a core-shell structure (including a core-multishell structure).
- the conductive film that transmits visible light can be formed using, for example, indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide to which gallium is added, or the like.
- a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, or titanium, an alloy containing these metal materials, or a nitride of these metal materials (for example, Titanium nitride) can also be used by forming it thin enough to have translucency.
- a stacked film of the above materials can be used as a conductive layer. For example, it is preferable to use a laminated film of an alloy of silver and magnesium and indium tin oxide because the conductivity can be increased. Further, graphene or the like may be used.
- a metal material such as aluminum, gold, platinum, silver, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium, or an alloy including these metal materials is used.
- lanthanum, neodymium, germanium, or the like may be added to the metal material or alloy.
- titanium, nickel, or neodymium and an alloy containing aluminum (aluminum alloy) may be used.
- an alloy containing copper, palladium, or magnesium and silver may be used.
- An alloy containing silver and copper is preferable because of its high heat resistance.
- oxidation can be suppressed by stacking a metal film or a metal oxide film in contact with the aluminum film or the aluminum alloy film.
- a metal film and metal oxide film include titanium and titanium oxide.
- the conductive film that transmits visible light and a film made of a metal material may be stacked.
- a laminated film of silver and indium tin oxide, a laminated film of an alloy of silver and magnesium and indium tin oxide, or the like can be used.
- the electrodes may be formed using a vapor deposition method or a sputtering method, respectively. In addition, it can be formed using a discharge method such as an inkjet method, a printing method such as a screen printing method, or a plating method.
- Adhesive layer As the adhesive layer, various curable adhesives such as an ultraviolet curable photocurable adhesive, a reactive curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used.
- these adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
- a material with low moisture permeability such as an epoxy resin is preferable.
- a two-component mixed resin may be used.
- an adhesive sheet or the like may be used.
- the resin may contain a desiccant.
- a substance that adsorbs moisture by chemical adsorption such as an alkaline earth metal oxide (such as calcium oxide or barium oxide)
- an alkaline earth metal oxide such as calcium oxide or barium oxide
- a substance that adsorbs moisture by physical adsorption such as zeolite or silica gel
- the inclusion of a desiccant is preferable because impurities such as moisture can be prevented from entering the element and the reliability of the display panel is improved.
- light extraction efficiency can be improved by mixing a filler having a high refractive index or a light scattering member with the resin.
- a filler having a high refractive index or a light scattering member for example, titanium oxide, barium oxide, zeolite, zirconium, or the like can be used.
- connection layer An anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used as the connection layer.
- ACF Anisotropic Conductive Film
- ACP Anisotropic Conductive Paste
- Examples of materials that can be used for the colored layer include metal materials, resin materials, resin materials containing pigments or dyes, and the like.
- the material that can be used for the light-shielding layer include carbon black, titanium black, metal, metal oxide, and composite oxide containing a solid solution of a plurality of metal oxides.
- the light shielding layer may be a film containing a resin material or a thin film of an inorganic material such as a metal.
- a stacked film of a film containing a material for the colored layer can be used for the light shielding layer.
- a stacked structure of a film including a material used for a colored layer that transmits light of a certain color and a film including a material used for a colored layer that transmits light of another color can be used. It is preferable to use a common material for the coloring layer and the light-shielding layer because the apparatus can be shared and the process can be simplified.
- FIG. 18 is different from FIG. 17 in that the structure of the transistor and the structure of the resin layer 202 are different, and that a coloring layer 565, a light shielding layer 566, and an insulating layer 567 are provided.
- the transistor 401, the transistor 403, and the transistor 501 illustrated in FIGS. 18A and 18B each include a second gate electrode.
- a transistor having a pair of gates is preferably used as the transistor provided in the circuit portion 364 or the circuit portion 366 and the transistor that controls current flowing in the light-emitting element 120.
- the resin layer 202 is provided with an opening overlapping the liquid crystal element 220 and an opening overlapping the light emitting element 120 separately. Thereby, the reflectance of the liquid crystal element 220 can be improved.
- a light-blocking layer 566 and a colored layer 565 are provided on the surface of the insulating layer 576 on the liquid crystal element 220 side.
- the colored layer 565 is provided so as to overlap with the liquid crystal element 220.
- the display panel 200 can perform color display.
- the light shielding layer 566 has an opening overlapping the liquid crystal element 220 and an opening overlapping the light emitting element 120. Thereby, color mixing between adjacent pixels can be suppressed, and a display device with high color reproducibility can be realized.
- FIG. 19 shows an example in which a top-gate transistor is applied to each transistor.
- parasitic capacitance can be reduced, so that a display frame frequency can be increased.
- it can be suitably used for a large display panel of 8 inches or more.
- FIG. 20 shows an example in which a top-gate transistor having a second gate electrode is applied to each transistor.
- Each transistor includes a conductive layer 591 in contact with the resin layer 101 or the resin layer 201.
- An insulating layer 578 is provided so as to cover the conductive layer 591.
- connection portion 506 of the display panel 200 a part of the resin layer 201 is opened, and a conductive layer 592 is provided so as to fill the opening.
- the conductive layer 592 is provided such that the surface on the back surface side (display panel 100 side) is exposed.
- the conductive layer 592 is electrically connected to the wiring 367.
- the FPC 374 is electrically connected to the exposed surface of the conductive layer 592 through a connection layer 519.
- the conductive layer 592 can be formed by processing the same conductive film as the conductive layer 591.
- the conductive layer 592 functions as an electrode that can also be referred to as a back electrode.
- Such a configuration can be realized by using a photosensitive organic resin for the resin layer 201.
- a photosensitive organic resin for the resin layer 201 For example, when the resin layer 201 is formed over the supporting substrate, an opening is formed in the resin layer 201, and the conductive layer 592 is formed so as to fill the opening.
- the resin layer 201 and the support substrate are peeled off, the conductive layer 592 and the support substrate are peeled off at the same time, whereby a conductive layer 592 as shown in FIG. 20 can be formed.
- a method using a light absorption layer or a method of etching a part of the resin layer so that the back surface of the conductive layer 592 is exposed after a resin layer having a recess or a resin layer having a two-layer structure is formed is used. be able to.
- the FPC 374 connected to the display panel 200 positioned on the display surface side can be disposed on the side opposite to the display surface. Therefore, when the display device is incorporated into an electronic device, a space for bending the FPC 374 can be omitted, and a more miniaturized electronic device can be realized.
- the CAC-OS is one structure of a material in which an element included in an oxide semiconductor is unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. Note that in the following, in an oxide semiconductor, one or more metal elements are unevenly distributed, and a region including the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof.
- the state mixed with is also referred to as a mosaic or patch.
- the oxide semiconductor preferably contains at least indium.
- One kind selected from the above or a plurality of kinds may be included.
- a CAC-OS in In-Ga-Zn oxide is an indium oxide (hereinafter referred to as InO).
- X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and.) and the like, Gallium oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, it is uniformly distributed in the film configuration ( Below, also referred to as a cloud-like.) A.
- CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z2, or InO X1 is the main component region is a composite oxide semiconductor having a structure that is mixed.
- the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
- IGZO is a common name and may refer to one compound of In, Ga, Zn, and O.
- ZnO ZnO
- the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure.
- the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
- CAC-OS relates to a material structure of an oxide semiconductor.
- CAC-OS refers to a region observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn and O, and nanoparticles mainly composed of In.
- the region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
- the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions.
- a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
- a region GaO X3 is the main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.
- the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In.
- the region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
- the CAC-OS can be formed by a sputtering method under a condition where the substrate is not intentionally heated, for example.
- a CAC-OS is formed by a sputtering method
- any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas.
- the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible.
- the flow rate ratio of the oxygen gas is 0% to less than 30%, preferably 0% to 10%. .
- the CAC-OS has a feature that a clear peak is not observed when measurement is performed using a ⁇ / 2 ⁇ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.
- XRD X-ray diffraction
- an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
- a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
- EDX energy dispersive X-ray spectroscopy
- the CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and a region in which each element is a main component. Has a mosaic structure.
- the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Accordingly, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility ( ⁇ ) can be realized.
- areas such as GaO X3 is the main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, a region containing GaO X3 or the like as a main component is distributed in the oxide semiconductor, whereby leakage current can be suppressed and good switching operation can be realized.
- CAC-OS when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act in a complementary manner, resulting in high An on-current (I on ) and high field effect mobility ( ⁇ ) can be realized.
- CAC-OS is optimal for various semiconductor devices including a display.
- a display module 700 illustrated in FIG. 21 includes a touch panel 704 connected to the FPC 703, a display panel 706 connected to the FPC 705, a frame 709, a printed board 710, and a battery 711 between an upper cover 701 and a lower cover 702. .
- the display device of one embodiment of the present invention can be used for the display panel 706, for example. Thereby, a high-quality image can be displayed with low power consumption.
- the shapes and dimensions of the upper cover 701 and the lower cover 702 can be changed as appropriate in accordance with the sizes of the touch panel 704 and the display panel 706.
- a resistive film type or capacitive type touch panel can be used by being superimposed on the display panel 706.
- the touch panel function can be provided to the display panel 706 without providing the touch panel 704.
- the frame 709 has a function as an electromagnetic shield for blocking electromagnetic waves generated by the operation of the printed circuit board 710 in addition to a protective function of the display panel 706.
- the frame 709 may have a function as a heat sink.
- the printed circuit board 710 includes a power processing circuit, a signal processing circuit for outputting a video signal and a clock signal.
- a power supply for supplying power to the power supply circuit an external commercial power supply may be used, or a power supply using a separately provided battery 711 may be used.
- the battery 711 can be omitted when a commercial power source is used.
- the display module 700 may be additionally provided with a member such as a polarizing plate, a phase difference plate, and a prism sheet.
- FIG. 22A illustrates a tablet information terminal 800, which includes a housing 801, a display portion 802, operation buttons 803, and a speaker 804.
- a display device to which a function as a position input device is added may be used for the display unit 802.
- the function as the position input device can be added by providing a touch panel on the display device, for example.
- the function as a position input device can be added by providing a photoelectric conversion element in the display portion 802.
- the operation button 803 can include any one of a power switch for starting the information terminal 800, a button for operating an application of the information terminal 800, a volume adjustment button, a switch for turning on / off the display unit 802, and the like.
- the number of operation buttons 803 is four, but the number and arrangement of the operation buttons included in the information terminal 800 are not limited thereto.
- the information terminal 800 illustrated in FIG. 22A may include a microphone and a speaker.
- the information terminal 800 can be provided with a call function such as a mobile phone.
- the information terminal 800 illustrated in FIG. 22A may have a camera. Although not illustrated, the information terminal 800 illustrated in FIG. 22A may have a structure including a flashlight or a light-emitting device for illumination.
- the information terminal 800 illustrated in FIG. 22A includes the sensor 13 described in Embodiment 1 inside a housing 801. Further, the infrared source 21 described in Embodiment 1 may be provided inside the housing 801. In addition, a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, A configuration having a function of measuring radiation, flow rate, humidity, gradient, vibration, smell, or the like) may be used. In particular, by providing a detection device having a sensor for detecting inclination, such as a gyroscope and an acceleration sensor, the orientation of the information terminal 800 shown in FIG. Thus, the screen display of the display unit 802 can be automatically switched according to the orientation of the information terminal 800.
- a detection device having a sensor for detecting inclination such as a gyroscope and an acceleration sensor
- the information terminal 800 illustrated in FIG. 22A may include a device that acquires biological information such as a fingerprint, a vein, an iris, or a voiceprint. By applying this configuration, an information terminal 800 having a biometric authentication function can be realized.
- the information terminal 800 illustrated in FIG. 22A may have a microphone.
- the information terminal 800 can be provided with a call function.
- the information terminal 800 can be provided with a voice decoding function.
- the information terminal 800 can have a function of operating the information terminal 800 by voice recognition, a function of reading a voice or a conversation and creating a conversation record, and the like. . Thereby, it can utilize, for example as minutes preparations, such as a meeting.
- the display portion 802 a flexible base material may be used.
- the display portion 802 may have a structure in which a transistor, a capacitor, a display element, and the like are provided over a flexible base material.
- the information terminal 800 may have a structure in which the display portion 802 can be freely folded using a flexible base material as the display portion 802. Such a structure is shown in FIG.
- the information terminal 810 is a tablet-type information terminal similar to the information terminal 800, and includes a housing 811a, a housing 811b, a display portion 812, operation buttons 813, and a speaker 814.
- the housing 811a and the housing 811b are coupled by a hinge portion 811c, and can be folded in two by the hinge portion 811c.
- the display portion 812 is provided in the housing 811a, the housing 811b, and the hinge portion 811c.
- a material having a property of transmitting visible light includes polyethylene terephthalate resin (PET), polyethylene naphthalate resin (PEN), and polyether sulfone resin (PES).
- PET polyethylene terephthalate resin
- PEN polyethylene naphthalate resin
- PES polyether sulfone resin
- Polyacrylonitrile resin, acrylic resin, polyimide resin, polymethyl methacrylate resin, polycarbonate resin, polyamide resin, polycycloolefin resin, polystyrene resin, polyamideimide resin, polypropylene resin, polyester resin, polyhalogenated vinyl resin, aramid resin, epoxy Resin or the like can be used. These materials may be mixed or laminated.
- a high-quality image can be displayed with low power consumption.
- FIGS. 23A and 23B show an example of the information terminal 900.
- the information terminal 900 includes a housing 901, a housing 902, a display portion 903, a display portion 904, a hinge portion 905, and the like.
- the sensor 13 described in Embodiment 1 is included in the housing 901 and / or the housing 902.
- the infrared source 21 described in Embodiment 1 may be provided inside the housing 901 and / or the housing 902.
- the housing 901 and the housing 902 are connected by a hinge portion 905.
- the information terminal 900 can open the housing 901 and the housing 902 as illustrated in FIG. 23B from the folded state as illustrated in FIG.
- document information can be displayed on the display portion 903 and the display portion 904 and can be used as an electronic book terminal.
- it can be used as a textbook.
- still images and moving images can be displayed on the display portion 903 and the display portion 904.
- the information terminal 900 can be folded when being carried, it is excellent in versatility.
- housing 901 and the housing 902 may include a power button, an operation button, an external connection port, a speaker, a microphone, and the like.
- a high-quality image can be displayed with low power consumption.
- FIG. 23C illustrates an example of an information terminal.
- An information terminal 910 illustrated in FIG. 23C includes a housing 911, a display portion 912, operation buttons 913, an external connection port 914, a speaker 915, a microphone 916, a camera 917, and the like.
- the sensor 13 described in Embodiment 1 is provided inside the housing 911.
- the infrared source 21 described in Embodiment 1 may be provided inside the housing 911.
- the information terminal 910 includes a touch sensor on the display unit 912. All operations such as making a call or inputting characters can be performed by touching the display portion 912 with a finger or a stylus.
- the operation of the operation button 913 can switch the power ON / OFF operation and the type of image displayed on the display unit 912.
- the mail creation screen can be switched to the main menu screen.
- the orientation (vertical or horizontal) of the information terminal 910 is determined, and the screen display orientation of the display unit 912 is automatically set. Can be switched to.
- the screen display orientation can be switched by touching the display portion 912, operating the operation buttons 913, or inputting voice using the microphone 916.
- the information terminal 910 has one or a plurality of functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, it can be used as a smartphone.
- the information terminal 910 can execute various applications such as mobile phone, electronic mail, text browsing and creation, music playback, video playback, Internet communication, and games.
- a high-quality image can be displayed with low power consumption.
- FIG. 23D illustrates an example of a camera.
- the camera 920 includes a housing 921, a display portion 922, operation buttons 923, a shutter button 924, and the like.
- a removable lens 926 is attached to the camera 920.
- the sensor 13 described in Embodiment 1 is included in the housing 921.
- the infrared source 21 described in Embodiment 1 may be provided inside the housing 921.
- the camera 920 is configured such that the lens 926 can be removed from the housing 921 and replaced, but the lens 926 and the housing may be integrated.
- the camera 920 can capture a still image or a moving image by pressing the shutter button 924.
- the display portion 922 has a function as a touch panel and can capture an image by touching the display portion 922.
- the camera 920 can be separately attached with a strobe device, a viewfinder, and the like. Alternatively, these may be incorporated in the housing 921.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
高品位の画像を低消費電力で表示することができる表示装置を提供する。 液晶素子を有する第1の画素と、 発光素子を有する第2の画素と、 を有する表示部を有する表示装置 において、 表示装置を使用する者が注視している部分である第1の部分を算出するステップと、 第1 の部分が表示部に含まれるか否かを判定するステップと、 を有する。 第1の部分が表示部に含まれる 場合は、 第1の部分に表示される画像を第2の画素を用いて表示し、 その他の部分に表示される画像 を第1の画素を用いて表示する。 また、 第1の部分にテキストが含まれる場合は、 第1の部分に含ま れるテキストが属する行または列を算出し、第1の部分に含まれるテキストが属する行または列に記 載されたテキストを第2の画素を用いて表示し、その他の行または列に記載されたテキストを第1の 画素を用いて表示する。
Description
本発明の一態様は、表示方法、表示装置、電子機器、非一時的記憶媒体およびプログラムに関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
表示装置を使用する者を検出して、当該表示装置に表示されている画像の中で使用者が注視している部分以外の表示のリフレッシュレートを低下させる技術が開示されている。これにより、表示装置の消費電力を低減することができる(特許文献1参照)。
表示装置を使用する者が注視していない部分に高品位な画像を表示させることにより、当該表示装置の消費電力が増大する。
そこで、本発明の一態様は、消費電力を低減することができる表示方法および表示装置を提供することを課題の一とする。または、高品位な画像を表示することができる表示方法および表示装置を提供することを課題の一とする。または、画質の急激な変化を抑制することができる表示方法および表示装置を提供することを課題の一とする。または、高速に動作することができる表示方法または表示装置を提供することを課題の一とする。または、新規な表示方法および表示装置を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項等の記載から、自ずと明らかとなるものであり、明細書、図面、請求項等の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、液晶素子を有する第1の画素と、発光素子を有する第2の画素と、を有する表示部を有する表示装置において、表示装置を使用する者が注視している部分である第1の部分を算出するステップと、第1の部分が、表示部に含まれるか否かを判定するステップと、を有し、第1の部分が表示部に含まれる場合は、第1の部分に表示される画像を第2の画素を用いて、第1の部分でなくさらに第1の部分の近傍の部分でもない部分に表示される画像を第1の画素を用いて表示する表示方法である。
また、上記態様において、第1の部分の近傍の部分の大きさおよび形状は、第1の部分の大きさおよび形状により設定されていてもよい。
また、上記態様において、第1の部分の近傍の部分において、第1の部分に近いほど、画像の表示に寄与する第2の画素の比率を増加させてもよい。
また、上記態様において、第1の部分の近傍の部分において、第1の部分から遠ざかるほど、画像の表示に寄与する第1の画素の比率を増加させてもよい。
また、本発明の一態様は、液晶素子を有する第1の画素と、発光素子を有する第2の画素と、を有する表示部を有する表示装置において、表示装置を使用する者が注視している部分である第1の部分を算出するステップと、第1の部分に含まれるテキストが属する行または列を算出するステップと、を有し、第1の部分に含まれるテキストが属する行または列に記載されたテキストを、第2の画素を用いて、第1の部分に含まれるテキストが属する行または列に記載されたテキストではなく、さらに第1の部分に含まれるテキストが属する行または列の近傍の行に記載されたテキストではないテキストを、第1の画素を用いて表示する表示方法である。
また、上記態様において、第1の部分に含まれるテキストが属する行の前後1行に記載されたテキストを、第1の部分に含まれるテキストが属する行の近傍の行に記載されたテキストとしてもよい。
また、上記態様において、第1の部分に含まれるテキストが属する列の前後1列に記載されたテキストを、第1の部分に含まれるテキストが属する列の近傍の列に記載されたテキストとしてもよい。
また、上記態様において、センサを有し、センサを用いて表示装置を使用する者の瞳孔を検出するステップを有してもよい。
また、上記態様において、第1の部分を、表示装置を使用する者と、表示部との間の距離をもとに算出してもよい。
また、上記態様において、第1の画素と、第2の画素と、は積層されていてもよい。
また、上記態様において、発光素子は、OLEDであってもよい。
また、本発明の一態様の表示方法により画像を表示する機能を有する表示装置も、本発明の一態様である。
また、上記態様において、トランジスタと、赤外線源と、を有する表示装置も本発明の一態様である。
また、上記態様において、トランジスタは、チャネル形成領域に金属酸化物を有してもよい。
また、本発明の一態様の表示装置と、操作ボタンまたはバッテリと、を有する電子機器も、本発明の一態様である。
また、本発明の一態様の表示方法を実行する機能を有するプログラムが保持された非一時的記憶媒体も、本発明の一態様である。
また、本発明の一態様の表示方法を実行する機能を有するプログラムも、本発明の一態様である。
本発明の一態様は、消費電力を低減することができる表示方法および表示装置を提供することができる。または、高品位な画像を表示することができる表示方法および表示装置を提供することができる。または、画質の急激な変化を抑制することができる表示方法および表示装置を提供することができる。または、高速に動作することができる表示方法または表示装置を提供することができる。または、新規な表示方法および表示装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項等の記載から、自ずと明らかとなるものであり、明細書、図面、請求項等の記載から、これら以外の効果を抽出することが可能である。
以下、本発明の一態様について図面を参照しながら説明する。但し、本発明の一態様は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の記載内容に限定して解釈されるものではない。
本明細書等に添付した図面では、構成要素を機能ごとに分類し、互いに独立したブロックとしてブロック図を示しているが、実際の構成要素は機能ごとに完全に切り分けることが難しく、一つの構成要素が複数の機能に係わることもあり得る。
本明細書等においてトランジスタが有するソースとドレインは、トランジスタの極性および各端子に与えられる電位の高低によって、その呼び方が入れ替わる。一般的に、nチャネル型トランジスタでは、低い電位が与えられる端子がソースと呼ばれ、高い電位が与えられる端子がドレインと呼ばれる。また、pチャネル型トランジスタでは、低い電位が与えられる端子がドレインと呼ばれ、高い電位が与えられる端子がソースと呼ばれる。本明細書等では、便宜上、ソースとドレインとが固定されているものと仮定して、トランジスタの接続関係を説明する場合があるが、実際には上記電位の関係に従ってソースとドレインの呼び方が入れ替わる。
本明細書等においてトランジスタのソースとは、半導体層として機能する半導体膜の一部であるソース領域、或いは上記半導体膜に接続されたソース電極を意味する。同様に、トランジスタのドレインとは、上記半導体膜の一部であるドレイン領域、或いは上記半導体膜に接続されたドレイン電極を意味する。また、ゲートはゲート電極を意味する。
本明細書等においてトランジスタが直列に接続されている状態とは、例えば、第1のトランジスタのソースまたはドレインの一方のみが、第2のトランジスタのソースまたはドレインの一方のみに接続されている状態を意味する。また、トランジスタが並列に接続されている状態とは、第1のトランジスタのソースまたはドレインの一方が第2のトランジスタのソースまたはドレインの一方に接続され、第1のトランジスタのソースまたはドレインの他方が第2のトランジスタのソースまたはドレインの他方に接続されている状態を意味する。
本明細書等において接続とは、電気的な接続を意味しており、電流、電圧または電位が、供給可能、或いは伝送可能な状態に相当する。従って、接続している状態とは、直接接続している状態を必ずしも指すわけではなく、電流、電圧または電位が、供給可能、或いは伝送可能であるように、配線、抵抗、ダイオード、トランジスタ等の回路素子を介して間接的に接続している状態も、その範疇に含む。
本明細書等において回路図上は独立している構成要素どうしが接続されている場合であっても、実際には、例えば配線の一部が電極として機能する場合等、一の導電膜が、複数の構成要素の機能を併せ持っている場合もある。本明細書等において接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
また、本明細書等において、トランジスタの第1の電極または第2の電極の一方がソース電極を、他方がドレイン電極を指す。
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、等)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷等)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷等)を介さずに、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷等)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路等)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路等)、電位レベル変換回路(電源回路(昇圧回路、降圧回路等)、信号の電位レベルを変えるレベルシフタ回路等)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量等を大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路等)、信号生成回路、記憶回路、制御回路等)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟まずに接続されている場合)とが、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合と同様な内容が、本明細書等に開示されているものとする。
なお、例えば、トランジスタのソース(または第1の端子等)が、Z1を介して(または介さず)、Xと電気的に接続され、トランジスタのドレイン(または第2の端子等)が、Z2を介して(または介さず)、Yと電気的に接続されている場合や、トランジスタのソース(または第1の端子等)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接的に接続され、トランジスタのドレイン(または第2の端子等)が、Z2の一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現することが出来る。
例えば、「XとYとトランジスタのソース(または第1の端子等)とドレイン(または第2の端子等)とは、互いに電気的に接続されており、X、トランジスタのソース(または第1の端子等)、トランジスタのドレイン(または第2の端子等)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(または第1の端子等)は、Xと電気的に接続され、トランジスタのドレイン(または第2の端子等)はYと電気的に接続され、X、トランジスタのソース(または第1の端子等)、トランジスタのドレイン(または第2の端子等)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(または第1の端子等)とドレイン(または第2の端子等)とを介して、Yと電気的に接続され、X、トランジスタのソース(または第1の端子等)、トランジスタのドレイン(または第2の端子等)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(または第1の端子等)と、ドレイン(または第2の端子等)とを、区別して、技術的範囲を決定することができる。
または、別の表現方法として、例えば、「トランジスタのソース(または第1の端子等)は、少なくとも第1の接続経路を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した、トランジスタのソース(または第1の端子等)とトランジスタのドレイン(または第2の端子等)との間の経路であり、前記第1の接続経路は、Z1を介した経路であり、トランジスタのドレイン(または第2の端子等)は、少なくとも第3の接続経路を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有しておらず、前記第3の接続経路は、Z2を介した経路である。」と表現することができる。または、「トランジスタのソース(または第1の端子等)は、少なくとも第1の接続経路によって、Z1を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した接続経路を有し、トランジスタのドレイン(または第2の端子等)は、少なくとも第3の接続経路によって、Z2を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有していない。」と表現することができる。または、「トランジスタのソース(または第1の端子等)は、少なくとも第1の電気的パスによって、Z1を介して、Xと電気的に接続され、前記第1の電気的パスは、第2の電気的パスを有しておらず、前記第2の電気的パスは、トランジスタのソース(または第1の端子等)からトランジスタのドレイン(または第2の端子等)への電気的パスであり、トランジスタのドレイン(または第2の端子等)は、少なくとも第3の電気的パスによって、Z2を介して、Yと電気的に接続され、前記第3の電気的パスは、第4の電気的パスを有しておらず、前記第4の電気的パスは、トランジスタのドレイン(または第2の端子等)からトランジスタのソース(または第1の端子等)への電気的パスである。」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続経路について規定することにより、トランジスタのソース(または第1の端子等)と、ドレイン(または第2の端子等)とを、区別して、技術的範囲を決定することができる。
なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、等)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、および電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置の構成例および表示方法について図1乃至図8を用いて説明する。
本実施の形態では、本発明の一態様の表示装置の構成例および表示方法について図1乃至図8を用いて説明する。
本発明の一態様は、使用者が注視している部分と、注視していない部分と、で表示を行う表示部を変更する機能を有する表示方法および表示装置に関する。これにより、例えば、使用者が注視している部分には高品位な画像を表示し、その他の部分には低消費電力で画像を表示することができる。または、例えば使用者が注視している部分およびその近傍の部分には高品位な画像を表示し、その他の部分には低消費電力で画像を表示することができる。以上により、使用者が認識する画像の表示品位を落とすことなく、本発明の一態様の表示装置の消費電力を低減することができる。
また、本発明の一態様の表示装置は、テキストを表示する機能を有してもよい。当該表示装置においても、使用者が注視している部分と、注視していない部分と、で表示を行う表示部を変更する機能を有することができる。表示装置にテキストが表示されている場合、例えば、使用者が注視しているテキストが属する行または列に表示されているテキストのみ高品位な表示を行い、その他の行または列に表示されているテキストを低消費電力で表示することができる。例えば、使用者が注視しているテキストが属する行または列およびその近傍の行または列に表示されているテキストのみ高品位な表示を行い、その他の行または列に表示されているテキストを低消費電力で表示することができる。以上により、使用者が認識するテキストの表示品位を落とすことなく、本発明の一態様の表示装置の消費電力を低減することができる。
本明細書等において、画像という用語には、テキストが含まれる場合がある。
[表示装置の構成例1]
図1(A)は、表示装置10の構成例を示すブロック図である。表示装置10は、表示部11aと、表示部11bと、センサ13と、記憶回路14と、演算回路15と、ソースドライバ回路17aと、ソースドライバ回路17bと、ゲートドライバ回路18aと、ゲートドライバ回路18bとを有する。表示部11aにはマトリクス状に配列した複数の画素12aが設けられ、表示部11bにはマトリクス状に配列した複数の画素12bが設けられる。なお、表示部11aは、画素12aを用いて画像を表示する機能を有し、表示部11bは、画素12bを用いて画像を表示する機能を有する。
図1(A)は、表示装置10の構成例を示すブロック図である。表示装置10は、表示部11aと、表示部11bと、センサ13と、記憶回路14と、演算回路15と、ソースドライバ回路17aと、ソースドライバ回路17bと、ゲートドライバ回路18aと、ゲートドライバ回路18bとを有する。表示部11aにはマトリクス状に配列した複数の画素12aが設けられ、表示部11bにはマトリクス状に配列した複数の画素12bが設けられる。なお、表示部11aは、画素12aを用いて画像を表示する機能を有し、表示部11bは、画素12bを用いて画像を表示する機能を有する。
本明細書等において、表示部11aおよび表示部11bを合わせて表示部11と呼ぶ場合がある。
画素12aは、第1の表示素子を有する。第1の表示素子として、例えば反射型の液晶素子を用いることができる。または、第1の表示素子として、例えば透過型の液晶素子または半透過型の液晶素子等を用いることができる。または、第1の表示素子として、例えば液晶素子以外の反射型の表示素子を用いることができる。第1の表示素子として当該素子を用いることにより、外光を利用して表示部11aに画像を表示することができるため、表示装置10の消費電力を低減することができる。
なお、画素12aは、電子シャッター、機械シャッター等を有してもよい。また、画素12aは、ピエゾ素子を有してもよい。ピエゾ素子は圧電体を有し、当該圧電体に加えられた電圧を力に変換する機能を有する。ピエゾ素子は、例えば機械シャッターを動作させる機能を有する。
画素12bは、第2の表示素子を有する。第2の表示素子として、例えば発光する機能を有する発光素子を用いることができる。例えば、第2の表示素子としては、OLED(Organic Light Emitting Diode)、LED(Light Emitting Diode)、QLED(Quantum−dot Light Emitting Diode)、IEL(Inorganic Electro−Luminescence)、半導体レーザ等の自発光性の発光素子を用いることができる。以上に示すような発光素子を有する表示素子から発せられる光は、その輝度や色度が外光に左右されることがない。このため、色再現性が高く(色域が広く)、かつコントラストの高い画像を表示部11bに表示することができる。つまり、高品位な画像を表示部11bに表示することができる。
表示部11は、さまざまな表示モードにより画像を表示することができる。例えば、表示部11の全体において、画素12aのみを用いて画像を表示することができる。つまり、表示部11aでのみ画像を表示することができる。また、例えば表示部11の全体において、画素12bのみを用いて画像を表示することができる。つまり、表示部11bでのみ画像を表示することができる。また、例えば表示部11の全体において、画素12aおよび画素12bの両方を用いて画像を表示することができる。つまり、表示部11aおよび表示部11bの両方で画像を表示することができる。
また、例えば表示部11の一部において、画素12bのみ、または画素12aと画素12bの両方を用いて画像を表示し、表示部11の他の部分については画素12aのみを用いて画像を表示することができる。つまり、表示部11に表示される画像のうち、一部は表示部11bでのみ、または表示部11aおよび表示部11bの両方で表示し、他は表示部11aでのみ表示することができる。
また、表示部11aおよび表示部11bのいずれにも画像を表示しなくてもよい。この場合、表示部11に画像が表示されない。
表示部11に表示される画像のうち、一部は表示部11bでのみ、または表示部11aおよび表示部11bの両方で表示し、他は表示部11aでのみ表示する表示モードについて詳細に説明する。当該表示モードでは、例えば表示部11の一部において、画素12bのみを用いて画像を表示し、表示部11の他の部分については画素12aのみを用いて画像を表示することができる。つまり、表示部11に表示される画像のうち、一部は表示部11bでのみ表示し、他は表示部11aでのみ表示することができる。
また、例えば表示部11の一部において、画素12aおよび画素12bの両方を用いて画像を表示し、表示部11の他の部分については画素12aのみを用いて画像を表示することができる。つまり、表示部11に表示される画像のうち、一部は表示部11aおよび表示部11bの両方で表示し、他は表示部11aでのみ表示することができる。
また、例えば表示部11の一部において画素12bのみを用いて画像を表示し、表示部11の他の一部において画素12aおよび画素12bの両方を用いて画像を表示し、それ以外の部分において画素12aのみを用いて画像を表示することができる。つまり、表示部11に表示される画像のうち、一部は表示部11bでのみ表示し、他の一部は表示部11aおよび表示部11bの両方で表示し、それ以外の部分は表示部11aでのみ表示することができる。
なお、画素12aおよび画素12bの両方を用いて画像を表示する部分においても、当該画像の一部を画素12aのみを用いて表示してもよいし、一部を画素12bのみを用いて表示してもよい。
画素12aおよび画素12bの両方を用いて画像を表示することにより、画素12aのみを用いて画像を表示する場合より高品位な画像を表示することができ、かつ画素12bのみを用いて画像を表示する場合より表示装置10の消費電力を低減することができる。
センサ13は、例えば可視光線を検出することにより、表示装置10の周囲の風景を撮影する機能を有する。なお、センサ13は、例えば赤外線を検出する機能を有することにより、表示装置10の周囲の風景を赤外撮影する機能を有してもよい。また、センサ13は、外光の明るさを検出する機能を有してもよい。センサ13は、例えば光電変換素子を有する構成とすることができる。
記憶回路14は、例えば表示装置10の表示方法に関する情報を有するプログラムを保持する機能を有する。記憶回路14として、非一時的記憶媒体を用いることができる。例えばROM(Read Only Memory)等の不揮発性メモリを用いることができる。ROMとして、マスクROM、OTPROM(One Time Programmable Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)等を用いることができる。EPROMとしては、紫外線照射により記憶データの消去を可能とするUV−EPROM(Ultra−Violet Erasable Programmable Read Only Memory)の他、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュメモリ等を用いることができる。
また、記憶回路14は、例えばチャネルが形成される領域に金属酸化物を用いたトランジスタを有するメモリとしてもよい。金属酸化物は、シリコンよりもバンドギャップが広く、かつキャリア密度が小さい。このため、チャネル形成領域に金属酸化物を用いたトランジスタは、チャネル形成領域にシリコンを用いたトランジスタよりオフ電流が小さい。したがって、記憶回路14への電力の供給を停止した場合においても、記憶回路14にデータを保持することが可能となり、記憶回路14は非一時的記憶媒体としての機能を有する。
本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)等に分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、およびスイッチング作用の少なくとも1つを有する場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)、略してOSと呼ぶことができる。また、OS FETと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
また、本明細書等において、CAAC(c−axis aligned crystal)、およびCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
また、本明細書等において、CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの半導体層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、本明細書等において、CAC−OSまたはCAC−metal oxideは、導電性領域、および絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、および高い電界効果移動度を得ることができる。
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
演算回路15は、記憶回路14に保持された、表示装置10の表示方法に関する情報を有するプログラムを読み出し、当該プログラムをもとに表示装置10を動作させる機能を有する。例えば、センサ13により撮影された周囲の風景の画像を分析する機能を有する。例えば、センサ13により撮影された周囲の風景の画像をもとに、表示装置10を使用する者が注視している表示部11の部分を求め、これをもとに表示部11の各部分において画像の表示に用いる画素を決定する機能を有する。また、演算回路15は、表示部11により表示される画像に対応する表示データを生成する機能を有する。
演算回路15として、例えばCPU(Central Processing Unit)、DSP(Digital Signal Processor)GPU(Graphics Processing Unit)等を用いることができる。またこれらをFPGA(Field Programmable Gate Array)やFPAA(Field Programmable Analog Array)といったPLD(Programmable Logic Device)によって実現した構成としてもよい。
ソースドライバ回路17aは、演算回路15により生成された表示データをD/A変換し、D/A変換された表示データを画素12aに送信する機能を有する。ソースドライバ回路17bは、演算回路15により生成された表示データをD/A変換し、D/A変換された表示データを画素12bに送信する機能を有する。ゲートドライバ回路18aは、画素12aに選択信号を供給する機能を有する。ゲートドライバ回路18bは、画素12bに選択信号を供給する機能を有する。
図1ではソースドライバ回路を2個設け、ゲートドライバ回路を2個設けた場合の構成を示したが、本発明の一態様の表示装置はこれに限らない。例えば、ソースドライバ回路を1個設け、ゲートドライバ回路を1個設ける構成としてもよい。また、例えばソースドライバ回路を3個以上設け、ゲートドライバ回路を3個以上設ける構成としてもよい。また、例えばソースドライバ回路を2個設け、ゲートドライバ回路を1個設ける構成としてもよい。また、例えばソースドライバ回路を1個設け、ゲートドライバ回路を2個設ける構成としてもよい。
画素12は、副画素を有する構成とすることができる。例えば、図1(B)に示すように、画素12は副画素12R、副画素12Gおよび副画素12Bの3種類の副画素を有する構成とすることができる。例えば、副画素12R、副画素12Gおよび副画素12Bにそれぞれ白色を表示する機能を有する表示素子を設け、さらに副画素12Rには赤色(波長620nm以上750nm以下)の光を透過する着色層を、副画素12Gには緑色(波長500nm以上570nm未満)の光を透過する着色層を、副画素12Bには青色(波長450nm以上500nm未満)の光を透過する着色層をそれぞれ設けることができる。これにより、副画素12Rは例えば赤色の光を射出する機能を有し、副画素12Gは例えば緑色の光を射出する機能を有し、副画素12Bは例えば青色の光を射出する機能を有する。なお、例えば紫色(380nm以上450nm未満)、黄色(570nm以上590nm未満)、橙色(590nm以上620nm未満)等の光を射出する機能を有する副画素を、副画素12R、副画素12Gまたは副画素12Bのいずれかと代えて設けてもよいし、副画素12R、副画素12Gおよび副画素12Bに加えて設けてもよい。
本明細書等において、詳細は後述するが、画素12aおよび画素12bを合わせて画素12と呼ぶ場合がある。
画素12は、図1(C)に示すように、副画素12R、副画素12Gおよび副画素12Bの他、副画素12Wを有する構成としてもよい。例えば、副画素12Wには白色を表示する機能を有する表示素子を設け、着色層を設けない構成とすることができる。当該構成とすることにより、副画素12Wは白色の光を射出する機能を有する。これにより、表示部11に表示される画像の明度を高めることができる。
なお、副画素12R、副画素12Gおよび副画素12Bが有する表示素子は、白色を表示する機能を有していなくてもよい。例えば、副画素12Rに赤色を表示する機能を有する表示素子を設け、副画素12Gに緑色を表示する機能を有する表示素子を設け、副画素12Bに青色を表示する機能を有する表示素子を設けてもよい。この場合、画素12が着色層を有しない構成とすることができる。
なお、画素12aおよび画素12bの一方または両方の一部またはすべてが、図1(D)に示すように、副画素12R、副画素12Gおよび副画素12Bを有さず、副画素12Wのみを有する構成としてもよい。つまり、画素12aおよび画素12bの一方または両方の一部またはすべてを、白色光のみを射出する機能を有する構成としてもよい。例えば、すべての画素12aが、白色光のみを射出する機能を有する構成としてもよい。以上により、表示部11に表示される画像の明度を高めることができる。
表示部11aと表示部11bは図2に示すように積層されている。したがって、画素12aと画素12bは積層されている。本明細書等では、図2に示すように積層された1組の画素12aおよび画素12bを画素12と呼んでいる。なお、図2では、表示部11a、表示部11b、画素12aおよび画素12b以外の要素は省略されている。
図3(A)、(B)、(C)は、表示装置10の構成例を示す模式図である。図3(A)、(B)、(C)では、表示部11、画素12およびセンサ13以外の構成要素を省略している。
図3(A)、(B)に示すように、センサ13は2以上のセンサとすることができる。これにより、例えば表示装置10を使用する者と、表示部11との間の距離を算出することができる。これにより、例えば表示装置10を使用する者が注視している表示部11の部分を正確に算出することができる。
例えば、図3(A)に示すように、表示装置10はセンサ13aおよびセンサ13bの2個のセンサを有し、それぞれ表示装置10の左上および右上に設けられていてもよい。例えば、図3(B)に示すように、表示装置10はセンサ13a、センサ13b、センサ13cおよびセンサ13dの4個のセンサを有し、それぞれ表示装置10の左上、右上、左下および右下に設けられていてもよい。なお、センサ13が有するセンサの数は、3個でもよいし、5個以上でもよい。
また、図3(C)に示すように、表示装置10はセンサ13を1個のみ有してもよい。例えば、センサ13を表示装置10の上部に設けることができる。表示装置10がセンサ13を1個のみ有する構成である場合でも、例えばセンサ13により撮影した画像における、表示装置10を使用する者の目の一方と、表示装置10を使用する者の目の他方との間の距離を算出することにより、表示装置10を使用する者と、表示部11との間の距離を算出することができる。
なお、表示装置10について、上述したセンサ13の機能を有することができるのであれば、任意の位置にセンサを設けることができる。また、センサ13は、例えば固定焦点式あるいは可変焦点式の光学装置(レンズ等)と、可視光および/または二次元的に検出できるイメージセンサを備えてもよい。
[表示方法の一例1]
次に、図1(A)に示す構成の表示装置10の表示方法を実行するプログラムの一例について、図4乃至図6を用いて説明する。図4は、図1(A)に示す構成の表示装置10の表示方法を実行するプログラムの一例を説明するフローチャートである。
次に、図1(A)に示す構成の表示装置10の表示方法を実行するプログラムの一例について、図4乃至図6を用いて説明する。図4は、図1(A)に示す構成の表示装置10の表示方法を実行するプログラムの一例を説明するフローチャートである。
まず、センサ13により、表示装置10の表示部11から観察される風景を撮影する(ステップS01)。次に、センサ13により撮影された画像を、演算回路15により分析する(ステップS02)。例えば、センサ13により撮影された画像に、表示装置10を使用する者の目が含まれているか否かを判定する(ステップS03)。表示装置10を使用する者の目が含まれていない場合、表示装置10を使用する者の視界に表示部11が含まれていないとみなすことができる。このため、例えば表示部11aおよび表示部11bのいずれにも画像を表示しなくてもよい(ステップS04)。これにより、表示装置10の消費電力を低減することができる。
表示装置10を使用する者の目が含まれている場合、表示装置10を使用する者の視界に表示部11が含まれているとみなすことができる。この場合、演算回路15により、当該目に含まれる瞳孔を分析する(ステップS05)。例えば、センサ13により撮影された画像から、表示装置10を使用する者の目に含まれる瞳孔が検出されるか否かを判定する(ステップS06)。瞳孔が検出されない場合、表示装置10を使用する者が、表示部11から大きく離れているとみなすことができる。この場合、表示部11に表示される画像が高品位でなくても大きな問題は無く、例えば表示部11aでのみ画像を表示することができる(ステップS07)。これにより、表示装置10の消費電力を低減することができる。または、ステップS07において、表示部11aおよび表示部11bのいずれにも画像を表示しなくてもよい。この場合、表示装置10の消費電力をさらに低減することができる。
瞳孔が検出される場合には、演算回路15により当該瞳孔の向き、位置および、表示部11までの距離等を分析して、表示装置10を使用する者が注視している部分を算出する(ステップS08)。瞳孔から表示部11までの距離は、センサ13によって撮影した画像における、表示装置10を使用する者の目の一方に含まれる瞳孔と、表示装置10を使用する者の目の他方に含まれる瞳孔との間の距離をもとに算出することができる。なお、センサ13が2以上のセンサを含む場合、表示装置10を使用する者の目の一方に含まれる瞳孔のみ検出した場合であっても、瞳孔から表示部11までの距離を算出することができる。
次に、表示装置10を使用する者が注視している部分が表示部11に含まれるか否かを判定する(ステップS09)。表示部11に含まれない場合は、表示装置10を使用する者の視界に表示部11が含まれているが、表示装置10を使用する者の注意は表示部11からそれているとみなすことができる。この場合、表示部11に表示される画像が高品位でなくても大きな問題は無く、例えば表示部11aでのみ画像を表示することができる(ステップS10)。これにより、表示装置10の消費電力を低減することができる。
表示装置10を使用する者が注視している部分が表示部11に含まれる場合は、当該注視している部分にテキストが表示されているか否かを判定する(ステップS11)。テキストが表示されていない場合は、表示部11に表示される画像のうち、例えば一部は表示部11bでのみ、または表示部11aおよび表示部11bの両方で画像を表示し、他は表示部11aでのみ画像を表示することができる(ステップS12)。例えば、表示装置10を使用する者が注視している部分およびその近傍の部分に表示される画像を表示部11bでのみ、または表示部11aおよび表示部11bの両方で表示し、他の部分に表示される画像を表示部11aでのみ表示することができる。
本明細書等において、テキストという用語は、表示部11に表示される文字のまとまりを示す。
ステップS12において、表示部11の各部分に表示される画像をどの表示モードで表示するかは、例えば外光の明るさをもとに決定することができる。例えば、外光が明るい場合は、表示部11に表示される画像の一部を表示部11aおよび表示部11bの両方で表示することができる。また、例えば外光が暗い場合は、表示部11に表示される画像の一部を表示部11bでのみ表示し、他を表示部11aでのみ表示することができる。
なお、ステップS12において、表示部11の各部分に表示される画像をどの表示モードで表示するかを、例えば表示装置10を使用する者が任意に設定してもよい。
ステップS12について、図5を用いて詳細に説明する。図5は、表示部11に、表示装置10を使用する者が注視している部分20aと、部分20aの近傍の部分20bと、部分20aおよび部分20b以外の部分である部分20cとを示した図である。
部分20aは、前述のようにステップS08により算出することができる。部分20bは、部分20aの外側の特定部分とすることができる。例えば、部分20aを円形とする場合、部分20bは、中心が部分20aと同一で、部分20aの半径に数値x(xは0以上)を加えた円形とすることができる。数値xは固定されていてもよいし、表示装置10を使用する者が任意に設定できるようにしてもよいし、外光の明るさ等、何らかの条件により自動的に設定できるようにしてもよい。
なお、部分20aの形状は円形に限らず、楕円、矩形、三角形、四角形、多角形等の形状とすることができる。また、部分20bの形状は、部分20aの形状に応じて設定することができる。
まずは、表示部11に表示される画像のうち、一部を表示部11bでのみ表示し、他を表示部11aでのみ表示する場合について説明する。例えば、部分20aに表示される画像および部分20bに表示される画像を表示部11bでのみ表示し、部分20cに表示される画像を表示部11aでのみ表示することができる。つまり、部分20aおよび部分20bでは画素12bのみを用いて画像を表示し、部分20cでは画素12aのみを用いて画像を表示することができる。
なお、部分20bに表示される画像の全体を表示部11bでのみ表示するのではなく、一部を表示部11aでのみ表示してもよい。つまり、部分20bに設けられた画素12のうち、すべての画素12について画素12bのみを用いて画像を表示するのではなく、一部を画素12aのみを用いて画像を表示してもよい。例えば、部分20aに近いほど、画素12bのみを用いて画像を表示する画素12の比率を増加させ、部分20cに近づく(部分20aから遠ざかる)ほど、画素12aのみを用いて画像を表示する画素12の比率を増加させることができる。つまり、例えば部分20aに近いほど、画像の表示に寄与する画素12bの比率を増加させ、部分20cに近づく(部分20aから遠ざかる)ほど、画像の表示に寄与する画素12aの比率を増加させることができる。これにより、部分20bと部分20cの境界において画質が急激に変化することを抑制することができる。
次に、表示部11に表示される画像のうち、一部を表示部11aおよび表示部11bの両方により表示し、他を表示部11aでのみ表示する場合について説明する。例えば、部分20aに表示される画像および部分20bに表示される画像を表示部11aおよび表示部11bの両方により表示し、部分20cに表示される画像を表示部11aでのみ表示することができる。つまり、部分20aおよび部分20bでは画素12aと画素12bの両方を用いて画像を表示し、部分20cでは画素12aのみを用いて画像を表示することができる。
なお、部分20bに表示される画像の全体を表示部11aおよび表示部11bの両方により表示するのではなく、一部を表示部11aでのみ表示してもよい。つまり、部分20bに設けられた画素12のうち、すべての画素12について画素12aおよび画素12bの両方を用いて画像を表示するのではなく、一部を画素12aのみを用いて画像を表示してもよい。例えば、部分20aに近いほど、画素12aおよび画素12bを用いて画像を表示する画素12の比率を増加させ、部分20cに近づく(部分20aから遠ざかる)ほど、画素12aのみを用いて画像を表示する画素12の比率を増加させることができる。つまり、例えば部分20aに近いほど、画像の表示に寄与する画素12bの比率を増加させ、部分20cに近づく(部分20aから遠ざかる)ほど、画像の表示に寄与する画素12bの比率を減少させることができる。これにより、部分20bと部分20cの境界において画質が急激に変化することを抑制することができる。
次に、表示部11に表示される画像のうち、一部を表示部11bでのみ表示し、他の一部を表示部11aおよび表示部11bの両方により表示し、それ以外の部分を表示部11aでのみ表示する場合について説明する。例えば、部分20aに表示される画像を表示部11bでのみ表示し、部分20bに表示される画像を表示部11aおよび表示部11bの両方で表示し、部分20cに表示される画像を表示部11aでのみ表示することができる。つまり、例えば部分20aでは画素12bのみを用いて画像を表示し、部分20bでは画素12aと画素12bの両方を用いて画像を表示し、部分20cでは画素12aのみを用いて画像を表示することができる。
なお、上述した場合と同様に、部分20bに表示される画像の全体を表示部11aおよび表示部11bの両方により表示するのではなく、一部を表示部11aでのみ表示してもよい。また、部分20bに表示される画像の一部を表示部11bでのみ表示してもよい。つまり、部分20bに設けられた画素12のうち、一部を画素12bのみを用いて画像を表示してもよい。例えば、部分20aに近いほど、画素12bのみを用いて画像を表示する画素12の比率を増加させ、部分20cに近づく(部分20aから遠ざかる)ほど、画素12aと画素12bの両方を用いて画像を表示する画素12の比率を増加させることができる。つまり、例えば部分20aに近いほど、画像の表示に寄与する画素12aの比率を減少させ、部分20cに近づく(部分20aから遠ざかる)ほど、画像の表示に寄与する画素12aの比率を増加させることができる。これにより、部分20aと部分20bの境界において画質が急激に変化することを抑制することができる。
なお、ステップS12において、部分20bおよび部分20cをいずれの表示部で表示(表示部11aでのみ表示、表示部11bでのみ表示、表示部11aおよび表示部11bの両方により表示)した場合においても、部分20bの一部および/または部分20cの一部を表示部11aでのみ表示してもよいし、表示部11bでのみ表示してもよいし、表示部11aおよび表示部11bの両方を用いて表示してもよい。つまり、部分20bの一部に設けられた画素12および/または部分20cの一部に設けられた画素12の一部のうち、一部の画素12について画素12aのみを用いて画像を表示してもよいし、画素12bのみを用いて画像を表示してもよいし、画素12aおよび画素12bの両方を用いて画像を表示してもよい。
ステップS11において、表示装置10を使用する者が注視している部分にテキストが表示されている場合は、当該テキストが横書きか縦書きかを判定する(ステップS13)。テキストが横書きで表示されている場合は、例えば一部の行に記載されたテキストを表示部11bでのみ、または表示部11aと表示部11bの両方で表示し、その他の行に記載されたテキストを表示部11aでのみ表示することができる(ステップS14)。テキストが縦書きで表示されている場合は、例えば一部の列に記載されたテキストを表示部11bでのみ、または表示部11aと表示部11bの両方で表示し、その他の列に記載されたテキストを表示部11aでのみ表示することができる(ステップS15)。例えば、表示装置10を使用する者が注視している部分に含まれるテキストが属する行または列およびその近傍の行または列に記載されたテキストを表示部11bでのみ、または表示部11aと表示部11bの両方で表示し、他の行または列に記載されたテキストを表示部11aでのみ表示することができる。
ステップS14およびステップS15において、表示部11の各部分に表示されるテキストをどの表示モードで表示するかは、例えば外光の明るさをもとに決定することができる。例えば、外光が明るい場合は、表示部11の一部の行または列に記載されたテキストを表示部11aおよび表示部11bの両方で表示することができる。また、例えば外光が暗い場合は、表示部11の一部の行または列に記載されたテキストを表示部11bでのみ表示し、他を表示部11aでのみ表示することができる。
なお、ステップS14およびステップS15において、表示部11の各部分に表示されるテキストをどの表示モードで表示するかを、例えば表示装置10を使用する者が任意に設定してもよい。また、横書きの場合は同一行、縦書きの場合は同一列に記載されたテキストであっても、文字ごとに表示を行う表示部を変えてもよい。
ステップS14について、図6を用いて詳細に説明する。図6は、テキストを横書きに表示した表示部11を示す。
部分20aは、図5で説明したように表示装置10を使用する者が注視している部分を示す。例えば、部分20aに含まれるテキストが属する行に記載されたテキストを表示部11bでのみ表示し、他の行に記載されたテキストを表示部11aでのみ表示することができる。
本明細書等において、同じ符号の要素の中で特に区別する必要があるときに、[1]、[2]等の符号を用いて区別している。例えば、複数の部分20a等を区別するために、部分20a[1]、部分20a[2]等と記載して区別している。なお、表示装置10の使用者は、複数の部分20aのすべてを注視しているわけではなく、例えば1つの部分20aを注目しているとすることができる。
例えば、図6に示す部分20a[1]が表示装置10を使用する者が注視している部分である場合を考える。部分20a[1]には “Whether”の一部が含まれている。このため、“Whether ’tis nobler in the mind to suffer”を表示部11bでのみ表示し、他のテキストを表示部11aでのみ表示することができる。つまり、例えば“Whether ’tis nobler in the mind to suffer”を画素12bのみを用いて表示し、他のテキストを画素12aのみを用いて表示することができる。
また、例えば、部分20aに含まれるテキストが属する行に記載されたテキストの他、その近傍の行に記載されたテキストを表示部11bでのみ表示し、他の行に記載されたテキストを表示部11aでのみ表示することができる。例えば、部分20aに含まれるテキストが属する行に記載されたテキストの前後1行を、近傍の行とすることができる。例えば、部分20a[1]が表示装置10を使用する者が注視している部分である場合、 “To be, or not to be: that is the question:”および“The slings and arrows of outrageous fortune,”を、部分20a[1]が含まれる行である“Whether ’tis nobler in the mind to suffer”の近傍の行とすることができる。この場合における、部分20a[1]に含まれるテキストが属する行およびその近傍の行(計3行)を行22[1]と記載している。
例えば、行22[1]に記載されたテキストを表示部11bでのみ表示し、他の行に記載されたテキストを表示部11aでのみ表示することができる。つまり、例えば行22[1]に記載されたテキストを画素12bのみを用いて表示し、他の行に記載されたテキストを画素12aのみを用いて表示することができる。
なお、部分20aに含まれるテキストが属する行に記載されたテキストの前後2行を近傍の行としてもよいし、3行以上を近傍の行としてもよい。
部分20aに含まれるテキストは、1行分でなくてもよい。例えば、部分20a[2]のように、2行分のテキストが含まれていてもよい。また、部分20aには3行分以上のテキストが含まれていてもよい。
図6に示す部分20a[2]が表示装置10を使用する者が注視している部分である場合を考える。この場合、例えば、“And by opposing end them? To die: to Sleep;”および“No more; and by a sleep to say we end”を表示部11bでのみ表示し、他のテキストを表示部11aでのみ表示することができる。つまり、例えば“And by opposing end them? To die: to Sleep;”および“No more; and by a sleep to say we end”を画素12bのみを用いて表示し、他のテキストを画素12aのみを用いて表示することができる。
また、例えば“And by opposing end them? To die: to Sleep;”の1行前に記載された“Or to take arms against a sea of troubles,”および、“No more; and by a sleep to say we end”の1行後に記載された“The heart−ache and the thousand natural”を、部分20aに含まれるテキストが属する行の近傍の行とすることができる。この場合における、部分20a[2]に含まれるテキストが属する行およびその近傍の行(計4行)を行22[2]と記載している。
例えば、行22[2]に記載されたテキストを表示部11bでのみ表示し、他の行に記載されたテキストを表示部11aでのみ表示することができる。つまり、例えば行22[2]に記載されたテキストを画素12bのみを用いて表示し、他の行に記載されたテキストを画素12aのみを用いて表示することができる。
部分20aに3行分以上のテキストが含まれている場合においても、部分20aに1行分または2行分のテキストが含まれている場合と同様に、テキストを表示する表示部を各行ごとに決定することができる。
前述のように、ステップS14において、一部の行に記載されたテキストを表示部11aおよび表示部11bの両方により表示してもよい。この場合、例えば上記説明において表示部11bのみに表示するとしたテキストを、表示部11aおよび表示部11bの両方により表示することができる。
例えば部分20aに含まれるテキストが属する行に記載されたテキストを表示部11aおよび表示部11bの両方により表示し、他の行に記載されたテキストを表示部11aでのみ表示することができる。つまり、例えば部分20aに含まれるテキストが属する行に記載されたテキストを画素12aおよび画素12bの両方を用いて表示し、他の行に記載されたテキストを画素12aでのみ表示することができる。
また、例えば部分20aに含まれるテキストが属する行に記載されたテキストの他、その近傍の行に記載されたテキストを表示部11aおよび表示部11bの両方により表示し、他の行に記載されたテキストを表示部11aでのみ表示することができる。つまり、例えば部分20aに含まれるテキストが属する行に記載されたテキストの他、その近傍の行に記載されたテキストを画素12aおよび画素12bの両方を用いて表示し、他の行に記載されたテキストを画素12aのみを用いて表示することができる。
なお、例えば部分20aに含まれるテキストが属する行に含まれず、その近傍の行にも含まれないテキストであっても、例えば一部を表示部11bでのみ表示してもよいし、表示部11aと表示部11bの両方により表示してもよい。
ステップS15に示す手順で表示装置10を動作させる場合、つまり表示装置10を使用する者が注視している部分に縦書きのテキストが表示されている場合については、「行」を「列」と置き換えることでステップS14の説明を参照することができる。
以上が表示装置10の表示方法を実行するプログラムの一例である。なお、ステップS03、ステップS06、ステップS09、ステップS11およびステップS13に示した判定は、例えばAI(Artificial Intelligence)を用いて行うことができる。
なお、ステップS05において、表示装置10を使用する者の目に含まれる瞳孔を分析せずに、代わりに表示装置10を使用する者の目と、表示部11との間の距離を算出してもよい。表示装置10を使用する者の目から表示部11までの距離は、例えばセンサ13により撮影した画像における、表示装置10を使用する者の目の一方と、表示装置10を使用する者の目の他方との間の距離をもとに算出することができる。なお、センサ13が2以上のセンサを含む場合、表示装置10を使用する者の目の一方のみ検出した場合であっても、瞳孔から表示部11までの距離を算出することができる。
上記の場合、ステップS06において、例えば表示装置10を使用する者の目と、表示部11との間の距離が規定値以上か否かを判定し、規定値以上である場合はステップS07に進んで例えば表示部11aでのみ画像を表示することができる。一方、規定値未満である場合は、ステップS08に進み、表示装置10を使用する者の目の位置および、表示部11までの距離等をもとにして、表示装置10を使用する者が注視している部分を算出することができる。
以上、本発明の一態様の表示方法では、表示装置10を使用する者が注視している部分には高品位の画像を表示し、その他の部分には低消費電力で画像を表示することができる。または、本発明の一態様の表示方法では、表示装置10を使用する者が注視している部分およびその近傍の部分では高品位の画像を表示し、その他の部分では低消費電力で画像を表示することができる。以上より、表示装置10を使用する者が認識する画像の表示品位を落とすことなく、表示装置10の消費電力を低減することができる。
また、本発明の一態様の表示方法では、表示装置10を使用する者が注視している部分にテキストが表示されている場合、使用者が注視しているテキストが属する行または列に表示されているテキスト高品位な表示を行い、その他の行または列に表示されているテキストは低消費電力で表示を行うことができる。または、本発明の一態様の表示方法では、使用者が注視しているテキストが属する行または列およびその近傍の行または列に表示されているテキストのみ高品位な表示を行い、その他の行または列に表示されているテキストは低消費電力で表示を行うことができる。以上より、表示装置10を使用する者が認識するテキストの表示品位を落とすことなく、表示装置10の消費電力を低減することができる。
[表示装置の構成例2]
表示装置10は、赤外線を用いて動作させてもよい。図7(A)、(B)は、図3(B)に示す表示装置10に、赤外線源21を設けた場合の表示装置10の模式図の一例である。
表示装置10は、赤外線を用いて動作させてもよい。図7(A)、(B)は、図3(B)に示す表示装置10に、赤外線源21を設けた場合の表示装置10の模式図の一例である。
例えば、表示装置10に赤外線源21を1個設けることができる。例えば、図7(A)に示すように、表示装置10の上部に赤外線源21を設けることができる。また、例えば赤外線源21は2以上の赤外線源とすることができる。例えば、図7(B)に示すように、表示装置10の左側に赤外線源21aを設け、表示装置10の右側に赤外線源21bを設けることができる。なお、赤外線源21が有する赤外線源の数は、3個以上でもよい。また、表示装置10について、後述する赤外線源21の機能を有することができるのであれば、任意の位置に赤外線源を設けることができる。
赤外線源21は、赤外線等の光を放射する機能を有する。赤外線源21は、例えば近赤外線を放射する機能を有する。赤外線源21は、例えば波長0.9μm以上1.6μm以下の光を放射する機能を有する。赤外線源21として、例えば半導体レーザ等を用いることができる。赤外線源21としてレーザを用いることにより、赤外線源21から放射される光のスペクトル幅を極めて小さくすることができる。
表示装置10に赤外線源21を設ける場合、赤外線源21から放出される光を例えばセンサ13により検出することができる。例えば、赤外線源21から放出された光が表示装置10の使用者等に当たることにより反射され、反射された光をセンサ13により検出することができる。また、表示装置10に、例えば赤外線等を検出する専用のセンサを設け、当該センサにより赤外線源21から放出される光を検出することができる。なお、赤外線源21から放出される光を検出する機能を有するセンサの一部またはすべてには、赤外線源21から放出される波長の光を選択的に透過するフィルタを設けてもよい。これにより、外界に存在する赤外線等によるノイズを抑制することができる。
[表示方法の一例2]
次に、図7(A)、(B)に示すように、赤外線源21が設けられた表示装置10の表示方法を実行するプログラムの一例について、図8を用いて説明する。図8は、赤外線源21が設けられた表示装置10の表示方法を実行するプログラムの一例を説明するフローチャートである。
次に、図7(A)、(B)に示すように、赤外線源21が設けられた表示装置10の表示方法を実行するプログラムの一例について、図8を用いて説明する。図8は、赤外線源21が設けられた表示装置10の表示方法を実行するプログラムの一例を説明するフローチャートである。
まず、赤外線源21を点灯させ、センサ13により表示装置10の表示部11から観察される風景を赤外撮影する(ステップS21)。次に、センサ13により赤外撮影された画像を、演算回路15により分析する(ステップS22)。例えば、センサ13により赤外撮影された画像に、表示装置10を使用する者の目の瞳孔が含まれているか否かを判定する(ステップS23)。
人間の瞳孔は、赤色から近赤外の波長の光の反射率が極めて高い。このため、表示装置10を使用する者の目を検出しなくても、当該目に含まれる瞳孔を精度よく検出することができる。また、表示装置10を使用する者の目を検出せずに短時間で当該目に含まれる瞳孔を検出することができるので、表示装置10の動作を高速化することができる。
センサ13により赤外撮影された画像に表示装置10を使用する者の目の瞳孔が含まれていない場合は、表示装置10を使用する者の視界に表示部11が含まれていないとみなすことができる。このため、表示部11aおよび表示部11bのいずれにも画像を表示しなくてもよい(ステップS24)。これにより、表示装置10の消費電力を低減することができる。
表示装置10を使用する者の目の瞳孔が含まれている場合、表示装置10を使用する者の視界に表示部11が含まれているとみなすことができる。この場合、演算回路15により当該瞳孔から表示部11までの距離を算出して、当該距離が規定値以上である場合は例えば表示部11aでのみ画像を表示することができる(ステップS26)。これにより、表示装置10の消費電力を低減することができる。または、ステップS26において、表示部11aおよび表示部11bのいずれにも画像を表示しなくてもよい。この場合、表示装置10の消費電力をさらに低減することができる。
なお、前述のように、瞳孔から表示部11までの距離は、例えばセンサ13により撮影した画像における、表示装置10を使用する者の目の一方に含まれる瞳孔と、表示装置10を使用する者の目の他方に含まれる瞳孔との間の距離をもとに算出することができる。なお、センサ13が2以上のセンサを含む場合、表示装置10を使用する者の目の一方に含まれる瞳孔のみ検出した場合であっても、瞳孔から表示部11までの距離を算出することができる。
瞳孔から表示部11までの距離が規定値未満である場合は、当該瞳孔の向き、位置および、表示部11までの距離等をもとに、表示装置10を使用する者が注視している部分を算出する(ステップS27)。
ステップS27以降の動作であるステップS28乃至ステップS34は、図4に示すステップS09乃至ステップS15と同様の動作とすることができる。
以上、図8に示した表示方法では、赤外線を用いることにより、表示装置10を使用する者の目を検出しなくても、当該目に含まれる瞳孔を精度よく検出することができる。
なお、ステップS23、ステップS25、ステップS28、ステップS30およびステップS32に示した判定は、例えばAIを用いて行うことができる。
図4および図8に示した各ステップは、表示装置10の機能を損なわない範囲であれば適宜追加、省略および順番の入れ替えを行うことができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置、およびその作製方法について図9乃至図12を用いて説明する。
本実施の形態では、本発明の一態様の表示装置、およびその作製方法について図9乃至図12を用いて説明する。
本発明の一態様の表示装置は、液晶素子を有する画素12aが設けられた第1の表示パネルと、発光素子を有する画素12bが設けられた第2の表示パネルとが、接着層を介して貼り合わされた構成を有する。液晶素子として、例えば反射型の液晶素子、透過型の液晶素子または半透過型の液晶素子等を用いることができる。特に、反射型の液晶素子を用いる場合、反射光の光量を制御することにより階調を表現することができる。なお、発光素子は、発する光の光量を制御することにより階調を表現することができる。
表示装置は、例えば反射光のみを利用して表示を行うこと、発光素子からの光のみを利用して表示を行うこと、および反射光と発光素子からの光の両方を利用して表示を行うことができる。
第1の表示パネルは視認側に設けられ、第2の表示パネルは視認側とは反対側に設けられる。第1の表示パネルは、最も接着層側に位置する第1の樹脂層を有する。また第2の表示パネルは、最も接着層側に位置する第2の樹脂層を有する。
また、第1の表示パネルの表示面側に第3の樹脂層を設け、第2の表示パネルの裏面側(表示面側とは反対側)に第4の樹脂層を設けることが好ましい。これにより、表示装置を極めて軽くすることが可能で、また表示装置を割れにくくすることが可能となる。
第1の樹脂層乃至第4の樹脂層(以下、まとめて樹脂層とも表記する)は、極めて薄いことを特徴とする。より具体的には、それぞれ厚さが0.1μm以上3μm以下とすることが好ましい。そのため、2つの表示パネルを積層した構成であっても、厚さを薄くすることができる。また、画素12bの発光素子が発する光の経路上に位置する樹脂層による光の吸収が抑制され、より高い効率で光を取り出すことができ、消費電力を小さくすることができる。
樹脂層は、例えば以下のように形成することができる。すなわち、支持基板上に低粘度の熱硬化性の樹脂材料を塗布し、熱処理により硬化させて樹脂層を形成する。そして樹脂層上に、構造物を形成する。その後、樹脂層と、支持基板との間で剥離を行うことにより、樹脂層の一方の面を露出させる。
支持基板と樹脂層とを剥離する際、これらの密着性を低下させる方法として、レーザ光を照射することが挙げられる。例えば、レーザ光に線状のレーザを用い、これを走査することにより、レーザ光を照射することが好ましい。これにより、支持基板の面積を大きくした際の工程時間を短縮することができる。レーザ光としては、波長308nmのエキシマレーザを好適に用いることができる。
樹脂層に用いることのできる材料としては、代表的には熱硬化性のポリイミドが挙げられる。特に感光性のポリイミドを用いることが好ましい。感光性のポリイミドは、表示パネルの平坦化膜等に好適に用いられる材料であるため、形成装置や材料を共有することができる。そのため本発明の一態様の構成を実現するために新たな装置や材料を必要としない。
また、樹脂層に感光性の樹脂材料を用いることにより、露光および現像処理を施すことで、樹脂層を加工することが可能となる。例えば、開口部を形成することや、不要な部分を除去することができる。さらに露光方法や露光条件を最適化することで、表面に凹凸形状を形成することも可能となる。例えばハーフトーンマスクやグレートーンマスクを用いた露光技術や、多重露光技術等を用いればよい。
なお、非感光性の樹脂材料を用いてもよい。このとき、樹脂層上にレジストマスクやハードマスクを形成して開口部や凹凸形状を形成する方法を用いることもできる。
またこのとき、発光素子からの光の経路上に位置する樹脂層を、部分的に除去することが好ましい。すなわち、第1の樹脂層および第2の樹脂層に、発光素子と重なる開口部を設ける。これにより、発光素子からの光の一部が樹脂層に吸収されることに伴う色再現性の低下や、光取り出し効率の低下を抑制することができる。
または、樹脂層の発光素子からの光の経路上に位置する部分が、他の部分よりも薄くなるように、樹脂層に凹部が形成された構成としてもよい。すなわち、樹脂層は厚さの異なる2つの部分を有し、厚さの薄い部分が発光素子と重なる構成とすることもできる。この構成としても、樹脂層による発光素子からの光の吸収を低減できる。
また、第1の表示パネルが第3の樹脂層を有する場合、上記と同様に発光素子と重なる開口部を設けることが好ましい。これにより、さらに色再現性や光取り出し効率を向上させることができる。
また、第1の表示パネルが第3の樹脂層を有する場合、液晶素子における光の経路上に位置する第3の樹脂層の一部を除去することが好ましい。すなわち、第3の樹脂層に、液晶素子と重なる開口部を設ける。これにより、例えば液晶素子が反射型である場合、反射率を向上させることができる。また、例えば液晶素子が透過型である場合、透過率を向上させることができる。
樹脂層に開口部を形成する場合、支持基板上に光吸収層を形成し、当該光吸収層上に開口部を有する樹脂層を形成し、さらに開口部を覆う透光性の層を形成する。光吸収層は、光を吸収して加熱されることで、水素または酸素等のガスを放出する層である。したがって、支持基板側から光を照射し、光吸収層からガスを放出させることで、光吸収層と支持基板の界面、または光吸収層と透光性の層との間の密着性が低下し、剥離を生じさせることができる。または、光吸収層自体が破断して、剥離させることができる。
または、以下の方法を用いることもできる。すなわち、樹脂層の開口部となる部分を、部分的に薄く形成し、上述した方法により支持基板と樹脂層とを剥離する。そして樹脂層の剥離した表面にプラズマ処理等を行うことで、樹脂層を薄膜化すると、樹脂層の薄い部分に開口を形成することができる。
また、画素12aおよび画素12bは、それぞれトランジスタを有することが好ましい。さらに、当該トランジスタのチャネルを形成する半導体として、金属酸化物を用いることが好ましい。金属酸化物はトランジスタの作製工程にかかる最高温度を低温化(例えば400℃以下、好ましくは350℃以下)しても、高いオン電流を実現でき、また高い信頼性を確保することができる。また、金属酸化物を用いることで、トランジスタの被形成面側に位置する樹脂層に用いる材料として、高い耐熱性が要求されないため、材料の選択の幅を広げることができる。例えば、平坦化膜として用いる樹脂材料と兼ねることもできる。
ここで、例えば低温ポリシリコン(LTPS(Low Temperature Poly−Silicon))を用いた場合では、高い電界効果移動度が得られるものの、レーザ結晶化工程、結晶化の前処理のベーク工程、不純物の活性化のためのベーク工程等が必要であり、トランジスタの作製工程にかかる最高温度が上記金属酸化物を用いた場合よりも高い(例えば500℃以上、または550℃以上、または600℃以上)。そのため、トランジスタの被形成面側に位置する樹脂層には高い耐熱性が必要となる。さらに、レーザ結晶化工程において、当該樹脂層にもレーザが照射されるため、当該樹脂層は比較的厚く形成する必要がある(例えば10μm以上、または20μm以上)。
一方、金属酸化物を用いた場合では、耐熱性の高い特殊な材料が不要で、かつ厚く形成する必要があるため、表示パネル全体に対する当該樹脂層にかかるコストの割合を小さくできる。
また、金属酸化物は、バンドギャップが広く(例えば2.5eV以上、または3.0eV以上)、光を透過する性質を有する。そのため、支持基板と樹脂層の剥離工程において、レーザ光が金属酸化物に照射されても吸収しにくいため、その電気的特性への影響を抑制できる。したがって、上述のように樹脂層を薄く形成することが可能となる。
本発明の一態様は、感光性のポリイミドに代表される低粘度な感光性樹脂材料を用いて薄く形成した樹脂層と、低温であっても電気特性に優れたトランジスタを実現できる金属酸化物と、を組み合わせることにより、極めて生産性に優れた表示装置を実現できる。
続いて、画素の構成について説明する。実施の形態1に示したように、画素12aおよび画素12bは、それぞれマトリクス状に複数配置され、表示部11を構成する。また、表示装置10は、画素12aを駆動する第1の駆動部と、画素12bを駆動する第2の駆動部を有することが好ましい。第1の駆動部は第1の表示パネルに設けられ、第2の駆動部は第2の表示パネルに設けられていることが好ましい。
第1の駆動部には、ソースドライバ回路17aおよびゲートドライバ回路18a等が設けられ、第2の駆動部には、ソースドライバ回路17bおよびゲートドライバ回路18b等が設けられる。
また、画素12aと画素12bは、実施の形態1の図2に示したように同じ周期で表示領域内に配置されていることが好ましい。さらに、画素12aおよび画素12bは表示装置の表示領域に混在して配置されていることが好ましい。これにより、後述するように複数の画素12aのみで表示された画像と、複数の画素12bのみで表示された画像、および複数の画素12aおよび複数の画素12bの両方で表示された画像のそれぞれは、同じ表示領域に表示することができる。
続いて、第1の表示パネルおよび第2の表示パネルに用いることのできるトランジスタについて説明する。第1の表示パネルの画素12aに設けられるトランジスタと、第2の表示パネルの画素12bに設けられるトランジスタとは、同じ構成のトランジスタであってもよいし、それぞれ異なるトランジスタであってもよい。
トランジスタの構成としては、例えばボトムゲート構造のトランジスタが挙げられる。ボトムゲート構造のトランジスタは、半導体層よりも下側(被形成面側)にゲート電極を有する。また、例えばソース電極およびドレイン電極が、半導体層の上面および側端部に接して設けられていることを特徴とする。
また、トランジスタの他の構成としては、例えばトップゲート構造のトランジスタが挙げられる。トップゲート構造のトランジスタは、半導体層よりも上側(被形成面側とは反対側)にゲート電極を有する。また、例えば第1のソース電極および第1のドレイン電極が、半導体層の上面の一部および側端部を覆う絶縁層上に設けられ、かつ当該絶縁層に設けられた開口を介して半導体層と電気的に接続されることを特徴とする。
また、トランジスタとして、半導体層を挟んで対向して設けられる第1のゲート電極および第2のゲート電極を有していることが好ましい。
以下では、本発明の一態様の表示装置のより具体的な例について、図面を参照して説明する。
[構成例1]
図9に、表示装置10の断面概略図を示す。表示装置10は、表示パネル100と表示パネル200とが接着層50によって貼り合わされた構成を有する。また、表示装置10は、裏側(視認側とは反対側)に基板611と、表側(視認側)に基板612と、を有する。
図9に、表示装置10の断面概略図を示す。表示装置10は、表示パネル100と表示パネル200とが接着層50によって貼り合わされた構成を有する。また、表示装置10は、裏側(視認側とは反対側)に基板611と、表側(視認側)に基板612と、を有する。
表示パネル100は、樹脂層101と樹脂層102との間に、トランジスタ110と、発光素子120と、を有する。表示パネル200は、樹脂層201と樹脂層202との間にトランジスタ210と、液晶素子220と、を有する。樹脂層101は、接着層51を介して基板611と貼り合わされている。また樹脂層202は、接着層52を介して基板612と貼り合わされている。
また、樹脂層102、樹脂層201、および樹脂層202は、それぞれ開口部が設けられている。図9に示す領域81は、発光素子120と重なる領域であって、かつ樹脂層102の開口部、樹脂層201の開口部、および樹脂層202の開口部と重なる領域である。
〔表示パネル100〕
樹脂層101には、トランジスタ110、発光素子120、絶縁層131、絶縁層132、絶縁層133、絶縁層134、絶縁層135等が設けられている。また、樹脂層102には、遮光層153、および着色層152等が設けられている。樹脂層101と樹脂層102とは、接着層151により接着されている。
樹脂層101には、トランジスタ110、発光素子120、絶縁層131、絶縁層132、絶縁層133、絶縁層134、絶縁層135等が設けられている。また、樹脂層102には、遮光層153、および着色層152等が設けられている。樹脂層101と樹脂層102とは、接着層151により接着されている。
トランジスタ110は、絶縁層131上に設けられ、ゲート電極として機能する導電層111と、ゲート絶縁層として機能する絶縁層132の一部と、半導体層112と、ソース電極またはドレイン電極の一方として機能する導電層113aと、ソース電極またはドレイン電極の他方として機能する導電層113bと、を有する。
半導体層112は、金属酸化物を含むことが好ましい。
絶縁層133および絶縁層134は、トランジスタ110を覆って設けられている。絶縁層134は、平坦化層として機能する。
発光素子120は、導電層121と、EL層122と、導電層123と、が積層された構成を有する。導電層121は可視光を反射する機能を有し、導電層123は、可視光を透過する機能を有する。したがって、発光素子120は、被形成面側とは反対側に光を射出する上面射出型(トップエミッション型ともいう)の発光素子である。
導電層121は、絶縁層134および絶縁層133に設けられた開口を介して導電層113bと電気的に接続されている。絶縁層135は、導電層121の端部を覆い、かつ導電層121の上面が露出するように開口が設けられている。EL層122および導電層123は、絶縁層135および導電層121の露出した部分を覆って、順に設けられている。
樹脂層102の樹脂層101側には、絶縁層141が設けられている。また絶縁層141の樹脂層101側には、遮光層153と、着色層152とが設けられている。着色層152は、発光素子120と重なる領域に設けられている。遮光層153は、発光素子120と重なる部分に開口を有する。
絶縁層141は、樹脂層102の開口部を覆って設けられている。また絶縁層141の樹脂層102の開口部と重なる部分は、接着層50と接している。
〔表示パネル200〕
樹脂層201には、トランジスタ210、導電層221、配向膜224a、絶縁層231、絶縁層232、絶縁層233、絶縁層234等が設けられている。また、樹脂層202には、絶縁層204、導電層223、配向膜224b等が設けられている。また配向膜224aと配向膜224bとの間に液晶222が挟持されている。樹脂層201と樹脂層202とは、図示しない領域で接着層により接着されている。
樹脂層201には、トランジスタ210、導電層221、配向膜224a、絶縁層231、絶縁層232、絶縁層233、絶縁層234等が設けられている。また、樹脂層202には、絶縁層204、導電層223、配向膜224b等が設けられている。また配向膜224aと配向膜224bとの間に液晶222が挟持されている。樹脂層201と樹脂層202とは、図示しない領域で接着層により接着されている。
トランジスタ210は、絶縁層231上に設けられ、ゲート電極として機能する導電層211と、ゲート絶縁層として機能する絶縁層232の一部と、半導体層212と、ソース電極またはドレイン電極の一方として機能する導電層213aと、ソース電極またはドレイン電極の他方として機能する導電層213bと、を有する。
半導体層212は、金属酸化物を含むことが好ましい。
絶縁層233および絶縁層234は、トランジスタ210を覆って設けられている。絶縁層234は、平坦化層として機能する。
液晶素子220は、導電層221と、導電層223と、これらの間に位置する液晶222と、により構成されている。導電層221は可視光を反射する機能を有し、導電層223は、可視光を透過する機能を有する。したがって、図9に示す構成の液晶素子220は反射型の液晶素子とすることができる。なお、導電層221を、可視光を透過する機能を有する導電層とする場合、液晶素子220は透過型の液晶素子とすることができる。
導電層211は、絶縁層234および絶縁層233に設けられた開口を介して導電層213bと電気的に接続されている。配向膜224aは、導電層211および絶縁層234の表面を覆って設けられている。
樹脂層202の樹脂層201側には、導電層223と配向膜224bとが積層されて設けられている。なお、樹脂層202と導電層223との間に絶縁層204が設けられている。また、液晶素子220の反射光を着色するための着色層を設けてもよい。
絶縁層231は、樹脂層201の開口部を覆って設けられている。また、絶縁層231の樹脂層202の開口部と重なる部分は、接着層50と接して設けられている。また、絶縁層204は、樹脂層202の開口部を覆って設けられている。また、絶縁層204の樹脂層202の開口部と重なる部分は、接着層52と接して設けられている。
〔表示装置10〕
表示装置10は、上面から見たときに、発光素子120が、液晶素子220と重ならない部分を有する。これにより、図9に示すように、発光素子120からは、着色層152によって着色された発光621が、視認側に射出される。また、液晶素子220では、導電層221により外光が反射された反射光622が液晶222を介して射出される。
表示装置10は、上面から見たときに、発光素子120が、液晶素子220と重ならない部分を有する。これにより、図9に示すように、発光素子120からは、着色層152によって着色された発光621が、視認側に射出される。また、液晶素子220では、導電層221により外光が反射された反射光622が液晶222を介して射出される。
発光素子120から射出された発光621は、樹脂層102の開口部、樹脂層201の開口部、および樹脂層202の開口部を通って視認側に射出される。したがって、樹脂層102、樹脂層201、および樹脂層202が可視光の一部を吸収する場合であっても、発光621の光路上にこれら樹脂層が存在しないため、光取り出し効率や、色再現性を高いものとすることができる。
なお、基板612が偏光板、または円偏光板として機能する。または、基板612よりも外側に、偏光板または円偏光板を設けてもよい。
ここでは、表示パネル200が着色層を有さず、カラー表示を行わない構成としているが、樹脂層202側に着色層を設け、カラー表示可能な構成としてもよい。
以上が構成例についての説明である。
[構成例の変形例]
以下では、図9で示した構成例と比較して、一部の構成の異なる構成例について説明する。
以下では、図9で示した構成例と比較して、一部の構成の異なる構成例について説明する。
図9では、発光素子120からの光の経路上に位置する樹脂層に、開口部を設ける構成としたが、液晶素子220における光の経路上に位置する樹脂層にも開口部を設けてもよい。
図10には、領域81に加えて領域82を有する例を示している。領域82は、樹脂層202の開口部、および液晶素子220と重なる領域である。
なお、図10では樹脂層202に、発光素子120および液晶素子220の両方を包含する1つの開口部が設けられている例を示したが、発光素子120と重なる開口部と、液晶素子220と重なる開口部とが別々に設けられた構成としてもよい。
[トランジスタについて]
図9で例示した表示装置10は、トランジスタ110とトランジスタ210の両方に、ボトムゲート構造のトランジスタを適用した場合の例である。
図9で例示した表示装置10は、トランジスタ110とトランジスタ210の両方に、ボトムゲート構造のトランジスタを適用した場合の例である。
トランジスタ110は、ゲート電極として機能する導電層111が、半導体層112よりも被形成面側(樹脂層101側)に位置する。また、絶縁層132が導電層111を覆って設けられている。また半導体層112は、導電層111を覆って設けられている。半導体層112の導電層111と重なる領域が、チャネル形成領域に相当する。また、導電層113aおよび導電層113bは、それぞれ半導体層112の上面および側端部に接して設けられている。
なお、トランジスタ110は、導電層111よりも半導体層112の幅が大きい場合の例を示している。このような構成により、導電層111と導電層113aまたは導電層113bの間に半導体層112が配置されるため、導電層111と導電層113aまたは導電層113bとの間の寄生容量を小さくすることができる。
トランジスタ110は、チャネルエッチ型のトランジスタであり、トランジスタの占有面積を縮小することが比較的容易であるため、高精細な表示装置に好適に用いることができる。
トランジスタ210は、トランジスタ110と共通の特徴を有している。
ここで、トランジスタ110およびトランジスタ210に適用可能な、トランジスタの構成例について説明する。
図11(A)に示したトランジスタ110aは、トランジスタ110と比較して、導電層114および絶縁層136を有する点で相違している。導電層114は、絶縁層133上に設けられ、半導体層112と重なる領域を有する。また絶縁層136は、導電層114および絶縁層133を覆って設けられている。
導電層114は、半導体層112を挟んで導電層111とは反対側に位置している。導電層111を第1のゲート電極とした場合、導電層114は、第2のゲート電極として機能することができる。導電層111と導電層114に同じ電位を与えることで、トランジスタ110aのオン電流を高めることができる。また導電層111および導電層114の一方にしきい値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタ110aのしきい値電圧を制御することができる。
ここで、導電層114として、酸化物を含む導電性材料を用いることが好ましい。これにより、導電層114を構成する導電膜の成膜時に、酸素を含む雰囲気下で成膜することで、絶縁層133に酸素を供給することができる。好適には、成膜ガス中の酸素ガスの割合を90%以上100%以下の範囲とすることが好ましい。絶縁層133に供給された酸素は、後の熱処理により半導体層112に供給され、半導体層112中の酸素欠損の低減を図ることができる。
特に、導電層114には低抵抗化された金属酸化物を用いることが好ましい。このとき、絶縁層136に水素を放出する絶縁膜、例えば窒化シリコン膜等を用いることが好ましい。絶縁層136の成膜中、またはその後の熱処理によって導電層114中に水素が供給され、導電層114の電気抵抗を効果的に低減することができる。
図11(B)に示すトランジスタ110bは、トップゲート構造のトランジスタである。
トランジスタ110bは、ゲート電極として機能する導電層111が、半導体層112よりも上側(被形成面側とは反対側)に設けられている。また、絶縁層131上に半導体層112が形成されている。また半導体層112上には、絶縁層132および導電層111が積層して形成されている。また、絶縁層133は、半導体層112の上面および側端部、絶縁層133の側面、および導電層111を覆って設けられている。導電層113aおよび導電層113bは、絶縁層133上に設けられている。導電層113aおよび導電層113bは、絶縁層133に設けられた開口を介して、半導体層112の上面と電気的に接続されている。
なお、ここでは絶縁層132が、導電層111と重ならない部分に存在しない場合の例を示しているが、絶縁層132が半導体層112の上面および側端部を覆って設けられていてもよい。
トランジスタ110bは、導電層111と導電層113aまたは導電層113bとの物理的な距離を離すことが容易なため、これらの間の寄生容量を低減することが可能である。
図11(C)に示すトランジスタ110cは、トランジスタ110bと比較して、導電層115および絶縁層137を有している点で相違している。導電層115は絶縁層131上に設けられ、半導体層112と重なる領域を有する。また絶縁層137は、導電層115および絶縁層131を覆って設けられている。
導電層115は、上記導電層114と同様に第2のゲート電極として機能する。そのため、オン電流を高めることや、しきい値電圧を制御すること等が可能である。
ここで、表示装置10において、表示パネル100が有するトランジスタと、表示パネル200が有するトランジスタとを、異なるトランジスタで構成してもよい。一例としては、発光素子120と電気的に接続するトランジスタは、比較的大きな電流を流す必要があるためトランジスタ110aやトランジスタ110cを適用し、その他のトランジスタには、トランジスタの占有面積を低減するために、トランジスタ110を適用することができる。
一例として、図12には、図9のトランジスタ210に代えてトランジスタ110aを適用し、トランジスタ110に代えてトランジスタ110cを適用した場合の例を示している。
以上がトランジスタについての説明である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
本実施の形態では、本発明の一態様の表示装置のより具体的な例について、図13乃至図20を用いて説明する。以下で例示する表示装置は、液晶素子と、発光素子の両方を有する表示装置である。
本実施の形態では、本発明の一態様の表示装置のより具体的な例について、図13乃至図20を用いて説明する。以下で例示する表示装置は、液晶素子と、発光素子の両方を有する表示装置である。
実施の形態1で示した画素12は、液晶素子と、発光素子を有する。画素12において、液晶素子と発光素子とは、互いに重なる部分を有する。
図13(A)は、画素12が有する電極311の構成例を示す。電極311は、画素12における液晶素子の反射電極として機能する。また電極311には、開口451が設けられている。
図13(A)には、電極311と重なる領域に位置する発光素子120を破線で示している。発光素子120は、電極311が有する開口451と重ねて配置されている。これにより、発光素子120が発する光は、開口451を介して表示面側に射出される。
図13(A)では、方向Rに隣接する画素12が異なる色に対応する画素である。このとき、図13(A)に示すように、方向Rに隣接する2つの画素において、開口451が一列に配列されないように、電極311の異なる位置に設けられていることが好ましい。これにより、2つの発光素子120を離すことが可能で、発光素子120が発する光が隣接する画素12が有する着色層に入射してしまう現象(クロストークともいう)を抑制することができる。また、隣接する2つの発光素子120を離して配置することができるため、発光素子120のEL層をシャドウマスク等により作り分ける場合であっても、高い精細度の表示装置を実現できる。
また、図13(B)に示すような配列としてもよい。
非開口部の総面積に対する開口451の総面積の比の値が大きすぎると、液晶素子を用いた表示が暗くなってしまう。また、非開口部の総面積に対する開口451の総面積の比の値が小さすぎると、発光素子120を用いた表示が暗くなってしまう。
また、反射電極として機能する電極311に設ける開口451の面積が小さすぎると、発光素子120が射出する光から取り出せる光の効率が低下してしまう。
開口451の形状は、例えば多角形、四角形、楕円形、円形または十字等の形状とすることができる。また、細長い筋状、スリット状、市松模様状の形状としてもよい。また、開口451を隣接する画素に寄せて配置してもよい。好ましくは、開口451を同じ色を表示する他の画素に寄せて配置する。これにより、クロストークを抑制できる。
[回路構成例]
図14は、画素12の構成例を示す回路図である。実施の形態1で示したように、画素12は、画素12aおよび画素12bを有する。画素12aは、スイッチSW1、容量素子C1、液晶素子220(液晶素子220R、液晶素子220G、液晶素子220B、および液晶素子220W)等を有する。画素12bは、スイッチSW2、トランジスタM、容量素子C2、発光素子120(発光素子120R、発光素子120G、発光素子120B、および発光素子120W)等を有する。
図14は、画素12の構成例を示す回路図である。実施の形態1で示したように、画素12は、画素12aおよび画素12bを有する。画素12aは、スイッチSW1、容量素子C1、液晶素子220(液晶素子220R、液晶素子220G、液晶素子220B、および液晶素子220W)等を有する。画素12bは、スイッチSW2、トランジスタM、容量素子C2、発光素子120(発光素子120R、発光素子120G、発光素子120B、および発光素子120W)等を有する。
画素12aには、配線Ga1、配線Ga2、配線CSCOM、配線Sa1、および配線Sa2が電気的に接続されている。画素12bには、配線Gb1、配線Gb2、配線ANO、配線Sb1、および配線Sb2が電気的に接続されている。
また、図14では、液晶素子220R、液晶素子220G、液晶素子220B、および液晶素子220Wと電気的に接続されている配線VCOM1を示している。また、図14では、発光素子120R、発光素子120G、発光素子120B、および発光素子120Wと電気的に接続されている配線VCOM2を示している。
図14では、スイッチSW1およびスイッチSW2に、トランジスタを用いた場合の例を示している。
スイッチSW1は、ゲートが配線Ga1または配線Ga2と接続され、ソースまたはドレインの一方が配線Sa1または配線Sa2と接続され、ソースまたはドレインの他方が容量素子C1の一方の電極、および液晶素子220R、液晶素子220G、液晶素子220B、または液晶素子220Wの一方の電極と接続されている。容量素子C1は、他方の電極が配線CSCOMと接続されている。液晶素子220R、液晶素子220G、液晶素子220B、および液晶素子220Wは、他方の電極が配線VCOM1と接続されている。
またスイッチSW2は、ゲートが配線Gb1または配線Gb2と接続され、ソースまたはドレインの一方が配線Sb1または配線Sb2と接続され、ソースまたはドレインの他方が、容量素子C2の一方の電極、トランジスタMのゲートと接続されている。容量素子C2は、他方の電極がトランジスタMのソースまたはドレインの一方、および配線ANOと接続されている。トランジスタMは、ソースまたはドレインの他方が発光素子120R、発光素子120G、発光素子120B、または発光素子120Wの一方の電極と接続されている。発光素子120R、発光素子120G、発光素子120B、および発光素子120Wは、他方の電極が配線VCOM2と接続されている。
図14では、トランジスタMが半導体を挟む2つのゲートを有し、これらが接続されている例を示している。これにより、トランジスタMが流すことのできる電流を増大させることができる。
配線Ga1および配線Ga2には、スイッチSW1を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM1および配線CSCOMには、所定の電位を与えることができる。配線Sa1および配線Sa2には、液晶素子220R、液晶素子220G、液晶素子220B、および液晶素子220Wが有する液晶の配向状態を制御する信号を与えることができる。図14は、配線Sa1に、液晶素子220Rおよび液晶素子220Bが有する液晶の配向状態を制御する信号を与えることができ、配線Sa2に、液晶素子220Gおよび液晶素子220Wが有する液晶の配向状態を制御する信号を与えることができる場合を示している。
配線Gb1および配線Gb2には、スイッチSW2を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM2および配線ANOには、発光素子120R、発光素子120G、発光素子120Bおよび発光素子120Wが発光する電位差が生じる電位をそれぞれ与えることができる。配線Sb1および配線Sb2には、トランジスタMの導通状態を制御する信号を与えることができる。
図14に示す画素12について、例えば画素12aを用いて画像を表示する場合には、配線Ga1、配線Ga2、配線Sa1、および配線Sa2に与える信号により駆動し、液晶素子220R、液晶素子220G、液晶素子220B、および液晶素子220Wによる光学変調を利用して表示することができる。また、画素12bを用いて画像を表示する場合には、配線Gb1、配線Gb2、配線Sb1、および配線Sb2に与える信号により駆動し、発光素子120R、発光素子120G、発光素子120B、および発光素子120Wを発光させて表示することができる。また画素12aおよび画素12bの両方を用いて画像を表示する場合には、配線Ga1、配線Ga2、配線Gb1、配線Gb2、配線Sa1、配線Sa2、配線Sb1、および配線Sb2、のそれぞれに与える信号により駆動することができる。
図14に示す例では、例えば液晶素子220Rおよび発光素子120Rを、赤色を呈する表示素子とし、液晶素子220Gおよび発光素子120Gを、緑色を呈する表示素子とし、液晶素子220Bおよび発光素子120Bを、青色を呈する表示素子とし、液晶素子220Wおよび発光素子120Wを、白色を呈する表示素子とすることができる。
図14では1つの画素12に、4つの液晶素子220(液晶素子220R、液晶素子220G、液晶素子220B、および液晶素子220W)と4つの発光素子120(発光素子120R、発光素子120G、発光素子120B、および発光素子120W)とを有する例を示したが、これに限られない。図15(A)は、1つの画素12に1つの液晶素子220と4つの発光素子120(発光素子120R、発光素子120G、発光素子120B、および発光素子120W)を有する例を示している。これにより、例えば液晶素子220として白色を呈する反射型の液晶素子を用い、画素12aにより画像を表示する場合、反射率の高い白色の表示を行うことができる。なお、画素12が図15(A)に示す構成である場合、配線Ga2および配線Sa2を省略した構成とすることができる。
また、図15(B)には、図15(A)に示す構成の画素12の構成例を示している。画素12は、電極311が有する開口部と重なる発光素子120Wと、電極311の周囲に配置された発光素子120R、発光素子120G、および発光素子120Bとを有する。発光素子120R、発光素子120G、および発光素子120Bは、発光面積がほぼ同等であることが好ましい。
なお、図14に示す構成の画素12では、液晶素子220Wおよび発光素子120Wを有しない構成としてもよい。また、図15(A)、(B)に示す構成の画素12では、発光素子120Wを有しない構成としてもよい。以上により、1個の画素12の占有面積を減少させることができ、表示装置10により表示される画像の解像度を高めることができる。
また、画素12が有するトランジスタ、容量素子等の各素子の数は、必要に応じて、または適宜変更することができる。また、画素12と電気的に接続されている配線の数は、必要に応じて、または適宜変更することができる。
[表示装置の構成例]
図16は、本発明の一態様の表示装置10の斜視概略図の一例である。表示装置10は、基板351と基板361とが貼り合わされた構成を有する。図16では、基板361を破線で明示している。
図16は、本発明の一態様の表示装置10の斜視概略図の一例である。表示装置10は、基板351と基板361とが貼り合わされた構成を有する。図16では、基板361を破線で明示している。
表示装置10は、実施の形態1で示した表示部11の他、回路部364、配線365、回路部366、配線367等を有する。基板351には、例えば回路部364、配線365、回路部366、配線367および画素電極として機能する電極311等が設けられる。また図16では基板351上にIC373、FPC372、IC375およびFPC374が実装されている例を示している。そのため、図16に示す構成は、表示装置10とIC373、FPC372、IC375およびFPC374を有する表示モジュールと言うこともできる。
回路部364は、例えばゲートドライバとして機能する回路を用いることができる。
配線365は、表示部や回路部364に信号や電力を供給する機能を有する。当該信号や電力は、FPC372を介して外部、またはIC373から配線365に入力される。
また、図16では、COG(Chip On Glass)方式等により、基板351にIC373が設けられている例を示している。IC373は、例えばゲートドライバ、またはソースドライバ等としての機能を有するICを適用できる。なお表示装置10がゲートドライバおよびソースドライバとして機能する回路を備える場合や、ゲートドライバやソースドライバとして機能する回路を外部に設け、FPC372を介して表示装置10を駆動するための信号を入力する場合等では、IC373を設けない構成としてもよい。また、IC373を、COF(Chip On Film)方式等により、FPC372に実装してもよい。
図16には、表示部11の一部の拡大図を示している。表示部11には、複数の表示素子が有する電極311がマトリクス状に配置されている。電極311は、可視光を反射する機能を有し、液晶素子220の反射電極として機能する。
また、図16に示すように、電極311は開口を有する。さらに電極311よりも基板351側に、発光素子120を有する。発光素子120からの光は、電極311の開口を介して基板361側に射出される。
[断面構成例]
図17に、図16で例示した表示装置の、FPC372を含む領域の一部、回路部364を含む領域の一部、表示部11を含む領域の一部、回路部366を含む領域の一部、およびFPC374を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図17に、図16で例示した表示装置の、FPC372を含む領域の一部、回路部364を含む領域の一部、表示部11を含む領域の一部、回路部366を含む領域の一部、およびFPC374を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図17に示す表示装置は、表示パネル100と、表示パネル200とが積層された構成を有する。表示パネル100は、樹脂層101と樹脂層102を有する。表示パネル200は、樹脂層201と樹脂層202を有する。樹脂層102と樹脂層201とは、接着層50によって接着されている。また樹脂層101は、接着層51により基板351と接着されている。また樹脂層202は、接着層52により基板361と接着されている。
〔表示パネル100〕
表示パネル100は、樹脂層101、絶縁層478、複数のトランジスタ、容量素子405、配線407、絶縁層411、絶縁層412、絶縁層413、絶縁層414、絶縁層415、発光素子120、スペーサ416、接着層417、着色層425、遮光層426、絶縁層476、および樹脂層102を有する。
表示パネル100は、樹脂層101、絶縁層478、複数のトランジスタ、容量素子405、配線407、絶縁層411、絶縁層412、絶縁層413、絶縁層414、絶縁層415、発光素子120、スペーサ416、接着層417、着色層425、遮光層426、絶縁層476、および樹脂層102を有する。
樹脂層102は、発光素子120と重なる領域に開口部を有する。
回路部364はトランジスタ401を有する。表示部11は、トランジスタ402およびトランジスタ403を有する。
各トランジスタは、ゲート、絶縁層411、半導体層、ソース、およびドレインを有する。ゲートと半導体層は、絶縁層411を介して重なる。絶縁層411の一部は、ゲート絶縁層としての機能を有し、他の一部は、容量素子405の誘電体としての機能を有する。トランジスタ402のソースまたはドレインとして機能する導電層は、容量素子405の一方の電極を兼ねる。
図17では、ボトムゲート構造のトランジスタを示す。回路部364と表示部11とで、トランジスタの構造が異なっていてもよい。回路部364および表示部11は、それぞれ、複数の種類のトランジスタを有していてもよい。
容量素子405は、一対の電極と、その間の誘電体とを有する。容量素子405は、トランジスタのゲートと同一の材料、および同一の工程で形成した導電層と、トランジスタのソースおよびドレインと同一の材料、および同一の工程で形成した導電層と、を有する。
絶縁層412、絶縁層413、および絶縁層414は、それぞれ、トランジスタ等を覆って設けられる。トランジスタ等を覆う絶縁層の数は特に限定されない。絶縁層414は、平坦化層としての機能を有する。絶縁層412、絶縁層413、および絶縁層414のうち、少なくとも一層には、水または水素等の不純物が拡散しにくい材料を用いることが好ましい。外部から不純物がトランジスタに拡散することを効果的に抑制することが可能となり、表示装置の信頼性を高めることができる。
絶縁層414として有機材料を用いる場合、表示装置の端部に露出した絶縁層414を通って発光素子120等に表示装置の外部から水分等の不純物が侵入する恐れがある。不純物の侵入により、発光素子120が劣化すると、表示装置の劣化につながる。そのため、図17に示すように、絶縁層414が、表示装置の端部に位置しないことが好ましい。図17の構成では、有機材料を用いた絶縁層が表示装置の端部に位置しないため、発光素子120に不純物が侵入することを抑制できる。
発光素子120は、電極421、EL層422、および電極423を有する。発光素子120は、光学調整層424を有していてもよい。発光素子120は、着色層425側に光を射出する、トップエミッション構造である。
トランジスタ、容量素子、および配線等を、発光素子120の発光領域と重ねて配置することで、表示部11の開口率を高めることができる。
電極421および電極423のうち、一方は、陽極として機能し、他方は、陰極として機能する。電極421および電極423の間に、発光素子120の閾値電圧より高い電圧を印加すると、EL層422に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔はEL層422において再結合し、EL層422に含まれる発光物質が発光する。
電極421は、トランジスタ403のソースまたはドレインと電気的に接続される。これらは、直接接続されてもよいし、他の導電層を介して接続されてもよい。電極421は、画素電極として機能し、発光素子120ごとに設けられている。隣り合う2つの電極421は、絶縁層415によって電気的に絶縁されている。
EL層422は、発光性の物質を含む層である。
電極423は、共通電極として機能し、複数の発光素子120にわたって設けられている。電極423には、定電位が供給される。
発光素子120は、接着層417を介して着色層425と重なる。スペーサ416は、接着層417を介して遮光層426と重なる。図17では、電極423と遮光層426との間に隙間がある場合を示しているが、これらが接していてもよい。図17では、スペーサ416を基板471側に設ける構成を示したが、基板472側(例えば遮光層426よりも基板471側)に設けてもよい。
カラーフィルタ(着色層425)とマイクロキャビティ構造(光学調整層424)との組み合わせにより、表示装置からは、色純度の高い光を取り出すことができる。光学調整層424の膜厚は、各画素の色に応じて変化させる。
着色層425は特定の波長域の光を透過する有色層である。例えば、赤色、緑色、青色、または黄色の波長域の光を透過するカラーフィルタ等を用いることができる。
なお、本発明の一態様は、カラーフィルタ方式に限られず、塗り分け方式、色変換方式、または量子ドット方式等を適用してもよい。
遮光層426は、隣接する着色層425の間に設けられている。遮光層426は隣接する発光素子404からの光を遮光し、隣接する発光素子120間における混色を抑制する。ここで、着色層425の端部を、遮光層426と重なるように設けることにより、光漏れを抑制することができる。遮光層426としては、発光素子120が発する光を遮る材料を用いることができる。なお、遮光層426は、回路部364等の表示部11以外の領域に設けると、導波光等による意図しない光漏れを抑制できるため好ましい。
樹脂層101の一方の表面には絶縁層478が形成されている。また、樹脂層102の一方の表面には絶縁層476が形成されている。絶縁層476および絶縁層478に防湿性の高い膜を用いることが好ましい。一対の防湿性の高い絶縁層の間に発光素子120およびトランジスタ等を配置することで、これらの素子に水等の不純物が侵入することを抑制でき、表示装置の信頼性が高くなるため好ましい。
防湿性の高い絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜等の窒素と珪素を含む膜、および、窒化アルミニウム膜等の窒素とアルミニウムを含む膜等が挙げられる。また、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いてもよい。
例えば、防湿性の高い絶縁膜の水蒸気透過量は、1×10−5[g/(m2・day)]以下、好ましくは1×10−6[g/(m2・day)]以下、より好ましくは1×10−7[g/(m2・day)]以下、さらに好ましくは1×10−8[g/(m2・day)]以下とする。
接続部406は、配線365を有する。配線365は、トランジスタのソースおよびドレインと同一の材料、および同一の工程で形成することができる。接続部406は、回路部364に外部からの信号や電位を伝達する外部入力端子と電気的に接続する。ここでは、外部入力端子としてFPC372を設ける例を示している。接続層419を介してFPC372と接続部406は電気的に接続する。
接続層419としては、様々な異方性導電フィルム(ACF:Anisotropic Conductive Film)および異方性導電ペースト(ACP:Anisotropic Conductive Paste)等を用いることができる。
以上が表示パネル100についての説明である。
〔表示パネル200〕
表示パネル200は、縦電界方式が適用された液晶表示装置である。
表示パネル200は、縦電界方式が適用された液晶表示装置である。
表示パネル200は、樹脂層201、絶縁層578、複数のトランジスタ、容量素子505、配線367、絶縁層511、絶縁層512、絶縁層513、絶縁層514、液晶素子220、配向膜564a、配向膜564b、接着層517、絶縁層576、および樹脂層202を有する。
樹脂層201と樹脂層202とは、接着層517によって貼り合わされている。樹脂層201、樹脂層202、および接着層517に囲まれた領域に、液晶563が封止されている。基板572の外側の面には、偏光板599が位置する。
また樹脂層201には、発光素子120と重なる開口部が設けられている。また、樹脂層202には、液晶素子220および発光素子120と重なる開口部が設けられている。
液晶素子220は、電極311、電極562、および液晶563を有する。電極311は画素電極として機能する。電極562は共通電極として機能する。電極311と電極562との間に生じる電界により、液晶563の配向を制御することができる。液晶563と電極311の間には配向膜564aが設けられている。液晶563と電極562の間には、配向膜564bが設けられている。
樹脂層202には、絶縁層576、電極562、および配向膜564b等が設けられている。
樹脂層201には、電極311、配向膜564a、トランジスタ501、トランジスタ503、容量素子505、接続部506、および配線367等が設けられている。
樹脂層201上には、絶縁層511、絶縁層512、絶縁層513、絶縁層514等の絶縁層が設けられている。
ここで、トランジスタ503のソースまたはドレインのうち、電極311と電気的に接続されていない方の導電層は、信号線の一部として機能してもよい。また、トランジスタ503のゲートとして機能する導電層は、走査線の一部として機能してもよい。
図17では、表示部11の例として、着色層を設けない構成を示している。そのため、液晶素子220は、白黒の階調表示を行う素子である。
図17では、回路部366の例としてトランジスタ501が設けられている例を示している。
各トランジスタを覆う絶縁層512、絶縁層513のうち少なくとも一方は、水や水素等の不純物が拡散しにくい材料を用いることが好ましい。
絶縁層514上には、電極311が設けられている。電極311は、絶縁層514、絶縁層513、絶縁層512等に形成された開口を介して、トランジスタ503のソースまたはドレインの一方と電気的に接続されている。また電極311は、容量素子505の一方の電極と電気的に接続されている。
表示パネル200が反射型の液晶表示装置である場合、電極311に可視光を反射する導電性材料を用い、電極562に可視光を透過する導電性材料を用いる。また、表示パネル200が透過型の液晶表示装置である場合、電極311に可視光を透過する導電性材料を用いる。
可視光を透過する導電性材料としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種を含む材料を用いるとよい。具体的には、酸化インジウム、インジウム錫酸化物(ITO:Indium Tin Oxide)、インジウム亜鉛酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、酸化シリコンを含むインジウム錫酸化物(ITSO)、酸化亜鉛、ガリウムを含む酸化亜鉛等が挙げられる。なお、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば膜状に形成された酸化グラフェンを含む膜を還元して形成することができる。
可視光を反射する導電性材料としては、例えば、アルミニウム、銀、またはこれらの金属材料を含む合金等が挙げられる。そのほか、金、白金、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、もしくはパラジウム等の金属材料、またはこれら金属材料を含む合金を用いることができる。また、上記金属材料または合金に、ランタン、ネオジム、またはゲルマニウム等が添加されていてもよい。アルミニウムとチタンの合金、アルミニウムとニッケルの合金、アルミニウムとネオジムの合金、アルミニウム、ニッケル、およびランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、銀と銅の合金、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)、銀とマグネシウムの合金等の銀を含む合金を用いてもよい。
ここで、偏光板599として直線偏光板を用いてもよいが、円偏光板を用いることもできる。円偏光板としては、例えば直線偏光板と1/4波長位相差板を積層したものを用いることができる。これにより、外光反射を抑制することができる。また、偏光板599の種類に応じて、液晶素子220に用いる液晶素子のセルギャップ、配向、駆動電圧等を調整することで、所望のコントラストが実現されるようにすればよい。
電極562は、樹脂層202の端部に近い部分において、樹脂層201側に設けられた導電層と接続体543により電気的に接続されている。これにより、樹脂層201側に配置されるFPC374やIC等から電極562に電位や信号を供給することができる。
接続体543としては、例えば導電性の粒子を用いることができる。導電性の粒子としては、有機樹脂またはシリカ等の粒子の表面を金属材料で被覆したものを用いることができる。金属材料としてニッケルや金を用いると接触抵抗を低減できるため好ましい。またニッケルをさらに金で被覆する等、2種類以上の金属材料を層状に被覆させた粒子を用いることが好ましい。また接続体543として、弾性変形、または塑性変形する材料を用いることが好ましい。このとき導電性の粒子である接続体543は、図17に示すように上下方向に潰れた形状となる場合がある。こうすることで、接続体543と、これと電気的に接続する導電層との接触面積が増大し、接触抵抗を低減できるほか、接続不良等の不具合の発生を抑制することができる。
接続体543は、接着層517に覆われるように配置することが好ましい。例えば、硬化前の接着層517に接続体543を分散させておけばよい。
樹脂層201の端部に近い領域には、接続部506が設けられている。接続部506は、接続層519を介してFPC374と電気的に接続されている。図17に示す構成では、配線367の一部と、電極311と同一の導電膜を加工して得られた導電層を積層することで接続部506を構成している例を示している。
以上が表示パネル200についての説明である。
[各構成要素について]
以下では、上記に示す各構成要素について説明する。
以下では、上記に示す各構成要素について説明する。
〔基板〕
表示パネルが有する基板には、平坦面を有する材料を用いることができる。表示素子からの光を取り出す側の基板には、該光を透過する材料を用いる。例えば、ガラス、石英、セラミック、サファイヤ、有機樹脂等の材料を用いることができる。
表示パネルが有する基板には、平坦面を有する材料を用いることができる。表示素子からの光を取り出す側の基板には、該光を透過する材料を用いる。例えば、ガラス、石英、セラミック、サファイヤ、有機樹脂等の材料を用いることができる。
厚さの薄い基板を用いることで、表示パネルの軽量化、薄型化を図ることができる。さらに、可撓性を有する程度の厚さの基板を用いることで、可撓性を有する表示パネルを実現できる。
また、発光を取り出さない側の基板は、透光性を有していなくてもよいため、上記に挙げた基板の他に、金属基板等を用いることもできる。金属基板は熱伝導性が高く、基板全体に熱を容易に伝導できるため、表示パネルの局所的な温度上昇を抑制することができ、好ましい。可撓性や曲げ性を得るためには、金属基板の厚さは、10μm以上400μm以下が好ましく、20μm以上50μm以下であることがより好ましい。
金属基板を構成する材料としては、特に限定はないが、例えば、アルミニウム、銅、ニッケル等の金属、もしくはアルミニウム合金またはステンレス等の合金等を好適に用いることができる。
また、金属基板の表面を酸化する、または表面に絶縁膜を形成する等により、絶縁処理が施された基板を用いてもよい。例えば、スピンコート法やディップ法等の塗布法、電着法、蒸着法、またはスパッタリング法等を用いて絶縁膜を形成してもよいし、酸素雰囲気で放置するまたは加熱するほか、陽極酸化法等によって、基板の表面に酸化膜を形成してもよい。
可撓性および可視光に対する透過性を有する材料としては、例えば、可撓性を有する程度の厚さのガラスや、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリ塩化ビニル樹脂、ポリテトラフルオロエチレン(PTFE)樹脂等が挙げられる。特に、熱膨張係数の低い材料を用いることが好ましく、例えば、熱膨張係数が30×10−6/K以下であるポリアミドイミド樹脂、ポリイミド樹脂、PET等を好適に用いることができる。また、ガラス繊維に有機樹脂を含浸した基板や、無機フィラーを有機樹脂に混ぜて熱膨張係数を下げた基板を使用することもできる。このような材料を用いた基板は、重量が軽いため、該基板を用いた表示パネルも軽量にすることができる。
上記材料中に繊維体が含まれている場合、繊維体は有機化合物または無機化合物の高強度繊維を用いる。高強度繊維とは、具体的には引張弾性率またはヤング率の高い繊維のことを言い、代表例としては、ポリビニルアルコール系繊維、ポリエステル系繊維、ポリアミド系繊維、ポリエチレン系繊維、アラミド系繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ガラス繊維、または炭素繊維が挙げられる。ガラス繊維としては、Eガラス、Sガラス、Dガラス、Qガラス等を用いたガラス繊維が挙げられる。これらは、織布または不織布の状態で用い、この繊維体に樹脂を含浸させ樹脂を硬化させた構造物を、可撓性を有する基板として用いてもよい。可撓性を有する基板として、繊維体と樹脂からなる構造物を用いると、曲げや局所的押圧による破損に対する信頼性が向上するため、好ましい。
または、可撓性を有する程度に薄いガラス、金属等を基板に用いることもできる。または、ガラスと樹脂材料とが接着層により貼り合わされた複合材料を用いてもよい。
可撓性を有する基板に、表示パネルの表面を傷等から保護するハードコート層(例えば、窒化シリコン、酸化アルミニウム等)や、押圧を分散可能な材質の層(例えば、アラミド樹脂等)等が積層されていてもよい。また、水分等による表示素子の寿命の低下等を抑制するために、可撓性を有する基板に透水性の低い絶縁膜が積層されていてもよい。例えば、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、窒化アルミニウム等の無機絶縁材料を用いることができる。
基板は、複数の層を積層して用いることもできる。特に、ガラス層を有する構成とすると、水や酸素に対するバリア性を向上させ、信頼性の高い表示パネルとすることができる。
〔トランジスタ〕
トランジスタは、ゲート電極として機能する導電層と、半導体層と、ソース電極として機能する導電層と、ドレイン電極として機能する導電層と、ゲート絶縁層として機能する絶縁層と、を有する。上記では、ボトムゲート構造のトランジスタを適用した場合を示している。
トランジスタは、ゲート電極として機能する導電層と、半導体層と、ソース電極として機能する導電層と、ドレイン電極として機能する導電層と、ゲート絶縁層として機能する絶縁層と、を有する。上記では、ボトムゲート構造のトランジスタを適用した場合を示している。
なお、本発明の一態様の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
また、トランジスタに用いる半導体材料としては、金属酸化物を用いることができる。代表的には、インジウムを含む金属酸化物等を適用できる。
特にシリコンよりもバンドギャップが広く、かつキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態における電流を低減できるため好ましい。
また、シリコンよりもバンドギャップの大きな金属酸化物を用いたトランジスタは、その低いオフ電流により、トランジスタと直列に接続された容量素子に蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画素に適用することで、各画素の階調を維持しつつ、駆動回路を停止することも可能となる。その結果、極めて消費電力の低減された表示装置を実現できる。
半導体層は、例えば少なくともインジウム、亜鉛およびM(ガリウム、アルミニウム、シリコン、チタン、ゲルマニウム、ホウ素、イットリウム、銅、バナジウム、ベリリウム、鉄、ニッケル、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウム等の金属)を含むIn−M−Zn系酸化物で表記される膜を含むことが好ましい。また、該金属酸化物を用いたトランジスタの電気特性のばらつきを減らすため、それらと共に、スタビライザーを含むことが好ましい。
スタビライザーとしては、上記Mで記載の金属を含め、例えば、ランタノイドである、プラセオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム等がある。
半導体層を構成する金属酸化物として、例えば、In−Ga−Zn系酸化物、In−Al−Zn系酸化物、In−Si−Zn系酸化物、In−Ti−Zn系酸化物、In−Ge−Zn系酸化物、In−B−Zn系酸化物、In−Y−Zn系酸化物、In−Cu−Zn系酸化物、In−V−Zn系酸化物、In−Be−Zn系酸化物、In−Fe−Zn系酸化物、In−Ni−Zn系酸化物、In−Zr−Zn系酸化物、In−Mo−Zn系酸化物、In−Ta−Zn系酸化物、In−W−Zn系酸化物、In−Mg−Zn系酸化物、In−Sn−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、In−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。
なお、ここで、In−Ga−Zn系酸化物とは、InとGaとZnを主成分として有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外の金属元素が入っていてもよい。
また、半導体層と導電層は、上記酸化物のうち同一の金属元素を有していてもよい。半導体層と導電層を同一の金属元素とすることで、製造コストを低減させることができる。例えば、同一の金属組成の金属酸化物ターゲットを用いることで、製造コストを低減させることができる。また半導体層と導電層を加工する際のエッチングガスまたはエッチング液を共通して用いることができる。ただし、半導体層と導電層は、同一の金属元素を有していても、組成が異なる場合がある。例えば、トランジスタおよび容量素子の作製工程中に、膜中の金属元素が脱離し、異なる金属組成となる場合がある。
半導体層を構成する金属酸化物は、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上であることが好ましい。このように、エネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
半導体層を構成する金属酸化物がIn−M−Zn系酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8等が好ましい。なお、成膜される半導体層の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
本実施の形態で例示したボトムゲート構造のトランジスタは、作製工程を削減できるため好ましい。またこのとき金属酸化物を用いることで、多結晶シリコンよりも低温で形成できる、半導体層よりも下層の配線や電極の材料、基板の材料として、耐熱性の低い材料を用いることが可能なため、材料の選択の幅を広げることができる。例えば、極めて大面積のガラス基板等を好適に用いることができる。
〔導電層〕
トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配線および電極等の導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステン等の金属、またはこれを主成分とする合金等が挙げられる。またこれらの材料を含む膜を単層で、または積層構造として用いることができる。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛等の酸化物を用いてもよい。また、マンガンを含む銅を用いると、エッチングによる形状の制御性が高まるため好ましい。
トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配線および電極等の導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステン等の金属、またはこれを主成分とする合金等が挙げられる。またこれらの材料を含む膜を単層で、または積層構造として用いることができる。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛等の酸化物を用いてもよい。また、マンガンを含む銅を用いると、エッチングによる形状の制御性が高まるため好ましい。
また、透光性を有する導電性材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛等の導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、またはチタン等の金属材料や、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)等を用いてもよい。なお、金属材料、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすればよい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜等を用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線および電極等の導電層や、表示素子が有する導電層(画素電極や共通電極として機能する導電層)にも用いることができる。
〔絶縁層〕
各絶縁層に用いることのできる絶縁材料としては、例えば、ポリイミド、アクリル、エポキシ、シリコーン樹脂等の他、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム等の無機絶縁材料を用いることもできる。
各絶縁層に用いることのできる絶縁材料としては、例えば、ポリイミド、アクリル、エポキシ、シリコーン樹脂等の他、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム等の無機絶縁材料を用いることもできる。
また発光素子は、一対の透水性の低い絶縁膜の間に設けられていることが好ましい。これにより、発光素子に水等の不純物が侵入することを抑制でき、装置の信頼性の低下を抑制できる。
透水性の低い絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜等の窒素と珪素を含む膜や、窒化アルミニウム膜等の窒素とアルミニウムを含む膜等が挙げられる。また、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いてもよい。
例えば、透水性の低い絶縁膜の水蒸気透過量は、1×10−5[g/(m2・day)]以下、好ましくは1×10−6[g/(m2・day)]以下、より好ましくは1×10−7[g/(m2・day)]以下、さらに好ましくは1×10−8[g/(m2・day)]以下とする。
〔表示素子について〕
画素12aが有する表示素子には、例えば外光を反射して表示する素子を用いることができる。このような素子は、光源を持たないため、表示の際の消費電力を極めて小さくすることが可能となる。画素12aが有する表示素子には、代表的には反射型の液晶素子を用いることができる。または、画素12aが有する表示素子として、シャッター方式のMEMS(Micro Electro Mechanical System)素子、光干渉方式のMEMS素子の他、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、電子粉流体(登録商標)方式等を適用した素子等を用いることができる。
画素12aが有する表示素子には、例えば外光を反射して表示する素子を用いることができる。このような素子は、光源を持たないため、表示の際の消費電力を極めて小さくすることが可能となる。画素12aが有する表示素子には、代表的には反射型の液晶素子を用いることができる。または、画素12aが有する表示素子として、シャッター方式のMEMS(Micro Electro Mechanical System)素子、光干渉方式のMEMS素子の他、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、電子粉流体(登録商標)方式等を適用した素子等を用いることができる。
また、画素12bが有する表示素子は光源を有し、その光源からの光を利用して表示する素子を用いることができる。このような画素が射出する光は、前述のようにその輝度や色度が外光に左右されることがないため、色再現性が高く(色域が広く)、かつコントラストの高い、つまり高品位な表示を行うことができる。画素12bが有する表示素子には、前述のように例えばOLED、LED、QLED、IEL、半導体レーザ等の自発光性の発光素子を用いることができる。または、画素12bが有する表示素子として、光源であるバックライトと、バックライトからの光の透過光の光量を制御する透過型の液晶素子とを組み合わせたものを用いてもよい。
〔液晶素子〕
液晶素子としては、例えば垂直配向(VA:Vertical Alignment)モードが適用された液晶素子を用いることができる。垂直配向モードとしては、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モード等を用いることができる。
液晶素子としては、例えば垂直配向(VA:Vertical Alignment)モードが適用された液晶素子を用いることができる。垂直配向モードとしては、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モード等を用いることができる。
また、液晶素子には、様々なモードが適用された液晶素子を用いることができる。例えばVAモードのほかに、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード等が適用された液晶素子を用いることができる。
なお、液晶素子は、液晶の光学的変調作用によって光の透過または非透過を制御する素子である。なお、液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界または斜め方向の電界を含む)によって制御される。なお、液晶素子に用いる液晶としては、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
また、液晶材料としては、ポジ型の液晶、またはネガ型の液晶のいずれを用いてもよく、適用するモードや設計に応じて最適な液晶材料を用いればよい。
また、液晶の配向を制御するため、配向膜を設けることができる。なお、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性である。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。
本発明の一態様では、特に反射型の液晶素子を用いることができる。なお、透過型の液晶素子または半透過型の液晶素子等を用いてもよい。
反射型の液晶素子を用いる場合には、表示面側に偏光板を設ける。またこれとは別に、表示面側に光拡散板を配置すると、視認性を向上させられるため好ましい。
〔発光素子〕
発光素子としては、前述のように自発光が可能な素子を用いることができ、電流または電圧によって輝度が制御される素子をその範疇に含んでいる。
発光素子としては、前述のように自発光が可能な素子を用いることができ、電流または電圧によって輝度が制御される素子をその範疇に含んでいる。
本発明の一態様では、特に発光素子は、トップエミッション型の発光素子を用いることが好ましい。光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
発光素子がOLEDおよびIEL等のEL層を有する素子である場合、当該EL層は少なくとも発光層を有する。EL層は、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性および正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
EL層には低分子系化合物および高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。EL層を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
陰極と陽極の間に、発光素子の閾値電圧より高い電圧を印加すると、EL層に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔はEL層において再結合し、EL層に含まれる発光物質が発光する。
発光素子として、白色発光の発光素子を適用する場合には、EL層に2種類以上の発光物質を含む構成とすることが好ましい。例えば2以上の発光物質の各々の発光が補色の関係となるように、発光物質を選択することにより白色発光を得ることができる。例えば、それぞれR(赤)、G(緑)、B(青)、Y(黄)、O(橙)等の発光を示す発光物質、またはR、G、Bのうち2以上の色のスペクトル成分を含む発光を示す発光物質のうち、2以上を含むことが好ましい。また、発光素子からの発光のスペクトルが、可視光領域の波長(例えば350nm以上750nm以下)の範囲内に2以上のピークを有する発光素子を適用することが好ましい。また、黄色の波長領域にピークを有する材料の発光スペクトルは、緑色および赤色の波長領域にもスペクトル成分を有する材料であることが好ましい。
EL層は、一の色を発光する発光材料を含む発光層と、他の色を発光する発光材料を含む発光層とが積層された構成とすることが好ましい。例えば、EL層における複数の発光層は、互いに接して積層されていてもよいし、いずれの発光材料も含まない領域を介して積層されていてもよい。例えば、蛍光発光層と燐光発光層との間に、当該蛍光発光層または燐光発光層と同一の材料(例えばホスト材料、アシスト材料)を含み、かついずれの発光材料も含まない領域を設ける構成としてもよい。これにより、発光素子の作製が容易になり、また、駆動電圧が低減される。
また、発光素子は、EL層を1つ有するシングル素子であってもよいし、複数のEL層が電荷発生層を介して積層されたタンデム素子であってもよい。
なお、上述した、発光層、ならびに正孔注入性の高い物質、正孔輸送性の高い物質、電子輸送性の高い物質、および電子注入性の高い物質、バイポーラ性の物質等を含む層は、それぞれ量子ドット等の無機化合物や、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を有していてもよい。例えば、量子ドットを発光層に用いることで、発光材料として機能させることもできる。量子ドットを発光層に用いた発光素子をQLEDと呼ぶ。
なお、量子ドットは、数nmサイズの半導体ナノ結晶であり、1×103個から1×106個程度の原子から構成されている。量子ドットはサイズに依存してエネルギーシフトするため、同じ物質から構成される量子ドットであっても、サイズによって発光波長が異なり、用いる量子ドットのサイズを変更することによって容易に発光波長を調整することができる。
また、量子ドットは、発光スペクトルのピーク幅が狭いため、色純度のよい発光を得ることができる。さらに、量子ドットの理論的な外部量子効率はほぼ100%であると言われており、蛍光発光を呈する有機化合物の25%を大きく上回り、燐光発光を呈する有機化合物と同等となっている。このことから、量子ドットを発光材料として用いることによって発光効率の高い発光素子を得ることができる。その上、無機化合物である量子ドットはその本質的な安定性にも優れているため、寿命の観点からも好ましい発光素子を得ることができる。
量子ドットを構成する材料としては、周期表第14族元素、周期表第15族元素、周期表第16族元素、複数の周期表第14族元素からなる化合物、周期表第4族から周期表第14族に属する元素と周期表第16族元素との化合物、周期表第2族元素と周期表第16族元素との化合物、周期表第13族元素と周期表第15族元素との化合物、周期表第13族元素と周期表第17族元素との化合物、周期表第14族元素と周期表第15族元素との化合物、周期表第11族元素と周期表第17族元素との化合物、酸化鉄類、酸化チタン類、カルコゲナイドスピネル類、各種半導体クラスター等を挙げることができる。
具体的には、セレン化カドミウム、硫化カドミウム、テルル化カドミウム、セレン化亜鉛、酸化亜鉛、硫化亜鉛、テルル化亜鉛、硫化水銀、セレン化水銀、テルル化水銀、砒化インジウム、リン化インジウム、砒化ガリウム、リン化ガリウム、窒化インジウム、窒化ガリウム、アンチモン化インジウム、アンチモン化ガリウム、リン化アルミニウム、砒化アルミニウム、アンチモン化アルミニウム、セレン化鉛、テルル化鉛、硫化鉛、セレン化インジウム、テルル化インジウム、硫化インジウム、セレン化ガリウム、硫化砒素、セレン化砒素、テルル化砒素、硫化アンチモン、セレン化アンチモン、テルル化アンチモン、硫化ビスマス、セレン化ビスマス、テルル化ビスマス、ケイ素、炭化ケイ素、ゲルマニウム、錫、セレン、テルル、ホウ素、炭素、リン、窒化ホウ素、リン化ホウ素、砒化ホウ素、窒化アルミニウム、硫化アルミニウム、硫化バリウム、セレン化バリウム、テルル化バリウム、硫化カルシウム、セレン化カルシウム、テルル化カルシウム、硫化ベリリウム、セレン化ベリリウム、テルル化ベリリウム、硫化マグネシウム、セレン化マグネシウム、硫化ゲルマニウム、セレン化ゲルマニウム、テルル化ゲルマニウム、硫化錫、セレン化錫、テルル化錫、酸化鉛、フッ化銅、塩化銅、臭化銅、ヨウ化銅、酸化銅、セレン化銅、酸化ニッケル、酸化コバルト、硫化コバルト、四酸化三鉄、硫化鉄、酸化マンガン、硫化モリブデン、酸化バナジウム、酸化タングステン、酸化タンタル、酸化チタン、酸化ジルコニウム、窒化ケイ素、窒化ゲルマニウム、酸化アルミニウム、チタン酸バリウム、セレンと亜鉛とカドミウムの化合物、インジウムと砒素とリンの化合物、カドミウムとセレンと硫黄の化合物、カドミウムとセレンとテルルの化合物、インジウムとガリウムと砒素の化合物、インジウムとガリウムとセレンの化合物、インジウムとセレンと硫黄の化合物、銅とインジウムと硫黄の化合物およびこれらの組合せ等を挙げることができるが、これらに限定されるものではない。また、組成が任意の比率で表される、いわゆる合金型量子ドットを用いても良い。例えば、カドミウムとセレンと硫黄の合金型量子ドットは、元素の含有比率を変化させることで発光波長を変えることができるため、青色発光を得るには有効な手段の一つである。
量子ドットの構造としては、コア型、コア−シェル型、コア−マルチシェル型等があり、そのいずれを用いても良いが、コアを覆ってより広いバンドギャップを持つ別の無機材料でシェルを形成することによって、ナノ結晶表面に存在する欠陥やダングリングボンドの影響を低減することができる。これにより、発光の量子効率が大きく改善するためコア−シェル型やコア−マルチシェル型の量子ドットを用いることが好ましい。シェルの材料の例としては、硫化亜鉛や酸化亜鉛が挙げられる。
また、量子ドットは、表面原子の割合が高いことから、反応性が高く、凝集が起こりやすい。そのため、量子ドットの表面には保護剤が付着しているまたは保護基が設けられていることが好ましい。当該保護剤が付着しているまたは保護基が設けられていることによって、凝集を防ぎ、溶媒への溶解性を高めることができる。また、反応性を低減させ、電気的安定性を向上させることも可能である。保護剤(または保護基)としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン類、ポリオキシエチレンn−オクチルフェニルエーテル、ポリオキシエチレンn−ノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類、トリ(n−ヘキシル)アミン、トリ(n−オクチル)アミン、トリ(n−デシル)アミン等の第3級アミン類、トリプロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリデシルホスフィンオキシド等の有機リン化合物、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジエステル類、また、ピリジン、ルチジン、コリジン、キノリン類等の含窒素芳香族化合物等の有機窒素化合物、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン等のアミノアルカン類、ジブチルスルフィド等のジアルキルスルフィド類、ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類、チオフェン等の含硫黄芳香族化合物等の有機硫黄化合物、パルミチン酸、ステアリン酸、オレイン酸等の高級脂肪酸、アルコール類、ソルビタン脂肪酸エステル類、脂肪酸変性ポリエステル類、3級アミン変性ポリウレタン類、ポリエチレンイミン類等が挙げられる。
量子ドットは、サイズが小さくなるに従いバンドギャップが大きくなるため、所望の波長の光が得られるようにそのサイズを適宜調節する。結晶サイズが小さくなるにつれて、量子ドットの発光は青色側へ、つまり、高エネルギー側へとシフトするため、量子ドットのサイズを変化させることにより、紫外領域、可視領域、赤外領域のスペクトルの波長領域にわたって、その発光波長を調節することができる。量子ドットのサイズ(直径)は0.5nm乃至20nm、好ましくは1nm乃至10nmの範囲のものが通常良く用いられる。なお、量子ドットはそのサイズ分布が狭いほど、より発光スペクトルが狭線化し、色純度の良好な発光を得ることができる。また、量子ドットの形状は特に限定されず、球状、棒状、円盤状、その他の形状であってもよい。なお、棒状の量子ドットである量子ロッドはc軸方向に偏光した指向性を有する光を呈するため、量子ロッドを発光材料として用いることにより、より外部量子効率が良好な発光素子を得ることができる。
また、EL素子では多くの場合、発光材料をホスト材料に分散することによって発光効率を高めるが、ホスト材料は発光材料以上の一重項励起エネルギーまたは三重項励起エネルギーを有する物質であることが必要である。特に青色の燐光材料を用いる場合においては、それ以上の三重項励起エネルギーを有する材料であり、且つ、寿命の観点で優れたホスト材料の開発は困難を極めている。一方で、量子ドットはホスト材料を用いずに量子ドットのみで発光層を構成しても発光効率を保つことができるため、この点でも寿命という観点から好ましい発光素子を得ることができる。量子ドットのみで発光層を形成する場合には、量子ドットはコア−シェル構造(コア−マルチシェル構造を含む)であることが好ましい。
可視光を透過する導電膜は、例えば、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛等を用いて形成することができる。また、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、もしくはチタン等の金属材料、これら金属材料を含む合金、またはこれら金属材料の窒化物(例えば、窒化チタン)等も、透光性を有する程度に薄く形成することで用いることができる。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウム錫酸化物の積層膜等を用いると、導電性を高めることができるため好ましい。また、グラフェン等を用いてもよい。
可視光を反射する導電膜は、例えば、アルミニウム、金、白金、銀、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、もしくはパラジウム等の金属材料、またはこれら金属材料を含む合金を用いることができる。また、上記金属材料や合金に、ランタン、ネオジム、またはゲルマニウム等が添加されていてもよい。また、チタン、ニッケル、またはネオジムと、アルミニウムを含む合金(アルミニウム合金)を用いてもよい。また銅、パラジウム、またはマグネシウムと、銀を含む合金を用いてもよい。銀と銅を含む合金は、耐熱性が高いため好ましい。さらに、アルミニウム膜またはアルミニウム合金膜に接して金属膜または金属酸化物膜を積層することで、酸化を抑制することができる。このような金属膜、金属酸化物膜の材料としては、チタンや酸化チタン等が挙げられる。また、上記可視光を透過する導電膜と金属材料からなる膜とを積層してもよい。例えば、銀とインジウム錫酸化物の積層膜、銀とマグネシウムの合金とインジウム錫酸化物の積層膜等を用いることができる。
電極は、それぞれ、蒸着法やスパッタリング法を用いて形成すればよい。そのほか、インクジェット法等の吐出法、スクリーン印刷法等の印刷法、またはメッキ法を用いて形成することができる。
〔接着層〕
接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤等の各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤等の各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
また、上記樹脂に乾燥剤を含んでいてもよい。例えば、アルカリ土類金属の酸化物(酸化カルシウムや酸化バリウム等)のように、化学吸着によって水分を吸着する物質を用いることができる。または、ゼオライトやシリカゲル等のように、物理吸着によって水分を吸着する物質を用いてもよい。乾燥剤が含まれていると、水分等の不純物が素子に侵入することを抑制でき、表示パネルの信頼性が向上するため好ましい。
また、上記樹脂に屈折率の高いフィラーや光散乱部材を混合することにより、光取り出し効率を向上させることができる。例えば、酸化チタン、酸化バリウム、ゼオライト、ジルコニウム等を用いることができる。
〔接続層〕
接続層としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)や、異方性導電ペースト(ACP:Anisotropic Conductive Paste)等を用いることができる。
接続層としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)や、異方性導電ペースト(ACP:Anisotropic Conductive Paste)等を用いることができる。
〔着色層〕
着色層に用いることのできる材料としては、金属材料、樹脂材料、顔料または染料が含まれた樹脂材料等が挙げられる。
着色層に用いることのできる材料としては、金属材料、樹脂材料、顔料または染料が含まれた樹脂材料等が挙げられる。
〔遮光層〕
遮光層として用いることのできる材料としては、カーボンブラック、チタンブラック、金属、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等が挙げられる。遮光層は、樹脂材料を含む膜であってもよいし、金属等の無機材料の薄膜であってもよい。また、遮光層に、着色層の材料を含む膜の積層膜を用いることもできる。例えば、ある色の光を透過する着色層に用いる材料を含む膜と、他の色の光を透過する着色層に用いる材料を含む膜との積層構造を用いることができる。着色層と遮光層の材料を共通化することで、装置を共通化できるほか工程を簡略化できるため好ましい。
遮光層として用いることのできる材料としては、カーボンブラック、チタンブラック、金属、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等が挙げられる。遮光層は、樹脂材料を含む膜であってもよいし、金属等の無機材料の薄膜であってもよい。また、遮光層に、着色層の材料を含む膜の積層膜を用いることもできる。例えば、ある色の光を透過する着色層に用いる材料を含む膜と、他の色の光を透過する着色層に用いる材料を含む膜との積層構造を用いることができる。着色層と遮光層の材料を共通化することで、装置を共通化できるほか工程を簡略化できるため好ましい。
以上が各構成要素についての説明である。
[変形例]
以下では、上記断面構成例で例示した表示装置とは一部の構成の異なる例を説明する。なお、上記と重複する部分については説明を省略し、相違点のみ説明する。
以下では、上記断面構成例で例示した表示装置とは一部の構成の異なる例を説明する。なお、上記と重複する部分については説明を省略し、相違点のみ説明する。
〔断面構成例の変形例1〕
図18は、図17と比較してトランジスタの構成および樹脂層202の構成が異なる点、ならびに着色層565、遮光層566、および絶縁層567を有する点で相違している。
図18は、図17と比較してトランジスタの構成および樹脂層202の構成が異なる点、ならびに着色層565、遮光層566、および絶縁層567を有する点で相違している。
図18に示すトランジスタ401、トランジスタ403、トランジスタ501は、第2のゲート電極を有する。このように、回路部364や回路部366に設けるトランジスタ、および発光素子120に流れる電流を制御するトランジスタに、一対のゲートを有するトランジスタを適用することが好ましい。
樹脂層202は、液晶素子220と重なる開口部と、発光素子120と重なる開口部とが、別々に設けられている。これにより、液晶素子220の反射率を向上させることができる。
また、絶縁層576の液晶素子220側の面には、遮光層566と、着色層565が設けられている。着色層565は、液晶素子220と重ねて設けられている。これにより、表示パネル200はカラー表示を行うことができる。また、遮光層566は、液晶素子220と重なる開口部と、発光素子120と重なる開口部を有する。これにより、隣接画素間の混色を抑制し、色再現性の高い表示装置を実現できる。
〔断面構成例の変形例2〕
図19は、各トランジスタにトップゲート型のトランジスタを適用した場合の例である。このように、トップゲート型のトランジスタを適用することにより、寄生容量が低減できるため、表示のフレーム周波数を高めることができる。また、例えば8インチ以上の大型の表示パネルに好適に用いることができる。
図19は、各トランジスタにトップゲート型のトランジスタを適用した場合の例である。このように、トップゲート型のトランジスタを適用することにより、寄生容量が低減できるため、表示のフレーム周波数を高めることができる。また、例えば8インチ以上の大型の表示パネルに好適に用いることができる。
〔断面構成例の変形例3〕
図20は、各トランジスタに第2のゲート電極を有するトップゲート型のトランジスタを適用した場合の例を示している。
図20は、各トランジスタに第2のゲート電極を有するトップゲート型のトランジスタを適用した場合の例を示している。
各トランジスタは、樹脂層101または樹脂層201上に接して、導電層591を有する。また導電層591を覆って絶縁層578が設けられている。
また、表示パネル200の接続部506において、樹脂層201の一部が開口され、当該開口を埋めるように導電層592が設けられている。導電層592は、その裏面側(表示パネル100側)の表面が露出するように設けられている。導電層592は、配線367と電気的に接続されている。FPC374は、導電層592の露出した表面と、接続層519を介して電気的に接続されている。導電層592は導電層591と同一の導電膜を加工して形成することができる。導電層592は、裏面電極とも呼ぶことのできる電極として機能する。
このような構成は、樹脂層201に感光性の有機樹脂を用いることにより実現することができる。例えば、支持基板上に樹脂層201を形成する際に、樹脂層201に開口部を形成し、当該開口を埋めるように導電層592を形成する。そして樹脂層201と支持基板とを剥離する際、導電層592と支持基板とも同時に剥離されることにより、図20に示すような導電層592を形成することができる。例えば、光吸収層を用いた方法や、または凹部を有する樹脂層または2層構造の樹脂層を形成した後に導電層592の裏面が露出するように樹脂層の一部をエッチングする方法等を用いることができる。
このような構成とすることで、表示面側に位置する表示パネル200に接続するFPC374を、表示面とは反対側に配置することができる。そのため、表示装置を電子機器に組み込む際に、FPC374を折り曲げるためのスペースを省くことができ、より小型化した電子機器を実現できる。
以上が変形例についての説明である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
[CAC−OSの構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
[CAC−OSの構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2OZ2(X2、Y2、およびZ2は0よりも大きい実数)とする。)などと、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4OZ4(X4、Y4、およびZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2OZ2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2OZ2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO3(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)O3(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。
一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC−OSにおいて、結晶構造は副次的な要素である。
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
なお、GaOX3が主成分である領域と、InX2ZnY2OZ2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。
CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。
またCAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。
また例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2OZ2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。
CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2OZ2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2OZ2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2OZ2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。従って、InX2ZnY2OZ2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2OZ2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
従って、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2OZ2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。
また、CAC−OSを用いた半導体素子は、信頼性が高い。従って、CAC−OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
本実施の形態では、本発明の一態様を用いて作製することができる表示モジュールについて図21を用いて説明する。
本実施の形態では、本発明の一態様を用いて作製することができる表示モジュールについて図21を用いて説明する。
図21に示す表示モジュール700は、上部カバー701と下部カバー702との間に、FPC703に接続されたタッチパネル704、FPC705に接続された表示パネル706、フレーム709、プリント基板710、およびバッテリ711を有する。
本発明の一態様の表示装置は、例えば、表示パネル706に用いることができる。これにより、高品位の画像を低消費電力で表示することができる。
上部カバー701および下部カバー702は、タッチパネル704および表示パネル706のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル704としては、抵抗膜方式または静電容量方式のタッチパネルを表示パネル706に重畳して用いることができる。また、タッチパネル704を設けず、表示パネル706に、タッチパネル機能を持たせるようにすることも可能である。
フレーム709は、表示パネル706の保護機能の他、プリント基板710の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム709は、放熱板としての機能を有していてもよい。
プリント基板710は、電源回路、ビデオ信号およびクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリ711による電源であってもよい。バッテリ711は、商用電源を用いる場合には、省略可能である。
また、表示モジュール700は、偏光板、位相差板、プリズムシート等の部材を追加して設けてもよい。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
本実施の形態では、本発明の一態様の表示装置を適用可能な電子機器について図22および図23を用いて説明する。
本実施の形態では、本発明の一態様の表示装置を適用可能な電子機器について図22および図23を用いて説明する。
図22(A)は、タブレット型の情報端末800であり、筐体801、表示部802、操作ボタン803、スピーカ804を有する。また、表示部802に、位置入力装置としての機能が付加された表示装置を用いるようにしてもよい。また、位置入力装置としての機能は、例えば表示装置にタッチパネルを設けることで付加することができる。あるいは、位置入力装置としての機能は、光電変換素子を表示部802に設けることでも、付加することができる。また、操作ボタン803に情報端末800を起動する電源スイッチ、情報端末800のアプリケーションを操作するボタン、音量調整ボタン、または表示部802を点灯、あるいは消灯するスイッチ等のいずれかを備えることができる。また、図22(A)に示した情報端末800では、操作ボタン803の数を4個示しているが、情報端末800の有する操作ボタンの数および配置は、これに限定されない。
また、図示していないが、図22(A)に示した情報端末800は、マイクおよびスピーカを有する構成であってもよい。この構成により、例えば、情報端末800に携帯電話のような通話機能を付することができる。
また、図示していないが、図22(A)に示した情報端末800は、カメラを有する構成であってもよい。また、図示していないが、図22(A)に示した情報端末800は、フラッシュライト、または照明の用途として発光装置を有する構成であってもよい。
また、図示していないが、図22(A)に示した情報端末800は、筐体801の内部に実施の形態1で示したセンサ13を有する。また、筐体801の内部に実施の形態1で示した赤外線源21を有してもよい。また、筐体801の内部にセンサ(力、変位、位置、速度、加速度、角速度、回転数、距離、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動またはにおい等を測定する機能を含むもの)を有する構成であってもよい。特に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、図22(A)に示す情報端末800の向き(鉛直方向に対して情報端末がどの向きに向いているか)を判断して、表示部802の画面表示を、情報端末800の向きに応じて自動的に切り替えるようにすることができる。
また、図示していないが、図22(A)に示した情報端末800は、指紋、静脈、虹彩、または声紋等生体情報を取得する装置を有する構成であってもよい。この構成を適用することによって、生体認証機能を有する情報端末800を実現することができる。
また、図示していないが、図22(A)に示した情報端末800は、マイクを有する構成であってもよい。この構成を適用することによって、情報端末800に通話機能を付することができる。また、情報端末800に音声解読機能を付することができる場合がある。情報端末800に音声解読機能を設けることで、音声認識によって情報端末800を操作する機能、更には、音声や会話を判読して会話録を作成する機能、等を情報端末800に有することができる。これにより、例えば、会議等の議事録作成として活用することができる。
また、表示部802として、可撓性を有する基材を用いてもよい。具体的には、表示部802は、可撓性を有する基材上にトランジスタ、容量素子、および表示素子等を設けた構成としてもよい。この構成を適用することによって、図22(A)に示した情報端末800のように平らな面を有する筐体801だけでなく、曲面を有するような筐体の電子機器を実現することができる。
また、情報端末800は、表示部802として可撓性を有する基材を用いて、表示部802を自由に折りたたむことができる構造を有してもよい。このような構成を図22(B)に示す。情報端末810は、情報端末800と同様のタブレット型の情報端末であり、筐体811a、筐体811b、表示部812、操作ボタン813、スピーカ814を有している。
筐体811aと筐体811bと、は、ヒンジ部811cにより結合されており、ヒンジ部811cによって、2つ折りが可能となっている。また、表示部812は、筐体811a、筐体811b、およびヒンジ部811cに設けられている。
表示部802に適用できる可撓性を有する基材としては、可視光に対する透光性を有する材料として、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂(PEN)、ポリエーテルサルフォン樹脂(PES)、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリシクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリハロゲン化ビニル樹脂、アラミド樹脂、エポキシ樹脂等を用いることができる。また、これらの材料を混合または積層して用いてもよい。
情報端末800または情報端末810に本発明の一態様の表示装置を適用することにより、高品位の画像を低消費電力で表示することができる。
図23(A)、(B)に、情報端末900の一例を示す。情報端末900は、筐体901、筐体902、表示部903、表示部904、およびヒンジ部905等を有する。なお、図示していないが、筐体901および/または筐体902の内部に実施の形態1で示したセンサ13を有する。また、筐体901および/または筐体902の内部に実施の形態1で示した赤外線源21を有してもよい。
筐体901と筐体902は、ヒンジ部905で連結されている。情報端末900は、図23(A)に示すように折り畳んだ状態から、図23(B)に示すように筐体901と筐体902を開くことができる。
例えば表示部903および表示部904に、文書情報を表示することが可能であり、電子書籍端末としても用いることができる。例えば、教科書として用いることができる。また、表示部903および表示部904に静止画像や動画像を表示することもできる。
このように、情報端末900は、持ち運ぶ際には折り畳んだ状態にできるため、汎用性に優れる。
なお、筐体901および筐体902には、電源ボタン、操作ボタン、外部接続ポート、スピーカ、マイク等を有していてもよい。
情報端末900に本発明の一態様の表示装置を適用することにより、高品位の画像を低消費電力で表示することができる。
図23(C)に情報端末の一例を示す。図23(C)に示す情報端末910は、筐体911、表示部912、操作ボタン913、外部接続ポート914、スピーカ915、マイク916、カメラ917等を有する。なお、図示していないが、筐体911の内部に実施の形態1で示したセンサ13を有する。また、筐体911の内部に実施の形態1で示した赤外線源21を有してもよい。
情報端末910は、表示部912にタッチセンサを備える。電話を掛ける、或いは文字を入力する等のあらゆる操作は、指やスタイラス等で表示部912に触れることで行うことができる。
また、操作ボタン913の操作により、電源のON、OFF動作や、表示部912に表示される画像の種類を切り替えることができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。
また、情報端末910の内部に、ジャイロセンサまたは加速度センサ等の検出装置を設けることで、情報端末910の向き(縦か横か)を判断して、表示部912の画面表示の向きを自動的に切り替えるようにすることができる。また、画面表示の向きの切り替えは、表示部912を触れること、操作ボタン913の操作、またはマイク916を用いた音声入力等により行うこともできる。
情報端末910は、例えば、電話機、手帳または情報閲覧装置等から選ばれた一つまたは複数の機能を有する。具体的には、スマートフォンとして用いることができる。情報端末910は、例えば、移動電話、電子メール、文章閲覧および作成、音楽再生、動画再生、インターネット通信、ゲーム等の種々のアプリケーションを実行することができる。
情報端末910に本発明の一態様の表示装置を適用することにより、高品位の画像を低消費電力で表示することができる。
図23(D)に、カメラの一例を示す。カメラ920は、筐体921、表示部922、操作ボタン923、シャッターボタン924等を有する。またカメラ920には、着脱可能なレンズ926が取り付けられている。なお、筐体921の内部に実施の形態1で示したセンサ13を有する。また、筐体921の内部に実施の形態1で示した赤外線源21を有してもよい。
ここではカメラ920として、レンズ926を筐体921から取り外して交換することが可能な構成としたが、レンズ926と筐体が一体となっていてもよい。
カメラ920は、シャッターボタン924を押すことにより、静止画、または動画を撮像することができる。また、表示部922はタッチパネルとしての機能を有し、表示部922をタッチすることにより撮像することも可能である。
なお、カメラ920は、ストロボ装置や、ビューファインダー等を別途装着することができる。または、これらが筐体921に組み込まれていてもよい。
カメラ920に本発明の一態様の表示装置を適用することにより、高品位の画像を低消費電力で表示することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
10 表示装置
11 表示部
11a 表示部
11b 表示部
12 画素
12a 画素
12b 画素
12B 副画素
12G 副画素
12R 副画素
13 センサ
13a センサ
13b センサ
13c センサ
13d センサ
14 記憶回路
15 演算回路
17a ソースドライバ回路
17b ソースドライバ回路
18a ゲートドライバ回路
18b ゲートドライバ回路
20a 部分
20b 部分
20c 部分
21 赤外線源
21a 赤外線源
21b 赤外線源
50 接着層
51 接着層
52 接着層
81 領域
82 領域
100 表示パネル
101 樹脂層
102 樹脂層
110 トランジスタ
110a トランジスタ
110b トランジスタ
110c トランジスタ
111 導電層
112 半導体層
113a 導電層
113b 導電層
114 導電層
115 導電層
120 発光素子
120B 発光素子
120G 発光素子
120R 発光素子
121 導電層
122 EL層
123 導電層
131 絶縁層
132 絶縁層
133 絶縁層
134 絶縁層
135 絶縁層
136 絶縁層
137 絶縁層
141 絶縁層
151 接着層
152 着色層
153 遮光層
200 表示パネル
201 樹脂層
202 樹脂層
204 絶縁層
210 トランジスタ
211 導電層
212 半導体層
213a 導電層
213b 導電層
220 液晶素子
220B 液晶素子
220G 液晶素子
220R 液晶素子
221 導電層
222 液晶
223 導電層
224a 配向膜
224b 配向膜
231 絶縁層
232 絶縁層
233 絶縁層
234 絶縁層
311 電極
351 基板
361 基板
364 回路部
365 配線
366 回路部
367 配線
372 FPC
373 IC
374 FPC
375 IC
401 トランジスタ
402 トランジスタ
403 トランジスタ
404 発光素子
405 容量素子
406 接続部
407 配線
411 絶縁層
412 絶縁層
413 絶縁層
414 絶縁層
415 絶縁層
416 スペーサ
417 接着層
419 接続層
421 電極
422 EL層
423 電極
424 光学調整層
425 着色層
426 遮光層
451 開口
471 基板
472 基板
476 絶縁層
478 絶縁層
501 トランジスタ
503 トランジスタ
505 容量素子
506 接続部
511 絶縁層
512 絶縁層
513 絶縁層
514 絶縁層
517 接着層
519 接続層
543 接続体
562 電極
563 液晶
564a 配向膜
564b 配向膜
565 着色層
566 遮光層
567 絶縁層
572 基板
576 絶縁層
578 絶縁層
591 導電層
592 導電層
599 偏光板
611 基板
612 基板
621 発光
622 反射光
700 表示モジュール
701 上部カバー
702 下部カバー
703 FPC
704 タッチパネル
705 FPC
706 表示パネル
709 フレーム
710 プリント基板
711 バッテリ
800 情報端末
801 筐体
802 表示部
803 操作ボタン
804 スピーカ
810 情報端末
811a 筐体
811b 筐体
811c ヒンジ部
812 表示部
813 操作ボタン
814 スピーカ
900 情報端末
901 筐体
902 筐体
903 表示部
904 表示部
905 ヒンジ部
910 情報端末
911 筐体
912 表示部
913 操作ボタン
914 外部接続ポート
915 スピーカ
916 マイク
917 カメラ
920 カメラ
921 筐体
922 表示部
923 操作ボタン
924 シャッターボタン
926 レンズ
11 表示部
11a 表示部
11b 表示部
12 画素
12a 画素
12b 画素
12B 副画素
12G 副画素
12R 副画素
13 センサ
13a センサ
13b センサ
13c センサ
13d センサ
14 記憶回路
15 演算回路
17a ソースドライバ回路
17b ソースドライバ回路
18a ゲートドライバ回路
18b ゲートドライバ回路
20a 部分
20b 部分
20c 部分
21 赤外線源
21a 赤外線源
21b 赤外線源
50 接着層
51 接着層
52 接着層
81 領域
82 領域
100 表示パネル
101 樹脂層
102 樹脂層
110 トランジスタ
110a トランジスタ
110b トランジスタ
110c トランジスタ
111 導電層
112 半導体層
113a 導電層
113b 導電層
114 導電層
115 導電層
120 発光素子
120B 発光素子
120G 発光素子
120R 発光素子
121 導電層
122 EL層
123 導電層
131 絶縁層
132 絶縁層
133 絶縁層
134 絶縁層
135 絶縁層
136 絶縁層
137 絶縁層
141 絶縁層
151 接着層
152 着色層
153 遮光層
200 表示パネル
201 樹脂層
202 樹脂層
204 絶縁層
210 トランジスタ
211 導電層
212 半導体層
213a 導電層
213b 導電層
220 液晶素子
220B 液晶素子
220G 液晶素子
220R 液晶素子
221 導電層
222 液晶
223 導電層
224a 配向膜
224b 配向膜
231 絶縁層
232 絶縁層
233 絶縁層
234 絶縁層
311 電極
351 基板
361 基板
364 回路部
365 配線
366 回路部
367 配線
372 FPC
373 IC
374 FPC
375 IC
401 トランジスタ
402 トランジスタ
403 トランジスタ
404 発光素子
405 容量素子
406 接続部
407 配線
411 絶縁層
412 絶縁層
413 絶縁層
414 絶縁層
415 絶縁層
416 スペーサ
417 接着層
419 接続層
421 電極
422 EL層
423 電極
424 光学調整層
425 着色層
426 遮光層
451 開口
471 基板
472 基板
476 絶縁層
478 絶縁層
501 トランジスタ
503 トランジスタ
505 容量素子
506 接続部
511 絶縁層
512 絶縁層
513 絶縁層
514 絶縁層
517 接着層
519 接続層
543 接続体
562 電極
563 液晶
564a 配向膜
564b 配向膜
565 着色層
566 遮光層
567 絶縁層
572 基板
576 絶縁層
578 絶縁層
591 導電層
592 導電層
599 偏光板
611 基板
612 基板
621 発光
622 反射光
700 表示モジュール
701 上部カバー
702 下部カバー
703 FPC
704 タッチパネル
705 FPC
706 表示パネル
709 フレーム
710 プリント基板
711 バッテリ
800 情報端末
801 筐体
802 表示部
803 操作ボタン
804 スピーカ
810 情報端末
811a 筐体
811b 筐体
811c ヒンジ部
812 表示部
813 操作ボタン
814 スピーカ
900 情報端末
901 筐体
902 筐体
903 表示部
904 表示部
905 ヒンジ部
910 情報端末
911 筐体
912 表示部
913 操作ボタン
914 外部接続ポート
915 スピーカ
916 マイク
917 カメラ
920 カメラ
921 筐体
922 表示部
923 操作ボタン
924 シャッターボタン
926 レンズ
Claims (17)
- 液晶素子を有する第1の画素と、発光素子を有する第2の画素と、を有する表示部を有する表示装置において、
前記表示装置を使用する者が注視している部分である第1の部分を算出するステップと、
前記第1の部分が、前記表示部に含まれるか否かを判定するステップと、を有し、
前記第1の部分が前記表示部に含まれる場合は、前記第1の部分に表示される画像を前記第2の画素を用いて、前記第1の部分でなくさらに前記第1の部分の近傍の部分でもない部分に表示される画像を前記第1の画素を用いて表示することを特徴とする表示方法。 - 請求項1において、
前記第1の部分の近傍の部分の大きさおよび形状は、前記第1の部分の大きさおよび形状により設定されることを特徴とする表示方法。 - 請求項1または2において、
前記第1の部分の近傍の部分において、前記第1の部分に近いほど、画像の表示に寄与する前記第2の画素の比率を増加させることを特徴とする表示方法。 - 請求項1において、
前記第1の部分の近傍の部分において、前記第1の部分から遠ざかるほど、画像の表示に寄与する前記第1の画素の比率を増加させることを特徴とする表示方法。 - 液晶素子を有する第1の画素と、発光素子を有する第2の画素と、を有する表示部を有する表示装置において、
前記表示装置を使用する者が注視している部分である第1の部分を算出するステップと、
前記第1の部分に含まれるテキストが属する行または列を算出するステップと、を有し、
前記第1の部分に含まれるテキストが属する行または列に記載されたテキストを、前記第2の画素を用いて、前記第1の部分に含まれるテキストが属する行または列に記載されたテキストではなく、さらに前記第1の部分に含まれるテキストが属する行または列の近傍の行に記載されたテキストではないテキストを、前記第1の画素を用いて表示することを特徴とする表示方法。 - 請求項5において、
前記第1の部分に含まれるテキストが属する行の前後1行に記載されたテキストを、前記第1の部分に含まれるテキストが属する行の近傍の行に記載されたテキストとすることを特徴とする表示方法。 - 請求項5または6において、
前記第1の部分に含まれるテキストが属する列の前後1列に記載されたテキストを、前記第1の部分に含まれるテキストが属する列の近傍の列に記載されたテキストとすることを特徴とする表示方法。 - 請求項1または5において、
センサを有し、
前記センサを用いて前記表示装置を使用する者の瞳孔を検出するステップを有することを特徴とする表示方法。 - 請求項1または5において、
前記第1の部分を、前記表示装置を使用する者と、前記表示部との間の距離をもとに算出することを特徴とする表示方法。 - 請求項1または5において、
前記第1の画素と、前記第2の画素と、は積層されていることを特徴とする表示方法。 - 請求項1または5において、
前記発光素子は、OLEDであることを特徴とする表示方法。 - 請求項1または5に記載の表示方法により画像を表示する機能を有することを特徴とする表示装置。
- 請求項12において、
トランジスタと、赤外線源と、を有することを特徴とする表示装置。 - 請求項13において、
前記トランジスタは、チャネル形成領域に金属酸化物を有することを特徴とする表示装置。 - 請求項12に記載の表示装置と、
操作ボタンまたはバッテリと、を有することを特徴とする電子機器。 - 請求項1または5に記載の表示方法を実行する機能を有するプログラムが保持された非一時的記憶媒体。
- 請求項1または5に記載の表示方法を実行する機能を有するプログラム。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016144263 | 2016-07-22 | ||
JP2016144265 | 2016-07-22 | ||
JP2016-144265 | 2016-07-22 | ||
JP2016-144263 | 2016-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018015840A1 true WO2018015840A1 (ja) | 2018-01-25 |
Family
ID=60991988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2017/054187 WO2018015840A1 (ja) | 2016-07-22 | 2017-07-12 | 表示方法、表示装置、電子機器、非一時的記憶媒体およびプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018015840A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000132152A (ja) * | 1998-10-27 | 2000-05-12 | Sharp Corp | 表示装置 |
JP2003344928A (ja) * | 2002-05-23 | 2003-12-03 | Canon Inc | 情報表示装置 |
JP2009237210A (ja) * | 2008-03-27 | 2009-10-15 | Sharp Corp | 液晶表示装置 |
JP2013502616A (ja) * | 2009-08-20 | 2013-01-24 | アマゾン テクノロジーズ インコーポレイテッド | 異種ディスプレイデバイスを含む融合されたディスプレイ |
JP2016038585A (ja) * | 2014-08-08 | 2016-03-22 | 株式会社半導体エネルギー研究所 | 表示パネル、情報処理装置、プログラム |
-
2017
- 2017-07-12 WO PCT/IB2017/054187 patent/WO2018015840A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000132152A (ja) * | 1998-10-27 | 2000-05-12 | Sharp Corp | 表示装置 |
JP2003344928A (ja) * | 2002-05-23 | 2003-12-03 | Canon Inc | 情報表示装置 |
JP2009237210A (ja) * | 2008-03-27 | 2009-10-15 | Sharp Corp | 液晶表示装置 |
JP2013502616A (ja) * | 2009-08-20 | 2013-01-24 | アマゾン テクノロジーズ インコーポレイテッド | 異種ディスプレイデバイスを含む融合されたディスプレイ |
JP2016038585A (ja) * | 2014-08-08 | 2016-03-22 | 株式会社半導体エネルギー研究所 | 表示パネル、情報処理装置、プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12235537B2 (en) | Display device and electronic device | |
JP2018025779A (ja) | 表示方法、表示装置、電子機器、非一時的記憶媒体およびプログラム | |
US11205387B2 (en) | Display device and electronic device | |
JP2017191317A (ja) | 表示装置 | |
JP2018025795A (ja) | 表示装置 | |
JP2018141950A (ja) | 表示装置および電子機器 | |
JP7240542B2 (ja) | 表示装置 | |
US10163989B2 (en) | Display device and electronic device | |
TW201816766A (zh) | 電子裝置以及其驅動方法 | |
JP7150416B2 (ja) | 電子機器 | |
JP7274645B2 (ja) | 表示装置 | |
JP6930864B2 (ja) | 表示装置 | |
JP2018031944A (ja) | 表示システムおよび電子機器 | |
JP2018049267A (ja) | 表示システム、電子機器および表示方法 | |
WO2018015840A1 (ja) | 表示方法、表示装置、電子機器、非一時的記憶媒体およびプログラム | |
JP2018013622A (ja) | 表示装置、および電子機器 | |
JP2018060198A (ja) | 表示装置および電子機器 | |
JP2018054901A (ja) | 表示システムおよび電子機器 | |
JP2018040867A (ja) | 表示装置、電子機器、及び情報提供方法 | |
JP2017207701A (ja) | 表示装置 | |
JP2018056916A (ja) | 情報処理装置、情報処理装置の動作方法ならびに電子機器 | |
JP2018036583A (ja) | 表示装置 | |
JP2018036584A (ja) | 表示装置 | |
JP2018036487A (ja) | 表示装置、および電子機器 | |
JP2017227794A (ja) | 表示装置およびその動作方法、ならびに電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17830565 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17830565 Country of ref document: EP Kind code of ref document: A1 |