WO2017213009A1 - Film cutout method - Google Patents
Film cutout method Download PDFInfo
- Publication number
- WO2017213009A1 WO2017213009A1 PCT/JP2017/020377 JP2017020377W WO2017213009A1 WO 2017213009 A1 WO2017213009 A1 WO 2017213009A1 JP 2017020377 W JP2017020377 W JP 2017020377W WO 2017213009 A1 WO2017213009 A1 WO 2017213009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- polarizer
- laser light
- cutout
- light irradiation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000005520 cutting process Methods 0.000 claims abstract description 27
- 238000010521 absorption reaction Methods 0.000 claims abstract description 19
- 238000005336 cracking Methods 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 49
- 238000011282 treatment Methods 0.000 description 8
- 230000001678 irradiating effect Effects 0.000 description 6
- 239000010410 layer Substances 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/30—Organic material
- B23K2103/42—Plastics
Definitions
- the present invention relates to a film cutting method. More specifically, the present invention relates to a film cutting method using laser light.
- polarizing plates are used in image display devices and the like, but in recent years, with the diversification of uses of image display devices, the shapes of polarizing plates used in the image display devices are also diversified.
- a polarizing plate or the like that is cut into a predetermined shape and has a cut-out portion may be used.
- laser light irradiation is known as one of means for cutting out a film.
- a polarizing plate including a polarizer obtained through a stretching process there is a problem that cracks are likely to occur from the starting point and the ending point of laser light irradiation.
- the present invention has been made to solve the above-described conventional problems, and a main object of the present invention is to provide a method of cutting out a film with a laser beam while preventing cracking of the film.
- the film cutting method of the present invention includes cutting a film containing a polarizer by laser light irradiation, and forming a cut-out portion having a predetermined shape on the film, and tangent to the cut-out portion at a cutting start point by the laser light irradiation.
- the angle between A or the side B of the cutout including the start point and the absorption axis of the polarizer is 0 ° to 85 ° or 95 ° to 180 °.
- an angle formed between the tangent line A or the side B and the absorption axis of the polarizer is 0 ° to 60 ° or 120 ° to 180 °.
- the tangent A or side B and the absorption axis of the polarizer are parallel.
- the film can be cut out by laser light while preventing cracking of the film by setting the cut-out starting point by laser light irradiation to a specific position.
- (A) And (b) is a figure explaining the cutting method of the film by one Embodiment of this invention. It is a figure explaining the cutting method of the film by another embodiment of this invention.
- the film cutting method of the present invention includes cutting a film containing a polarizer by laser light irradiation and forming a cutout portion having a predetermined shape on the film.
- the film containing a polarizer may be a polarizer alone or a film containing a polarizer (preferably one polarizer) and other layers. Examples of the other layers include a protective layer for protecting the polarizer and a layer composed of any appropriate optical film.
- a polarizing plate is used as a film including a polarizer.
- the polarizing plate may include a polarizer and a protective layer disposed on at least one side of the polarizer.
- the surface protective film or the separator is detachably laminated on the polarizing plate via any appropriate pressure-sensitive adhesive.
- the “surface protective film” is a film that temporarily protects the polarizing plate, and is different from the protective layer (layer that protects the polarizer) provided in the polarizing plate.
- the polarizer is typically a swelling treatment, a stretching treatment, a dyeing treatment with a dichroic substance (eg, iodine, an organic dye, etc.), a crosslinking treatment, a washing treatment, It can be obtained by performing various treatments such as a drying treatment.
- a polarizer obtained through a stretching treatment has a characteristic that cracks are likely to occur, but according to the present invention, a film can be cut out while preventing cracks.
- the thickness of the film containing the polarizer is not particularly limited, and an appropriate thickness can be adopted depending on the purpose, and is, for example, 20 ⁇ m to 200 ⁇ m.
- the thickness of the polarizer is also not particularly limited, and an appropriate thickness can be adopted depending on the purpose.
- the thickness of the polarizer is typically about 1 ⁇ m to 80 ⁇ m, preferably 3 ⁇ m to 40 ⁇ m.
- the size of the film including the polarizer is not particularly limited, and may be an appropriate size according to the purpose.
- the film including the polarizer has a rectangular shape or a square shape including a side parallel to the absorption axis of the polarizer, and the length of the side parallel to the absorption axis of the polarizer is from 10 mm to 400 mm, and the length of the other side is 10 mm to 500 mm.
- FIG. 1 (a) and 1 (b) are diagrams illustrating a film cutting method according to an embodiment of the present invention.
- FIG. 1 (a) shows a film 100 including a polarizer at the time of starting cutting by laser light irradiation, that is, at the time of irradiating the cutting start point 11 with laser light.
- FIG. 1B shows a film after the cutting by laser light irradiation, that is, a film 110 having a cutout portion 10.
- the film 100 including the polarizer is obtained by irradiating the cutting start point 11 with a laser beam and then continuously irradiating the outer shell 12 of the portion to be cut out. Cut out, a substantially circular cutout 10 is formed in the film.
- the angle formed by the tangent A of the clipping portion at the clipping start point 11 by laser light irradiation and the absorption axis X of the polarizer is 0 ° to 85 ° or 95 ° to 180 °, preferably 0 ° to 60 ° or 120 ° to 180 °, more preferably 0 ° to 45 ° or 135 ° to 180 °, and particularly preferably Is 0 ° to 30 ° or 150 ° to 180 °.
- the tangent line A and the absorption axis X are parallel.
- parallel includes a case where they are substantially parallel, and specifically includes a case where an angle formed by two directions is 0 ° to 5 °. Further, when an angle is referred to in the present specification, the angle includes an angle in both a clockwise direction and a counterclockwise direction unless otherwise specified.
- the diameter can be set to any appropriate length depending on the use of the film.
- the diameter is, for example, 2 mm to 100 mm.
- a substantially circular cutout having a diameter of 2 mm to 50 mm (preferably 2 mm to 10 mm) can be formed while preventing cracks.
- FIG. 2 is a diagram for explaining a film cutting method according to another embodiment of the present invention.
- FIG. 2 shows a film including a polarizer at the time of starting cutting by laser light irradiation, that is, at the time of irradiating laser light to the cutting start point 11 ′.
- a film including a polarizer is obtained by first irradiating the cut-out starting point 11 ′ with laser light and then continuously irradiating the outline 12 ′ of the portion to be cut out. And a substantially rectangular cut-out portion is formed on the film. As illustrated in FIG.
- the angle formed between the side B including the cutout start point 11 ′ and the absorption axis X of the polarizer is 0 ° to 85 ° or 95 ° to 180 °, preferably 0 ° to 60 ° or 120 ° to 180 °, more preferably 0 ° to 45 ° or 135 ° to 180 °, particularly preferably 0 ° to 30 ° or It is 150 ° to 180 °.
- the side B and the absorption axis X are parallel.
- the short side is preferably 2 mm to 100 mm, more preferably 2 mm to 50 mm, still more preferably 2 mm to 30 mm, and particularly preferably 2 mm to 10 mm. is there.
- the long side is preferably 5 mm to 400 mm, more preferably 5 mm to 200 mm, still more preferably 5 mm to 120 mm, and particularly preferably 5 mm to 40 mm.
- the shape of the cutout portion is not limited to the shape shown in FIGS. Examples of the shape of the cutout portion include a substantially square shape and a substantially elliptical shape in addition to a substantially circular shape and a substantially rectangular shape. Further, the shape of the cutout portion may be a shape formed by appropriately combining a straight line and a curve, or a shape composed of a plurality of curves having different curvatures. When the outline of the cutout portion has a vertex and / or a connection point between a straight line and a curve, it is preferable not to use the vertex and the connection point as a cutout start point.
- the area ratio of the cutout portion is, for example, 10% to 50% with respect to the area of the film including the polarizer (the film before the cutout).
- the film can be cut out by laser light while preventing cracking of the film containing the polarizer.
- a cutout portion having a predetermined shape is formed by laser light
- laser light irradiation is started from the cutout start point, and after the cutout portion is formed, the laser light returns to the cutout start point. That is, the starting point and the ending point of laser light irradiation are the same part. Therefore, at the cutout start point which is the starting point and the end point of laser light irradiation, the cutout portion has a small but convex portion (a convex portion protruding to the film side having the cutout portion) as shown in FIG.
- cracking of the film can be prevented by setting the cut-out starting point, that is, the convex portion that can be a trigger for the crack, to the specific position with reference to the absorption axis of the polarizer.
- the film cut out by the method of the present invention has sufficient durability against severe temperature changes (for example, a heat cycle of ⁇ 40 ° C. to 85 ° C.), and does not easily crack.
- the laser beam preferably includes light having a wavelength of 200 nm to 11000 nm.
- any appropriate laser can be adopted as the laser used for laser light irradiation.
- any suitable laser can be employed.
- gas lasers such as CO 2 laser and excimer laser; solid-state lasers such as YAG laser; semiconductor lasers and the like.
- any appropriate conditions can be adopted depending on the film material, the film thickness, and the like.
- Example 1 Laser light was irradiated, and a circular cutout (diameter 20 mm) was cut out from a 72 mm square polarizer. The angle formed between the tangent line of the cutout at the cutout start point and the absorption axis of the polarizer was set to 0 °. The distance between each side of the polarizer and the center of the cutout was 30 mm.
- the laser light irradiation conditions were as follows. Wavelength: 9.4 ⁇ m Pulse width: 8 ⁇ s Output: 10V Frequency: 12.5kHz Processing speed: 400mm / sec
- Example 2 The polarizer was cut out in the same manner as in Example 1 except that the angle formed between the tangent line of the cutout portion at the cutout start point and the absorption axis of the polarizer was set to 30 °.
- Example 3 The polarizer was cut out in the same manner as in Example 1 except that the angle formed between the tangent line of the cutout portion at the cutout start point and the absorption axis of the polarizer was set to 45 °.
- Example 4 The polarizer was cut out in the same manner as in Example 1 except that the angle between the tangent line of the cutout starting point and the absorption axis of the polarizer was 60 °.
- Example 1 The polarizer was cut out in the same manner as in Example 1 except that the angle formed by the tangent line of the cutout portion at the cutout start point and the absorption axis of the polarizer was 90 °.
- the film cutting method of the present invention is suitably used when manufacturing an optical film such as a polarizer plate.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Polarising Elements (AREA)
- Laser Beam Processing (AREA)
Abstract
Provided is a method for cutting out a film using laser light while preventing film cracking.
This film cutout method includes cutting out a film that includes polarizers using laser light irradiation and forming a cutout part of a prescribed shape in the film. The angle formed by a line A tangent to the cutout part at an initial cutting point by the laser light irradiation or a side B of the cutout part that includes the initial cutting point and the absorption axis for the polarizers is 0 - 85° or 95 - 180°.
Description
本発明は、フィルムの切り抜き方法に関する。より詳細には、本発明はレーザー光を用いたフィルムの切り抜き方法に関する。
The present invention relates to a film cutting method. More specifically, the present invention relates to a film cutting method using laser light.
従来より、画像表示装置等には偏光板が用いられているが、近年、画像表示装置の用途の多様化に伴い、当該画像表示装置に用いられる偏光板の形状も多様化している。例えば、車載画像表示装置(例えば、インパネに用いられる画像表示装置)においては、所定形状に切り抜かれ、切り抜き部を有する偏光板等が用いられることがある。
Conventionally, polarizing plates are used in image display devices and the like, but in recent years, with the diversification of uses of image display devices, the shapes of polarizing plates used in the image display devices are also diversified. For example, in a vehicle-mounted image display device (for example, an image display device used for an instrument panel), a polarizing plate or the like that is cut into a predetermined shape and has a cut-out portion may be used.
一般に、フィルムを切り抜く手段の1つとして、レーザー光照射が知られている。しかしながら、延伸工程を経て得られた偏光子を含む偏光板においては、レーザー光照射の起点・終点を起点としてクラックが生じやすいという問題がある。
Generally, laser light irradiation is known as one of means for cutting out a film. However, in a polarizing plate including a polarizer obtained through a stretching process, there is a problem that cracks are likely to occur from the starting point and the ending point of laser light irradiation.
本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、フィルムのクラックを防止しつつ、レーザー光によりフィルムを切り抜く方法を提供することにある。
The present invention has been made to solve the above-described conventional problems, and a main object of the present invention is to provide a method of cutting out a film with a laser beam while preventing cracking of the film.
本発明のフィルムの切り抜き方法は、レーザー光照射により、偏光子を含むフィルムを切り抜き、該フィルムに所定形状の切り抜き部を形成することを含み、該レーザー光照射による切り抜き開始点における切り抜き部の接線A、または該開始点を含む切り抜き部の辺Bと、偏光子の吸収軸とのなす角が、0°~85°または95°~180°である。
1つの実施形態においては、上記接線Aまたは辺Bと、偏光子の吸収軸とのなす角が、0°~60°または120°~180°である。
1つの実施形態、上記接線Aまたは辺Bと、偏光子の吸収軸とが、平行である。 The film cutting method of the present invention includes cutting a film containing a polarizer by laser light irradiation, and forming a cut-out portion having a predetermined shape on the film, and tangent to the cut-out portion at a cutting start point by the laser light irradiation. The angle between A or the side B of the cutout including the start point and the absorption axis of the polarizer is 0 ° to 85 ° or 95 ° to 180 °.
In one embodiment, an angle formed between the tangent line A or the side B and the absorption axis of the polarizer is 0 ° to 60 ° or 120 ° to 180 °.
In one embodiment, the tangent A or side B and the absorption axis of the polarizer are parallel.
1つの実施形態においては、上記接線Aまたは辺Bと、偏光子の吸収軸とのなす角が、0°~60°または120°~180°である。
1つの実施形態、上記接線Aまたは辺Bと、偏光子の吸収軸とが、平行である。 The film cutting method of the present invention includes cutting a film containing a polarizer by laser light irradiation, and forming a cut-out portion having a predetermined shape on the film, and tangent to the cut-out portion at a cutting start point by the laser light irradiation. The angle between A or the side B of the cutout including the start point and the absorption axis of the polarizer is 0 ° to 85 ° or 95 ° to 180 °.
In one embodiment, an angle formed between the tangent line A or the side B and the absorption axis of the polarizer is 0 ° to 60 ° or 120 ° to 180 °.
In one embodiment, the tangent A or side B and the absorption axis of the polarizer are parallel.
本発明によれば、レーザー光照射による切り抜き開始点を特定の位置とすることにより、フィルムのクラックを防止しつつ、レーザー光によりフィルムを切り抜くことができる。
According to the present invention, the film can be cut out by laser light while preventing cracking of the film by setting the cut-out starting point by laser light irradiation to a specific position.
本発明のフィルムの切り抜き方法は、レーザー光照射により偏光子を含むフィルムを切り抜き、該フィルムに所定形状の切り抜き部を形成することを含む。
The film cutting method of the present invention includes cutting a film containing a polarizer by laser light irradiation and forming a cutout portion having a predetermined shape on the film.
偏光子を含むフィルムは、偏光子単体であってもよく、偏光子(好ましくは1枚の偏光子)とその他の層とを含むフィルムであってもよい。その他の層としては、偏光子を保護する保護層、任意の適切な光学フィルムから構成される層等が挙げられる。1つの実施形態においては、偏光子を含むフィルムとして偏光板が用いられる。偏光板は、偏光子と該偏光子の少なくとも片側に配置された保護層とを備え得る。また、偏光子を含むフィルムとして、偏光板と、表面保護フィルムおよび/またはセパレーターとの積層体を用いてもよい。表面保護フィルムまたはセパレーターは、任意の適切な粘着剤を介して偏光板に剥離可能に積層される。本明細書において「表面保護フィルム」とは偏光板を一時的に保護するフィルムであり、偏光板が備える保護層(偏光子を保護する層)とは異なるものである。
The film containing a polarizer may be a polarizer alone or a film containing a polarizer (preferably one polarizer) and other layers. Examples of the other layers include a protective layer for protecting the polarizer and a layer composed of any appropriate optical film. In one embodiment, a polarizing plate is used as a film including a polarizer. The polarizing plate may include a polarizer and a protective layer disposed on at least one side of the polarizer. Moreover, you may use the laminated body of a polarizing plate, a surface protection film, and / or a separator as a film containing a polarizer. The surface protective film or the separator is detachably laminated on the polarizing plate via any appropriate pressure-sensitive adhesive. In this specification, the “surface protective film” is a film that temporarily protects the polarizing plate, and is different from the protective layer (layer that protects the polarizer) provided in the polarizing plate.
偏光子は、代表的には、樹脂フィルム(例えば、ポリビニルアルコール系樹脂フィルム)に膨潤処理、延伸処理、二色性物質(例えば、ヨウ素、有機染料等)による染色処理、架橋処理、洗浄処理、乾燥処理等の各種処理を施すことにより得られる。一般に、延伸処理を経て得られた偏光子はクラックが生じやすいという特性を有するが、本発明によれば、クラックを防止しつつ、フィルムを切り抜くことができる。
The polarizer is typically a swelling treatment, a stretching treatment, a dyeing treatment with a dichroic substance (eg, iodine, an organic dye, etc.), a crosslinking treatment, a washing treatment, It can be obtained by performing various treatments such as a drying treatment. Generally, a polarizer obtained through a stretching treatment has a characteristic that cracks are likely to occur, but according to the present invention, a film can be cut out while preventing cracks.
偏光子を含むフィルムの厚みは、特に制限されず、目的に応じて適切な厚みが採用され得、例えば、20μm~200μmである。偏光子の厚みもまた特に制限されず、目的に応じて適切な厚みが採用され得る。偏光子の厚みは、代表的には、1μm~80μm程度であり、好ましくは3μm~40μmである。
The thickness of the film containing the polarizer is not particularly limited, and an appropriate thickness can be adopted depending on the purpose, and is, for example, 20 μm to 200 μm. The thickness of the polarizer is also not particularly limited, and an appropriate thickness can be adopted depending on the purpose. The thickness of the polarizer is typically about 1 μm to 80 μm, preferably 3 μm to 40 μm.
偏光子を含むフィルムのサイズは、特に制限されず、目的に応じて適切なサイズとされ得る。1つの実施形態においては、偏光子を含むフィルムは、偏光子の吸収軸と平行である辺を含む長方形状または正方形状であり、偏光子の吸収軸と平行である辺の長さが10mm~400mmであり、その他の辺の長さが10mm~500mmである。
The size of the film including the polarizer is not particularly limited, and may be an appropriate size according to the purpose. In one embodiment, the film including the polarizer has a rectangular shape or a square shape including a side parallel to the absorption axis of the polarizer, and the length of the side parallel to the absorption axis of the polarizer is from 10 mm to 400 mm, and the length of the other side is 10 mm to 500 mm.
図1(a)および図1(b)は、本発明の1つの実施形態によるフィルムの切り抜き方法を説明する図である。図1(a)においては、レーザー光照射による切り抜きを開始する時点、すなわち、切り抜き開始点11にレーザー光を照射した時点における偏光子を含むフィルム100が示されている。図1(b)においては、レーザー光照射による切り抜きが終了した後のフィルム、すなわち切り抜き部10を有するフィルム110を示している。本実施形態においては、まず、切り抜き開始点11にレーザー光を照射し、次いで、該レーザー光を切り抜こうとする部分の外郭12に連続的に照射することにより、偏光子を含むフィルム100を切り抜き、該フィルムに略円形状の切り抜き部10を形成する。
1 (a) and 1 (b) are diagrams illustrating a film cutting method according to an embodiment of the present invention. FIG. 1 (a) shows a film 100 including a polarizer at the time of starting cutting by laser light irradiation, that is, at the time of irradiating the cutting start point 11 with laser light. FIG. 1B shows a film after the cutting by laser light irradiation, that is, a film 110 having a cutout portion 10. In the present embodiment, first, the film 100 including the polarizer is obtained by irradiating the cutting start point 11 with a laser beam and then continuously irradiating the outer shell 12 of the portion to be cut out. Cut out, a substantially circular cutout 10 is formed in the film.
切り抜き開始点11が曲線上にある場合(例えば、図1に示す実施形態の場合)、レーザー光照射による切り抜き開始点11における切り抜き部の接線Aと、偏光子の吸収軸Xとのなす角は、0°~85°または95°~180°であり、好ましくは0°~60°または120°~180°であり、より好ましくは0°~45°または135°~180°であり、特に好ましくは0°~30°または150°~180°である。最も好ましくは、接線Aと吸収軸Xとは、平行である。本明細書において、「平行である」とは、実質的に平行である場合を包含し、具体的には、2方向のなす角が0°~5°である場合を包含する。また、本明細書において角度に言及するときは、特に明記しない限り、当該角度は時計回りおよび反時計回りの両方の方向の角度を包含する。
When the clipping start point 11 is on a curve (for example, in the case of the embodiment shown in FIG. 1), the angle formed by the tangent A of the clipping portion at the clipping start point 11 by laser light irradiation and the absorption axis X of the polarizer is 0 ° to 85 ° or 95 ° to 180 °, preferably 0 ° to 60 ° or 120 ° to 180 °, more preferably 0 ° to 45 ° or 135 ° to 180 °, and particularly preferably Is 0 ° to 30 ° or 150 ° to 180 °. Most preferably, the tangent line A and the absorption axis X are parallel. In the present specification, “parallel” includes a case where they are substantially parallel, and specifically includes a case where an angle formed by two directions is 0 ° to 5 °. Further, when an angle is referred to in the present specification, the angle includes an angle in both a clockwise direction and a counterclockwise direction unless otherwise specified.
切り抜き部の形状が略円形状である場合、その直径は、フィルムの用途に応じて任意の適切な長さとすることができる。該直径は、例えば、2mm~100mmである。本発明によれば、クラックを防止して小径の切り抜き部を切り抜くことも可能である。例えば、直径が2mm~50mm(好ましくは2mm~10mm)の略円形状切り抜き部を、クラックを防止して形成することができる。
When the shape of the cutout portion is a substantially circular shape, the diameter can be set to any appropriate length depending on the use of the film. The diameter is, for example, 2 mm to 100 mm. According to the present invention, it is possible to prevent a crack and cut out a cutout portion having a small diameter. For example, a substantially circular cutout having a diameter of 2 mm to 50 mm (preferably 2 mm to 10 mm) can be formed while preventing cracks.
図2は、本発明の別の実施形態によるフィルムの切り抜き方法を説明する図である。図2においては、レーザー光照射による切り抜きを開始する時点、すなわち、切り抜き開始点11’にレーザー光を照射した時点における偏光子を含むフィルムが示されている。本実施形態においては、まず、切り抜き開始点11’にレーザー光を照射し、次いで、該レーザー光を切り抜こうとする部分の外郭12’に連続的に照射することにより、偏光子を含むフィルムを切り抜き、該フィルムに略長方形状の切り抜き部を形成する。図2に例示されるように、切り抜き開始点が直線上にある場合においては、切り抜き開始点11’を含む辺Bと、偏光子の吸収軸Xとのなす角は、0°~85°または95°~180°であり、好ましくは0°~60°または120°~180°であり、より好ましくは0°~45°または135°~180°であり、特に好ましくは0°~30°または150°~180°である。最も好ましくは、辺Bと吸収軸Xとは、平行である。切り抜き部の形状が略長方形状である場合、その短辺は、好ましくは2mm~100mmであり、より好ましくは2mm~50mmであり、さらに好ましくは2mm~30mmであり、特に好ましくは2mm~10mmである。また、長辺は、好ましくは5mm~400mmであり、より好ましくは5mm~200mmであり、さらに好ましくは5mm~120mmであり、特に好ましくは5mm~40mmである。
FIG. 2 is a diagram for explaining a film cutting method according to another embodiment of the present invention. FIG. 2 shows a film including a polarizer at the time of starting cutting by laser light irradiation, that is, at the time of irradiating laser light to the cutting start point 11 ′. In the present embodiment, a film including a polarizer is obtained by first irradiating the cut-out starting point 11 ′ with laser light and then continuously irradiating the outline 12 ′ of the portion to be cut out. And a substantially rectangular cut-out portion is formed on the film. As illustrated in FIG. 2, when the cutout start point is on a straight line, the angle formed between the side B including the cutout start point 11 ′ and the absorption axis X of the polarizer is 0 ° to 85 ° or 95 ° to 180 °, preferably 0 ° to 60 ° or 120 ° to 180 °, more preferably 0 ° to 45 ° or 135 ° to 180 °, particularly preferably 0 ° to 30 ° or It is 150 ° to 180 °. Most preferably, the side B and the absorption axis X are parallel. When the shape of the cut-out portion is substantially rectangular, the short side is preferably 2 mm to 100 mm, more preferably 2 mm to 50 mm, still more preferably 2 mm to 30 mm, and particularly preferably 2 mm to 10 mm. is there. The long side is preferably 5 mm to 400 mm, more preferably 5 mm to 200 mm, still more preferably 5 mm to 120 mm, and particularly preferably 5 mm to 40 mm.
切り抜き部の形状は、図1および図2に示す形状に限定されない。切り抜き部の形状としては、略円形状、略長方形状の他、例えば、略正方形状、略楕円形状等挙げられる。また、切り抜き部の形状は、直線と曲線とを適宜組み合わせた形状、曲率の異なる複数の曲線から構成された形状であってもよい。切り抜き部の外郭が頂点および/または直線と曲線の連結点を有する場合、該頂点および該連結点を、切り抜き開始点としないことが好ましい。
The shape of the cutout portion is not limited to the shape shown in FIGS. Examples of the shape of the cutout portion include a substantially square shape and a substantially elliptical shape in addition to a substantially circular shape and a substantially rectangular shape. Further, the shape of the cutout portion may be a shape formed by appropriately combining a straight line and a curve, or a shape composed of a plurality of curves having different curvatures. When the outline of the cutout portion has a vertex and / or a connection point between a straight line and a curve, it is preferable not to use the vertex and the connection point as a cutout start point.
切り抜き部の面積割合は、偏光子を含むフィルム(切り抜き前のフィルム)の面積に対して、例えば、10%~50%である。
The area ratio of the cutout portion is, for example, 10% to 50% with respect to the area of the film including the polarizer (the film before the cutout).
本発明においては、切り抜き開始点を上記のように特定の位置とすることにより、偏光子を含むフィルムのクラックを防止しつつ、レーザー光により該フィルムを切り抜くことができる。レーザー光により所定形状の切り抜き部を形成する場合、切り抜き開始点を起点としてレーザー光の照射を始め、切り抜き部を形成した後、レーザー光は切り抜き開始点に戻る。すなわち、レーザー光照射の起点と終点とは同じ箇所となる。そのため、レーザー光照射の起点および終点である切り抜き開始点において、切り抜き部は、図1(b)に示すように、微少ながらも凸部(切り抜き部を有するフィルム側に突出する凸部)を有することとなる。本発明においては、切り抜き開始点、すなわち、クラックのきっかけとなり得る上記凸部を、偏光子の吸収軸を基準に上記特定の位置とすることにより、フィルムのクラックが防止されると考えられる。本発明の方法により切り抜かれたフィルムは、過酷な温度変化(例えば、-40℃~85℃のヒートサイクル)に対しても十分な耐久性を有し、クラックが生じ難い。
In the present invention, by setting the cut-out starting point to a specific position as described above, the film can be cut out by laser light while preventing cracking of the film containing the polarizer. In the case where a cutout portion having a predetermined shape is formed by laser light, laser light irradiation is started from the cutout start point, and after the cutout portion is formed, the laser light returns to the cutout start point. That is, the starting point and the ending point of laser light irradiation are the same part. Therefore, at the cutout start point which is the starting point and the end point of laser light irradiation, the cutout portion has a small but convex portion (a convex portion protruding to the film side having the cutout portion) as shown in FIG. It will be. In the present invention, it is considered that cracking of the film can be prevented by setting the cut-out starting point, that is, the convex portion that can be a trigger for the crack, to the specific position with reference to the absorption axis of the polarizer. The film cut out by the method of the present invention has sufficient durability against severe temperature changes (for example, a heat cycle of −40 ° C. to 85 ° C.), and does not easily crack.
上記レーザー光は、好ましくは、200nm~11000nmの波長の光を含む。
The laser beam preferably includes light having a wavelength of 200 nm to 11000 nm.
レーザー光照射に用いるレーザーとしては、任意の適切なレーザーが採用され得る。例えば、任意の適切なレーザーを採用し得る。具体例としては、CO2レーザー、エキシマレーザー等の気体レーザー;YAGレーザー等の固体レーザー;半導体レーザー等が挙げられる。
Any appropriate laser can be adopted as the laser used for laser light irradiation. For example, any suitable laser can be employed. Specific examples include gas lasers such as CO 2 laser and excimer laser; solid-state lasers such as YAG laser; semiconductor lasers and the like.
レーザー光の照射条件(出力条件、移動速度、回数)は、フィルムの材料、フィルムの厚み等に応じて任意の適切な条件を採用し得る。
As the laser light irradiation conditions (output conditions, moving speed, number of times), any appropriate conditions can be adopted depending on the film material, the film thickness, and the like.
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[実施例1]
レーザー光を照射して、72mm角の偏光子から、円形状(直径20mm)の切り抜き部を切り抜いた。切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角は、0°とした。また、偏光子の各辺と切り抜き部の中心との距離は、30mmとした。
なお、レーザー光の照射条件は、以下のとおりとした。
波長:9.4μm
パルス幅:8μs
出力:10V
周波数:12.5kHz
加工速度:400mm/sec [Example 1]
Laser light was irradiated, and a circular cutout (diameter 20 mm) was cut out from a 72 mm square polarizer. The angle formed between the tangent line of the cutout at the cutout start point and the absorption axis of the polarizer was set to 0 °. The distance between each side of the polarizer and the center of the cutout was 30 mm.
The laser light irradiation conditions were as follows.
Wavelength: 9.4 μm
Pulse width: 8μs
Output: 10V
Frequency: 12.5kHz
Processing speed: 400mm / sec
レーザー光を照射して、72mm角の偏光子から、円形状(直径20mm)の切り抜き部を切り抜いた。切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角は、0°とした。また、偏光子の各辺と切り抜き部の中心との距離は、30mmとした。
なお、レーザー光の照射条件は、以下のとおりとした。
波長:9.4μm
パルス幅:8μs
出力:10V
周波数:12.5kHz
加工速度:400mm/sec [Example 1]
Laser light was irradiated, and a circular cutout (diameter 20 mm) was cut out from a 72 mm square polarizer. The angle formed between the tangent line of the cutout at the cutout start point and the absorption axis of the polarizer was set to 0 °. The distance between each side of the polarizer and the center of the cutout was 30 mm.
The laser light irradiation conditions were as follows.
Wavelength: 9.4 μm
Pulse width: 8μs
Output: 10V
Frequency: 12.5kHz
Processing speed: 400mm / sec
[実施例2]
切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角を、30°としたこと以外は、実施例1と同様にして、偏光子を切り抜いた。 [Example 2]
The polarizer was cut out in the same manner as in Example 1 except that the angle formed between the tangent line of the cutout portion at the cutout start point and the absorption axis of the polarizer was set to 30 °.
切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角を、30°としたこと以外は、実施例1と同様にして、偏光子を切り抜いた。 [Example 2]
The polarizer was cut out in the same manner as in Example 1 except that the angle formed between the tangent line of the cutout portion at the cutout start point and the absorption axis of the polarizer was set to 30 °.
[実施例3]
切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角を、45°としたこと以外は、実施例1と同様にして、偏光子を切り抜いた。 [Example 3]
The polarizer was cut out in the same manner as in Example 1 except that the angle formed between the tangent line of the cutout portion at the cutout start point and the absorption axis of the polarizer was set to 45 °.
切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角を、45°としたこと以外は、実施例1と同様にして、偏光子を切り抜いた。 [Example 3]
The polarizer was cut out in the same manner as in Example 1 except that the angle formed between the tangent line of the cutout portion at the cutout start point and the absorption axis of the polarizer was set to 45 °.
[実施例4]
切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角を、60°としたこと以外は、実施例1と同様にして、偏光子を切り抜いた。 [Example 4]
The polarizer was cut out in the same manner as in Example 1 except that the angle between the tangent line of the cutout starting point and the absorption axis of the polarizer was 60 °.
切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角を、60°としたこと以外は、実施例1と同様にして、偏光子を切り抜いた。 [Example 4]
The polarizer was cut out in the same manner as in Example 1 except that the angle between the tangent line of the cutout starting point and the absorption axis of the polarizer was 60 °.
[比較例1]
切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角を、90°としたこと以外は、実施例1と同様にして、偏光子を切り抜いた。 [Comparative Example 1]
The polarizer was cut out in the same manner as in Example 1 except that the angle formed by the tangent line of the cutout portion at the cutout start point and the absorption axis of the polarizer was 90 °.
切り抜き開始点における切り抜き部の接線と、偏光子の吸収軸とのなす角を、90°としたこと以外は、実施例1と同様にして、偏光子を切り抜いた。 [Comparative Example 1]
The polarizer was cut out in the same manner as in Example 1 except that the angle formed by the tangent line of the cutout portion at the cutout start point and the absorption axis of the polarizer was 90 °.
[評価]
実施例および比較例で得られた切り抜き部を有する偏光子を、ヒートショック試験に供した。ヒートショック試験においては、85℃の環境下で30分間置いた後に-40℃の環境下に30分間置くことを1サイクルとし、200サイクル後および300サイクル後の偏光子の外観を目視にて確認した。
当該ヒートショック試験を5枚のサンプルに対して行い、クラックの発生率(いずれのサンプルもクラックなしの場合:0%、5枚のサンプルにクラックが生じた場合:100%)を求めた。結果を表1に示す。 [Evaluation]
Polarizers having cutout portions obtained in Examples and Comparative Examples were subjected to a heat shock test. In the heat shock test, one cycle is 30 minutes in an environment of 85 ° C and 30 minutes in an environment of -40 ° C, and the appearance of the polarizer after 200 cycles and 300 cycles is visually confirmed. did.
The heat shock test was performed on five samples, and the occurrence rate of cracks (0% when no sample was cracked: 0%, when cracks occurred on five samples: 100%) was obtained. The results are shown in Table 1.
実施例および比較例で得られた切り抜き部を有する偏光子を、ヒートショック試験に供した。ヒートショック試験においては、85℃の環境下で30分間置いた後に-40℃の環境下に30分間置くことを1サイクルとし、200サイクル後および300サイクル後の偏光子の外観を目視にて確認した。
当該ヒートショック試験を5枚のサンプルに対して行い、クラックの発生率(いずれのサンプルもクラックなしの場合:0%、5枚のサンプルにクラックが生じた場合:100%)を求めた。結果を表1に示す。 [Evaluation]
Polarizers having cutout portions obtained in Examples and Comparative Examples were subjected to a heat shock test. In the heat shock test, one cycle is 30 minutes in an environment of 85 ° C and 30 minutes in an environment of -40 ° C, and the appearance of the polarizer after 200 cycles and 300 cycles is visually confirmed. did.
The heat shock test was performed on five samples, and the occurrence rate of cracks (0% when no sample was cracked: 0%, when cracks occurred on five samples: 100%) was obtained. The results are shown in Table 1.
本発明のフィルムの切り抜き方法は、偏光子板等の光学フィルムを製造する際に好適に用いられる。
The film cutting method of the present invention is suitably used when manufacturing an optical film such as a polarizer plate.
10 切り抜き部
11、11’ 切り抜き開始点
100 フィルム 10 Cutout part 11, 11 'Cutout start point 100 Film
11、11’ 切り抜き開始点
100 フィルム 10 Cutout part 11, 11 '
Claims (3)
- レーザー光照射により、偏光子を含むフィルムを切り抜き、該フィルムに所定形状の切り抜き部を形成することを含み、
レーザー光照射による切り抜き開始点における切り抜き部の接線A、または該開始点を含む切り抜き部の辺Bと、偏光子の吸収軸とのなす角が、0°~85°または95°~180°である、
フィルムの切り抜き方法。 Cutting out a film containing a polarizer by laser light irradiation, and forming a cutout portion of a predetermined shape in the film;
The angle between the tangent line A of the cutout portion at the cutout start point by laser light irradiation or the side B of the cutout portion including the start point and the absorption axis of the polarizer is 0 ° to 85 ° or 95 ° to 180 °. is there,
How to cut out film. - 前記接線Aまたは辺Bと、偏光子の吸収軸とのなす角が、0°~60°または120°~180°である、請求項1に記載のフィルムの切り抜き方法。 The film cutting method according to claim 1, wherein an angle formed between the tangent line A or the side B and the absorption axis of the polarizer is 0 ° to 60 ° or 120 ° to 180 °.
- 前記接線Aまたは辺Bと、偏光子の吸収軸とが、平行である、請求項1または2に記載のフィルムの切り抜き方法。
The film cutting method according to claim 1 or 2, wherein the tangent line A or side B and the absorption axis of the polarizer are parallel to each other.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780035504.9A CN109313303B (en) | 2016-06-10 | 2017-06-01 | Film cutting method |
KR1020187035530A KR102328501B1 (en) | 2016-06-10 | 2017-06-01 | How to cut a film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-116147 | 2016-06-10 | ||
JP2016116147A JP6754621B2 (en) | 2016-06-10 | 2016-06-10 | How to cut out the film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017213009A1 true WO2017213009A1 (en) | 2017-12-14 |
Family
ID=60578611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020377 WO2017213009A1 (en) | 2016-06-10 | 2017-06-01 | Film cutout method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6754621B2 (en) |
KR (1) | KR102328501B1 (en) |
CN (1) | CN109313303B (en) |
TW (1) | TWI757301B (en) |
WO (1) | WO2017213009A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020162116A1 (en) * | 2019-02-08 | 2020-08-13 | 日東電工株式会社 | Method for manufacturing optical film |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005189530A (en) * | 2003-12-25 | 2005-07-14 | Nitto Denko Corp | Lamination type polarizing plate and its manufacturing method |
JP2009294649A (en) * | 2008-05-07 | 2009-12-17 | Nitto Denko Corp | Polarizing plate and manufacturing method thereof |
JP2014182274A (en) * | 2013-03-19 | 2014-09-29 | Fujifilm Corp | Polarizing plate, liquid crystal display device, and method for manufacturing liquid crystal display device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06269967A (en) * | 1993-03-25 | 1994-09-27 | Fanuc Ltd | Method and device for laser beam machining |
JP2005326831A (en) | 2004-04-13 | 2005-11-24 | Nitto Denko Corp | Optical member, method of manufacturing the same, and image display device applying the same |
JP4732790B2 (en) * | 2005-04-28 | 2011-07-27 | 日本合成化学工業株式会社 | Production method of polyvinyl alcohol film, polyvinyl alcohol film and polarizing film, polarizing plate |
JP2007319888A (en) * | 2006-05-31 | 2007-12-13 | Sharp Corp | Laser beam fusion-cutting method of brittle member to be worked |
JP4808106B2 (en) * | 2006-08-23 | 2011-11-02 | 日東電工株式会社 | Cutting method of optical film |
WO2009008329A1 (en) * | 2007-07-06 | 2009-01-15 | Nitto Denko Corporation | Polarization plate |
JP2010017990A (en) | 2008-07-14 | 2010-01-28 | Seiko Epson Corp | Substrate dividing method |
US8584490B2 (en) * | 2011-02-18 | 2013-11-19 | Corning Incorporated | Laser cutting method |
JP5824218B2 (en) * | 2011-02-24 | 2015-11-25 | 伊藤光学工業株式会社 | Anti-glare optical element |
KR102041658B1 (en) * | 2012-12-18 | 2019-11-08 | 스미또모 가가꾸 가부시키가이샤 | Manufacturing method for optical display device and manufacturing system for optical display device |
JP2014191051A (en) | 2013-03-26 | 2014-10-06 | Nitto Denko Corp | Laser processing method of polarizer |
JP6127707B2 (en) * | 2013-05-16 | 2017-05-17 | 住友化学株式会社 | Optical display device production system and production method |
JP6227279B2 (en) * | 2013-05-17 | 2017-11-08 | 住友化学株式会社 | Manufacturing apparatus and manufacturing method of optical member bonded body |
JP2015108663A (en) * | 2013-12-03 | 2015-06-11 | 住友化学株式会社 | Apparatus for manufacturing optical member laminate |
KR20160015160A (en) * | 2014-07-30 | 2016-02-12 | 스미또모 가가꾸 가부시키가이샤 | Anti-glare film |
US20160033699A1 (en) * | 2014-08-04 | 2016-02-04 | Nitto Denko Corporation | Polarizing plate |
KR101817388B1 (en) * | 2014-09-30 | 2018-01-10 | 주식회사 엘지화학 | Cutting method for the polarizing plate, polarizing plate cut usuing the same |
-
2016
- 2016-06-10 JP JP2016116147A patent/JP6754621B2/en active Active
-
2017
- 2017-06-01 WO PCT/JP2017/020377 patent/WO2017213009A1/en active Application Filing
- 2017-06-01 CN CN201780035504.9A patent/CN109313303B/en active Active
- 2017-06-01 KR KR1020187035530A patent/KR102328501B1/en active Active
- 2017-06-08 TW TW106119003A patent/TWI757301B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005189530A (en) * | 2003-12-25 | 2005-07-14 | Nitto Denko Corp | Lamination type polarizing plate and its manufacturing method |
JP2009294649A (en) * | 2008-05-07 | 2009-12-17 | Nitto Denko Corp | Polarizing plate and manufacturing method thereof |
JP2014182274A (en) * | 2013-03-19 | 2014-09-29 | Fujifilm Corp | Polarizing plate, liquid crystal display device, and method for manufacturing liquid crystal display device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020162116A1 (en) * | 2019-02-08 | 2020-08-13 | 日東電工株式会社 | Method for manufacturing optical film |
JPWO2020162116A1 (en) * | 2019-02-08 | 2021-12-09 | 日東電工株式会社 | Optical film manufacturing method |
JP7534963B2 (en) | 2019-02-08 | 2024-08-15 | 日東電工株式会社 | Optical film manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2017219800A (en) | 2017-12-14 |
TW201801841A (en) | 2018-01-16 |
KR102328501B1 (en) | 2021-11-18 |
JP6754621B2 (en) | 2020-09-16 |
TWI757301B (en) | 2022-03-11 |
CN109313303A (en) | 2019-02-05 |
CN109313303B (en) | 2021-04-20 |
KR20190015290A (en) | 2019-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6422033B2 (en) | Laser-based machining method and apparatus for sheet-like substrates using laser beam focal lines | |
JP6441339B2 (en) | Polarizing plate having locally depolarized region and method for producing the same | |
JP6422507B2 (en) | Manufacturing method of polarizing film and polarizing film | |
CN105247395B (en) | The method of polarization element of the manufacture containing local bleached area, the method for manufacturing the method for polarization element roller and manufacturing monolithic polarizing element | |
KR102662805B1 (en) | Long polarizer, long polarizing plate, and image display device | |
JP6219781B2 (en) | Polarizing film, polarizing plate and liquid crystal panel | |
KR102027048B1 (en) | Polarizer, polarizing plate, and method for producing polarizer | |
KR102025066B1 (en) | Polarizer, polarizing plate, and image display apparatus | |
WO2017099017A1 (en) | Method for manufacturing polarizing film | |
US10585224B2 (en) | Polarizing plate and method for producing same | |
JP2021144224A (en) | Polarizing plate, method of manufacturing the same, and image display device having the same | |
TWI722114B (en) | Polarizing plate and image display device | |
WO2017213009A1 (en) | Film cutout method | |
JPWO2018186244A1 (en) | Polarizer and polarizing plate | |
TWI726001B (en) | Polarizer, polarizing plate, and method of producing polarizer | |
WO2016167059A1 (en) | Polarizing plate and method for producing same | |
US10295727B2 (en) | Display device and method for manufacturing display panel | |
WO2016167060A1 (en) | Polarizer, polarizing plate, and method for producing polarizer | |
CN110494908A (en) | The manufacturing method and image display device of image display device | |
TW201539058A (en) | Polarizing element and image display device | |
JP2017219800A5 (en) | ||
KR20150053012A (en) | Method of cutting a non-metallic material | |
JP2021086113A (en) | Polarizing plate | |
JP2021086114A (en) | Polarizing plate | |
Oyoshi | MT Spence's Light the Sea |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17810187 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187035530 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17810187 Country of ref document: EP Kind code of ref document: A1 |