WO2017038415A1 - 光学補償層付偏光板およびそれを用いた有機elパネル - Google Patents
光学補償層付偏光板およびそれを用いた有機elパネル Download PDFInfo
- Publication number
- WO2017038415A1 WO2017038415A1 PCT/JP2016/073517 JP2016073517W WO2017038415A1 WO 2017038415 A1 WO2017038415 A1 WO 2017038415A1 JP 2016073517 W JP2016073517 W JP 2016073517W WO 2017038415 A1 WO2017038415 A1 WO 2017038415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical compensation
- compensation layer
- layer
- polarizing plate
- film
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3016—Polarising elements involving passive liquid crystal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/868—Arrangements for polarized light emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8793—Arrangements for polarized light emission
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/42—Polarizing, birefringent, filtering
Definitions
- the present invention relates to a polarizing plate with an optical compensation layer and an organic EL panel using the same.
- a circularly polarizing plate As a general circularly polarizing plate, a retardation film (typically a ⁇ / 4 plate) is laminated so that its slow axis forms an angle of about 45 ° with respect to the absorption axis of the polarizer.
- the circularly polarizing plate typically includes a protective film for protecting the polarizer on one side or both sides of the polarizer.
- the inner (organic EL cell side) protective film has optical anisotropy, it often has an adverse effect on the antireflection characteristics of the circularly polarizing plate.
- mechanical properties for example, strength, smoothness
- mechanical properties of the circularly polarizing plate are insufficient.
- the present invention has been made in order to solve the above-described conventional problems, and its main purpose is to realize a polarizing film with an optical compensation layer that realizes excellent reflection hue and viewing angle characteristics and has excellent mechanical strength. Is to provide.
- the polarizing plate with an optical compensation layer of the present invention is used for an organic EL panel, and includes a polarizer, an optical anisotropic layer, a first optical compensation layer, and a second optical compensation layer in this order.
- the optically anisotropic layer exhibits refractive index characteristics of nx ⁇ ny> nz, Re (550) is 0 nm to 20 nm, and Rth (550) is 5 nm to 100 nm;
- the first optical compensation layer is nx > Ny ⁇ nz showing refractive index characteristics, satisfying the relationship of Re (450) ⁇ Re (550); the second optical compensation layer showing refractive index characteristics of nz> nx ⁇ ny;
- Re (550) of the laminate of the optical compensation layer and the second optical compensation layer is 120 nm to 160 nm, and Rth (550) is ⁇ 50 nm to 80 nm.
- Re (450) and Re (550) represent in-plane retardation measured with light having a wavelength of 450 nm and 550 nm at 23 ° C., respectively, and Rth (550) is measured with light having a wavelength of 550 nm at 23 ° C.
- the optically anisotropic layer has a tensile strength of 100 N / mm 2 to 300 N / mm 2 .
- the angle formed by the absorption axis of the polarizer and the slow axis of the first optical compensation layer is 35 ° to 55 °.
- the first optical compensation layer is a retardation film obtained by oblique stretching.
- the polarizing plate with an optical compensation layer further includes a conductive layer and a base material in this order on the opposite side of the second optical compensation layer from the first optical compensation layer.
- an organic EL panel is provided. This organic EL panel includes the above polarizing plate with an optical compensation layer.
- an optically anisotropic layer that can also function as an inner protective film of a polarizer is provided, and each of the first optical compensation layer having a predetermined refractive index characteristic and By optimizing the in-plane retardation and thickness direction retardation of the laminate of the second optical compensation layer within a predetermined range, excellent reflection hue and viewing angle characteristics are realized, and excellent mechanical strength is achieved.
- a polarizing plate with an optical compensation layer can be obtained.
- Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
- Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
- In-plane retardation (Re) “Re ( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23 ° C.
- Re (550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C.
- Thickness direction retardation (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
- Rth (550) is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
- Substantially orthogonal or parallel include the case where the angle between the two directions is 90 ° ⁇ 10 °, preferably 90 ° ⁇ 7 °. And more preferably 90 ° ⁇ 5 °.
- substantially parallel and “substantially parallel” include the case where the angle between two directions is 0 ° ⁇ 10 °, preferably 0 ° ⁇ 7 °, more preferably 0 ° ⁇ 5 °.
- orthogonal or “parallel” may include a substantially orthogonal state or a substantially parallel state.
- A. 1 is a schematic sectional view of a polarizing plate with an optical compensation layer according to one embodiment of the present invention.
- the polarizing plate 100 with an optical compensation layer of the present embodiment includes a polarizer 10, an optical anisotropic layer 20, a first optical compensation layer 30, and a second optical compensation layer 40 in this order.
- the first optical compensation layer 30 is disposed on the polarizer 10 side with respect to the second optical compensation layer 40.
- the second optical compensation layer 40 is disposed on the polarizer 10 side. It may be.
- the optically anisotropic layer 20 can also function as a protective layer of the polarizer 10.
- a protective layer (not shown) may be provided on the opposite side of the polarizer 10 from the optically anisotropic layer 20. Further, if necessary, a conductive layer and a base material may be provided in this order on the opposite side of the second optical compensation layer 40 from the first optical compensation layer 30 (that is, outside the second optical compensation layer 40). Good (both not shown). The base material is closely adhered to the conductive layer. In the present specification, “adhesion lamination” means that two layers are directly and firmly laminated without an adhesive layer (for example, an adhesive layer or an adhesive layer). The conductive layer and the base material can be typically introduced into the polarizing plate 100 with an optical compensation layer as a laminate of the base material and the conductive layer. By further providing a conductive layer and a substrate, the polarizing plate 100 with an optical compensation layer can be suitably used for an inner touch panel type input display device.
- the first optical compensation layer 30 has a refractive index characteristic of nx> ny ⁇ nz and has a slow axis.
- the polarizer 10 and the first optical compensation layer 30 are stacked such that the absorption axis of the polarizer 10 and the slow axis of the first optical compensation layer 30 form a predetermined angle.
- the angle formed by the absorption axis of the polarizer 10 and the slow axis of the first optical compensation layer 30 is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, and still more preferably 42 °. It is ⁇ 48 °, particularly preferably about 45 °. When the angle is within such a range, an excellent antireflection function can be realized.
- the polarizing plate with an optical compensation layer may be a single wafer or may be long.
- the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
- polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films.
- PVA polyvinyl alcohol
- polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
- a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
- the dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution.
- the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
- the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
- the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
- a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
- a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
- a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
- a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
- stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
- the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
- the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
- Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
- the thickness of the polarizer is preferably 25 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, still more preferably 3 ⁇ m to 12 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m.
- the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
- the polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
- the single transmittance of the polarizer is 43.0% to 46.0%, preferably 44.5% to 46.0%.
- the polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
- optically anisotropic layer 20 exhibits a refractive index characteristic of nx ⁇ ny> nz. Therefore, the optically anisotropic layer may have a slow axis. In this case, the slow axis of the optically anisotropic layer is substantially orthogonal or parallel to the absorption axis of the polarizer.
- Re (550) of the optically anisotropic layer is 0 nm to 20 nm, and Rth (550) is 5 nm to 100 nm. If the in-plane retardation and the thickness direction retardation are within such ranges, the optical characteristics can be obtained by optimizing the optical characteristics as described later for the laminate of the first optical compensation layer and the second optical compensation layer. The excellent antireflection characteristic of the circularly polarizing plate with an optical compensation layer can be maintained. At the same time, a circularly polarizing plate with an optical compensation layer having excellent mechanical strength can be obtained.
- Re (550) of the optically anisotropic layer is preferably 0 nm to 15 nm, more preferably 0 nm to 10 nm.
- Rth (550) of the optically anisotropic layer is preferably 5 nm to 60 nm, more preferably 10 nm to 20 nm. According to this embodiment, by optimizing the optical characteristics as described later for the laminate of the first optical compensation layer and the second optical compensation layer, it is possible to maintain an excellent mechanical strength while Excellent reflection hue and viewing angle characteristics can be realized.
- Re (550) of the optically anisotropic layer is preferably 10 nm to 20 nm, more preferably 15 nm to 20 nm.
- Rth (550) of the optically anisotropic layer is preferably 30 nm to 70 nm, and more preferably 35 nm to 50 nm. According to this embodiment, it is possible to achieve very good mechanical strength while maintaining an acceptable antireflection characteristic.
- the tensile strength of the optically anisotropic layer is preferably 100 N / mm 2 to 300 N / mm 2 , more preferably 100 N / mm 2 to 200 N / mm 2 .
- the tensile strength can be measured according to JIS K 7161.
- the smoothness of the optically anisotropic layer can be expressed, for example, using the arithmetic average roughness Ra as an index.
- the arithmetic average roughness Ra of the optically anisotropic layer is preferably 0.001 ⁇ m to 0.1 ⁇ m, and more preferably 0.001 ⁇ m to 0.05 ⁇ m. When the smoothness is within such a range, the retardation unevenness of the optically anisotropic layer can be reduced.
- the optically anisotropic layer can be made of any appropriate material as long as it satisfies the optical properties and mechanical properties as described above.
- the constituent material include cellulose resins such as triacetyl cellulose (TAC), polyester resins, polyvinyl alcohol resins, polycarbonate resins, polyamide resins, polyimide resins, polyether sulfone resins, polysulfone resins, polystyrene resins, and polynorbornene.
- transparent resins such as those based on polyolefin, polyolefin, (meth) acrylic and acetate.
- thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included.
- a glassy polymer such as a siloxane polymer is also included.
- a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
- a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
- the polymer film can be, for example, an extruded product of the resin composition.
- the optically anisotropic layer may be a film made of the above material as it is, or may be formed by stretching the film.
- the thickness of the optically anisotropic layer is preferably 10 ⁇ m to 80 ⁇ m, more preferably 15 ⁇ m to 40 ⁇ m. With such a thickness, a desired in-plane retardation and thickness direction retardation and desired mechanical strength can be realized.
- the first optical compensation layer 30 has a refractive index characteristic of nx> ny ⁇ nz.
- the in-plane retardation Re (550) of the first optical compensation layer is preferably 80 nm to 200 nm, more preferably 100 nm to 180 nm, and further preferably 110 nm to 170 nm. If the in-plane retardation of the first optical compensation layer is in such a range, the slow axis direction of the first optical compensation layer is set to 35 ° to 55 ° as described above with respect to the absorption axis direction of the polarizer. By setting the angle to be (especially about 45 °), an excellent antireflection function can be realized.
- the first optical compensation layer exhibits the so-called reverse dispersion wavelength dependency. Specifically, the in-plane retardation satisfies the relationship Re (450) ⁇ Re (550). By satisfying such a relationship, an excellent reflection hue can be achieved.
- Re (450) / Re (550) is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less.
- the Nz coefficient of the first optical compensation layer is preferably 1 to 3, more preferably 1 to 2.5, still more preferably 1 to 1.5, and particularly preferably 1 to 1.3. is there. By satisfying such a relationship, a more excellent reflection hue can be achieved.
- the water absorption rate of the first optical compensation layer is preferably 3% or less, more preferably 2.5% or less, and further preferably 2% or less. By satisfying such a water absorption rate, it is possible to suppress changes in display characteristics over time. In addition, a water absorption rate can be calculated
- the first optical compensation layer is typically a retardation film formed of any appropriate resin.
- a polycarbonate resin is preferably used as the resin for forming the retardation film.
- the polycarbonate resin any appropriate polycarbonate resin can be used as long as the effects of the present invention can be obtained.
- the polycarbonate resin includes a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri, or polyethylene glycol, and an alkylene.
- the polycarbonate resin is derived from a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol and / or a di-, tri- or polyethylene glycol. More preferably, a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from di, tri, or polyethylene glycol.
- the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Details of the polycarbonate resin that can be suitably used in the present invention are described in, for example, Japanese Patent Application Laid-Open Nos. 2014-10291 and 2014-26266, and the description is incorporated herein by reference. The
- the glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 180 ° C. or lower, more preferably 120 ° C. or higher and 165 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, there is a possibility of causing a dimensional change after film formation, and the image quality of the resulting organic EL panel may be lowered. If the glass transition temperature is excessively high, the molding stability at the time of film molding may deteriorate, and the transparency of the film may be impaired.
- the glass transition temperature is determined according to JIS K 7121 (1987).
- the molecular weight of the polycarbonate resin can be represented by a reduced viscosity.
- the reduced viscosity is measured using a Ubbelohde viscometer at a temperature of 20.0 ° C. ⁇ 0.1 ° C., using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g / dL.
- the lower limit of the reduced viscosity is usually preferably 0.30 dL / g, more preferably 0.35 dL / g or more.
- the upper limit of the reduced viscosity is usually preferably 1.20 dL / g, more preferably 1.00 dL / g, still more preferably 0.80 dL / g.
- the reduced viscosity is less than the lower limit, there may be a problem that the mechanical strength of the molded product is reduced.
- the reduced viscosity is larger than the upper limit, the fluidity at the time of molding is lowered, and there may be a problem that productivity and moldability are lowered.
- the retardation film is typically produced by stretching a resin film in at least one direction.
- any appropriate method can be adopted as a method for forming the resin film.
- a melt extrusion method for example, a T-die molding method
- a cast coating method for example, a casting method
- a calendar molding method for example, a hot press method, a co-extrusion method, a co-melting method, a multilayer extrusion method, an inflation molding method, etc. It is done.
- a T-die molding method, a casting method, and an inflation molding method are used.
- the thickness of the resin film can be set to any appropriate value depending on desired optical characteristics, stretching conditions described later, and the like.
- the thickness is preferably 50 ⁇ m to 300 ⁇ m.
- Any appropriate stretching method and stretching conditions may be employed for the stretching.
- various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially.
- the stretching direction can also be performed in various directions and dimensions such as a horizontal direction, a vertical direction, a thickness direction, and a diagonal direction.
- the stretching temperature is preferably Tg-30 ° C. to Tg + 60 ° C., more preferably Tg-10 ° C. to Tg + 50 ° C. with respect to the glass transition temperature (Tg) of the resin film.
- a retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
- the retardation film is prepared by uniaxially stretching a resin film or uniaxially stretching a fixed end.
- the fixed end uniaxial stretching there is a method of stretching in the width direction (lateral direction) while running the resin film in the longitudinal direction.
- the draw ratio is preferably 1.1 to 3.5 times.
- the retardation film is produced by continuously and obliquely stretching a long resin film in the direction of an angle ⁇ with respect to the longitudinal direction.
- a long stretched film having an orientation angle of ⁇ with respect to the longitudinal direction of the film (slow axis in the direction of angle ⁇ ) can be obtained.
- the angle ⁇ is the absorption axis of the polarizer and the slow axis of the first optical compensation layer. It can be an angle between
- Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions.
- the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
- the thickness of the retardation film is preferably 20 ⁇ m to 100 ⁇ m, more preferably 20 ⁇ m to 80 ⁇ m, and further preferably 20 ⁇ m to 65 ⁇ m. With such a thickness, the desired in-plane retardation and thickness direction retardation can be obtained.
- the second optical compensation layer 40 has a relationship of refractive index characteristics nz> nx ⁇ ny.
- the thickness direction retardation Rth (550) of the second optical compensation layer is preferably ⁇ 260 nm to ⁇ 10 nm, more preferably ⁇ 230 nm to ⁇ 15 nm, and still more preferably ⁇ 215 nm to ⁇ 20 nm.
- Re (550) is less than 10 nm.
- the second optical compensation layer has a refractive index relationship of nx> ny. Therefore, the second optical compensation layer may have a slow axis.
- the slow axis of the second optical compensation layer is substantially orthogonal or parallel to the absorption axis of the polarizer.
- the in-plane retardation Re (550) of the second optical compensation layer is preferably 10 nm to 150 nm, and more preferably 10 nm to 80 nm.
- the second optical compensation layer can be formed of any appropriate material.
- a liquid crystal layer fixed in homeotropic alignment is preferable.
- the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
- Specific examples of the liquid crystal compound and the method for forming the liquid crystal layer include the liquid crystal compounds and methods described in JP-A-2002-333642, [0020] to [0042].
- the thickness is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.2 ⁇ m to 3 ⁇ m.
- the second optical compensation layer may be a retardation film formed of a fumaric acid diester resin described in JP 2012-32784 A.
- the thickness is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m.
- the in-plane retardation Re (550) of the laminate of the first optical compensation layer and the second optical compensation layer is 120 nm to 160 nm, preferably 130 nm to 150 nm.
- the thickness direction retardation Rth (550) of the laminate is ⁇ 40 nm to 80 nm, preferably ⁇ 20 nm to 50 nm.
- the protective layer is formed of any suitable film that can be used as a protective layer for a polarizer.
- the protective layer may be subjected to surface treatment such as hard coat treatment, antireflection treatment, antisticking treatment, and antiglare treatment as necessary. Further / or, if necessary, the protective layer may be treated to improve visibility when viewed through polarized sunglasses (typically, an (elliptical) circular polarization function is added, an ultra-high phase difference is applied. Granting). By performing such processing, excellent visibility can be achieved even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the polarizing plate with an optical compensation layer can be suitably applied to an image display device that can be used outdoors.
- polarized sunglasses typically, an (elliptical) circular polarization function is added, an ultra-high phase difference is applied. Granting.
- the thickness of the protective layer is typically 5 mm or less, preferably 1 mm or less, more preferably 1 ⁇ m to 500 ⁇ m, and still more preferably 5 ⁇ m to 150 ⁇ m.
- the thickness of the protective layer is a thickness including the thickness of the surface treatment layer.
- Conductive layer or conductive layer with substrate can be formed on any suitable substrate by any suitable film formation method (eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.). Further, it can be formed by forming a metal oxide film. After film formation, heat treatment (for example, 100 ° C. to 200 ° C.) may be performed as necessary. By performing the heat treatment, the amorphous film can be crystallized.
- the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide.
- the indium oxide may be doped with divalent metal ions or tetravalent metal ions.
- Indium composite oxides are preferable, and indium-tin composite oxide (ITO) is more preferable.
- ITO indium-tin composite oxide
- Indium composite oxides are characterized by high transmittance (for example, 80% or more) in the visible light region (380 nm to 780 nm) and low surface resistance per unit area.
- the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
- the lower limit of the thickness of the conductive layer is preferably 10 nm.
- the surface resistance value of the conductive layer is preferably 300 ⁇ / ⁇ or less, more preferably 150 ⁇ / ⁇ or less, and further preferably 100 ⁇ / ⁇ or less.
- the conductive layer may be transferred from the base material to the second optical compensation layer, and the conductive layer alone may be used as a constituent layer of the polarizing plate with an optical compensation layer, or a laminate with the base material (conductive layer with base material). May be laminated on the second optical compensation layer.
- the conductive layer and the base material can be introduced into the polarizing plate with an optical compensation layer as a conductive layer with a base material.
- Any suitable resin may be used as the material constituting the base material.
- it is resin excellent in transparency.
- Specific examples include cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, and acrylic resins.
- the substrate is optically isotropic. Therefore, the conductive layer can be used as a conductive layer with an isotropic substrate in a polarizing plate with an optical compensation layer.
- the material constituting the optically isotropic substrate include, for example, a material having a main skeleton such as a norbornene-based resin or an olefin-based resin, a lactone ring, or glutar Examples thereof include materials having a cyclic structure such as an imide ring in the main chain of the acrylic resin. When such a material is used, when an isotropic substrate is formed, it is possible to suppress the expression of the phase difference accompanying the orientation of the molecular chain.
- the thickness of the substrate is preferably 10 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 60 ⁇ m.
- the pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive.
- the adhesive layer is typically formed of a polyvinyl alcohol-based adhesive.
- an adhesive layer may be provided on the second optical compensation layer 40 side of the polarizing plate 100 with an optical compensation layer (on the base material side when a conductive layer and a base material are provided).
- an optical compensation layer on the base material side when a conductive layer and a base material are provided.
- any appropriate method can be adopted as a manufacturing method of the polarizing plate with an optical compensation layer.
- the elongated polarizer having an absorption axis in the longitudinal direction, the elongated resin film constituting the optically anisotropic layer, and the elongated shape constituting the first optical compensation layer.
- the phase difference film is laminated in such a manner that each of the phase difference films is transported in the longitudinal direction so that the respective longitudinal directions are aligned, and a laminated film is obtained. And a step of coating and forming on the surface of the optical compensation layer.
- the polarizer, the optically anisotropic layer, and the first optical compensation layer may be laminated simultaneously, or the polarizer and the optically anisotropic layer may be laminated first.
- the optical compensation layer may be laminated first.
- a laminated body of the first optical compensation layer and the second optical compensation layer may be formed first, and the laminated body may be used for the above-described lamination.
- the angle formed between the absorption axis of the polarizer 10 and the slow axis of the first optical compensation layer 30 is preferably 35 ° to 55 °, more preferably 38 ° to 52 °. More preferably 42 ° to 48 °, and particularly preferably about 45 °.
- the long retardation film constituting the first optical compensation layer has a slow axis in the direction of the angle ⁇ with respect to the longitudinal direction.
- the angle ⁇ may be an angle formed between the absorption axis of the polarizer as described above and the slow axis of the first optical compensation layer.
- Such a retardation film can be obtained by oblique stretching. According to such a configuration, as described above, roll-to-roll is possible in the manufacture of the polarizing plate with an optical compensation layer, and the manufacturing process can be significantly shortened.
- Organic EL Panel of the present invention includes an organic EL cell and the polarizing plate with an optical compensation layer described in the above section A on the viewing side of the organic EL cell.
- the polarizing plate with an optical compensation layer is laminated so that the second optical compensation layer is on the organic EL cell side (so that the polarizer is on the viewing side).
- the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
- the measuring method of each characteristic is as follows.
- Thickness The thickness was measured using a dial gauge (manufactured by PEACOCK, product name “DG-205”, dial gauge stand (product name “pds-2”)).
- Retardation A sample of 50 mm ⁇ 50 mm was cut out from each optical compensation layer and optical anisotropic layer to obtain a measurement sample, and measurement was performed using Axoscan manufactured by Axometrics. The measurement wavelength was 450 nm, 550 nm, and the measurement temperature was 23 ° C.
- the average refractive index was measured using an Abbe refractometer manufactured by Atago Co., Ltd., and the refractive indexes nx, ny, and nz were calculated from the obtained retardation values.
- Reflection hue and viewing angle characteristics A black image was displayed on the obtained organic EL panel, and the reflection hue was measured using a viewing angle measurement evaluation apparatus conoscope manufactured by Auoronic-MERCHERS.
- the “viewing angle characteristic” indicates the distance ⁇ xy between two points between the reflected hue in the front direction and the reflected hue in the oblique direction (maximum value or minimum value at 45 ° polar angle) in the xy chromaticity diagram of the CIE color system. When this ⁇ xy is smaller than 0.15, the viewing angle characteristics are evaluated as good.
- Nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, and then the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was obtained. When a predetermined power is reached, nitrogen is introduced into the reactor, the pressure is restored, the reaction solution is withdrawn in the form of a strand, pelletized with a rotary cutter, and BHEPF / ISB / DEG 34.8 / 49.0 / A polycarbonate resin having a copolymer composition of 16.2 [mol%] was obtained. This polycarbonate resin had a reduced viscosity of 0.430 dL / g and a glass transition temperature of 128 ° C.
- the obtained polycarbonate resin was vacuum-dried at 80 ° C. for 5 hours, and then a single-screw extruder (manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T-die (width 900 mm, set temperature: 220). ° C), a chill roll (set temperature: 125 ° C) and a film forming apparatus equipped with a winder, a polycarbonate resin film having a thickness of 130 ⁇ m was produced.
- the polycarbonate resin film obtained had a water absorption rate of 1.2%.
- the polycarbonate resin film obtained as described above was obliquely stretched by a method according to Example 1 of Japanese Patent Application Laid-Open No. 2014-194383 to obtain a retardation film.
- the specific production procedure of the retardation film is as follows: A polycarbonate resin film (thickness 130 ⁇ m, width 765 mm) was preheated to 142 ° C. in the preheating zone of the stretching apparatus. In the preheating zone, the clip pitch of the left and right clips was 125 mm. Next, as soon as the film entered the first oblique stretching zone C1, the clip pitch of the right clip began to increase and increased from 125 mm to 177.5 mm in the first oblique stretching zone C1. The clip pitch change rate was 1.42. In the first oblique stretching zone C1, the clip pitch of the left clip started to decrease and decreased from 125 mm to 90 mm in the first oblique stretching zone C1. The clip pitch change rate was 0.72.
- the clip pitch of the left clip started to increase and increased from 90 mm to 177.5 mm in the second oblique stretching zone C2.
- the clip pitch of the right clip was maintained at 177.5 mm in the second oblique stretching zone C2.
- stretching in the width direction was performed 1.9 times.
- the oblique stretching was performed at 135 ° C.
- MD shrinkage treatment was performed in the shrinkage zone. Specifically, the clip pitches of the left clip and right clip were both reduced from 177.5 mm to 165 mm.
- the shrinkage rate in the MD shrinkage treatment was 7.0%.
- a retardation film (thickness 40 ⁇ m) was obtained.
- Re (550) of the obtained retardation film is 147 nm
- Rth (550) is 167 nm (nx: 1.5977, ny: 1.59404, nz: 1.5935)
- the characteristics are shown.
- Re (450) / Re (550) of the obtained retardation film was 0.89.
- the slow axis direction of the retardation film was 45 ° with respect to the longitudinal direction.
- Second optical compensation layer 20 parts by weight of a side chain type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mol% of the monomer units and are represented by block polymer for convenience: weight average molecular weight 5000), Dissolve 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name Palicolor LC242) and 5 parts by weight of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) in 200 parts by weight of cyclopentanone.
- a liquid crystal coating solution was prepared.
- a liquid crystal is dried by heating at 80 degreeC for 4 minutes. Oriented.
- a liquid crystal solidified layer (thickness: 1.10 ⁇ m) serving as the second optical compensation layer was formed on the substrate.
- the weight ratio of iodine and potassium iodide is 1: 7, the iodine concentration of which is adjusted so that the single transmittance of the obtained polarizer is 45.0%.
- the film was stretched 1.4 times.
- the crosslinking treatment employed a two-stage crosslinking treatment, and the first-stage crosslinking treatment was stretched 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C.
- the boric acid content of the aqueous solution of the first-stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
- the cross-linking treatment at the second stage was stretched 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C.
- the boric acid content of the aqueous solution of the second crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
- the cleaning treatment was performed with an aqueous potassium iodide solution at 20 ° C.
- the potassium iodide content of the aqueous solution for the washing treatment was 2.6% by weight.
- the drying process was performed at 70 ° C. for 5 minutes to obtain a polarizer.
- a commercially available long roll triacetyl cellulose (TAC) film (thickness 25 ⁇ m) was used as it was.
- This film had Re (550) of 0 nm and Rth (550) of 55 nm.
- the tensile strength of this film was 120 N / mm ⁇ 2 >, and arithmetic mean roughness Ra was 0.05 micrometer.
- HC-TAC film thickness: having a hard coat (HC) layer formed by hard coat treatment on one side of the optically anisotropic layer and the TAC film via a polyvinyl alcohol adhesive on both surfaces of the polarizer. 32 ⁇ m and corresponding to the protective layer) were bonded by roll-to-roll to obtain a long polarizing plate having a configuration of protective layer / polarizer / optically anisotropic layer.
- Examples 2 to 11 and Comparative Examples 1 to 6 A polarizing plate with an optical compensation layer and an organic EL panel having the configuration shown in Table 1 were prepared. The obtained polarizing plate with an optical compensation layer and the organic EL panel were subjected to the same evaluation as in Example 1. As shown in Table 1, the viewing angle characteristics of the organic EL panels of Examples 2 to 11 were good, while the viewing angle characteristics of the organic EL panels of Comparative Examples 1 to 4 and 6 were insufficient. The polarizing plates with optical compensation layers of Examples 2 to 11 and Comparative Examples 1 to 4 and 6 all exhibited practically good mechanical properties (tensile strength). The viewing angle characteristics of the organic EL panel of Comparative Example 5 were good, but the mechanical characteristics (tensile strength) of the polarizing plate with an optical compensation layer of Comparative Example 5 were practically insufficient.
- the polarizing plate with an optical compensation layer of the present invention is suitably used for an organic EL panel.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Laminated Bodies (AREA)
Abstract
Description
1つの実施形態においては、上記光学異方性層の引張強度は100N/mm2~300N/mm2である。
1つの実施形態においては、上記偏光子の吸収軸と上記第1の光学補償層の遅相軸とのなす角度は35°~55°である。
1つの実施形態においては、上記第1の光学補償層は斜め延伸して得られた位相差フィルムである。
1つの実施形態においては、上記光学補償層付偏光板は、上記第2の光学補償層の上記第1の光学補償層と反対側に導電層および基材をこの順にさらに備える。
本発明の別の局面によれば、有機ELパネルが提供される。この有機ELパネルは、上記の光学補償層付偏光板を備える。
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)実質的に直交または平行
「実質的に直交」および「略直交」という表現は、2つの方向のなす角度が90°±10°である場合を包含し、好ましくは90°±7°であり、さらに好ましくは90°±5°である。「実質的に平行」および「略平行」という表現は、2つの方向のなす角度が0°±10°である場合を包含し、好ましくは0°±7°であり、さらに好ましくは0°±5°である。さらに、本明細書において単に「直交」または「平行」というときは、実質的に直交または実質的に平行な状態を含み得るものとする。
図1は、本発明の1つの実施形態による光学補償層付偏光板の概略断面図である。本実施形態の光学補償層付偏光板100は、偏光子10と光学異方性層20と第1の光学補償層30と第2の光学補償層40とをこの順に備える。図示例では、第1の光学補償層30が第2の光学補償層40よりも偏光子10側となるように配置されているが、第2の光学補償層40が偏光子10側に配置されていてもよい。本実施形態においては、光学異方性層20は、偏光子10の保護層としても機能し得る。必要に応じて、偏光子10の光学異方性層20と反対側に保護層(図示せず)を設けてもよい。さらに、必要に応じて、第2の光学補償層40の第1の光学補償層30と反対側(すなわち、第2の光学補償層40の外側)に導電層および基材をこの順に設けてもよい(いずれも図示せず)。基材は、導電層に密着積層されている。本明細書において「密着積層」とは、2つの層が接着層(例えば、接着剤層、粘着剤層)を介在することなく直接かつ固着して積層されていることをいう。導電層および基材は、代表的には、基材と導電層との積層体として光学補償層付偏光板100に導入され得る。導電層および基材をさらに設けることにより、光学補償層付偏光板100は、インナータッチパネル型入力表示装置に好適に用いられ得る。
偏光子10としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
光学異方性層20は、nx≧ny>nzの屈折率特性を示す。したがって、光学異方性層は遅相軸を有する場合がある。この場合、光学異方性層の遅相軸は、偏光子の吸収軸に対して実質的に直交または平行である。
第1の光学補償層30は、上述のとおり、屈折率特性がnx>ny≧nzの関係を示す。第1の光学補償層の面内位相差Re(550)は、好ましくは80nm~200nmであり、より好ましくは100nm~180nmであり、さらに好ましくは110nm~170nmである。第1の光学補償層の面内位相差がこのような範囲であれば、第1の光学補償層の遅相軸方向を偏光子の吸収軸方向に対して上記のように35°~55°(特に、約45°)の角度をなすよう設定することにより、優れた反射防止機能を実現することができる。
第2の光学補償層40は、上述のとおり、屈折率特性がnz>nx≧nyの関係を示す。第2の光学補償層の厚み方向の位相差Rth(550)は、好ましくは-260nm~-10nm、より好ましくは-230nm~-15nm、さらに好ましくは-215nm~-20nmである。このような光学特性を有する第2の光学補償層を設けることにより、斜め方向から見たときの反射色相が顕著に改善され、結果として、非常に優れた視野角特性を有する光学補償層付偏光板が得られ得る。
上記第1の光学補償層と第2の光学補償層との積層体の面内位相差Re(550)は、120nm~160nmであり、好ましくは130nm~150nmである。当該積層体の厚み方向の位相差Rth(550)は、-40nm~80nmであり、好ましくは-20nm~50nmである。積層体の光学特性をこのように設定することにより、上記のような光学異方性層を用いることによる光学補償層付偏光板の反射防止特性に対する悪影響を回避することができる。結果として、優れた反射色相および視野角特性を実現し、かつ、優れた機械的強度を有する光学補償層付偏光板を得ることができる。
保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。保護層には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、保護層には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、光学補償層付偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。保護層の厚みは、代表的には5mm以下であり、好ましくは1mm以下、より好ましくは1μm~500μm、さらに好ましくは5μm~150μmである。なお、表面処理が施されている場合、保護層の厚みは、表面処理層の厚みを含めた厚みである。
導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。成膜後、必要に応じて加熱処理(例えば、100℃~200℃)を行ってもよい。加熱処理を行うことにより、非晶質膜が結晶化し得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。インジウム酸化物には2価金属イオンまたは4価金属イオンがドープされていてもよい。好ましくはインジウム系複合酸化物であり、より好ましくはインジウム-スズ複合酸化物(ITO)である。インジウム系複合酸化物は、可視光領域(380nm~780nm)で高い透過率(例えば、80%以上)を有し、かつ、単位面積当たりの表面抵抗値が低いという特徴を有している。
本発明の光学補償層付偏光板を構成する各層の積層には、任意の適切な粘着剤層または接着剤層が用いられる。粘着剤層は、代表的にはアクリル系粘着剤で形成される。接着剤層は、代表的にはポリビニルアルコール系接着剤で形成される。
上記光学補償層付偏光板の製造方法としては、任意の適切な方法が採用され得る。1つの実施形態においては、長尺状で長手方向に吸収軸を有する偏光子と、光学異方性層を構成する長尺状の樹脂フィルムと、第1の光学補償層を構成する長尺状の位相差フィルムとを、それぞれ長手方向に搬送しながら、それぞれの長手方向を揃えるようにして積層して積層フィルムを得る工程と、この積層フィルムを搬送しながら第2の光学補償層を第1の光学補償層表面に塗布形成する工程とを含む方法により製造され得る。偏光子、光学異方性層および第1の光学補償層は、同時に積層してもよく、偏光子と光学異方性層とを先に積層してもよく、光学異方性層と第1の光学補償層とを先に積層してもよい。また、第1の光学補償層と第2の光学補償層の積層体を先に形成し、当該積層体を上記の積層に供してもよい。ここで、偏光子10の吸収軸と第1の光学補償層30の遅相軸とのなす角度は、上述のとおり、好ましくは35°~55°であり、より好ましくは38°~52°であり、さらに好ましくは42°~48°であり、特に好ましくは約45°である。
本発明の有機ELパネルは、有機ELセルと、該有機ELセルの視認側に上記A項に記載の光学補償層付偏光板と、を備える。光学補償層付偏光板は、第2の光学補償層が有機ELセル側となるように(偏光子が視認側となるように)積層されている。
ダイヤルゲージ(PEACOCK社製、製品名「DG-205」、ダイヤルゲージスタンド(製品名「pds-2」))を用いて測定した。
(2)位相差
各光学補償層および光学異方性層から50mm×50mmのサンプルを切り出して測定サンプルとし、Axometrics社製のAxoscanを用いて測定した。測定波長は450nm、550nm、測定温度は23℃であった。
また、アタゴ社製のアッベ屈折率計を用いて平均屈折率を測定し、得られた位相差値から屈折率nx、ny、nzを算出した。
(3)吸水率
JIS K 7209に記載の「プラスチックの吸水率及び沸騰吸水率試験方法」に準拠して測定した。試験片の大きさは50mm辺の正方形で、水温25℃の水に24時間試験片を浸水させた後、浸水前後の重量変化を測定することにより求めた。単位は%である。
(4)引張強度
光学異方性層について、JIS K 7161に記載の「プラスチックの引っ張り特性」に準拠して引張強度を測定した。
(5)平滑性
光学異方性層について、光干渉型顕微鏡「WYKO NT-3300」(Veeco社製)を用いて、算術平均粗さRaを測定した。
(6)反射色相および視野角特性
得られた有機ELパネルに黒画像を表示させ、Auoronic-MERCHERS社製の視野角測定評価装置コノスコープを用いて反射色相を測定した。「視野角特性」は、CIE表色系のxy色度図における正面方向の反射色相と斜め方向の反射色相(極角45°における最大値または最小値)との2点間距離Δxyを示す。このΔxyが0.15よりも小さいと、視野角特性が良好と評価される。
(7)機械的特性
得られた光学補償層付偏光板について、上記(4)と同様にして引張強度を測定した。
(ポリカーボネート樹脂フィルムの作製)
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。9,9-[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)、イソソルビド(ISB)、ジエチレングリコール(DEG)、ジフェニルカーボネート(DPC)、および酢酸マグネシウム4水和物を、モル比率でBHEPF/ISB/DEG/DPC/酢酸マグネシウム=0.348/0.490/0.162/1.005/1.00×10-5になるように仕込んだ。反応器内を十分に窒素置換した後(酸素濃度0.0005~0.001vol%)、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。
得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅900mm、設定温度:220℃)、チルロール(設定温度:125℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmのポリカーボネート樹脂フィルムを作製した。得られたポリカーボネート樹脂フィルムの吸水率は1.2%であった。
下記化学式(I)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン(株)製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、基材上に第2の光学補償層となる液晶固化層(厚み:1.10μm)を形成した。この層のRe(550)は0nm、Rth(550)は-135nmであり(nx:1.5723、ny:1.5723、nz:1.5757)、nz>nx=nyの屈折率特性を示した。
上記位相差フィルム(第1の光学補償層)に、アクリル系粘着剤を介してロールツーロールにより上記液晶固化層(第2の光学補償層)を貼り合わせた後、上記基材フィルムを除去して、位相差フィルムに液晶固化層が転写された積層体を得た。
得られた積層体のRe(550)は147nmであり、Rth(550)は32nmであった。
厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長尺方向に5.9倍になるように長尺方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。
具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子を得た。
市販の長尺ロール状トリアセチルセルロース(TAC)フィルム(厚み25μm)をそのまま使用した。このフィルムのRe(550)は0nmであり、Rth(550)は55nmであった。また、このフィルムの引張強度は120N/mm2であり、算術平均粗さRaは0.05μmであった。
上記偏光子の両面に、ポリビニルアルコール系接着剤を介して、上記光学異方性層およびTACフィルムの片面にハードコート処理により形成されたハードコート(HC)層を有するHC-TACフィルム(厚み:32μm、保護層に対応する)をそれぞれロールツーロールにより貼り合わせ、保護層/偏光子/光学異方性層の構成を有する長尺状の偏光板を得た。
上記で得られた偏光板の光学異方性層面と上記で得られた第1の光学補償層/第2の光学補償層の積層体の第1の光学補償層面とを、アクリル系粘着剤を介してロールツーロールにより貼り合わせ、保護層/偏光子/光学異方性層/第1の光学補償層/第2の光学補償層の構成を有する長尺状の光学補償層付偏光板を得た。得られた光学補償層付偏光板の機械的特性(引張強度)を上記(7)の手順で測定したところ、実用上良好な特性を示した。
得られた光学補償層付偏光板の第2の光学補償層側にアクリル系粘着剤で粘着剤層を形成し、寸法50mm×50mmに切り出した。
三星無線社製のスマートフォン(Galaxy-S5)を分解して有機ELパネルを取り出した。この有機ELパネルに貼り付けられている偏光フィルムを剥がし取り、かわりに、上記で切り出した光学補償層付偏光板を貼り合わせて有機ELパネルを得た。
得られた有機ELパネルの反射特性を上記(6)の手順で測定した。その結果、正面方向および斜め方向のいずれにおいてもニュートラルな反射色相が実現されていることを確認した。また、視野角特性の結果を表1に示す。
表1に示す構成で光学補償層付偏光板および有機ELパネルを作製した。得られた光学補償層付偏光板および有機ELパネルを実施例1と同様の評価に供した。表1に示すように、実施例2~11の有機ELパネルの視野角特性は良好である一方で、比較例1~4および6の有機ELパネルの視野角特性は不十分であった。なお、実施例2~11ならびに比較例1~4および6の光学補償層付偏光板はいずれも、機械的特性(引張強度)が実用上良好な特性を示した。比較例5の有機ELパネルの視野角特性は良好であったが、比較例5の光学補償層付偏光板の機械的特性(引張強度)は実用上不十分であった。
20 光学異方性層
30 第1の光学補償層
40 第2の光学補償層
100 光学補償層付偏光板
Claims (6)
- 偏光子と光学異方性層と第1の光学補償層と第2の光学補償層とをこの順に備え、
該光学異方性層が、nx≧ny>nzの屈折率特性を示し、Re(550)が0nm~20nm、Rth(550)が5nm~100nmであり、
該第1の光学補償層が、nx>ny≧nzの屈折率特性を示し、Re(450)<Re(550)の関係を満たし、
該第2の光学補償層が、nz>nx≧nyの屈折率特性を示し、
該第1の光学補償層と該第2の光学補償層との積層体のRe(550)が120nm~160nm、Rth(550)が-50nm~80nmであり、
有機ELパネルに用いられる、
光学補償層付偏光板:
ここで、Re(450)およびRe(550)は、それぞれ、23℃における波長450nmおよび550nmの光で測定した面内位相差を表し、Rth(550)は、23℃における波長550nmの光で測定した厚み方向の位相差を表す。 - 前記光学異方性層の引張強度が100N/mm2~300N/mm2である、請求項1に記載の光学補償層付偏光板。
- 前記偏光子の吸収軸と前記第1の光学補償層の遅相軸とのなす角度が35°~55°である、請求項1または2に記載の光学補償層付偏光板。
- 前記第1の光学補償層が斜め延伸して得られた位相差フィルムである、請求項1から3のいずれかに記載の光学補償層付偏光板。
- 前記第2の光学補償層の前記第1の光学補償層と反対側に導電層および基材をこの順にさらに備える、請求項1から4のいずれかに記載の光学補償層付偏光板。
- 請求項1から5のいずれかに記載の光学補償層付偏光板を備える、有機ELパネル。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187005150A KR102560037B1 (ko) | 2015-08-31 | 2016-08-10 | 광학 보상층 부착 편광판 및 이를 이용한 유기 el 패널 |
CN202110367494.7A CN113064229B (zh) | 2015-08-31 | 2016-08-10 | 带光学补偿层的偏振片及使用了其的有机el面板 |
US15/755,843 US10816708B2 (en) | 2015-08-31 | 2016-08-10 | Polarizing plate having optical compensation layer, and organic EL panel using same |
SG11201800799RA SG11201800799RA (en) | 2015-08-31 | 2016-08-10 | Polarizing plate having optical compensation layer, and organic el panel using same |
CN201680047303.6A CN107924011B (zh) | 2015-08-31 | 2016-08-10 | 带光学补偿层的偏振片及使用了其的有机el面板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-171244 | 2015-08-31 | ||
JP2015171244A JP6301885B2 (ja) | 2015-08-31 | 2015-08-31 | 光学補償層付偏光板およびそれを用いた有機elパネル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017038415A1 true WO2017038415A1 (ja) | 2017-03-09 |
Family
ID=58188781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073517 WO2017038415A1 (ja) | 2015-08-31 | 2016-08-10 | 光学補償層付偏光板およびそれを用いた有機elパネル |
Country Status (7)
Country | Link |
---|---|
US (1) | US10816708B2 (ja) |
JP (1) | JP6301885B2 (ja) |
KR (1) | KR102560037B1 (ja) |
CN (2) | CN107924011B (ja) |
SG (2) | SG11201800799RA (ja) |
TW (2) | TWI702422B (ja) |
WO (1) | WO2017038415A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020026674A1 (ja) * | 2018-08-02 | 2020-02-06 | 住友化学株式会社 | 偏光板及び液晶表示装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6640847B2 (ja) | 2015-05-29 | 2020-02-05 | 富士フイルム株式会社 | 有機エレクトロルミネッセンス表示装置 |
JP7072970B2 (ja) * | 2017-12-19 | 2022-05-23 | 日東電工株式会社 | 位相差板、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置 |
WO2019176817A1 (ja) * | 2018-03-16 | 2019-09-19 | 日本ゼオン株式会社 | 光学異方性層、光学異方性積層体、偏光板、並びに画像表示装置 |
KR102593638B1 (ko) * | 2019-08-12 | 2023-10-24 | 삼성에스디아이 주식회사 | 편광판 및 이를 포함하는 광학표시장치 |
KR102813101B1 (ko) * | 2021-07-28 | 2025-05-26 | 삼성에스디아이 주식회사 | 광학 적층체 및 이를 포함하는 광학표시장치 |
CN116047645A (zh) * | 2021-10-21 | 2023-05-02 | 四川龙华光电薄膜股份有限公司 | 抗反射膜结构及具逆波长分散特性的补偿膜 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005326818A (ja) * | 2004-04-16 | 2005-11-24 | Sharp Corp | 円偏光板及び液晶表示装置 |
JP2006084700A (ja) * | 2004-09-15 | 2006-03-30 | Tosoh Corp | 液晶表示素子用耐熱性光学補償フィルム |
WO2006090700A1 (ja) * | 2005-02-22 | 2006-08-31 | Nippon Kayaku Kabushiki Kaisha | セルロース誘導体を用いた位相差フィルム |
WO2013137464A1 (ja) * | 2012-03-15 | 2013-09-19 | 富士フイルム株式会社 | 光学積層体を有する有機elディスプレイ素子 |
JP2014026266A (ja) * | 2012-06-21 | 2014-02-06 | Nitto Denko Corp | 偏光板および有機elパネル |
JP2014167922A (ja) * | 2012-06-21 | 2014-09-11 | Nitto Denko Corp | 偏光板および有機elパネル |
JP2014209219A (ja) * | 2013-03-25 | 2014-11-06 | 富士フイルム株式会社 | 円偏光板用位相差板、円偏光板、有機el表示装置 |
JP2014214177A (ja) * | 2013-04-23 | 2014-11-17 | 富士フイルム株式会社 | 液晶組成物、位相差板、円偏光板、画像表示装置、位相差板の製造方法 |
JP2015163936A (ja) * | 2013-08-09 | 2015-09-10 | 住友化学株式会社 | 光学フィルム |
JP2015187717A (ja) * | 2014-03-10 | 2015-10-29 | 富士フイルム株式会社 | 円偏光板の製造方法 |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5389789A (en) * | 1977-01-19 | 1978-08-07 | Japan Atomic Energy Res Inst | Highhspeed response method for logarithmic output measuring device |
US4208267A (en) * | 1977-07-08 | 1980-06-17 | Exxon Research & Engineering Co. | Forming optically anisotropic pitches |
US4209500A (en) * | 1977-10-03 | 1980-06-24 | Union Carbide Corporation | Low molecular weight mesophase pitch |
US4655902A (en) * | 1981-08-28 | 1987-04-07 | Toa Nenryo Kogyo Kabushiki Kaisha | Optically anisotropic carbonaceous pitch |
JPS5837084A (ja) * | 1981-08-28 | 1983-03-04 | Toa Nenryo Kogyo Kk | 低軟化点の光学的異方性炭素質ピッチの製造方法 |
EP0421944A3 (en) * | 1989-08-31 | 1992-06-17 | Tanaka Kikinzoku Kogyo K.K. | Composite carbon fibre and process for preparing same |
JP3090706B2 (ja) * | 1991-04-08 | 2000-09-25 | 株式会社クラレ | 液晶高分子よりなるフィルムの製造方法 |
US5761315A (en) * | 1993-07-30 | 1998-06-02 | Victor Company Of Japan, Ltd. | Surround signal processing apparatus |
DE69433258T2 (de) * | 1993-07-30 | 2004-07-01 | Victor Company of Japan, Ltd., Yokohama | Raumklangsignalverarbeitungsvorrichtung |
EP0724378B1 (en) * | 1995-01-25 | 2005-11-23 | Victor Company Of Japan, Limited | Surround signal processing apparatus |
US5721308A (en) * | 1995-06-20 | 1998-02-24 | Mitsubishi Chemical Corporation | Pitch based carbon fiber and process for producing the same |
JPH09288212A (ja) * | 1996-04-19 | 1997-11-04 | Nippon Synthetic Chem Ind Co Ltd:The | 位相差板 |
WO2000026705A1 (fr) | 1998-10-30 | 2000-05-11 | Teijin Limited | Film a differences de phase et dispositif optique dans lequel il est utilise |
JP2000352620A (ja) | 1999-03-31 | 2000-12-19 | Konica Corp | 光学フィルム、偏光板及び液晶表示装置 |
JP2004264345A (ja) * | 2003-02-03 | 2004-09-24 | Nitto Denko Corp | 位相差フィルムおよびその製造方法 |
TW200510789A (en) * | 2003-08-07 | 2005-03-16 | Nitto Denko Corp | Optical compensation plate, polarizing plate using the same and image display apparatus using the same |
US20120003402A1 (en) | 2005-02-22 | 2012-01-05 | Polatechno Co., Ltd. | Retardation Film Produced by Using Cellulose Derivative |
JP2006251050A (ja) | 2005-03-08 | 2006-09-21 | Toshiba Matsushita Display Technology Co Ltd | 液晶表示素子 |
US7612845B2 (en) * | 2005-07-13 | 2009-11-03 | Nitto Denko Corporation | Polarizing plate with an optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display apparatus, and image display apparatus, using the polarizing plate with an optical compensation layer |
WO2007034908A1 (ja) * | 2005-09-26 | 2007-03-29 | Nitto Denko Corporation | 光学補償層付偏光板、光学補償層付偏光板を用いた液晶パネル、液晶表示装置、および画像表示装置 |
WO2007055109A1 (ja) * | 2005-11-10 | 2007-05-18 | Nitto Denko Corporation | 液晶パネルおよび液晶表示装置 |
WO2007132618A1 (ja) * | 2006-05-11 | 2007-11-22 | Nitto Denko Corporation | 液晶パネルおよび液晶表示装置 |
US7643118B2 (en) * | 2006-05-29 | 2010-01-05 | Nitto Denko Corporation | Liquid crystal panel and liquid crystal display device |
JP2007334085A (ja) | 2006-06-16 | 2007-12-27 | Epson Imaging Devices Corp | 液晶表示装置、及び電子機器 |
JP4917488B2 (ja) | 2006-07-12 | 2012-04-18 | 日東電工株式会社 | 光学補償層付偏光板およびその製造方法、それを用いた液晶パネル、液晶表示装置並びに画像表示装置 |
TW200811492A (en) | 2006-07-12 | 2008-03-01 | Nitto Denko Corp | Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same |
JP4998941B2 (ja) * | 2006-11-20 | 2012-08-15 | 日東電工株式会社 | 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置 |
JP4974218B2 (ja) * | 2006-11-29 | 2012-07-11 | 日東電工株式会社 | 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置 |
JP4938632B2 (ja) * | 2007-12-07 | 2012-05-23 | 日東電工株式会社 | 液晶パネル及び液晶表示装置 |
JP5273775B2 (ja) * | 2008-04-09 | 2013-08-28 | 日東電工株式会社 | 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置 |
KR20170056027A (ko) * | 2009-01-19 | 2017-05-22 | 가부시키가이샤 가네카 | 위상차 필름의 제조 방법, 광학 필름, 화상 표시 장치, 액정 표시 장치 및 위상차 필름 |
JP5364943B2 (ja) * | 2009-03-26 | 2013-12-11 | 日東電工株式会社 | 位相差フィルム、その製造方法、及び画像表示装置 |
JP2010243903A (ja) | 2009-04-08 | 2010-10-28 | Nitto Denko Corp | 偏光板およびそれを用いた液晶表示装置 |
JP5383299B2 (ja) * | 2009-04-16 | 2014-01-08 | 日東電工株式会社 | 光学フィルム、およびその製造方法 |
US8900656B2 (en) * | 2009-06-19 | 2014-12-02 | Nitto Denko Corporation | Method for producing optical film, optical film, and image display |
JP5091304B2 (ja) | 2010-12-24 | 2012-12-05 | 日東電工株式会社 | 粘着型光学フィルムの製造方法 |
JP5905272B2 (ja) * | 2011-01-27 | 2016-04-20 | 住友化学株式会社 | 光学異方性層の製造方法 |
WO2013061965A1 (ja) * | 2011-10-25 | 2013-05-02 | 富士フイルム株式会社 | 液晶表示装置 |
US9229139B2 (en) | 2012-01-19 | 2016-01-05 | Lc-Tec Displays Ab | Enhanced vision system implemented with optical shutter alternately transmitting visible radiation and near infrared radiation |
JP2014010300A (ja) * | 2012-06-29 | 2014-01-20 | Nitto Denko Corp | 偏光板および有機elパネル |
US9294023B2 (en) | 2012-08-13 | 2016-03-22 | Dynamic Controls | Method or system for minimizing the impact of back EMF sampling for motor resistance profiling |
CN104768728B (zh) | 2012-11-06 | 2016-08-31 | 柯尼卡美能达株式会社 | 长条斜拉伸膜、使用了该长条斜拉伸膜的圆偏振片和有机el显示器 |
JP2014142462A (ja) * | 2013-01-23 | 2014-08-07 | Dainippon Printing Co Ltd | 光学機能層付きタッチパネル用電極部、円偏光板付きタッチパネル電極部、タッチパネル、画像表示装置 |
US9939554B2 (en) | 2013-01-24 | 2018-04-10 | Akron Polymer Systems, Inc. | Wide-view optical film having reversed wavelength dispersion |
JP2014170221A (ja) | 2013-02-07 | 2014-09-18 | Nitto Denko Corp | 円偏光板および屈曲可能な表示装置 |
JP2014157285A (ja) | 2013-02-15 | 2014-08-28 | Toyobo Co Ltd | 画像表示装置 |
TWI650243B (zh) | 2013-08-09 | 2019-02-11 | 住友化學股份有限公司 | 光學薄膜 |
KR102368381B1 (ko) | 2013-08-09 | 2022-02-28 | 스미또모 가가꾸 가부시키가이샤 | 광학 필름 |
CN104345368B (zh) | 2013-08-09 | 2018-10-16 | 住友化学株式会社 | 椭圆偏振板 |
CN110058344A (zh) | 2013-08-09 | 2019-07-26 | 住友化学株式会社 | 光学膜 |
TWI636285B (zh) | 2013-08-09 | 2018-09-21 | 住友化學股份有限公司 | Optical film |
JP6437854B2 (ja) * | 2015-03-17 | 2018-12-12 | 日東電工株式会社 | 液晶パネルおよび液晶表示装置 |
JP6581796B2 (ja) * | 2015-03-31 | 2019-09-25 | 日東電工株式会社 | 液晶パネルおよび液晶表示装置 |
CN106358250A (zh) * | 2015-07-22 | 2017-01-25 | 中兴通讯股份有限公司 | 一种硬切换的方法及装置 |
WO2017074163A1 (ko) * | 2015-10-29 | 2017-05-04 | 경북대학교 산학협력단 | 초저분자 케라틴 펩타이드의 제조 방법 및 그의 이용 |
KR102118016B1 (ko) * | 2016-06-24 | 2020-06-02 | 닛토덴코 가부시키가이샤 | 장척 광학 필름 적층체, 장척 광학 필름 적층체의 롤 및 ips 액정 표시 장치 |
-
2015
- 2015-08-31 JP JP2015171244A patent/JP6301885B2/ja active Active
-
2016
- 2016-08-10 US US15/755,843 patent/US10816708B2/en active Active
- 2016-08-10 CN CN201680047303.6A patent/CN107924011B/zh active Active
- 2016-08-10 SG SG11201800799RA patent/SG11201800799RA/en unknown
- 2016-08-10 SG SG10202005017TA patent/SG10202005017TA/en unknown
- 2016-08-10 WO PCT/JP2016/073517 patent/WO2017038415A1/ja active Application Filing
- 2016-08-10 KR KR1020187005150A patent/KR102560037B1/ko active Active
- 2016-08-10 CN CN202110367494.7A patent/CN113064229B/zh active Active
- 2016-08-26 TW TW105127368A patent/TWI702422B/zh active
- 2016-08-26 TW TW109125142A patent/TWI727867B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005326818A (ja) * | 2004-04-16 | 2005-11-24 | Sharp Corp | 円偏光板及び液晶表示装置 |
JP2006084700A (ja) * | 2004-09-15 | 2006-03-30 | Tosoh Corp | 液晶表示素子用耐熱性光学補償フィルム |
WO2006090700A1 (ja) * | 2005-02-22 | 2006-08-31 | Nippon Kayaku Kabushiki Kaisha | セルロース誘導体を用いた位相差フィルム |
WO2013137464A1 (ja) * | 2012-03-15 | 2013-09-19 | 富士フイルム株式会社 | 光学積層体を有する有機elディスプレイ素子 |
JP2014026266A (ja) * | 2012-06-21 | 2014-02-06 | Nitto Denko Corp | 偏光板および有機elパネル |
JP2014167922A (ja) * | 2012-06-21 | 2014-09-11 | Nitto Denko Corp | 偏光板および有機elパネル |
JP2014209219A (ja) * | 2013-03-25 | 2014-11-06 | 富士フイルム株式会社 | 円偏光板用位相差板、円偏光板、有機el表示装置 |
JP2014214177A (ja) * | 2013-04-23 | 2014-11-17 | 富士フイルム株式会社 | 液晶組成物、位相差板、円偏光板、画像表示装置、位相差板の製造方法 |
JP2015163936A (ja) * | 2013-08-09 | 2015-09-10 | 住友化学株式会社 | 光学フィルム |
JP2015187717A (ja) * | 2014-03-10 | 2015-10-29 | 富士フイルム株式会社 | 円偏光板の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020026674A1 (ja) * | 2018-08-02 | 2020-02-06 | 住友化学株式会社 | 偏光板及び液晶表示装置 |
JP2020020996A (ja) * | 2018-08-02 | 2020-02-06 | 住友化学株式会社 | 偏光板、及び、液晶表示装置 |
CN112513696A (zh) * | 2018-08-02 | 2021-03-16 | 住友化学株式会社 | 偏振板及液晶显示装置 |
Also Published As
Publication number | Publication date |
---|---|
SG11201800799RA (en) | 2018-02-27 |
JP6301885B2 (ja) | 2018-03-28 |
TW202041899A (zh) | 2020-11-16 |
KR102560037B1 (ko) | 2023-07-26 |
CN107924011A (zh) | 2018-04-17 |
TW201727282A (zh) | 2017-08-01 |
US10816708B2 (en) | 2020-10-27 |
TWI727867B (zh) | 2021-05-11 |
CN107924011B (zh) | 2021-04-30 |
US20180329124A1 (en) | 2018-11-15 |
SG10202005017TA (en) | 2020-07-29 |
TWI702422B (zh) | 2020-08-21 |
CN113064229B (zh) | 2023-04-28 |
CN113064229A (zh) | 2021-07-02 |
KR20180039648A (ko) | 2018-04-18 |
JP2017049361A (ja) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI673524B (zh) | 長條狀之光學積層體及圖像顯示裝置 | |
JP6512999B2 (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
JP6301885B2 (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
JP6712335B2 (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
JP6512998B2 (ja) | 長尺状の光学補償層付偏光板およびそれを用いた有機elパネル | |
TW201814335A (zh) | 光學積層體及圖像顯示裝置 | |
TW202018339A (zh) | 附相位差層之偏光板及使用了該附相位差層之偏光板的影像顯示裝置 | |
WO2017154447A1 (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
JP6709637B2 (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
TW202017988A (zh) | 帶相位差層的偏光板及使用了該帶相位差層的偏光板的影像顯示裝置 | |
TW202017989A (zh) | 帶相位差層的偏光板及使用了該帶相位差層的偏光板的影像顯示裝置 | |
CN113785228B (zh) | 带相位差层及硬涂层的偏振片的制造方法 | |
JP2019070860A (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
TWI827658B (zh) | 附相位差層之偏光板及使用該附相位差層之偏光板的影像顯示裝置 | |
JP2018109778A (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
JP2019091069A (ja) | 長尺状の光学補償層付偏光板およびそれを用いた有機elパネル | |
KR20230056787A (ko) | 위상차층 부착 편광판 및 화상 표시 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16841447 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201800799R Country of ref document: SG |
|
ENP | Entry into the national phase |
Ref document number: 20187005150 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15755843 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16841447 Country of ref document: EP Kind code of ref document: A1 |