WO2015093447A1 - 複合基板および機能素子 - Google Patents
複合基板および機能素子 Download PDFInfo
- Publication number
- WO2015093447A1 WO2015093447A1 PCT/JP2014/083165 JP2014083165W WO2015093447A1 WO 2015093447 A1 WO2015093447 A1 WO 2015093447A1 JP 2014083165 W JP2014083165 W JP 2014083165W WO 2015093447 A1 WO2015093447 A1 WO 2015093447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite substrate
- gallium nitride
- substrate
- layer
- crystal layer
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 129
- 239000002131 composite material Substances 0.000 title claims abstract description 77
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 97
- 239000010410 layer Substances 0.000 claims abstract description 96
- 239000013078 crystal Substances 0.000 claims abstract description 91
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 77
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 44
- 239000010980 sapphire Substances 0.000 claims abstract description 44
- 239000002346 layers by function Substances 0.000 claims abstract description 21
- 229910052795 boron group element Inorganic materials 0.000 claims abstract description 14
- 150000004767 nitrides Chemical class 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 50
- 238000007716 flux method Methods 0.000 claims description 15
- 239000012808 vapor phase Substances 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 7
- 239000003779 heat-resistant material Substances 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 239000010408 film Substances 0.000 description 40
- 238000005498 polishing Methods 0.000 description 40
- 239000004065 semiconductor Substances 0.000 description 24
- 238000009826 distribution Methods 0.000 description 18
- 239000006061 abrasive grain Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 239000002002 slurry Substances 0.000 description 13
- 238000000227 grinding Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 229910003460 diamond Inorganic materials 0.000 description 9
- 239000010432 diamond Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000004907 flux Effects 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229910052733 gallium Inorganic materials 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- -1 gallium nitride Chemical class 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000001451 molecular beam epitaxy Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000005811 Viola adunca Nutrition 0.000 description 3
- 240000009038 Viola odorata Species 0.000 description 3
- 235000013487 Viola odorata Nutrition 0.000 description 3
- 235000002254 Viola papilionacea Nutrition 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910003465 moissanite Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000001947 vapour-phase growth Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005136 cathodoluminescence Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 229910000807 Ga alloy Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002259 gallium compounds Chemical class 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/02—Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
Definitions
- the present invention relates to a composite substrate and a functional element.
- gallium nitride-based semiconductor devices are mainly manufactured by a vapor phase method. Specifically, a gallium nitride thin film is heteroepitaxially grown on a sapphire substrate or silicon carbide substrate by metal organic vapor phase epitaxy (MOVPE) or the like.
- MOVPE metal organic vapor phase epitaxy
- the flux method is one of liquid phase methods.
- gallium nitride the temperature required for crystal growth of gallium nitride can be relaxed to about 800 ° C. and the pressure can be reduced to several MPa by using metallic sodium as the flux. .
- nitrogen gas is dissolved in a mixed melt of metallic sodium and metallic gallium, and gallium nitride becomes supersaturated and grows as crystals.
- dislocations are less likely to occur than in a gas phase method, so that high-quality gallium nitride having a low dislocation density can be obtained.
- Patent Document 1 JP 2010-168236
- Patent Document 2 WO 2013/022122
- Patent Document 3 WO 2013/021804
- Patent Document 4 WO 2013/022123
- Patent Document 5 Japanese Patent Laid-Open No. 2005-136167 describes that the front surface and the back surface of the GaN free-standing substrate are polished in order to correct the warpage of the GaN free-standing substrate.
- JP 2010-168236 A WO 2013/022122 WO 2013/021804 WO 2013/022123 JP 2005-136167 A Japanese Patent No. 4301251 JP 2010-219353 Japanese Patent No. 4380791 Special table 2005-506271 JP 2009-111423 JP 2006-332714 A
- the inventor has been studying the formation of a structure that realizes the function of an LED or power device by MOCVD using a low dislocation GaN template produced by a flux method.
- the GaN template substrate is a substrate in which a seed crystal layer and a gallium nitride crystal layer are provided on a support substrate, and serves as a template for further forming a functional layer thereon.
- a seed crystal substrate formed by forming a gallium nitride crystal layer on a flat sapphire substrate by MOCVD or the like is used, and a growth temperature of 800 ° C. to 900 ° C. is further formed thereon by a flux method.
- a gallium nitride crystal layer is grown by the above method, a GaN template having a gallium nitride crystal layer whose outermost surface has a low dislocation density can be produced.
- the sapphire substrate of the GaN template was polished to reduce warpage of the GaN template.
- the inventor tried to produce an LED structure by MOCVD using this GaN template.
- a high temperature atmosphere for example, 1000 ° C. or more
- the emission wavelength distribution is generated and the area ratio of the region where the desired emission wavelength can be obtained becomes small.
- An object of the present invention is to provide a composite substrate including a sapphire substrate and a gallium nitride crystal layer crystal-grown on the sapphire substrate.
- a functional layer made of a group 13 element nitride is formed on the sapphire substrate, It is to suppress.
- the present invention is a composite substrate comprising a sapphire substrate, and a gallium nitride crystal layer provided on the sapphire substrate,
- the warpage of the composite substrate is +40 ⁇ m or more and +80 ⁇ m or less per 5.08 cm.
- the present invention also relates to a functional device comprising the composite substrate and a functional layer made of a group 13 element nitride formed by a vapor phase method on the gallium nitride crystal layer. .
- a gallium nitride crystal layer is grown at a growth temperature of 800 ° C. to 900 ° C., but when a functional layer is formed on a composite substrate by a vapor phase method such as MOCVD, the temperature is raised to 1000 ° C. or higher. It was considered that the warpage of the composite substrate occurred, resulting in the composition distribution of the functional layer, resulting in functional variations.
- the present inventor has conceived that a warp of an appropriate size is intentionally left instead of eliminating the warp of the composite substrate at room temperature. As a result, it was found that the composition distribution can be suppressed at the time of forming the next functional layer, and the variation in function can be suppressed, and the present invention has been achieved.
- (A) shows the state in which the gallium nitride crystal layer 2 is formed on the sapphire substrate 1, and (b) shows the gallium nitride crystal layer obtained by polishing the surface 2a of the gallium nitride crystal layer 2 in (a).
- 3 shows a composite substrate 4.
- (A) shows the functional element 5 formed by providing the functional layer 6 on the composite substrate 4, and (b) shows the functional element 5A formed by providing the functional layer 6A on the composite substrate 4.
- (A) is a schematic diagram for demonstrating the measuring method of the curvature of a composite substrate, and shows the case where curvature is a plus.
- (B) is a schematic diagram for demonstrating the measuring method of the curvature of a composite substrate, and shows the case where curvature is minus.
- a seed crystal layer 10 is formed on the main surface 1 a of the sapphire substrate 1.
- the gallium nitride crystal layer 2 is formed on the seed crystal layer 10 by a flux method.
- the surface 2 a of the gallium nitride crystal layer 2 is polished to obtain a polished gallium nitride crystal layer 3.
- 3a is a polished surface.
- the warpage generally has a convex shape on the upper side when the sapphire substrate is placed downward, as schematically shown in FIG. Such warpage was assumed to have an adverse effect when a film was further formed on the composite substrate by a vapor phase method.
- the present inventor formed the polished support substrate 1A as shown in FIG. 1C by sufficiently polishing the bottom surface 1b of the sapphire substrate 1.
- 1c is a polished bottom surface.
- the inventor of the present invention tried to form a light emitting element by using the composite substrate having almost no warpage obtained in this manner for a film forming process. This is because, according to the suggestion of the prior art, it is assumed that a high-quality light-emitting element can be obtained.
- the present inventor has found that the variation in film formation of the functional elements can be suppressed by controlling the warpage of the composite substrate to the specific range before forming the functional elements. This is an idea of suppressing variation by utilizing the warpage of the composite substrate, and is different from the conventional technique of reducing the warpage as much as possible.
- the composite substrate 4 with the warpage limited as described above is manufactured, and a functional layer is formed on the surface 3a to obtain a functional element.
- the functional layer 6 is formed on the composite substrate 4 to obtain the functional element 5.
- a plurality of functional layers 6 can be formed.
- the functional layer 6A includes a plurality of layers 6a, 6b, 6c, 6d, and 6e, and forms a light emitting element structure.
- a light emitting device structure with a low dislocation density can be obtained, so that the internal quantum efficiency of the light emitting device 5A is improved.
- the single crystal referred to in the present application includes a textbook single crystal in which atoms are regularly arranged throughout the crystal, but is not limited to this and is a general industrial distribution.
- the crystal may contain a certain amount of defects, may contain strain, or may have impurities incorporated therein, and is distinguished from polycrystal (ceramics) and used as a single crystal. Is synonymous with
- the wurtzite structure of sapphire has c-plane, a-plane, and m-plane. Each of these crystal planes is defined crystallographically.
- the growth direction of the underlayer, the seed crystal layer, and the gallium nitride crystal layer grown by the flux method may be the normal direction of the c-plane, or the normal direction of the a-plane and the m-plane. .
- the thickness of the sapphire substrate is preferably 300 to 1600 ⁇ m, and more preferably 400 to 1300 ⁇ m.
- a seed crystal layer can be formed on the sapphire substrate.
- the thickness of the seed crystal layer is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. On the other hand, if it is too thick, it takes a long time to form a film and the efficiency is poor.
- the material of the seed crystal layer is preferably a group 13 element nitride as described later.
- the seed crystal layer may be a single layer or a plurality of layers.
- vapor phase epitaxy can be cited as a preferred example, metal organic chemical vapor deposition (MOCVD) method, metal vapor, chemical vapor deposition method, hydride vapor phase epitaxy (HVPE) method, pulse excitation.
- MOCVD metal organic chemical vapor deposition
- PVPE hydride vapor phase epitaxy
- PXD Deposition
- MBE method MBE method
- sublimation method can be exemplified.
- Metalorganic chemical vapor deposition is particularly preferred.
- the dislocation density of the seed crystal layer is desirably low from the viewpoint of reducing the dislocation density of the gallium nitride crystal layer provided on the seed crystal layer.
- the dislocation density of the seed crystal layer is preferably 7 ⁇ 10 8 cm ⁇ 2 cm or less, more preferably 5 ⁇ 10 8 cm ⁇ 2 cm or less.
- the lower the dislocation density of the seed crystal layer the better from the viewpoint of quality. Therefore, there is no particular lower limit, but generally it is often 5 ⁇ 10 7 cm ⁇ 2 or more.
- the material constituting the seed crystal layer is preferably gallium nitride, which can be observed to have a yellow light emission effect by observation with a fluorescence microscope.
- the gallium nitride that emits yellow light will be described.
- a broad peak appears in the range of 2.2 to 2.5 eV in addition to the exciton transition (UV) from band to band. This is called yellow emission (YL) or yellow band (YB).
- YL yellow emission
- YB yellow band
- Such yellow light emission is caused by a radiation process related to a natural defect inherent in the crystal such as nitrogen deficiency. Such a defect becomes the emission center.
- impurities such as transition elements such as Ni, Co, Cr, and Ti derived from the reaction environment are taken into gallium nitride to form a yellow emission center.
- Such gallium nitride crystals emitting yellow light are exemplified in, for example, JP-T-2005-506271.
- the thickness of the gallium nitride crystal layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, More preferably, it is 20 ⁇ m or less.
- the thickness of the gallium nitride crystal layer is such that the dislocation of the seed crystal layer disappears when gallium nitride is grown by the flux method, and the crystallinity of the outermost surface is improved. Is preferably 3 ⁇ m or more, more preferably 10 ⁇ m or more.
- the manufacturing method of the gallium nitride crystal layer is not particularly limited, but metal organic chemical vapor deposition (MOCVD) method, hydride vapor deposition (HVPE) method, pulsed excitation deposition (PXD) method, MBE method, sublimation Examples thereof include gas phase methods such as the method, and liquid phase methods such as the flux method.
- MOCVD metal organic chemical vapor deposition
- HVPE hydride vapor deposition
- PXD pulsed excitation deposition
- MBE method sublimation
- gas phase methods such as the method
- liquid phase methods such as the flux method.
- the type of flux is not particularly limited as long as the gallium nitride crystal can be generated.
- a flux containing at least one of an alkali metal and an alkaline earth metal is used, and a flux containing sodium metal is particularly preferred.
- ⁇ Gallium raw material is mixed and used for the flux.
- the gallium source material a gallium simple metal, a gallium alloy, and a gallium compound can be applied, but a gallium simple metal is also preferable in terms of handling.
- the growth temperature of the gallium nitride crystal in the flux method and the holding time during the growth are not particularly limited, and are appropriately changed according to the composition of the flux.
- the growth temperature is preferably 800 to 950 ° C., and more preferably 850 to 900 ° C.
- single crystals are grown in an atmosphere containing a gas containing nitrogen atoms.
- This gas is preferably nitrogen gas, but may be ammonia.
- the pressure of the atmosphere is not particularly limited, but is preferably 10 atm or more, and more preferably 30 atm or more from the viewpoint of preventing evaporation of the flux. However, since the apparatus becomes large when the pressure is high, the total pressure of the atmosphere is preferably 2000 atmospheres or less, and more preferably 500 atmospheres or less.
- the gas other than the gas containing nitrogen atoms in the atmosphere is not limited, but an inert gas is preferable, and argon, helium, and neon are particularly preferable.
- the composite substrate is disk-shaped, but other forms such as a square plate may be used.
- the composite substrate has a diameter of 50 mm or more. This makes it possible to provide an easy-to-handle composite substrate suitable for mass production of functional elements.
- the warpage of the composite substrate is +40 ⁇ m or less and +80 ⁇ m or less per 5.08 cm. This warpage is a value measured by the method described in JP2009-111423.
- the composite substrate is warped so that the bottom surface 1c of the sapphire substrate 1A of the sample (composite substrate) 4 is concave and the gallium nitride crystal layer is convex.
- This warpage is positive (indicated by a + sign).
- the composite substrate is warped so that the bottom surface 1c of the sapphire substrate 1A of the sample (composite substrate) 4 is convex and the gallium nitride crystal layer is concave.
- This warpage is negative (indicated by a minus sign).
- a curved surface formed by the bottom surface 1c of the composite substrate 4 is referred to as a “curved curved surface”.
- a plane where the average value of the distance between the curved surface and the plane P is the smallest is assumed, and this plane is set as the optimum plane P.
- the distance between the warped curved surface and the optimum plane P is measured. That is, a point on the optimum plane P in the bottom surface 1c in the region having a bottom surface length of 2 inches (5.08 cm) is defined as zp. Further, the point farthest from the optimum plane P in the bottom surface 1c is set as zv.
- a distance between the point zv and the optimum plane P is warp W (R). 11 is a gap between the sample and the plane P.
- the warp W (R) is the difference in height between the point zp closest to the optimal plane P and the point zv farthest from the bottom surface 1c.
- the effect of the present invention can be achieved by setting the warpage W (R) to +40 ⁇ m or more and +80 ⁇ m or less.
- the warpage W (R) is more preferably +50 ⁇ m or more, and further preferably +70 ⁇ m or less.
- the warpage of the composite substrate can be measured with a laser displacement meter.
- the laser displacement meter is a device that measures the displacement of the back surface by irradiating the bottom surface of the composite substrate with laser light.
- the laser wavelength is 633 nm, and a laser focus method or an optical interference method can be used as a measurement method according to the surface roughness.
- the bottom surface of the support substrate can be processed.
- processing includes the following.
- grinding refers to scraping the surface of an object by bringing fixed abrasive grains, which are fixed with abrasive grains, into contact with the object while rotating at high speed. A rough surface is formed by this grinding.
- the bottom surface of a composite substrate it is formed of high hardness SiC, Al 2 O 3 , diamond, CBN (cubic boron nitride, the same shall apply hereinafter), etc., and contains abrasive grains having a particle size of about 10 ⁇ m or more and 100 ⁇ m or less. Fixed abrasives are preferably used.
- polishing refers to contact between a surface plate and an object while rotating each other through loose abrasive grains (referred to as non-fixed abrasive grains hereinafter), or fixed abrasive grains and an object.
- the surface of the object is polished by rotating and rotating each other.
- a surface having a surface roughness smaller than that in the case of grinding and a surface rougher than that in the case of fine polishing (polishing) is formed.
- Abrasive grains formed of SiC, Al 2 O 3 , diamond, CBN, or the like having high hardness and having a particle size of about 0.5 ⁇ m to 15 ⁇ m are preferably used.
- Etching agents include NH 3 and H 2 O 2 mixed solution, KOH solution, NaOH solution, HCl solution, H 2 SO 4 solution, H 3 PO 4 solution, H 3 PO 4 and H 2 SO 4 mixed solution, etc. Is preferably used.
- water is preferably used as the solvent of the above solution and mixed solution.
- the etching agent can be appropriately diluted with a solvent such as water.
- Fine polishing means that the polishing pad and the object are brought into contact with each other through rotating abrasive grains, or the fixed abrasive grains and the object are brought into contact with each other while being rotated, and the surface of the object is brought into contact. This means smoothing by smoothing. By such fine polishing, a crystal growth surface having a smaller surface roughness than that in the case of polishing is formed.
- mechanical polishing or chemical mechanical polishing (hereinafter referred to as CMP) is preferably used.
- CMP chemical mechanical polishing
- the surface of an object is finely polished mechanically or chemically and mechanically by bringing the polishing pad and the object into contact with each other through a slurry containing abrasive grains while rotating each other. How to do.
- SiC, Si 3 N 4 , Al 2 O 3 , diamond, CBN which are fine particles having an average particle diameter of 0.1 ⁇ m to 3 ⁇ m and high hardness
- SiO 2 , CuO, TiO 2 , ZnO, NiO, Cr 2 O 3 , Fe 2 O 3 , CoO, and MnO having low hardness are used alone or in combination.
- the slurry should be acidic with pH ⁇ 5 or basic with pH ⁇ 9, or hydrogen peroxide (H 2 O 2 ), dichloroisocyanuric acid, nitric acid It is preferable that an ORP (oxidation-reduction potential) is increased by adding an oxidizing agent such as potassium permanganate or copper chloride (for example, ORP ⁇ 400 mV).
- an ORP oxidation-reduction potential
- an oxidizing agent such as potassium permanganate or copper chloride (for example, ORP ⁇ 400 mV).
- the thickness of the gallium nitride crystal layer (after polishing) in the final composite substrate is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 20 ⁇ m or less.
- the thickness of the gallium nitride crystal layer (after polishing) is preferably 5 ⁇ m or more from the viewpoint of maintaining a certain level of crystal quality for improving the performance of the functional element.
- the surface of the gallium nitride crystal layer is a mirror surface.
- the mirror surface is a glossy surface polished with a high degree of smoothness, substantially free of light scattering due to surface irregularities, and a transparent material having high light transmittance.
- the bottom surface of the support substrate is a semi-mirror surface.
- a semi-mirror surface is a polished surface with a moderately smooth surface, and there is light scattering due to unevenness on the surface. In transparent materials, the light transmission is slightly inferior to that of the mirror surface. It is a surface that can be distinguished from a mirror surface.
- the half mirror surface refers to a surface having an average roughness Ra of greater than 10 nm and 500 nm or less.
- a surface having an average roughness Ra exceeding 500 nm is defined as a rough surface.
- Ra of the half mirror surface of the present invention is preferably 100 nm or more and 500 nm or less, and more preferably 250 nm or more and 500 nm or less.
- a film made of a heat-resistant material is a material having heat resistance with respect to temperature when a functional element structure such as an LED is formed on a composite substrate.
- a material constituting such a film SiO 2 and Ta 2 O 5 are preferable.
- plasma CVD which can form a film with high adhesion strength, is preferable.
- the film thickness is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more.
- the film thickness is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
- a functional layer is formed on the composite substrate thus obtained by a vapor phase method.
- a functional layer may be a single layer or a plurality of layers. As functions, it can be used for white LEDs with high luminance and high color rendering, blue-violet laser disks for high-speed and high-density optical memory, power devices for inverters for hybrid vehicles, and the like.
- LED semiconductor light emitting diode
- MOCVD metal organic chemical vapor deposition
- the film forming temperature of the functional layer is preferably 950 ° C. or higher, more preferably 1000 ° C. or higher, from the viewpoint of the film forming speed. Further, from the viewpoint of suppressing defects, the film formation temperature of the functional layer is preferably 1200 ° C. or lower, and more preferably 1150 ° C. or lower.
- the material of the functional layer is preferably a group 13 element nitride.
- Group 13 elements are Group 13 elements according to the periodic table established by IUPAC.
- the group 13 element is specifically gallium, aluminum, indium, thallium, or the like.
- Examples of the additive include carbon, low melting point metals (tin, bismuth, silver, gold) and high melting point metals (transition metals such as iron, manganese, titanium, and chromium).
- the low melting point metal may be added for the purpose of preventing oxidation of sodium, and the high melting point metal may be mixed from a container in which a crucible is put or a heater of a growth furnace.
- the light-emitting element structure includes, for example, an n-type semiconductor layer, a light-emitting region provided on the n-type semiconductor layer, and a p-type semiconductor layer provided on the light-emitting region.
- an n-type contact layer 6a, an n-type cladding layer 6b, an active layer 6c, a p-type cladding layer 6d, and a p-type contact layer 6e are formed on the gallium nitride crystal layer 3. And constitutes the light emitting element structure 6A.
- the light emitting structure can be further provided with an electrode for an n-type semiconductor layer, an electrode for a p-type semiconductor layer, a conductive adhesive layer, a buffer layer, a conductive support, and the like (not shown).
- the translucent electrode is a translucent electrode made of a metal thin film or a transparent conductive film formed on almost the entire surface of the p-type semiconductor layer.
- the material of the semiconductor constituting the n-type semiconductor layer and the p-type semiconductor layer is made of a III-V group compound semiconductor, and examples thereof are as follows.
- Examples of the doping material for imparting n-type conductivity include silicon, germanium, and oxygen.
- magnesium and zinc can be illustrated as a dope material for providing p-type conductivity.
- the surface of the group 13 element nitride film provided with the light emitting structure may be a flat surface.
- the external quantum efficiency can be increased by providing irregularities on the surface of the group 13 element nitride film and changing the light guiding direction in the semiconductor layer.
- Preferred materials for the electrodes are selected from the group consisting of Ni, Pd, Co, Fe, Ti, Cu, Rh, Au, Ru, W, Zr, Mo, Ta, Pt, Ag and their oxides and nitrides. And an alloy containing at least one of the above or a multilayer film. These can obtain good ohmic contact with the p-type semiconductor layer by annealing at a temperature of 400 ° C. or higher.
- a multilayer film of Au on Ni is preferable.
- the total film thickness of the electrode is preferably 50 mm to 10,000 mm.
- 50 to 400 mm is preferable.
- it is preferably 1000 to 5000 mm.
- a peeling layer can be formed between the n-type semiconductor layer and the group 13 element nitride film.
- Examples of the material of such a release layer include a low-temperature GaN buffer layer, ZnO, and TiN.
- MOCVD organic metal compound vapor phase growth method
- MBE molecular beam epitaxy method
- HVPE hydride vapor phase growth method
- the MOCVD method can quickly obtain a crystal with good crystallinity.
- alkyl metal compounds such as TMG (trimethyl gallium) and TEG (triethyl gallium) are often used as the Ga source, and gases such as ammonia and hydrazine are used as the nitrogen source.
- the light emitting region includes a quantum well active layer.
- the material of the quantum well active layer is designed so that the band gap is smaller than the materials of the n-type semiconductor layer and the p-type semiconductor layer.
- the quantum well active layer may have a single quantum well (SQW) structure or a multiple quantum well (MQW) structure.
- the material of a quantum well active layer can illustrate the following.
- An MQW structure in which 5 cycles are formed is mentioned.
- the conductive adhesive for example, Au / Ge solder can be used with a thickness of about 0.5 to 100 ⁇ m.
- the light emitting structure can be bonded to a separate conductive support through a conductive adhesive.
- the conductive support has a function of injecting current into the p-type semiconductor layer as well as being responsible for supporting the light emitting structure.
- the material for the conductive support include GaAs, SiC, Si, Ge, C, Cu, Al, Mo, Ti, Ni, W, Ta, CuW, and Au / Ni.
- the present invention is applied to a technical field that is required to have high quality, for example, a high color rendering blue LED called a post fluorescent lamp, a blue-violet laser for high-speed and high-density optical memory, and a power device used for an inverter for a hybrid vehicle. Can be used.
- a high color rendering blue LED called a post fluorescent lamp
- a blue-violet laser for high-speed and high-density optical memory
- a power device used for an inverter for a hybrid vehicle can be used.
- Example 1 Preparation of seed crystal substrate
- a low-temperature GaN buffer layer of 40 nm is deposited at 530 ° C. on a c-plane sapphire substrate having a diameter of 2 inches and a thickness of 500 ⁇ m, and then a GaN film having a thickness of 3 ⁇ m at 1050 ° C. Were laminated.
- the warpage of the substrate was measured, and it was convex when the surface on which the GaN film was formed was facing up, with the maximum height minus the minimum height when placed on a flat surface.
- the warp of the 2 inch wafer defined was +20 ⁇ m.
- the defect density by TEM observation was 1 ⁇ 10 9 / cm 2 .
- the substrate was subjected to ultrasonic cleaning with an organic solvent and ultrapure water for 10 minutes and then dried to obtain a seed crystal substrate.
- gallium nitride was grown on the upper surface of the seed crystal substrate by a flux method. Using an alumina crucible, metal Ga and metal Na were weighed at a molar ratio of 20:80, and placed at the bottom of the crucible together with the seed crystal substrate.
- a gallium nitride crystal having a thickness of 180 ⁇ m was grown by setting the growth time to 20 hours.
- the warpage of the substrate was convex when the sapphire was placed underneath, and the 2-inch wafer warpage defined by the maximum height minus the minimum height when placed on a flat surface was +250 ⁇ m.
- the gallium nitride crystal did not emit yellow light when measured with a fluorescence microscope. Further, this gallium nitride crystal sometimes emitted pale blue light when measured with a fluorescence microscope. Although the origin of this luminescence is not well understood, it is unique to this process. It is known from PL spectrum measurement that the emission wavelength is a broad spectrum from 430 to 500 nm.
- the grown gallium nitride crystal was polished by the following process. After the fixed abrasive grains are ground by grinding (grinding) with a grindstone, they are polished (wrapping) using free abrasive grains such as diamond slurry, and then precision polished (polished) using acidic or alkaline CMP slurry. .
- the thickness of the gallium nitride crystal after polishing was set to 15 ⁇ m from the viewpoint of the present invention.
- the wafer warp after polishing is convex when sapphire is placed down, and the warp of a 2-inch wafer defined by the maximum height minus minimum height when placed on a flat surface is room temperature. And +120 ⁇ m.
- the polished gallium nitride was protected by a protective film, and the gallium nitride was attached to the polishing platen face down, and the sapphire substrate was polished by the following steps to introduce processing strain.
- the fixed abrasive is ground by grinding with a grinding wheel (grinding), then polished (wrapped) with free abrasive such as diamond slurry with an average particle diameter of 1 to 10 ⁇ m, and then acidified with colloidal silica abrasive
- a semi-mirror surface was made using an alkaline CMP slurry (polishing). This was scrubbed (rubbed with a brush), ultrasonically washed with ultrapure water and then dried to obtain a substrate for LED structure film formation.
- the thickness of the composite substrate thus obtained after polishing was 450 ⁇ m from the viewpoint of the present invention.
- the warpage of the wafer after sapphire polishing was +80 ⁇ m at room temperature as described above, and was 40 ⁇ m smaller than that before sapphire polishing.
- the dark spot density of the liquid phase gallium nitride film on the surface of this composite substrate was measured with a cathodoluminescence device, it was about 1 ⁇ 10 7 / cm 2 .
- LED structure was formed by the MOCVD method in the following steps. The temperature is raised from room temperature to 1050 ° C. in about 15 minutes, maintained in a mixed atmosphere of nitrogen, hydrogen, and ammonia for 15 minutes to perform thermal cleaning, and then a 2 ⁇ m thick n-GaN layer is deposited at 1050 ° C. Then, the temperature was lowered to 750 ° C., and 10 pairs of InGaN / GaN multiple quantum wells (active layers) were deposited.
- an electron blocking layer made of AlGaN is grown to 0.02 ⁇ m, and then heated to 1000 ° C., and then p-GaN (p cladding layer; thickness 80 nm) and p + GaN (p contact layer; thickness 20 nm) are deposited. And then allowed to cool to room temperature.
- Example 2 The experiment was performed in the same manner as in Example 1 except that the thickness of the gallium nitride crystal after polishing was 10 ⁇ m.
- the warpage of the 445 ⁇ m thick composite substrate obtained by polishing both the gallium nitride side and the sapphire side was a convex shape as described above, and was +40 ⁇ m at room temperature.
- the LED structure was formed in the same manner as in Example 1 and the in-plane distribution of the emission wavelength was measured, it was in the range of 460 ⁇ 5 nm. Further, about 70% of the wafer area was in the range of 460 ⁇ 2.5 nm.
- Example 3 The experiment was performed in the same manner as in Example 1 except that the thickness of the gallium nitride crystal after polishing was 13 ⁇ m.
- the warpage of the 448 ⁇ m-thick composite substrate obtained by polishing both the gallium nitride side and the sapphire side was a convex shape as described above, and was +70 ⁇ m at room temperature.
- the LED structure was formed in the same manner as in Example 1 and the in-plane distribution of the emission wavelength was measured, it was in the range of 460 ⁇ 5 nm. Further, about 80% of the wafer area was in the range of 460 ⁇ 2.5 nm.
- Example 4 The experiment was carried out in the same manner as in Example 1 except that the step of polishing with acidic or alkaline CMP slurry (colloidal silica) after lapping the sapphire surface with diamond slurry was omitted.
- the sapphire surface was a semi-mirror surface as in Example 1.
- the thickness of the gallium nitride crystal after polishing was set to 15 ⁇ m.
- the warpage of the composite substrate having a thickness of 450 ⁇ m obtained by polishing both the gallium nitride side and the sapphire side was a convex shape as described above, and was +50 ⁇ m at room temperature.
- the LED structure was formed in the same manner as in Example 1 and the in-plane distribution of the emission wavelength was measured, it was in the range of 460 ⁇ 5 nm. Further, about 80% of the wafer area was in the range of 460 ⁇ 2.5 nm.
- Example 5 A composite substrate was produced in the same manner as in Example 1. Thereafter, an SiO 2 film was further formed on the bottom surface 1c of the composite substrate by plasma CVD. The thickness of the SiO 2 film was 5 microns. That is, the thickness of the composite substrate was 455 microns. The warpage of the composite substrate at room temperature was a convex shape as described above, and was +40 ⁇ m, which was 40 ⁇ m smaller than before the SiO 2 film formation.
- Example 1 when an LED structure was formed on the composite substrate and the in-plane distribution of the emission wavelength was measured, it was in the range of 460 ⁇ 5 nm. Further, about 90% of the wafer area was in the range of 460 ⁇ 2.5 nm. That is, the in-plane uniformity was slightly improved as compared with Example 1.
- Example 6 The experiment was performed in the same manner as in Example 5 except that the thickness of the gallium nitride crystal after polishing was 25 ⁇ m and the SiO 2 film thickness on the bottom surface 1c of the composite substrate was 10 microns. That is, the thickness of the composite substrate was 470 microns.
- the warpage at room temperature was a convex shape as described above, and was +80 ⁇ m, which was 80 ⁇ m smaller than before the SiO 2 film formation.
- the dark spot density of the liquid phase gallium nitride film on the surface of this composite substrate was measured with a cathodoluminescence device, it was about 8 ⁇ 10 6 / cm 2 , and the dislocation density was lower than in Example 1.
- the LED structure was formed on the composite substrate in the same manner as in Example 1 and the in-plane distribution of the emission wavelength was measured, the range was 460 ⁇ 5 nm. Further, about 80% of the wafer area was in the range of 460 ⁇ 2.5 nm.
- the current density at this time was 100 A / cm 2 . That is, the LED could be driven with a larger current and a larger current density than in Example 1.
- Example 1 The experiment was performed in the same manner as in Example 1 except that the average particle diameter of the diamond slurry was changed from that in Example 1. After grinding sapphire by grinding (grinding) with fixed abrasive grains, polishing (lapping) with free abrasive grains such as diamond slurry with an average particle diameter of 15 ⁇ m, and then acidic or alkaline CMP slurry (colloidal) (Silica) was used as a semi-mirror surface. The thickness of the gallium nitride crystal after polishing was 10 ⁇ m.
- the warpage of the 445 ⁇ m thick composite substrate obtained by polishing both the gallium nitride side and the sapphire side was a convex shape as described above, and was +30 ⁇ m at room temperature.
- the LED structure was formed in the same manner as in Example 1 and the in-plane distribution of the emission wavelength was measured, it was in the range of 460 ⁇ 10 nm, and the emission wavelength distribution was approximately doubled. Moreover, the ratio of the area which was in the range of 460 ⁇ 2.5 nm was as narrow as about 40%.
- Example 2 An experiment was performed in the same manner as in Example 1 except that an acidic or alkaline CMP slurry (colloidal silica) was used to make the sapphire surface a mirror surface.
- the thickness of the gallium nitride crystal after polishing was 15 ⁇ m.
- the warpage of the composite substrate having a thickness of 450 ⁇ m obtained by polishing both the gallium nitride side and the sapphire side was a convex shape as described above, and was +100 ⁇ m at room temperature.
- the LED structure was formed in the same manner as in Example 1 and the in-plane distribution of the emission wavelength was measured, it was in the range of 460 ⁇ 8 nm, and the emission wavelength distribution was approximately doubled. Moreover, the ratio of the area which was in the range of 460 ⁇ 2.5 nm was as narrow as about 50%.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Abstract
Description
複合基板の反りが5.08cm当たり、+40μm以上、+80μm以下であることを特徴とする。
最初に、本発明者が検討した複合基板とその問題点について述べる。
サファイアのウルツ鉱構造は、c面、a面、およびm面を有する。これらの各結晶面は結晶学的に定義されるものである。下地層、種結晶層、およびフラックス法によって育成される窒化ガリウム結晶層の育成方向は、c面の法線方向であってよく、またa面、m面それぞれの法線方向であってもよい。
サファイア基板上に種結晶層を形成することができる。
黄色発光する窒化ガリウムについて述べる。
本窒化ガリウム結晶は、バンドからバンドへの励起子遷移(UV)に加えて、2.2~2.5eVの範囲にブロードなピークが現れる。これは、黄色発光(YL)または黄色帯(YB)と呼ばれている。
蛍光顕微鏡を用いることで、この範囲の黄色発光のみを励起し、黄色発光の有無を検出することができる。
こうした黄色発光する窒化ガリウム結晶は、例えば、特表2005-506271に例示されている。
窒化ガリウム結晶層とサファイア基板との自然剥離が生ずると、複合基板として利用できない。このため、窒化ガリウム結晶層の剥離を抑制するという観点からは、窒化ガリウム結晶層の厚さ(成膜直後の厚さ)を100μm以下とすることが好ましく、50μm以下とすることが更に好ましく、20μm以下がいっそう好ましい。
好適な実施形態においては、複合基板が円板状であるが、角板などの他の形態でも良い。また、好適な実施形態においては、複合基板の寸法が、直径φ50mm以上である。これによって、機能素子の量産に適した、取り扱い易い複合基板を提供できる。
ここで、図3(a)に示す例では、試料(複合基板)4のサファイア基板1Aの底面1cが凹状となり、窒化ガリウム結晶層が凸状となるように、複合基板が反っている。この反りを正(+の記号で示す)とする。また、図3(b)に示す例では、試料(複合基板)4のサファイア基板1Aの底面1cが凸状となり、窒化ガリウム結晶層が凹状となるように、複合基板が反っている。この反りを負(-の記号で示す)とする。複合基板4の底面1cが形成する曲面を「反り曲面」とする。
言い換えると、反りW(R)は、底面1cにおいて、最適平面Pに最も近い点zpと最も遠い点zvとの高低差である。
まず、研削(グライディング)とは、砥粒をボンドで固定した固定砥粒を高速回転させながら対象物に接触させて、対象物の面を削り取ることをいう。かかる研削によって、粗い面が形成される。複合基板の底面を研削する場合、硬度の高いSiC、Al2O3、ダイヤモンドおよびCBN(キュービックボロンナイトライド、以下同じ)などで形成され、粒径が10μm以上、100μm以下程度の砥粒を含む固定砥粒が好ましく用いられる。
ここでいう、半鏡面とは、平均粗さRaが10nmより大きく、500nm以下の状態のものを指す。平均粗さRaが500nmを超えるものは、粗面と定義する。
本発明の半鏡面のRaは、好ましくは、100nm以上、500nm以下であり、さらに好ましくは、250nm以上、500nm以下である。
こうして得られた複合基板上に機能層を気相法で形成する。
こうした機能層は、単一層であってよく、複数層であってよい。また、機能としては、高輝度・高演色性の白色LEDや高速高密度光メモリ用青紫レーザディスク、ハイブリッド自動車用のインバータ用のパワーデバイスなどに用いることができる。
AlyInxGa1-x-yN(0≦x≦1、0≦y≦1)
n型導電性を付与するためのドープ材としては、珪素、ゲルマニウム、酸素を例示できる。また、p型導電性を付与するためのドープ材としては、マグネシウム、亜鉛を例示できる。
量子井戸活性層の好適例として、AlxGa1-xN/AlyGa1-yN系量子井戸活性層(x=0.15、y=0.20)であって、膜厚がそれぞれ3nm/8nmであるものを3~5周期形成させたMQW構造が挙げられる。
本発明は、高品質であることが要求される技術分野、例えばポスト蛍光灯といわれている高演色性の青色LEDや高速高密度光メモリ用青紫レーザ、ハイブリッド自動車用のインバータに用いるパワーデバイスなどに用いることができる。
(種結晶基板の作製)
MOCVD法を用いて、直径2インチ、厚さ500μmのc面サファイア基板の上に、530℃にて、低温GaNバッファ層を40nm堆積させたのちに、1050℃にて、厚さ3μmのGaN膜を積層させた。室温まで自然冷却したのちに、基板の反りを測定したところ、GaNが成膜された面を上にした場合に凸形状となっており、平坦面においたときの最大高さ-最小高さで定義される、2インチウェハーの反りは、+20μmであった。TEM観察による欠陥密度は、1×109/cm2であった。有機溶剤、超純水でそれぞれ10分間超音波洗浄した後に乾燥させて、これを種結晶基板とした。
次いで、種結晶基板の上面上にフラックス法によって窒化ガリウムを成長した。
アルミナ坩堝を用い、金属Gaと金属Naをモル比で20:80で秤量し、種結晶基板とともに、坩堝の底に配置した。
成長した窒化ガリウム結晶を以下の工程で、研磨加工した。
固定砥粒の砥石による研削(グラインディング)によって面だしした後、ダイヤモンドスラリーなどの遊離砥粒を用いて研磨(ラッピング)し、その後、酸性やアルカリ性のCMPスラリーを用いて精密研磨(ポリッシュ)した。
固定砥粒の砥石による研削(グラインディング)によって面だしした後、平均粒径1~10μmのダイヤモンドスラリーなどの遊離砥粒を用いて研磨(ラッピング)し、その後、コロイダルシリカ砥粒を含有した酸性やアルカリ性のCMPスラリーを用いて半鏡面とした(ポリッシュ)。
これを、スクラブ洗浄(ブラシを用いたこすり洗い)し、超純水にて超音波洗浄した後に乾燥させて、LED構造成膜用の基板とした。
カソードルミネッセンス装置により、この複合基板の表面の液相法窒化ガリウム膜のダークスポット密度を測定したところ、約1×107/cm2であった。
MOCVD法により、以下の工程で、LED構造を成膜した。室温から、1050℃まで約15分で昇温し、窒素と水素とアンモニアの混合雰囲気にて、15分保持してサーマルクリーニングを行った後、厚さ2μmのn-GaN層を1050℃で堆積させ、ついで750℃に降温して、InGaN/GaNによる多重量子井戸(活性層)を10ペア堆積した。さらに、AlGaNによる電子ブロック層を0.02μm成長させ、その後、1000℃に昇温してから、p-GaN(pクラッド層;厚さ80nm)、p+GaN(pコンタクト層;厚さ20nm)を堆積し、その後室温まで放冷した。
このウェハーを用いて、通常のフォトリソグラフィ工程にて、0.3mm角のLED素子を作成し、約3.5Vの電圧を電極に印加したところ、波長約460nmの青色で発光することが確認できた。発光波長の面内分布を測定したところ、460±5nmの範囲であった。また、ウェハーの約7割の面積は460±2.5nmの範囲に入っていた。
窒化ガリウム結晶の研磨後の厚さを10μmとした以外は、実施例1と同様に実験を行った。窒化ガリウム側と、サファイア側の両方を研磨して得られた445μmの厚さの複合基板の反りは、前記同様に凸形状であり、室温にて、+40μmであった。
窒化ガリウム結晶の研磨後の厚さを13μmとした以外は、実施例1と同様に実験を行った。窒化ガリウム側と、サファイア側の両方を研磨して得られた448μmの厚さの複合基板の反りは、前記同様に凸形状であり、室温にて、+70μmであった。
サファイア面をダイヤモンドスラリーによるラッピングした後の酸性やアルカリ性のCMPスラリー(コロイダルシリカ)を用いてポリッシュする工程を省いた以外は、実施例1と同様に実験した。ダイヤモンドスラリーの平均粒径は、10μmを用いた後に2μmを用いるという2段階にしたところ、実施例1と同様に、サファイア面は半鏡面であった。窒化ガリウム結晶の研磨後の厚さを15μmとした。
実施例1と同様に、複合基板を作製した。その後で、さらに、複合基板の底面1cにSiO2膜をプラズマCVDにて成膜した。SiO2膜の厚さは5ミクロンとした。すなわち、複合基板の厚さは455ミクロンとなった。複合基板の室温での反りは前記同様に凸形状であり、+40μmであり、SiO2成膜前と比べて40μm小さくなっていた。
窒化ガリウム結晶の研磨後の厚さを25μmとし、複合基板の底面1c上のSiO2膜厚を10ミクロンとした以外は、実施例5と同様に実験を行った。すなわち、複合基板の厚さは、470ミクロンとなった。室温での反りは前記同様に凸形状であり、+80μmであり、SiO2成膜前と比べて80μm小さくなっていた。
実施例1と同様に複合基板上にLED構造を成膜し、発光波長の面内分布を測定したところ、460±5nmの範囲であった。また、ウェハーの約8割の面積は460±2.5nmの範囲に入っていた。1mm角チップに切り出し、1Aの電流で駆動したところ、80%と高い内部量子効率が得られた。このときの電流密度は、100A/cm2であった。すなわち、実施例1よりも大電流かつ大電流密度でLEDを駆動することができた。
ダイヤモンドスラリーの平均粒径を実施例1とは変えた以外は、実施例1と同様に実験した。固定砥粒の砥石による研削(グラインディング)によってサファイアを面だしした後、平均粒径15μmのダイヤモンドスラリーなどの遊離砥粒を用いて研磨(ラッピング)し、その後、酸性やアルカリ性のCMPスラリー(コロイダルシリカ)を用いて半鏡面とした。窒化ガリウム結晶の研磨後の厚さは10μmとした。
酸性やアルカリ性のCMPスラリー(コロイダルシリカ)を用いてサファイア面を鏡面とした以外は、実施例1と同様に実験した。窒化ガリウム結晶の研磨後の厚さは15μmとした。窒化ガリウム側と、サファイア側の両方を研磨して得られた450μmの厚さの複合基板の反りは、前記同様に凸形状であり、室温にて、+100μmであった。
Claims (7)
- サファイア基板、および前記サファイア基板上に設けられた窒化ガリウム結晶層を備える複合基板であって、
前記複合基板の反りが5.08cm当たり、+40μm以上、+80μm以下であることを特徴とする、複合基板。 - 前記窒化ガリウム結晶層の表面が鏡面であり、前記サファイア基板の底面が半鏡面であることを特徴とする、請求項1記載の複合基板。
- 前記複合基板が円板状であり、前記複合基板の寸法が、直径φ50mm以上であることを特徴とする、請求項1または2記載の複合基板。
- 前記サファイア基板の底面に形成された耐熱性材料からなる膜を有することを特徴とする、請求項1~3のいずれか一つの請求項に記載の複合基板。
- 前記窒化ガリウム結晶層がフラックス法によって窒素含有雰囲気下に融液から育成されたことを特徴とする、請求項1~4のいずれか一つの請求項に記載の複合基板。
- 請求項1~5のいずれか一つの請求項に記載の複合基板、および前記窒化ガリウム結晶層上に気相法によって形成された13族元素窒化物からなる機能層を備えていることを特徴とする、機能素子。
- 前記機能層が発光機能を有することを特徴とする、請求項6記載の機能素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015520763A JP5828993B1 (ja) | 2013-12-18 | 2014-12-15 | 複合基板および機能素子 |
CN201480019026.9A CN105102695B (zh) | 2013-12-18 | 2014-12-15 | 复合基板和功能元件 |
US14/852,947 US9287453B2 (en) | 2013-12-18 | 2015-09-14 | Composite substrates and functional device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-261037 | 2013-12-18 | ||
JP2013261037 | 2013-12-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/852,947 Continuation US9287453B2 (en) | 2013-12-18 | 2015-09-14 | Composite substrates and functional device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093447A1 true WO2015093447A1 (ja) | 2015-06-25 |
Family
ID=53402793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083165 WO2015093447A1 (ja) | 2013-12-18 | 2014-12-15 | 複合基板および機能素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9287453B2 (ja) |
JP (1) | JP5828993B1 (ja) |
CN (1) | CN105102695B (ja) |
WO (1) | WO2015093447A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018165225A (ja) * | 2017-03-28 | 2018-10-25 | 日本碍子株式会社 | 窒化ガリウム結晶からなる自立基板の製造方法 |
WO2018203466A1 (ja) * | 2017-05-01 | 2018-11-08 | パナソニックIpマネジメント株式会社 | 窒化物系発光装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10770621B2 (en) | 2016-04-08 | 2020-09-08 | Stanley Electric Co., Ltd. | Semiconductor wafer |
US10305798B2 (en) * | 2016-06-21 | 2019-05-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic lookup optimization for packet classification |
CN114651092B (zh) * | 2019-11-21 | 2024-08-23 | 日本碍子株式会社 | 13族元素氮化物结晶层、自立基板及功能元件 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005136167A (ja) * | 2003-10-30 | 2005-05-26 | Sumitomo Electric Ind Ltd | 窒化物半導体基板の製造方法と窒化物半導体基板 |
JP2006054231A (ja) * | 2004-08-10 | 2006-02-23 | Sumitomo Chemical Co Ltd | 3族窒化物半導体素子用基板の製造方法 |
JP2009111423A (ja) * | 2009-01-23 | 2009-05-21 | Sumitomo Electric Ind Ltd | GaN結晶基板およびその製造方法、ならびに半導体デバイスおよびその製造方法 |
JP4301251B2 (ja) * | 2006-02-15 | 2009-07-22 | 住友電気工業株式会社 | GaN結晶基板 |
WO2011129246A1 (ja) * | 2010-04-13 | 2011-10-20 | 並木精密宝石株式会社 | 単結晶基板、結晶性膜付き単結晶基板、結晶性膜、結晶性膜付き単結晶基板の製造方法、結晶性基板の製造方法、及び素子製造方法 |
WO2013051163A1 (ja) * | 2011-10-07 | 2013-04-11 | 住友電気工業株式会社 | GaN系膜の製造方法およびそれに用いられる複合基板 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4055503B2 (ja) | 2001-07-24 | 2008-03-05 | 日亜化学工業株式会社 | 半導体発光素子 |
JP4356723B2 (ja) | 2001-07-24 | 2009-11-04 | 日亜化学工業株式会社 | 窒化物半導体発光素子の製造方法 |
JP2003063897A (ja) * | 2001-08-28 | 2003-03-05 | Sony Corp | 窒化物系iii−v族化合物半導体基板およびその製造方法ならびに半導体発光素子の製造方法ならびに半導体装置の製造方法 |
CA2464083C (en) | 2001-10-26 | 2011-08-02 | Ammono Sp. Z O.O. | Substrate for epitaxy |
EP1453158A4 (en) | 2001-10-26 | 2007-09-19 | Ammono Sp Zoo | NITRIDE SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR |
JP4694878B2 (ja) * | 2005-04-20 | 2011-06-08 | Okiセミコンダクタ株式会社 | 半導体製造装置および半導体装置の製造方法 |
KR101186233B1 (ko) * | 2005-10-07 | 2012-09-27 | 삼성코닝정밀소재 주식회사 | 휨이 감소된 사파이어/질화갈륨 적층체 |
CA2641016A1 (en) * | 2007-10-24 | 2009-04-24 | Sumitomo Electric Industries, Ltd. | Semi-insulating nitride semiconductor substrate and method of manufacturing the same, nitride semiconductor epitaxial substrate, and field-effect transistor |
JP5244628B2 (ja) | 2009-01-21 | 2013-07-24 | 日本碍子株式会社 | 3b族窒化物結晶板の製法 |
JP2010219353A (ja) | 2009-03-17 | 2010-09-30 | Sumitomo Metal Mining Co Ltd | 半導体用ウエハーの研磨方法 |
US8699537B2 (en) * | 2009-10-29 | 2014-04-15 | Tarun Kumar Sharma | Application-oriented nitride substrates for epitaxial growth of electronic and optoelectronic device structures |
US8110484B1 (en) * | 2010-11-19 | 2012-02-07 | Sumitomo Electric Industries, Ltd. | Conductive nitride semiconductor substrate and method for producing the same |
US9023722B2 (en) * | 2011-05-13 | 2015-05-05 | Varian Semiconductor Equipment Associates, Inc. | Compound semiconductor growth using ion implantation |
KR20140047055A (ko) | 2011-08-10 | 2014-04-21 | 엔지케이 인슐레이터 엘티디 | 반도체 발광 소자 및 이것을 포함하는 적층체 |
WO2013021804A1 (ja) | 2011-08-10 | 2013-02-14 | 日本碍子株式会社 | 13族元素窒化物膜の剥離方法 |
JP5918749B2 (ja) | 2011-08-10 | 2016-05-18 | 日本碍子株式会社 | 13族元素窒化物膜およびその積層体 |
JPWO2013176291A1 (ja) * | 2012-05-23 | 2016-01-14 | 日本碍子株式会社 | 複合基板、発光素子および複合基板の製造方法 |
-
2014
- 2014-12-15 JP JP2015520763A patent/JP5828993B1/ja active Active
- 2014-12-15 WO PCT/JP2014/083165 patent/WO2015093447A1/ja active Application Filing
- 2014-12-15 CN CN201480019026.9A patent/CN105102695B/zh active Active
-
2015
- 2015-09-14 US US14/852,947 patent/US9287453B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005136167A (ja) * | 2003-10-30 | 2005-05-26 | Sumitomo Electric Ind Ltd | 窒化物半導体基板の製造方法と窒化物半導体基板 |
JP2006054231A (ja) * | 2004-08-10 | 2006-02-23 | Sumitomo Chemical Co Ltd | 3族窒化物半導体素子用基板の製造方法 |
JP4301251B2 (ja) * | 2006-02-15 | 2009-07-22 | 住友電気工業株式会社 | GaN結晶基板 |
JP2009111423A (ja) * | 2009-01-23 | 2009-05-21 | Sumitomo Electric Ind Ltd | GaN結晶基板およびその製造方法、ならびに半導体デバイスおよびその製造方法 |
WO2011129246A1 (ja) * | 2010-04-13 | 2011-10-20 | 並木精密宝石株式会社 | 単結晶基板、結晶性膜付き単結晶基板、結晶性膜、結晶性膜付き単結晶基板の製造方法、結晶性基板の製造方法、及び素子製造方法 |
WO2013051163A1 (ja) * | 2011-10-07 | 2013-04-11 | 住友電気工業株式会社 | GaN系膜の製造方法およびそれに用いられる複合基板 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018165225A (ja) * | 2017-03-28 | 2018-10-25 | 日本碍子株式会社 | 窒化ガリウム結晶からなる自立基板の製造方法 |
WO2018203466A1 (ja) * | 2017-05-01 | 2018-11-08 | パナソニックIpマネジメント株式会社 | 窒化物系発光装置 |
Also Published As
Publication number | Publication date |
---|---|
US20160005924A1 (en) | 2016-01-07 |
JP5828993B1 (ja) | 2015-12-09 |
CN105102695A (zh) | 2015-11-25 |
CN105102695B (zh) | 2018-06-12 |
JPWO2015093447A1 (ja) | 2017-03-16 |
US9287453B2 (en) | 2016-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7863609B2 (en) | Compound semiconductor substrate, semiconductor device, and processes for producing them | |
CN102576787B (zh) | Iii族氮化物半导体衬底、外延衬底及半导体器件 | |
JP5024426B2 (ja) | Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法 | |
JP5828993B1 (ja) | 複合基板および機能素子 | |
TW201638378A (zh) | Iii族氮化物積層體及具有該積層體之發光元件 | |
JP6344987B2 (ja) | 13族元素窒化物結晶層および機能素子 | |
JP4486435B2 (ja) | Iii族窒化物結晶基板の製造方法、それに用いるエッチング液 | |
WO2015083768A1 (ja) | 窒化ガリウム基板および機能素子 | |
JP5805352B2 (ja) | 複合基板、その製造方法、機能素子および種結晶基板 | |
JP6579951B2 (ja) | 窒化アルミニウム単結晶積層体、該積層体の製造方法、及び該積層体を利用した半導体素子の製造方法 | |
KR20140019366A (ko) | 복합 기판, 발광 소자 및 복합 기판의 제조 방법 | |
CN107002283B (zh) | 13族元素氮化物结晶基板及功能元件 | |
JP6856356B2 (ja) | 窒化アルミニウム単結晶基板及び、該単結晶基板の製造方法 | |
JP2008053372A (ja) | 半導体デバイスの製造方法 | |
JP6169292B1 (ja) | 13族元素窒化物結晶基板および機能素子 | |
JP6117821B2 (ja) | 複合基板および機能素子 | |
JP2005251961A (ja) | Iii族窒化物単結晶ウエハおよびそれを用いた半導体装置の製造方法 | |
JP5636642B2 (ja) | 化合物半導体基板 | |
WO2016093033A1 (ja) | 13族元素窒化物結晶層および機能素子 | |
CN204067415U (zh) | 复合晶片以及功能元件 | |
JP2012017257A (ja) | Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法 | |
JP2011108720A (ja) | Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法 | |
JP2010166017A (ja) | 化合物半導体基板及び半導体デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480019026.9 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2015520763 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14871700 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14871700 Country of ref document: EP Kind code of ref document: A1 |