[go: up one dir, main page]

WO2014185222A1 - エンジンベンチシステム - Google Patents

エンジンベンチシステム Download PDF

Info

Publication number
WO2014185222A1
WO2014185222A1 PCT/JP2014/061139 JP2014061139W WO2014185222A1 WO 2014185222 A1 WO2014185222 A1 WO 2014185222A1 JP 2014061139 W JP2014061139 W JP 2014061139W WO 2014185222 A1 WO2014185222 A1 WO 2014185222A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
torque
dynamometer
shaft torque
command value
Prior art date
Application number
PCT/JP2014/061139
Other languages
English (en)
French (fr)
Inventor
岳夫 秋山
喜正 澤田
伸彦 浅倉
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to US14/891,287 priority Critical patent/US9400231B2/en
Priority to CN201480027333.1A priority patent/CN105283749B/zh
Publication of WO2014185222A1 publication Critical patent/WO2014185222A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/24Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity
    • G01L3/242Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity by measuring and simultaneously multiplying torque and velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • G01M15/044Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring power, e.g. by operating the engine with one of the ignitions interrupted; by using acceleration tests

Definitions

  • the present invention relates to an engine bench system. More particularly, the present invention relates to an engine bench system in which a dynamometer is connected as a power absorber to an engine-equipped specimen to measure various characteristics of the engine.
  • FIG. 5 is a diagram showing the configuration of the engine bench system 100.
  • the engine bench system 100 includes a specimen W configured of an engine E and its output shaft SW, a dynamometer DY connected as a power absorber to the output shaft SW of the specimen W, and an engine via a throttle actuator 110
  • the engine controller 120 for controlling E, the dynamo controller 140 for controlling the dynamometer DY through the inverter 130, the encoder 150 for detecting the number of rotations of the output shaft of the dynamometer DY, and the output shaft SW of the sample W
  • an axial torque sensor 160 for detecting an axial torque (twisting torque) of a coupling portion between the second motor and the output shaft of the dynamometer DY.
  • mechanical elements such as a clutch, a transmission, and a propeller shaft are collectively shown as an output shaft SW in a simplified manner.
  • the engine controller 120 controls the output of the engine E in a manner predetermined for each test item, and the dynamo controller 140 controls the number of revolutions of the dynamometer DY based on the outputs of the encoder 150 and the shaft torque sensor 160, etc. And control the torque (see, for example, Patent Document 1).
  • the racing test measures the characteristics of the engine during so-called runaway. More specifically, the change in the number of revolutions of the dynamometer DY (for example, how the number of revolutions rises, the maximum value, etc.) when the throttle opening degree is fully opened for a short period of time from the idling state is measured.
  • DY for example, how the number of revolutions rises, the maximum value, etc.
  • the shaft torque command value input to the dynamo controller 140 is set to zero. That is, in the dynamo controller 140, torque is generated by the dynamometer DY so that no torsional torque is generated by the shaft torque sensor 160, that is, no load is applied to the engine E.
  • FIG. 6 is a diagram showing the results of a racing test in the conventional engine bench system 100.
  • the measurement result by the engine bench system 100 that is, the rotational speed measured by the encoder 150 is indicated by a thin solid line.
  • the result at the time of measuring only with an engine is shown by a thick broken line.
  • the engine alone refers to a state in which the engine E and the output shaft SW are separated and the engine E is unloaded.
  • the thick broken line in FIG. 6 shows the change in the actual engine speed when the throttle is fully opened with the clutch disengaged. Therefore, the thick broken line in FIG. 6 is a value that is an ideal value of the measurement result by the engine bench system 100.
  • the measurement result (thin solid line) by the engine bench system 100 is always smaller than the ideal value (thick dashed line).
  • the engine bench system 100 attempts to reproduce a state in which no load is applied to the engine E by setting the shaft torque command value to 0 when performing the racing test.
  • the inertia from the shaft torque sensor 160 to the crankshaft of the engine E that is, the inertia of the output shaft SW must be borne on the engine E side, and as a result, the measurement results fall below the ideal values at both acceleration and deceleration.
  • the inertia of the output shaft SW can also be borne by the dynamometer DY.
  • the closer the shaft torque sensor 160 is to the engine E the easier it is for the heat of the engine E to be transmitted, so the influence of the change in the measured value due to the temperature drift becomes greater.
  • the shaft torque sensor 160 is brought closer to the engine E, the vibration of the engine E is more easily transmitted, and the measurement accuracy is lowered. From the above reasons, it is preferable that the position of the shaft torque sensor 160 be closer to the dynamometer DY than the engine E.
  • An object of the present invention is to provide an engine bench system capable of accurately performing a racing test based on an output value of an axial torque meter provided closer to a dynamometer than an engine.
  • a dynamometer for example, a dynamometer DY described later whose output shaft is connected to a specimen (for example, a specimen W described later), and an output of the dynamometer
  • An axial torque detector for example, an axial torque sensor 7 described later for detecting a torsional torque (T23) at the joint between the shaft and the test object, and the specimen includes an engine main body (for example an engine described later
  • An engine bench system for example, an engine bench described later
  • a main body W1 for example, an intermediate coupled body (for example, an intermediate combined body W2 described below) connecting the crankshaft of the engine body and the output shaft of the dynamometer
  • the engine bench system includes an engine-side shaft torque command value (T12ref) corresponding to a command value for a twisting torque (T12) at a connection portion between the intermediate assembly and the engine body, and a moment of inertia (J2) of the intermediate assembly.
  • T12ref engine-side shaft torque command value
  • J2 moment of inertia
  • An axial torque command generation device (for example, an axial torque described later) which calculates a dynamo-side axial torque command value (T23ref) corresponding to a command value for torsional torque in the axial torque detector by adding together a torque value proportional to An axial torque controller that generates a torque control signal (T3) of the dynamometer based on the command generation device 61), the dynamo side axial torque command value (T23ref), and the output value (T23) of the axial torque detector.
  • T3 torque control signal
  • the engine bench system further includes a rotation number detector (for example, an encoder 8 described later) for detecting the rotation number of the output shaft of the dynamometer, and the shaft torque command generation device
  • the dynamo-side shaft torque command value (T23ref) is obtained by adding together the torque value obtained by multiplying the differential value of the output of the number detector by the moment of inertia of the intermediate assembly and the engine-side shaft torque command value. It is preferable to calculate.
  • the torque torque detector detects twisting torque at the joint between the engine body and the specimen consisting of the intermediate body and the dynamometer, and the torque controller determines the output value of the shaft torque detector and a predetermined value.
  • the torque control signal is generated based on the dynamo side shaft torque command value of Further, in the shaft torque command generation device according to the present invention, the dynamo side shaft torque command value is calculated by adding up the predetermined engine side shaft torque command value and the torque value proportional to the inertia moment of the intermediate combination, Input to the controller.
  • the present invention by determining the dynamo side shaft torque command value including the torque value proportional to the inertia moment of the intermediate coupled body as described above, at least a part of the inertia of the intermediate coupled body is to be borne by the dynamometer side. Can. Therefore, according to the present invention, since the load applied to the engine body can be reduced as compared with the conventional case, the performance of only the engine body can be evaluated with high accuracy in the racing test.
  • a torque value obtained by multiplying the predetermined engine side shaft torque command value and the differential value of the output of the rotational speed detector by the moment of inertia of the intermediate coupled body (that is, accelerating or decelerating the intermediate coupled body)
  • a dynamo side shaft torque command value is calculated by adding up the torque value to be calculated.
  • the engine bench system of the present invention is appropriately approximated by a three-inertia system model configured by connecting three inertia bodies by two spring elements. Then, since the torque value for accelerating and decelerating the intermediate coupled body is substantially equal to the difference between the dynamo side shaft torque and the engine side axial torque, the intermediate coupled body is determined by determining the dynamo side shaft torque command value as described above.
  • the engine side shaft torque can be controlled also by the shaft torque detector provided on the dynamometer side. Therefore, according to the present invention, it is possible to realize a state in which the engine body is substantially unloaded only by setting the engine side shaft torque command value to 0. Therefore, in the racing test, the performance of only the engine body can be evaluated accurately.
  • FIG. 1 is a diagram showing a configuration of an engine bench system 1 according to the present embodiment.
  • the engine bench system 1 includes a test object W including an engine E and a shaft SW, a dynamometer DY connected to the test object W as a power absorber, and an engine controller 5 for controlling the engine E via the throttle actuator 2
  • a dynamo controller 6 for controlling the dynamometer DY through the inverter 3
  • an axial torque sensor 7 for detecting a torsion torque at a joint between the shaft SW of the sample W and the output shaft SD of the dynamometer DY, and the dynamometer
  • an encoder 8 for detecting the number of rotations of the output shaft SD of DY.
  • the specimen W as a test target by the engine bench system 1 is configured by combining the engine E, the clutch C, the transmission TM, and the shaft SW as shown in FIG. That is, in the clutch C, the sample W can cut off the mechanical connection between the engine body W1 including the engine E and the crankshaft thereof and the intermediate coupled body W2 including the transmission TM and the shaft S. It has become. Further, since the specimen W thus includes the clutch C and the transmission TM, the overall rigidity is lower than the rigidity of the shaft torque sensor 7.
  • the engine controller 5 controls the output of the engine E in a manner determined for each test item.
  • the dynamo controller 6 corresponds to the torque value to be generated by the dynamometer DY based on the outputs of the shaft torque sensor 7 and the encoder 8 so that the power of the engine E is absorbed in a manner determined for each test item.
  • a torque control signal is generated and input to the inverter 3.
  • the mechanical system configuration of the engine bench system 1 is a three-inertia system model configured by connecting three inertia bodies each having a unique inertia moment as shown in FIG. 2 by two spring elements. Approximate. As described above, since the specimen as a whole has low rigidity, approximation by a three-inertia system model as shown in FIG. 2 is appropriate.
  • J1 corresponds to the moment of inertia of the engine body.
  • J3 corresponds to the moment of inertia of the dynamometer.
  • J2 corresponds to the moment of inertia of the intermediate coupled body.
  • T12 corresponds to the twisting torque at the junction of the engine body and the intermediate assembly.
  • T23 corresponds to the twisting torque at the junction of the intermediate assembly and the dynamometer.
  • the twisting torque T12 is referred to as an engine side shaft torque
  • the twisting torque T23 is referred to as a dynamo side shaft torque.
  • the dynamo side shaft torque T23 corresponds to the output value of the shaft torque sensor.
  • T3 corresponds to the generated torque of the dynamometer. That is, the generated torque T3 corresponds to the value of the torque control signal generated by the dynamo controller 6.
  • W3 corresponds to the rotation speed of the output shaft of the dynamometer. That is, the rotational speed w3 corresponds to the output value of the encoder.
  • FIG. 3 is a block diagram showing a configuration of a control circuit of axial torque control by the dynamo controller 6.
  • the dynamo controller 6 generates a torque control signal T3 based on the shaft torque command generation device 61 that generates a command value T23ref for the dynamo shaft torque, the dynamo shaft torque command value T23ref, and the output value T23 of the shaft torque sensor.
  • An axial torque controller 62, and a parameter identifier 63 for sequentially identifying control parameters used in the axial torque controller 62.
  • the shaft torque command generation device 61 generates a command value for the dynamo-side shaft torque T23 based on the command value T12ref for the engine-side shaft torque T12 and the output value w3 of the encoder. More specifically, as shown in the following equation (1), the shaft torque command generation device 61 has an engine side shaft torque command value T12ref input from the outside, a torque value for accelerating / decelerating the intermediate coupled body, That is, a value obtained by adding the torque value obtained by multiplying the output value w3 of the encoder by the pseudodifferentiation and the torque value obtained by multiplying the moment of inertia J2 of the intermediate coupled body is taken as the dynamo side shaft torque command value T23ref. A predetermined value is used as the cutoff frequency f1 characterizing the pseudo differential.
  • the shaft torque controller 62 generates a torque control signal T3 based on the dynamo side shaft torque command value T23ref and the shaft torque sensor output T23. More specifically, the axial torque controller 62 generates a torque control signal T3 by the calculation shown in the following equation (2) using the axial torque command value T23ref and the axial torque sensor output T23 as an input.
  • the calculation of the equation (2) is performed by integrating the deviation of the dynamo side shaft torque command value T23ref and the filter value of the shaft torque sensor output T23, differentiating the shaft torque sensor output T23, and proportioning the shaft torque sensor output T23. It consists of the operation.
  • the shaft torque controller 62 is controlled by the integral calculation in block 621 so that the deviation between the dynamo side shaft torque command value T23ref and the shaft torque sensor output T23 becomes small. Further, in the equation of motion of the 3-inertia system model shown in FIG. 2, assuming that the rotation speed w2 of the intermediate coupled body and the rotation speed w3 of the dynamometer are equal, the following equation (3) is derived. J2 (dw3 / dt) T T23-T12 (3)
  • the shaft torque command generation device 61 by including the torque value (J2 (dw3 / dt)) for accelerating / decelerating the intermediate coupled body in the dynamo side shaft torque command value as shown in the above equation (1).
  • the following equation (4) is derived. That is, by controlling the dynamometer so that the deviation between the dynamo side shaft torque command value T23ref and the shaft torque sensor output T23 becomes small by integral calculation in the shaft torque controller 62, the engine side shaft torque command input from the outside The deviation between the value T12ref and the engine-side shaft torque T12 can also be reduced simultaneously.
  • T12ref-T12 T23ref-T23 (4)
  • the parameter identifier 63 controls axial torque based on values such as the moment of inertia J1 to J3, the spring stiffness K12 between the engine body and the intermediate combination, and the spring stiffness K23 between the intermediate combination and the dynamometer.
  • Concrete values of the control parameters Ki, Kd, Kp in the unit 62 are sequentially identified. The detailed procedure for identifying specific values of these control parameters Ki, Kd, and Kp is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-133714 by the applicant of the present application, and therefore, more detailed description is given here. I omit explanation.
  • FIG. 4 is a diagram showing the results of a racing test by the engine bench system 1 of the present embodiment.
  • the measurement result by the engine bench system 1, that is, the rotational speed measured by the encoder 8 is indicated by a thin solid line.
  • the engine side shaft torque command value T12ref is set to 0 in order to reduce the load on the engine.
  • values which are ideal values of measurement results by the engine bench system 1 are indicated by thick broken lines.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Engines (AREA)

Abstract

 エンジンよりもダイナモメータの近くに設けられた軸トルクメータの出力値に基づいて、レーシング試験を精度良く行うことができるエンジンベンチシステムを提供すること。 供試体は、エンジン本体と、このエンジン本体のクランクシャフトとダイナモメータの出力軸とを接続する中間結合体と、に分けられる。エンジンベンチシステムは、ダイナモメータと中間結合体との結合部の捩れトルクT23を検出する軸トルクセンサと、中間結合体とエンジン本体の結合部に対するエンジン側軸トルク指令値T12refと、中間結合体の慣性モーメントJ2に比例したトルク値とを合算することにより、軸トルクセンサに対するダイナモ側軸トルク指令値T23refを算出する軸トルク指令生成装置61と、ダイナモ側軸トルク指令値T23refと軸トルクセンサの出力値T23とに基づいてトルク制御信号T3を生成する軸トルク制御器62と、を備える。

Description

エンジンベンチシステム
 本発明は、エンジンベンチシステムに関する。より詳しくは、エンジンを備えた供試体にダイナモメータを動力吸収体として接続し、エンジンの各種特性を測定するエンジンベンチシステムに関する。
 図5は、エンジンベンチシステム100の構成を示す図である。
 エンジンベンチシステム100は、エンジンE及びその出力軸SWで構成される供試体Wと、この供試体Wの出力軸SWに動力吸収体として接続されたダイナモメータDYと、スロットルアクチュエータ110を介してエンジンEを制御するエンジン制御器120と、インバータ130を介してダイナモメータDYを制御するダイナモ制御器140と、ダイナモメータDYの出力軸の回転数を検出するエンコーダ150と、供試体Wの出力軸SWとダイナモメータDYの出力軸との結合部の軸トルク(捩れトルク)を検出する軸トルクセンサ160と、を備える。なお図5では、クラッチ、トランスミッション、及びプロペラシャフトなどの機械要素をまとめて出力軸SWとして簡略化して示す。
 エンジン制御器120は、試験項目ごとに予め定められた態様でエンジンEの出力を制御し、ダイナモ制御器140は、エンコーダ150や軸トルクセンサ160の出力等に基づいて、ダイナモメータDYの回転数やトルクを制御する(例えば、特許文献1参照)。
特開2009-133714号公報
 ところで、上記のようなエンジンベンチシステム100による試験項目の1つに、レーシング試験と呼称されるものがある。レーシング試験とは、いわゆる空ぶかし時におけるエンジンの特性を測定するものである。より具体的には、アイドリング状態から短期間だけスロットル開度を全開にしたときにおけるダイナモメータDYの回転数の変化(例えば、回転数の立ち上がり方や、最高値等)を測定する。
 上記図5に示すような構成のエンジンベンチシステム100では、このようなレーシング試験を行う場合、ダイナモ制御器140に入力する軸トルク指令値を0とする。すなわち、ダイナモ制御器140では、軸トルクセンサ160で捩れトルクが発生しないように、すなわちエンジンEに負荷がかからないように、ダイナモメータDYでトルクを発生させる。
 図6は、従来のエンジンベンチシステム100におけるレーシング試験の結果を示す図である。図6には、エンジンベンチシステム100による測定結果、すなわちエンコーダ150によって測定された回転数を細実線で示す。また図6には、エンジン単体で測定した場合の結果を太破線で示す。ここで、エンジン単体とは、エンジンEと出力軸SWとを切り離し、エンジンEを無負荷にした状態をいう。換言すれば、図6の太破線はクラッチを切り離した状態でスロットルを全開にした場合における実際のエンジン回転数の変化を示す。したがって、図6の太破線は、エンジンベンチシステム100による測定結果の理想値となる値である。
 図6に示すように、エンジンベンチシステム100による測定結果(細実線)は、理想値(太破線)よりも常に小さい。上記の通り、エンジンベンチシステム100では、レーシング試験を行う際、軸トルク指令値を0とすることによって、エンジンEに負荷がかからないような状態を再現しようとしている。しかしながら、軸トルクセンサ160からエンジンEのクランクシャフトまでの部分、すなわち出力軸SWの慣性はエンジンE側で負担せねばならず、この結果として測定結果は加速時及び減速時ともに理想値を下回る。以上のように、従来のエンジンベンチシステム100では、レーシング試験においてエンジン単体の性能を精度良く測定することが困難である。
 なお理論的には、軸トルクセンサ160の位置をよりエンジンEのクランクシャフト側に近づければ出力軸SWの慣性もダイナモメータDYで負担させることができる。しかしながら、軸トルクセンサ160をエンジンEに近づけるほどエンジンEの熱が伝わりやすくなるため、温度ドリフトによる測定値の変化の影響が大きくなる。また、軸トルクセンサ160をエンジンEに近づけるほどエンジンEの振動が伝わりやすくなり、測定精度が低下する。以上のような理由から、軸トルクセンサ160の位置は、エンジンEよりもダイナモメータDYに近い方が好ましい。
 本発明は、エンジンよりもダイナモメータの近くに設けられた軸トルクメータの出力値に基づいて、レーシング試験を精度良く行うことができるエンジンベンチシステムを提供することを目的とする。
 (1)上記目的を達成するため本発明は、その出力軸が供試体(例えば、後述の供試体W)に接続されたダイナモメータ(例えば、後述のダイナモメータDY)と、前記ダイナモメータの出力軸と前記供試体との結合部における捩れトルク(T23)を検出する軸トルク検出器(例えば、後述の軸トルクセンサ7)と、を備え、前記供試体は、エンジン本体(例えば、後述のエンジン本体W1)と、当該エンジン本体のクランクシャフトと前記ダイナモメータの出力軸とを接続する中間結合体(例えば、後述の中間結合体W2)と、に分けられるエンジンベンチシステム(例えば、後述のエンジンベンチシステム1)を提供する。前記エンジンベンチシステムは、前記中間結合体と前記エンジン本体の結合部における捩れトルク(T12)に対する指令値に相当するエンジン側軸トルク指令値(T12ref)と、前記中間結合体の慣性モーメント(J2)に比例したトルク値とを合算することにより、前記軸トルク検出器における捩れトルクに対する指令値に相当するダイナモ側軸トルク指令値(T23ref)を算出する軸トルク指令生成装置(例えば、後述の軸トルク指令生成装置61)と、前記ダイナモ側軸トルク指令値(T23ref)と前記軸トルク検出器の出力値(T23)とに基づいて前記ダイナモメータのトルク制御信号(T3)を生成する軸トルク制御器(例えば、後述の軸トルク制御器62)と、を備える。
 (2)この場合、前記エンジンベンチシステムは、前記ダイナモメータの出力軸の回転数を検出する回転数検出器(例えば、後述のエンコーダ8)をさらに備え、前記軸トルク指令生成装置は、前記回転数検出器の出力の微分値に前記中間結合体の慣性モーメントを乗算して得られるトルク値と、前記エンジン側軸トルク指令値と、を合算することによりダイナモ側軸トルク指令値(T23ref)を算出することが好ましい。
 (1)本発明では、軸トルク検出器によってエンジン本体及び中間結合体からなる供試体とダイナモメータとの結合部における捩れトルクを検出し、軸トルク制御器によって軸トルク検出器の出力値と所定のダイナモ側軸トルク指令値とに基づいてトルク制御信号を生成する。また本発明の軸トルク指令生成装置では、所定のエンジン側軸トルク指令値と中間結合体の慣性モーメントに比例したトルク値とを合算することによってダイナモ側軸トルク指令値を算出し、上記軸トルク制御器に入力する。本発明では、このように中間結合体の慣性モーメントに比例したトルク値を含めてダイナモ側軸トルク指令値を決定することにより、中間結合体の慣性の少なくとも一部をダイナモメータ側で負担させることができる。したがって、本発明によれば、エンジン本体にかかる負担を従来と比較して低減できるので、レーシング試験ではエンジン本体のみの性能を精度良く評価することができる。
 (2)本発明では、所定のエンジン側軸トルク指令値と、回転数検出器の出力の微分値に中間結合体の慣性モーメントを乗算して得られるトルク値(すなわち、中間結合体を加減速するためのトルク値)とを合算することによってダイナモ側軸トルク指令値を算出する。本発明のエンジンベンチシステムは、3つの慣性体を2つのばね要素で連結して構成される3慣性系モデルによる近似が妥当である。そうすると、中間結合体を加減速するためのトルク値はダイナモ側軸トルクとエンジン側軸トルクの差とほぼ等しくなるので、上記のようにダイナモ側軸トルク指令値を決定することにより、中間結合体よりもダイナモメータ側に設けられた軸トルク検出器でも、エンジン側軸トルクを制御することができる。したがって本発明によれば、エンジン側軸トルク指令値を0とするだけでエンジン本体をほぼ無負荷にした状態を実現できるので、レーシング試験ではエンジン本体のみの性能を精度良く評価できる。
本発明の一実施形態に係るエンジンベンチシステムの構成を示す図である。 上記実施形態に係るエンジンベンチシステムの機械系に相当する3慣性系モデルを示す図である。 上記実施形態に係る軸トルク制御の制御回路の構成を示すブロック図である。 上記実施形態に係るエンジンベンチシステムによるレーシング試験の結果を示す図である。 従来のエンジンベンチシステムの構成を示す図である。 従来のエンジンベンチシステムによるレーシング試験の結果を示す図である。
 以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。
 図1は、本実施形態に係るエンジンベンチシステム1の構成を示す図である。
 エンジンベンチシステム1は、エンジンE及びシャフトSWを備える供試体Wと、供試体Wに動力吸収体として接続されたダイナモメータDYと、スロットルアクチュエータ2を介してエンジンEを制御するエンジン制御器5と、インバータ3を介してダイナモメータDYを制御するダイナモ制御器6と、供試体WのシャフトSWとダイナモメータDYの出力軸SDとの結合部における捩れトルクを検出する軸トルクセンサ7と、ダイナモメータDYの出力軸SDの回転数を検出するエンコーダ8と、を備える。
 エンジンベンチシステム1による試験対象としての供試体Wは、エンジンEと、クラッチCと、トランスミッションTMと、シャフトSWと、を図1に示すように組み合わせて構成される。すなわち、この供試体Wは、クラッチCにおいて、エンジンE及びそのクランクシャフトを含むエンジン本体W1と、トランスミッションTM及びシャフトSを含む中間結合体W2とに機械的な接続を切断することができるようになっている。また、供試体Wは、このようにクラッチCやトランスミッションTMを含むため、全体的な剛性は軸トルクセンサ7の剛性よりも低くなっている。
 エンジン制御器5は、試験項目ごとに定められた態様によってエンジンEの出力を制御する。
 ダイナモ制御器6は、試験項目ごとに定められた態様でエンジンEの動力が吸収されるように、軸トルクセンサ7及びエンコーダ8の出力に基づいてダイナモメータDYで発生させるべきトルク値に相当するトルク制御信号を生成し、インバータ3へ入力する。
 次に、ダイナモ制御器6の構成について説明する。本実施形態では、エンジンベンチシステム1の機械系の構成を、図2に示すようなそれぞれ固有の慣性モーメントを有する3つの慣性体を、2つのばね要素で連結して構成される3慣性系モデルで近似する。上述のように、供試体は全体として低剛性であるから、図2に示すような3慣性系モデルによる近似は妥当である。
 図2において、“J1”は、エンジン本体の慣性モーメントに相当する。“J3”は、ダイナモメータの慣性モーメントに相当する。“J2”は、中間結合体の慣性モーメントに相当する。なお、これら3つの慣性モーメントJ1~J3の具体的な値は、予め実験を行うことによって特定される。
 “T12”は、エンジン本体と中間結合体との結合部における捩れトルクに相当する。“T23”は、中間結合体とダイナモメータとの結合部における捩れトルクに相当する。以下では、捩れトルクT12をエンジン側軸トルクといい、捩れトルクT23をダイナモ側軸トルクという。また、ダイナモ側軸トルクT23は、軸トルクセンサの出力値に相当する。“T3”は、ダイナモメータの発生トルクに相当する。すなわち、発生トルクT3は、ダイナモ制御器6で生成されるトルク制御信号の値に相当する。“w3”は、ダイナモメータの出力軸の回転数に相当する。すなわち、回転数w3は、エンコーダの出力値に相当する。
 図3は、ダイナモ制御器6による軸トルク制御の制御回路の構成を示すブロック図である。
 ダイナモ制御器6は、ダイナモ側軸トルクに対する指令値T23refを生成する軸トルク指令生成装置61と、ダイナモ側軸トルク指令値T23refと軸トルクセンサの出力値T23とに基づいてトルク制御信号T3を生成する軸トルク制御器62と、軸トルク制御器62において用いられる制御パラメータを逐次同定するパラメータ同定器63と、を備える。
 軸トルク指令生成装置61は、エンジン側軸トルクT12に対する指令値T12refとエンコーダの出力値w3とに基づいて、ダイナモ側軸トルクT23に対する指令値を生成する。より具体的には、軸トルク指令生成装置61は、下記式(1)に示すように、外部から入力されたエンジン側軸トルク指令値T12refと、中間結合体を加減速するためのトルク値、すなわちエンコーダの出力値w3に擬似微分を施したものに中間結合体の慣性モーメントJ2を乗じて得られるトルク値とを合算したものをダイナモ側軸トルク指令値T23refとする。なお、擬似微分を特徴付けるカットオフ周波数f1には、予め定められた値が用いられる。
Figure JPOXMLDOC01-appb-M000001
 軸トルク制御器62は、ダイナモ側軸トルク指令値T23refと軸トルクセンサ出力T23とに基づいて、トルク制御信号T3を生成する。より具体的には、軸トルク制御器62は、軸トルク指令値T23ref及び軸トルクセンサ出力T23を入力とした下記式(2)に示す演算によってトルク制御信号T3を生成する。
Figure JPOXMLDOC01-appb-M000002
 上記式(2)の演算は、ダイナモ側軸トルク指令値T23refと軸トルクセンサ出力T23のフィルタ値との偏差の積分演算と、軸トルクセンサ出力T23の微分演算と、軸トルクセンサ出力T23の比例演算と、からなる。
 軸トルク制御器62では、ブロック621における積分演算により、ダイナモ側軸トルク指令値T23refと軸トルクセンサ出力T23との偏差が小さくなるように制御される。また、図2に示す3慣性系モデルの運動方程式において、中間結合体の回転数w2とダイナモメータの回転数w3とが等しいと仮定すると、下記式(3)が導出される。
 J2(dw3/dt)≒T23-T12  (3)
 したがって、上記軸トルク指令生成装置61において、上記式(1)に示すようにダイナモ側軸トルク指令値に中間結合体を加減速するためのトルク値(J2(dw3/dt))を含めることにより、下記式(4)が導出される。すなわち、軸トルク制御器62における積分演算によってダイナモ側軸トルク指令値T23refと軸トルクセンサ出力T23との偏差が小さくなるようにダイナモメータを制御することにより、外部から入力されるエンジン側軸トルク指令値T12refとエンジン側軸トルクT12との偏差も同時に小さくできる。
 T12ref-T12=T23ref-T23  (4)
 なお、軸トルクセンサ出力T23については、ブロック622におけるフィルタ演算を経ることにより高周波帯域の振動の影響が抑制される。また、軸トルク制御器62では、ブロック623における微分演算及び比例演算により、供試体の低剛性ばねの振動が抑制される。
 パラメータ同定器63は、慣性モーメントJ1~J3、エンジン本体と中間結合体との間のばね剛性K12、及び中間結合体とダイナモメータとの間のばね剛性K23等の値に基づいて、軸トルク制御器62における制御パラメータKi,Kd,Kpの具体的な値を逐次同定する。なお、これら制御パラメータKi,Kd,Kpの具体的な値を同定する詳細な手順については、例えば、本願出願人による特開2009-133714号公報に公開されているので、ここではこれ以上詳細な説明を省略する。
 次に以上のように構成されたエンジンベンチシステム1におけるレーシング試験の結果について説明する。
 図4は、本実施形態のエンジンベンチシステム1によるレーシング試験の結果を示す図である。図4には、エンジンベンチシステム1による測定結果、すなわちエンコーダ8によって測定された回転数を細実線で示す。このレーシング試験では、エンジンにかかる負担を小さくするため、エンジン側軸トルク指令値T12refを0とした。また図4には、図6と同様にエンジンベンチシステム1による測定結果の理想値となる値を太破線で示す。
 図4に示すように、時刻t=0.1においてアクセルを開いた直後に僅かな遅れが認められるものの、時刻t=0.1~0.6の加速時及び時刻t=0.6以降の減速時ともに理想値とほぼ一致する。すなわち、本実施形態のエンジンベンチシステムでは、図3に示す制御回路によってエンジン側軸トルクが0になるようにダイナモメータで中間結合体を加減速させることにより、クラッチを接続したままでもエンジン本体のみの性能を精度良く測定できることが検証された。
 1…エンジンベンチシステム
 61…軸トルク指令生成装置
 62…軸トルク制御器
 7…軸トルクセンサ(軸トルク検出器)
 8…エンコーダ(回転数検出器)
 DY…ダイナモメータ
 W…供試体
 W1…エンジン本体
 W2…中間結合体

Claims (2)

  1.  その出力軸が供試体に接続されたダイナモメータと、
     前記ダイナモメータの出力軸と前記供試体との結合部における捩れトルクを検出する軸トルク検出器と、を備え、
     前記供試体は、エンジン本体と、当該エンジン本体のクランクシャフトと前記ダイナモメータの出力軸とを接続する中間結合体と、に分けられるエンジンベンチシステムであって、
     前記中間結合体と前記エンジン本体の結合部における捩れトルクに対する指令値に相当するエンジン側軸トルク指令値と、前記中間結合体の慣性モーメントに比例したトルク値とを合算することにより、前記軸トルク検出器における捩れトルクに対する指令値に相当するダイナモ側軸トルク指令値を算出する軸トルク指令生成装置と、
     前記ダイナモ側軸トルク指令値と前記軸トルク検出器の出力値とに基づいて前記ダイナモメータのトルク制御信号を生成する軸トルク制御器と、を備えることを特徴とするエンジンベンチシステム。
  2.  前記ダイナモメータの出力軸の回転数を検出する回転数検出器をさらに備え、
     前記軸トルク指令生成装置は、前記回転数検出器の出力の微分値に前記中間結合体の慣性モーメントを乗算して得られるトルク値と、前記エンジン側軸トルク指令値と、を合算することによりダイナモ側軸トルク指令値を算出することを特徴とする請求項1に記載のエンジンベンチシステム。
PCT/JP2014/061139 2013-05-15 2014-04-21 エンジンベンチシステム WO2014185222A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/891,287 US9400231B2 (en) 2013-05-15 2014-04-21 Engine bench system
CN201480027333.1A CN105283749B (zh) 2013-05-15 2014-04-21 发动机台架系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013103382A JP5708704B2 (ja) 2013-05-15 2013-05-15 エンジンベンチシステム
JP2013-103382 2013-05-15

Publications (1)

Publication Number Publication Date
WO2014185222A1 true WO2014185222A1 (ja) 2014-11-20

Family

ID=51898202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061139 WO2014185222A1 (ja) 2013-05-15 2014-04-21 エンジンベンチシステム

Country Status (4)

Country Link
US (1) US9400231B2 (ja)
JP (1) JP5708704B2 (ja)
CN (1) CN105283749B (ja)
WO (1) WO2014185222A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673727B2 (ja) 2013-04-26 2015-02-18 株式会社明電舎 トルク指令生成装置
JP5800001B2 (ja) * 2013-10-07 2015-10-28 株式会社明電舎 ダイナモメータシステム
SE538492C2 (sv) * 2014-03-31 2016-08-02 Rototest Int Ab Förfarande och system för användning vid dynamometerprovningav ett motorfordon
JP6044647B2 (ja) 2015-01-13 2016-12-14 株式会社明電舎 ダイナモメータの制御装置及びこれを用いた慣性モーメント推定方法
JP6044649B2 (ja) * 2015-01-19 2016-12-14 株式会社明電舎 ダイナモメータシステムの制御装置
JP6168126B2 (ja) 2015-11-09 2017-07-26 株式会社明電舎 ダイナモメータシステムのダイナモ制御装置及びそのエンジン始動方法
JP6659492B2 (ja) * 2016-07-27 2020-03-04 株式会社エー・アンド・デイ エンジン試験装置
JP6659491B2 (ja) * 2016-07-27 2020-03-04 株式会社エー・アンド・デイ エンジン試験装置
JP6645525B2 (ja) * 2018-02-23 2020-02-14 株式会社明電舎 試験システムの制御装置
JP6660038B1 (ja) * 2018-11-05 2020-03-04 株式会社明電舎 軸トルク制御装置
AT522353B1 (de) * 2019-08-05 2020-10-15 Avl List Gmbh Prüfstand und Verfahren zur Durchführung eines Prüflaufs auf einem Prüfstand

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623758B2 (ja) * 1988-09-05 1997-06-25 株式会社明電舎 ディーゼルエンジンのトルク制御装置
JP3405924B2 (ja) * 1998-07-21 2003-05-12 トヨタ自動車株式会社 負荷伝達装置
JP2004233223A (ja) * 2003-01-30 2004-08-19 Toyota Motor Corp 原動機の試験装置
JP2010223861A (ja) * 2009-03-25 2010-10-07 Sinfonia Technology Co Ltd 動力系の試験装置及びその制御方法
JP2012068200A (ja) * 2010-09-27 2012-04-05 Meidensha Corp 動力計の軸トルク制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3428755A1 (de) * 1984-08-03 1986-02-13 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zum pruefen eines drehmomenterzeugers
JP3918435B2 (ja) * 2001-01-11 2007-05-23 株式会社明電舎 自動車部品の試験装置
JP3772721B2 (ja) * 2001-10-11 2006-05-10 株式会社明電舎 エンジンベンチシステムおよびエンジン特性の測定方法
JP3775284B2 (ja) * 2001-11-08 2006-05-17 株式会社明電舎 エンジンベンチシステムおよびエンジン特性の測定方法
WO2006120728A1 (ja) * 2005-05-09 2006-11-16 A & D Company, Ltd. エンジン計測装置
AT7889U3 (de) * 2005-06-15 2006-12-15 Avl List Gmbh Verfahren zur prüfung eines dynamischen drehmomenterzeugers und vorrichtung zur ermittlung des dynamischen verhaltens einer verbindungswelle
JP4766039B2 (ja) * 2007-11-30 2011-09-07 株式会社明電舎 エンジンベンチシステムの制御方式
AT509381B1 (de) * 2011-05-09 2012-04-15 Avl List Gmbh Prüfstand für dynamische prüfaufgaben an verbrennungskraftmaschinen, sowie verfahren zum betreiben eines derartigen prüfstandes
JP5605383B2 (ja) * 2012-02-29 2014-10-15 株式会社明電舎 ダイナモメータシステム
JP5304913B2 (ja) * 2012-03-02 2013-10-02 株式会社明電舎 ダイナモメータシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623758B2 (ja) * 1988-09-05 1997-06-25 株式会社明電舎 ディーゼルエンジンのトルク制御装置
JP3405924B2 (ja) * 1998-07-21 2003-05-12 トヨタ自動車株式会社 負荷伝達装置
JP2004233223A (ja) * 2003-01-30 2004-08-19 Toyota Motor Corp 原動機の試験装置
JP2010223861A (ja) * 2009-03-25 2010-10-07 Sinfonia Technology Co Ltd 動力系の試験装置及びその制御方法
JP2012068200A (ja) * 2010-09-27 2012-04-05 Meidensha Corp 動力計の軸トルク制御装置

Also Published As

Publication number Publication date
JP2014224722A (ja) 2014-12-04
JP5708704B2 (ja) 2015-04-30
US20160084735A1 (en) 2016-03-24
US9400231B2 (en) 2016-07-26
CN105283749A (zh) 2016-01-27
CN105283749B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2014185222A1 (ja) エンジンベンチシステム
KR101841138B1 (ko) 다이나모미터 시스템의 제어장치
US6775610B2 (en) Engine testing system using speed controller designed by mμ synthesis method
KR102045801B1 (ko) 공시체 특성 추정 방법 및 공시체 특성 추정 장치
US20110167890A1 (en) Method and device for calibrating a torque measurement unit
WO2017082143A1 (ja) ダイナモメータシステムのダイナモ制御装置及びそのエンジン始動方法
CN103403517A (zh) 发动机试验装置以及发动机试验方法
JP6659491B2 (ja) エンジン試験装置
WO2017188271A1 (ja) 試験システムのダイナモメータ制御装置
JP2010019652A (ja) エンジンベンチシステムの動力計制御方式
US8857272B2 (en) Method for determining the torque of an electric motor
US10309869B2 (en) Engine test apparatus
JP2015102241A (ja) 変速機クラッチトルク推定方法
JP2008076061A (ja) エンジンベンチシステムのパラメータ推定装置
JP5245668B2 (ja) エンジンベンチシステムの制御方式
JP2013015386A (ja) エンジンベンチシステムの制御方法
JP2012145049A (ja) エンジントルク推定装置
JP2013053978A (ja) エンジンベンチシステムの制御装置
JP6026921B2 (ja) 内燃機関の制御装置
JP2013015352A (ja) エンジンベンチシステムの制御装置
JP4019709B2 (ja) エンジンベンチシステム
JP2012088187A (ja) エンジン試験方法および装置
KR100916195B1 (ko) 비틀림 동강성 측정장치 및 방법
JP4946495B2 (ja) 動力計測システムの電気慣性制御装置
JP2024022813A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480027333.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14891287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798150

Country of ref document: EP

Kind code of ref document: A1