[go: up one dir, main page]

WO2013089218A1 - ニッケル基耐熱超合金 - Google Patents

ニッケル基耐熱超合金 Download PDF

Info

Publication number
WO2013089218A1
WO2013089218A1 PCT/JP2012/082467 JP2012082467W WO2013089218A1 WO 2013089218 A1 WO2013089218 A1 WO 2013089218A1 JP 2012082467 W JP2012082467 W JP 2012082467W WO 2013089218 A1 WO2013089218 A1 WO 2013089218A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
nickel
base heat
resistant superalloy
Prior art date
Application number
PCT/JP2012/082467
Other languages
English (en)
French (fr)
Inventor
月峰 谷
俊郎 長田
勇 袁
忠晴 横川
原田 広史
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to US14/365,236 priority Critical patent/US20140373979A1/en
Priority to EP12858178.2A priority patent/EP2778241B1/en
Publication of WO2013089218A1 publication Critical patent/WO2013089218A1/ja
Priority to US15/372,500 priority patent/US9945019B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys

Definitions

  • the present invention relates to a heat-resistant member such as an aero engine and a power generation gas turbine, and more particularly to a nickel-based heat-resistant superalloy used for a turbine disk, a turbine blade, or the like.
  • a heat-resistant member such as an aero engine and a power generation gas turbine for example, a turbine disk is a rotating member on which a turbine blade is mounted, and a much higher stress acts on the turbine disk than a turbine rotor blade. For this reason, a material excellent in mechanical properties such as creep strength, tensile strength and low cycle fatigue properties in a high temperature and high stress region and forgeability is required. On the other hand, with improvement in fuel efficiency and performance, improvement in engine gas temperature and weight reduction of the turbine disk are required, and higher heat resistance and strength are required for the material.
  • a nickel-based forged alloy is used for the turbine disk.
  • about 25 vol% of Inconel 718 (The International Nickel Company, Inc. registered trademark) using the ⁇ ′′ (gamma double prime) phase as a strengthening phase and the ⁇ ′ (gamma prime) phase, which is more stable than the ⁇ ′′ phase, are precipitated.
  • Waspaloy United Technologies, Inc. registered trademark
  • Udimet 720 (Special Metals, Inc. registered trademark) has been introduced from the viewpoint of increasing the temperature.
  • Udimet 720 is made by precipitating about 45 vol% of the ⁇ ′ phase and added with tungsten for solid solution strengthening of the ⁇ phase, and has excellent heat resistance.
  • Udimet 720 does not necessarily have sufficient tissue stability, and a harmful TCP (Topologically closed packed) phase is formed during use. It was done. However, even in the improved Udimit 720Li, the generation of the TCP phase is still unavoidable, and the use at a long time or at a high temperature is limited.
  • TCP Topicologically closed packed
  • powder metallurgical alloys such as AF115, N18, and Rene88DT may be used.
  • the powder metallurgy alloy has an advantage that a homogeneous disk without segregation can be obtained despite containing a lot of reinforcing elements.
  • powder metallurgical alloys require advanced manufacturing process management such as high-vacuum melting and optimization of mesh size during powder classification in order to suppress inclusion inclusions, which greatly increases manufacturing costs. There is a problem of going up.
  • Titanium is added because it functions to strengthen the ⁇ 'phase and improve the tensile strength and crack propagation resistance.
  • excessive addition of titanium alone increases the ⁇ ′ solid solution temperature, generates a harmful phase, and it is difficult to obtain a healthy ⁇ / ⁇ ′ two-phase structure up to about 5 mass%. Is limited to.
  • the present inventors have studied the optimization of the chemical composition of the nickel-base heat-resistant superalloy and can suppress harmful TCP phases by positively adding cobalt to 55% by mass. I have found that. Further, the present inventors have found that it is possible to stabilize the two-phase structure of ⁇ / ⁇ ′ by increasing the titanium content at a predetermined ratio simultaneously with cobalt. Based on these findings, a nickel-based heat-resistant superalloy that can withstand a long time in a higher temperature range than conventional alloys and has good workability has been proposed (Patent Document 1).
  • Patent Documents 2, 3, and 4 In order to improve the performance of nickel-base heat-resistant superalloys, several proposals have been made focusing on the microstructure of nickel-base heat-resistant alloys.
  • Patent Document 7 In nickel-base heat-resistant superalloys produced by powder metallurgy, it is difficult for crystal grains to become large even after solution heat treatment in the temperature range exceeding the ⁇ 'solid solution temperature (supersolvus temperature). Crystal grain size and particle size distribution are controlled by performing aging heat treatment after solution heat treatment in a temperature range exceeding the temperature (Patent Document 7 and the like). However, although enlarging crystal grains is unlikely to occur, there are many cases where control of crystal grains is insufficient. Therefore, in order to avoid harmful crystal grain growth during solution heat treatment in a temperature range exceeding the solid solution temperature, importance of strain rate control during forging has also been proposed (for example, Patent Document 5, 6). In addition, in order to promote appropriate growth of crystal grains, a method of forging at a strain rate that is locally increased while increasing the carbon content of the nickel-base heat-resistant alloy has been proposed (Patent Document 8).
  • the alloy described in the above patent document is a powder alloy with a complicated process and high production cost.
  • the optimum microstructure varies depending on the chemical composition, and some limited materials and production methods are used. Is considered to be applicable only.
  • a nickel-base heat-resistant superalloy produced by the casting forging method has a solution temperature that exceeds the solid solution temperature, because if the solution heat treatment is performed in a temperature range exceeding the solid solution temperature, the crystal grains become enormous and the heat resistance characteristics are significantly impaired. In general, aging heat treatment is performed after 90% or less.
  • nickel-base heat-resistant superalloys produced by conventional casting and forging methods that have significantly exceeded the heat-resistance characteristics of nickel-base heat-resistant superalloys produced by powder metallurgy. is there.
  • the present invention is that no nickel-base heat-resistant superalloys produced by a conventional casting forging method have been found to significantly exceed the heat-resistant properties of nickel-base heat-resistant superalloys produced by powder metallurgy.
  • the present inventors have studied in detail the solution heat treatment conditions for a nickel-base heat-resistant superalloy having a specific alloy composition produced by a casting forging method, and in particular, by appropriately controlling the solution treatment temperature, Below, a nickel-base heat-resistant superalloy having excellent tensile strength and creep life was found, and the present invention was completed.
  • the casting forging method is known as an inexpensive manufacturing process.
  • the present inventors have cast a nickel-base heat-resistant superalloy that surpasses the high-temperature heat-resistant properties that could only be achieved by powder metallurgy, which has a high manufacturing cost. It was clarified that it can be produced by a forging method.
  • the nickel-base heat-resistant superalloy of the present invention is a nickel-base heat-resistant superalloy manufactured by a casting forging method, and has a composition of 2.0 mass% or more and 25 mass% or less of chromium, 0.2 mass% or more.
  • the cobalt content is preferably 21.8% by mass or more and 55.0% by mass or less.
  • the titanium content is preferably 5.5% by mass or more and 12.44% by mass or less.
  • the titanium content is preferably 6.1% by mass or more and 12.44% by mass or less.
  • this nickel-base heat-resistant superalloy is a solution formed at 94% or more and less than 100% of the ⁇ ′ solid solution temperature.
  • the molybdenum content is preferably less than 4% by mass.
  • the tungsten content is preferably less than 3% by mass.
  • nickel-base heat-resistant superalloy it is preferable to contain either one or both of 10% by mass or less of tantalum and 5.0% by mass or less of niobium.
  • this nickel-base heat-resistant superalloy 12 mass% or more and 14.9 mass% or less of chromium, 2.0 mass% or more and 3.0 mass% or less of aluminum, 20.0 mass% or more and 27.0 mass% or less.
  • the following cobalt 5.5 mass% to 6.5 mass% titanium, 0.8 mass% to 1.5 mass% tungsten, 2.5 mass% to 3.0 mass% molybdenum, and At least one of zirconium of 0.01% by mass to 0.2% by mass, carbon of 0.01% by mass to 0.15% by mass, and boron of 0.005% by mass to 0.1% by mass It is preferable that the remainder consists of nickel and inevitable impurities.
  • the nickel-base heat-resistant superalloy of the present invention is 1) A nickel-based heat-resistant supermetal made by a casting forging method. 2) The composition is 2.0 mass% to 25 mass% chromium, 0.2 mass% to 7.0 mass% aluminum, 19.5 mass% to 55.0 mass% cobalt, and [ 0.17 ⁇ (cobalt mass% ⁇ 23) +3] mass% or more [0.17 ⁇ (cobalt mass% ⁇ 20) +7] mass% or less and 5.1 mass% or more of titanium, The balance consists of nickel and inevitable impurities, 3) The solution is formed in a temperature range of 93% or more and less than 100% of the ⁇ ′ solid solution temperature. By satisfying these three conditions, it has excellent tensile strength and creep life at high temperatures.
  • the relationship between the creep life (time) and the solution temperature (T) with respect to the ⁇ ′ solid solution temperature (Ts) under the creep test conditions of 725 ° C. and 630 MPa is shown.
  • the ratio of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) is constant at 99%, and the creep life of the inventive alloys 1 to 3 and the reference alloy 1 (test temperature: 725 ° C., load stress: 630 MPa) is compared. It is a thing.
  • the relationship between 0.2% yield strength (test temperature: 750 ° C.) and creep life (test temperature: 725 ° C., load stress: 630 MPa) is shown for inventive alloys 1 to 3 and reference alloys 1 to 5.
  • the nickel-base heat-resistant superalloy of the present invention contains chromium, cobalt, titanium, aluminum and nickel as main constituent elements, and allows the inclusion of additive components and inevitable impurity elements.
  • Chrome is added to improve environmental resistance and fatigue crack propagation characteristics.
  • content of chromium is 2.0 mass% or more and 25.0 mass% or less, Preferably, it is 5.0 mass% or more and 20.0 mass% or less, More preferably, 12 mass% or more and 14. It is 9 mass% or less.
  • Cobalt is a useful component for controlling the solid solution temperature of the ⁇ 'phase. As the amount of cobalt increases, the ⁇ ' solid solution temperature decreases, and the process window (in various conditions that allow industrial processes such as forging) ) Becomes wider, and the effect of improving forgeability is also born. In particular, when a large amount of titanium is contained, cobalt can be added in a slightly larger amount in order to suppress the TCP phase and improve the high temperature strength. Usually, cobalt content is 19.5 mass% or more and 55.0 mass% or less.
  • nickel-base heat-resistant superalloys with a cobalt content exceeding 55.0% by mass tend to have a low compressive strength from room temperature to 750 ° C.
  • the upper limit of the amount is 55.0% by mass.
  • the cobalt content is more preferably 19.5% by mass or more and 35.0% by mass or less, and further preferably 21.8% by mass or more and 27.0% by mass or less.
  • Titanium is a desirable additive element for strengthening the ⁇ ′ phase and leading to strength improvement, and the content of titanium is usually 2.5% by mass or more and 15.0% by mass or less. In the case of the combined addition of cobalt and titanium, a more excellent effect is recognized by addition of 5.1 mass% or more and 15.0 mass% or less of titanium. Titanium achieves a nickel-base heat-resistant superalloy with excellent phase stability and high strength by complex addition with cobalt. Basically, a heat-resistant superalloy having a two-phase structure of ⁇ phase / ⁇ ′ phase is selected, and a Co—Co 3 Ti alloy having a two-phase structure of ⁇ phase / ⁇ ′ phase is added.
  • a nickel-base heat-resistant superalloy having a stable structure up to the alloy concentration and high strength can be realized.
  • the titanium content in this case is within the range represented by the following formula. That is, 0.17 ⁇ (mass% of cobalt ⁇ 23) +3 or more and 0.17 ⁇ (mass% of cobalt ⁇ 20) +7 or less.
  • the titanium content exceeds 15.0 mass%, the formation of ⁇ phase, which is a harmful phase, often becomes prominent, so the upper limit of the titanium content should be 12.44 mass%. preferable.
  • the content of titanium is 5.5% by mass or more and 12.44% by mass or less, and more preferably 6.1% by mass or more and 11.0% by mass or less.
  • Aluminum is an element that forms a ⁇ ′ phase, and the aluminum content is adjusted so as to have an appropriate amount of ⁇ ′ phase.
  • the aluminum content is 0.2% by mass or more and 7.0% by mass or less.
  • the content ratio of titanium and aluminum is strongly related to the generation of the ⁇ phase, it is preferable to increase the aluminum content to some extent in order to suppress the generation of the TCP phase, which is a harmful phase.
  • aluminum is directly involved in the formation of aluminum oxide on the surface of the nickel-base heat-resistant superalloy and contributes to oxidation resistance.
  • the content of aluminum is preferably 1.0% by mass or more and 6.0% by mass or less, and more preferably 2.0% by mass or more and 3.0% by mass or less.
  • the nickel-base heat-resistant superalloy of the present invention can also contain the following elements as additive components.
  • Molybdenum has the effect of mainly strengthening the ⁇ phase and improving the creep characteristics. Since molybdenum is a high-density element, if the content is too large, the density of the nickel-base heat-resistant superalloy increases, which is not preferable in practice.
  • the molybdenum content is 10% by mass or less, preferably less than 4% by mass, and more preferably 2.5% by mass or more and 3.0% by mass or less.
  • Tungsten is an element that dissolves in the ⁇ phase and the ⁇ ′ phase, strengthens both phases, and is effective in improving the high temperature strength. If the content of tungsten is small, the creep characteristics may be insufficient. On the other hand, if the amount is increased, it is an element having a high density as in the case of molybdenum. Usually, the tungsten content is 10% by mass or less, preferably less than 3% by mass, and 0.8% by mass or more and 1.5% by mass or less.
  • Tantalum is effective as a strengthening element.
  • the content of tantalum is increased to some extent, the specific gravity increases and the cost increases.
  • the content of tantalum is preferably 10% by mass or less.
  • Niobium is effective as a specific gravity control and strengthening element.
  • the content is increased to some extent, there is a possibility that generation of an undesired phase and cracking may occur at a high temperature.
  • the niobium content is 5.0% by mass or less, and preferably 0.1% by mass or more and 4.0% by mass or less.
  • the nickel-base heat-resistant superalloy of the present invention can also contain at least one element of vanadium, rhenium, magnesium, hafnium, or ruthenium as other elements, as long as the characteristics are not impaired.
  • vanadium content is 2% by mass or less
  • the rhenium content is 5% by mass or less
  • the magnesium content is 0.1% by mass or less
  • the hafnium content is 2% by mass or less
  • the ruthenium content is 3%. The mass% or less is illustrated.
  • Ruthenium is effective in improving heat resistance and workability.
  • the nickel-base heat-resistant superalloy of the present invention can also contain at least one element of zirconium, carbon, or boron as other elements as long as the characteristics are not impaired.
  • Zirconium is an element effective for improving ductility and fatigue properties.
  • the zirconium content is preferably 0.01% by mass or more and 0.2% by mass or less.
  • Carbon is an element effective for improving ductility and creep properties at high temperatures.
  • the carbon content is 0.01% by mass or more and 0.15% by mass or less, and preferably 0.01% by mass or more and 0.10% by mass or less. More preferably, it is 0.01 mass% or more and 0.05 mass% or less.
  • Boron can improve creep characteristics and fatigue characteristics at high temperatures.
  • the boron content is 0.005 mass% or more and 0.1 mass% or less, preferably 0.005 mass% or more and 0.05 mass% or less. More preferably, it is 0.01 mass% or more and 0.03 mass% or less. If the content of carbon and boron exceeds the above range, the creep strength may be reduced or the process window may be narrowed.
  • the nickel-base heat-resistant superalloy of the present invention is produced by melting the raw materials blended in the composition as described above, producing an ingot, and forging the ingot.
  • the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium has a wide process window, good forgeability, and can be produced efficiently.
  • the produced forged material is subjected to a solution heat treatment and then an aging heat treatment, whereby the nickel-base heat-resistant superalloy of the present invention is obtained.
  • the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium is 93% to less than 100% of the ⁇ ′ solid solution temperature, preferably 94% to 100% of the ⁇ ′ solid solution temperature in the solution heat treatment step.
  • Nickel-base heat-resistant superalloys are generally forged in a single-phase region at a temperature equal to or higher than the solid solution temperature because the ductility decreases when a ⁇ ′ phase, which is a precipitation strengthening phase, is present.
  • the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium shows good forgeability even in a temperature range below the ⁇ ′ solid solution temperature, and is forged in such a temperature range. It has extremely high practicality with excellent creep life and tensile strength.
  • invention alloys 1 to 3 having the composition shown in Table 1, performing three different types of melting: vacuum induction melting, electroslag remelting and vacuum arc remelting A homogenization heat treatment was performed at about 1200 ° C. Next, the ingot was forged at an average of 1100 ° C. to produce a simulated shape of a turbine disk. In addition, a typical existing alloy (reference alloys 1 to 5) was used as a comparative examination sample, and a simulated shape of a turbine disk was produced in the same manner. The chemical composition of the reference alloy is also shown in Table 1.
  • FIG. 1 shows the relationship between the ratio (T / Ts) of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) and the creep life.
  • the ratio (T / Ts) of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) is set to about 0.93 or more and less than 1.0, an excellent creep life is obtained. Is confirmed to be obtained.
  • the ratio of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) is brought close to 1.0.
  • the creep life was shorter than that of the inventive alloys 1 to 3. From these, it was produced by the casting forging method by setting the ratio (T / Ts) of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) to about 0.93 or more and less than 1.0. It has been found that the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium exhibits a particularly excellent creep life.
  • FIG. 2 shows that the ratio of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) is constant at 99%, and the creep life of the inventive alloys 1 to 3 and the reference alloy 1 (test temperature: 725 ° C., load stress: 630 MPa).
  • T solution temperature
  • Ts ⁇ ′ solid solution temperature
  • FIG. 2 shows that the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium has a creep life approximately 3 to 5 times that of a commercially available reference alloy (U720Li).
  • FIG. 3 shows the relationship between 0.2% yield strength (test temperature: 750 ° C.) and creep life (test temperature: 725 ° C., load stress: 630 MPa) for invention alloys 1 to 3 and reference alloys 1 to 5. Is. As is clear from FIG. 3, it is confirmed that the nickel-base heat-resistant superalloy of the present invention has not only a remarkable improvement in creep life but also excellent tensile strength as compared with the existing nickel-base heat-resistant superalloy. Is done.
  • a nickel-base heat-resistant superalloy produced by a casting forging method 2) The composition is 2.0 mass% to 25 mass% chromium, 0.2 mass% to 7.0 mass% aluminum, 19.5 mass% to 55.0 mass% cobalt, and [ 0.17 ⁇ (cobalt mass% ⁇ 23) +3] mass% or more [0.17 ⁇ (cobalt mass% ⁇ 20) +7] mass% or less and 5.1 mass% or more of titanium, The balance consists of nickel and inevitable impurities, 3) Solutionized at 93% or more and less than 100% of the ⁇ ′ solid solution temperature.
  • nickel-base heat-resistant superalloys with greatly improved heat resistance characteristics are provided.
  • This nickel-base heat-resistant superalloy is effective for heat-resistant members such as aircraft engines and power generation gas turbines, particularly high-temperature / high-pressure turbine disks, compressor blades, shafts, and turbine cases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 鋳造鍛造法によって作製されたニッケル基耐熱超合金であり、このニッケル基耐熱超合金は、その組成が、2.0質量%以上25質量%以下のクロム、0.2質量%以上7.0質量%以下のアルミニウム、19.5質量%以上55質量%以下のコバルト、および[0.17×(コバルトの含有質量%-23)+3]質量%以上[0.17×(コバルトの含有質量%-20)+7]質量%以下でかつ5.1質量%以上のチタンを含み、残余がニッケルおよび不可避的不純物からなり、γ'固溶温度の93%以上100%未満で溶体化されたものである。

Description

ニッケル基耐熱超合金
 本発明は、航空エンジン、発電用ガスタービンなどの耐熱部材、特に、タービンディスクやタービン翼などに用いられるニッケル基耐熱超合金に関する。
 航空エンジン、発電ガスタービンなどの耐熱部材である、たとえば、タービンディスクは、タービン翼を装着する回転部材であり、タービンディスクには、タービン動翼に比べ遥かに高い応力が作用する。このため、高温高応力域におけるクリープ強度や引張強度、低サイクル疲労特性などの機械的特性と鍛造性に優れる材料が必要とされる。一方、燃費や性能向上に伴い、エンジンガス温度の向上とタービンディスクの軽量化が求められ、材料にはより高い耐熱性と強度が必要とされる。
 一般に、タービンディスクにはニッケル基鍛造合金が用いられている。たとえば、γ’’(ガンマダブルプライム)相を強化相として利用したInconel718(The International Nickel Company, Inc. 登録商標)やγ’’相よりも安定なγ’(ガンマプライム)相を25vol%程度析出させ、強化相として利用したWaspaloy(United Technoligies, Inc. 登録商標)が多用されている。また、1986年以降、高温化の観点からUdimet720(Special Metals, Inc. 登録商標)が導入されている。Udimet720は、γ’相を45vol%程度析出させ、かつγ相の固溶強化のためにタングステンが添加されたものであり、耐熱特性に優れる。
 一方、Udimet720は、組織安定性が必ずしも十分ではなく、有害なTCP(Topologically close packed)相が使用中に形成するため、クロム量を減少させるなどの改良を施したUdimit720Li(U720Li/U720LI)が開発された。しかしながら、改良されたUdimit720Liにおいても、依然TCP相の発生が避けられず、長時間や高温での使用が制限されている状況にある。
 高強度が求められる高圧タービンディスクには、AF115、N18、Rene88DTなどに代表される粉末冶金合金が使用される場合がある。粉末冶金合金には、強化元素を多く含むにも関わらず、偏析のない均質なディスクが得られるというメリットがある。一方、粉末冶金合金には、介在物の混入を抑制するために、清浄度の高い真空溶解、粉末分級時のメッシュサイズの適正化などの高度な製造工程管理が要求され、製造コストが大幅に上がるという問題がある。
 この他にも、従来のニッケル基耐熱超合金の化学組成については数多くの改良提案がなされてきている。そのいずれも、主要構成元素として、コバルト、クロム、モリブデンまたはモリブデンとタングステン、アルミニウム、そしてチタンを含有し、さらに、代表的なものでは、ニオブまたはタンタルのいずれか一方または両方を必須の成分元素としている。このようなニオブやタンタルの含有は、上記粉末治金には適しているものの、鋳造鍛造を難しくする要因となっている。
 チタンは、γ’相を強化させ、引張強度や亀裂伝播抵抗を向上させる働きをすることから添加されている。しかしながら、チタンのみの過剰添加は、γ’固溶温度を高めることに加え、有害相を生成させ、健全なγ/γ’2相組織を得ることが難しいとの観点から、5質量%程度までに制限されている。
 このような状況において、本発明者らは、ニッケル基耐熱超合金の化学組成の最適化について検討を加え、コバルトを55質量%まで積極的に添加することにより有害なTCP相の抑制が可能であることを見出している。また、本発明者らは、コバルトと同時にチタンの含有量を所定の比率で増加させることによって、γ/γ’の2相組織を安定化させることが可能であることを見出している。これらの知見に基づき、従来の合金に比べてより高い温度域においても長時間耐えることが可能であり、かつ加工性の良好なニッケル基耐熱超合金を提案している(特許文献1)。
 また、ニッケル基耐熱超合金の性能改善では、ニッケル基耐熱合金のミクロ組織に着目した提案がいくつか行われている。(特許文献2、3、4)。
 粉末冶金法で作製したニッケル基耐熱超合金では、γ’固溶温度を超える温度域(スーパーソルバス温度)での溶体化熱処理後においても結晶粒の巨大化は起こり難いので、一般に、固溶温度を超える温度域での溶体化熱処理後に時効熱処理を行うことによって結晶粒径および粒度分布を制御している(特許文献7など)。しかしながら、結晶粒の巨大化は起こり難いというものの、結晶粒の制御が不十分な場合も少なくない。そこで、固溶温度を超える温度域での溶体化熱処理時の有害な結晶粒成長を回避するために、鍛造時の歪み速度制御の重要性も併せて提案されている(たとえば、特許文献5、6)。また、結晶粒の適切な成長を促すために、ニッケル基耐熱合金の炭素含有量を高め、かつ局部的に高められた歪速度で鍛造する方法も提案されている(特許文献8)。
 しかしながら、上記特許文献に記載された合金は、プロセスが複雑で、製造コストの高い粉末合金であり、粉末合金では、最適なミクロ組織が化学組成によって異なり、一部の限定された材料および製法にのみ適用可能なものであると考えられる。
 一方、鋳造鍛造法により作製したニッケル基耐熱超合金は、固溶温度を超える温度域で溶体化熱処理してしまうと結晶粒が巨大化して耐熱特性を著しく損なうため、溶体化は、固溶温度の90%以下で行った後、時効熱処理を行うのが一般的である。
 しかしながら、従来の鋳造鍛造法により作製されたニッケル基耐熱超合金の中には、粉末冶金法で作製したニッケル基耐熱超合金の耐熱特性を顕著に上回るものが見出されていないのが現状である。したがって、製造プロセス面で大幅に簡略化可能な鋳造鍛造法により、耐熱特性面およびコスト面においても粉末冶金法を凌ぐニッケル基耐熱超合金の開発が強く望まれている。
国際公開2006/059805号のパンフレット 特許第2666911号公報 特許第2667929号公報 特開2003-89836号公報 米国特許第4957567号公報 米国特許第5529643号公報 特開2011―12346号公報 特開2009―7672号公報
 近年のエネルギ―効率の改善を実現するために、航空エンジン、発電ガスタービンなどの耐熱部材については、より高温での使用を可能とする材料の開発が急務となっている。たとえば、タービンディスクについては、疲労強度、高温クリープ強度、破壊靱性、高温疲れ亀裂耐性などの機械的特性が一段と優れた新しい合金の開発が強く要望されている。
 本発明は、従来の鋳造鍛造法により作製されたニッケル基耐熱超合金の中には、粉末冶金法で作製したニッケル基耐熱超合金の耐熱特性を顕著に上回るものが見出されていない現状に鑑み、耐熱特性面およびコスト面で粉末冶金法を凌ぐニッケル基耐熱超合金の開発を鋭意検討し、製造プロセス面で大幅に簡略化可能な鋳造鍛造法により作製され、粉末冶金により作製されたニッケル基超合金の耐熱特性を凌駕するニッケル基耐熱超合金を提供することを課題としている。
 本発明者らは、鋳造鍛造法により作製された特定の合金組成を有するニッケル基耐熱超合金に関して、溶体化熱処理条件を詳細に検討し、特に、溶体化温度を適切に制御することによって、高温下において優れた引張強度とクリープ寿命を兼ね備えたニッケル基耐熱超合金を見出し、本発明を完成した。一般に、鋳造鍛造法は、安価な製造プロセスとして知られているが、本発明者らは、製造コストが高い粉末冶金法でしか達成できなかった高温耐熱特性を凌駕するニッケル基耐熱超合金が鋳造鍛造法によって作製可能であることを明らかにした。
 すなわち、本発明のニッケル基耐熱超合金は、鋳造鍛造法によって作製されたニッケル基耐熱超合金であって、組成が、2.0質量%以上25質量%以下のクロム、0.2質量%以上7.0質量%以下のアルミニウム、19.5質量%以上55.0質量%以下のコバルト、および[0.17×(コバルトの含有質量%-23)+3]質量%以上[0.17×(コバルトの含有質量%-20)+7]質量%以下でかつ5.1質量%以上のチタンを含み、残余がニッケルおよび不可避的不純物からなるものであって、γ’固溶温度の93%以上100%未満で溶体化されたものであることを特徴としている。
 このニッケル基耐熱超合金においては、コバルトの含有量が21.8質量%以上55.0質量%以下であることが好ましい。
 また、このニッケル基耐熱超合金においては、チタンの含有量が5.5質量%以上12.44質量%以下であることが好ましい。
  また、このニッケル基耐熱超合金においては、チタンの含有量が6.1質量%以上12.44質量%以下であることが好ましい。
 また、このニッケル基耐熱超合金においては、γ’固溶温度の94%以上100%未満で溶体化されたものであることが好ましい。
 また、このニッケル基耐熱超合金においては、10質量%以下のモリブデンと10質量%以下のタングステンのいずれか一方または両方を含むことが好ましい。
 また、このニッケル基耐熱超合金においては、モリブデンの含有量が4質量%未満であることが好ましい。
 また、このニッケル基耐熱超合金においては、タングステンの含有量が3質量%未満であることが好ましい。
 また、このニッケル基耐熱超合金においては、10質量%以下のタンタルまたは5.0質量%以下のニオブのいずれか一方または両方を含むことが好ましい。
 また、このニッケル基耐熱超合金においては、2質量%以下のバナジウム、5質量%以下のレニウム、0.1%質量以下のマグネシウム、2質量%以下のハフニウム、または3質量%以下のルテニウムの少なくともいずれか一種を含むことが好ましい。
 また、このニッケル基耐熱超合金においては、12質量%以上14.9質量%以下のクロム、2.0質量%以上3.0質量%以下のアルミニウム、20.0質量%以上27.0質量%以下のコバルト、5.5質量%以上6.5質量%以下のチタン、0.8質量%以上1.5質量%以下のタングステン、2.5質量%以上3.0質量%以下のモリブデン、および0.01質量%以上0.2%質量以下のジルコニウム、0.01質量%以上0.15%質量以下の炭素、または0.005質量%以上0.1質量%以下のホウ素の少なくともいずれか一種を含み、残余がニッケルおよび不可避的不純物からなることが好ましい。
 本発明のニッケル基耐熱超合金は、
 1)鋳造鍛造法によって作製されたニッケル基耐熱超具金である、
 2)組成が、2.0質量%以上25質量%以下のクロム、0.2質量%以上7.0質量%以下のアルミニウム、19.5質量%以上55.0質量%以下のコバルト、および[0.17×(コバルトの含有質量%-23)+3]質量%以上[0.17×(コバルトの含有質量%-20)+7]質量%以下でかつ5.1質量%以上のチタンを含み、残余がニッケルおよび不可避的不純物からなる、
 3)γ’固溶温度の93%以上100%未満の温度域で溶体化されたものである、
という3つの条件を満たすことにより、高温下において優れた引張強度とクリープ寿命を兼ね備えたものとなる。
725℃、630MPaのクリープ試験条件におけるクリープ寿命(時間)とγ’固溶温度(Ts)に対する溶体化温度(T)との関係を示したものである。 γ’固溶温度(Ts)に対する溶体化温度(T)の比率を99%で一定とし、発明合金1~3および参照合金1のクリープ寿命(試験温度:725℃、負荷応力:630MPa)を比較したものである。 発明合金1~3と参照合金1~5について、0.2%耐力(試験温度:750℃)とクリープ寿命(試験温度:725℃、負荷応力:630MPa)との関係を示したものである。
 先に述べたように、一般に、鋳造鍛造法で作製したニッケル基耐熱超合金では、固溶温度を超える温度域まで上げて溶体化熱処理すると結晶粒が巨大化し、耐熱特性が著しく損なわれる。特に、引張強度(0.2%耐力)が著しく低下すると言われている。また、固溶温度以下の温度域(サブソルバス温度)における溶体化熱処理においても、溶体化温度の上昇に伴い、結晶粒が粗大化するため、引張強度(0.2%耐力)が著しく低下すると言われている(たとえば、J. C.Williamsら: Acta Mater、51 (2003) 5775)。しかしながら、本発明者らは、鋳造鍛造法によって作製されたニッケル基耐熱超合金であっても、19.5質量%以上55.0質量%以下のコバルトおよび[0.17×(コバルトの含有質量%-23)+3]質量%以上[0.17×(コバルトの含有質量%-20)+7]質量%以下でかつ5.1質量%以上のチタンを含む、高コバルトおよび高チタン合金は、常用される溶体化温度ではなく、溶体化をγ’固溶温度の93%以上100%未満という高い温度で処理することによって、従来では達成不可能であった高温域においても、優れた引張強度(0.2%耐力)とクリープ寿命を兼ね備えたものとなることを見出した。
 本発明のニッケル基耐熱超合金は、クロム、コバルト、チタン、アルミニウムおよびニッケルを主要構成元素として含み、添加成分および不可避的不純物元素の含有を許容するものである。
 クロムは、耐環境性や疲労亀裂伝播特性改善のために添加される。これらの特性改善のためには、含有量が1.0質量%未満では望ましい特性が得られず、30.0質量%を超えると、有害なTCP相が生成しやすくなる。このため、クロムの含有量は、2.0質量%以上25.0質量%以下であり、好ましくは、5.0質量%以上20.0質量%以下、より好ましくは、12質量%以上14.9質量%以下である。
 コバルトは、γ’相の固溶温度のコントロールに有用な成分であり、コバルトが多くなることによりγ’固溶温度が下がり、プロセスウィンドウ(工業的に鍛造などのプロセスが可能な種々の条件範囲)が広くなって、鍛造性が向上する効果も生まれる。特に、チタンを多く含む場合、TCP相を抑制して高温強度を向上させるために、コバルトはやや多めに添加することができる。通常、コバルトの含有量は、19.5質量%以上55.0質量%以下である。高温圧縮試験結果に基づくと、コバルトの含有量が55.0質量%を超えるニッケル基耐熱超合金は、室温から750℃までの圧縮強度が低下する傾向にあるので、一般的に、コバルトの含有量の上限は55.0質量%である。コバルトの含有量は、より好ましくは、19.5質量%以上35.0質量%以下であり、さらに好ましくは、21.8質量%以上27.0質量%以下である。
 チタンは、γ’相を強化し、強度向上を導くために望ましい添加元素であり、チタンの含有量は、通常、2.5質量%以上15.0質量%以下である。コバルトとチタンの複合添加の場合には、5.1質量%以上15.0質量%以下のチタン添加によってより優れた効果が認められる。チタンは、コバルトとの複合的な添加によって、相安定に優れ、高強度なニッケル基耐熱超合金を実現する。基本的には、γ相/γ’相の2相組織を有する耐熱超合金を選択し、同じくγ相/γ’相の2相組織を有するCo-CoTi合金を添加することによって、高合金濃度まで組織が安定であり、強度が高いニッケル基耐熱超合金を実現することができる。この場合のチタンの含有量は、次式で示される範囲内である。
 すなわち、0.17×(コバルトの質量%-23)+3以上0.17×(コバルトの質量%-20)+7以下である。
 ただし、チタンの含有量が15.0質量%を超えると、有害相であるη相の生成などが顕著になることも多いので、チタンの含有量の上限は12.44質量%とするのが好ましい。より好ましくは、チタンの含有量は、5.5質量%以上12.44質量%以下であり、より好ましくは、6.1質量%以上11.0質量%以下である。
 アルミニウムは、γ’相を形成する元素であり、適切なγ’相の量となるようにアルミニウムの含有量を調整する。アルミニウムの含有量は、0.2質量%以上7.0質量%以下である。また、チタンとアルミニウムの含有比率は、η相の生成に強く関係するので、有害相であるTCP相の生成を抑制するためには、アルミニウムの含有量はある程度多くすることが好ましい。さらに、アルミニウムは、ニッケル基耐熱超合金の表面におけるアルミニウム酸化物の形成に直接的に関与し、耐酸化性にも寄与する。アルミニウムの含有量は、好ましくは、1.0質量%以上6.0質量%以下であり、さらに好ましくは、2.0質量%以上3.0質量%以下である。
 また、本発明のニッケル基耐熱超合金は、以下の元素を添加成分として含有することもできる。
 モリブデンは、主としてγ相を強化させ、クリープ特性を改善するという効果がある。モリブデンは、密度の高い元素であるため、含有量があまり多くなると、ニッケル基耐熱超合金の密度が増加するので、実用上好ましくなくなる。通常、モリブデンの含有量は、10質量%以下であり、好ましくは、4質量%未満であり、より好ましくは2.5質量%以上3.0質量%以下である。
 タングステンは、γ相およびγ’相に溶解し、いずれの相も強化し、高温強度の向上に有効な元素である。タングステンの含有量は、少ないと、クリープ特性が不十分になる場合がある。一方、多くなると、モリブデンと同様に密度の高い元素であるので、ニッケル基耐熱超合金の密度の増加を招く場合がある。通常、タングステンの含有量は、10質量%以下であり、好ましくは、3質量%未満であり、0.8質量%以上1.5質量%以下である。
 タンタルは、強化元素として有効なものである。一方、タンタルの含有量がある程度多くなると、比重が大きくなり、また、高価となる。通常、タンタルの含有量は、10質量%以下が好ましい。
 ニオブは、比重制御および強化元素として有効である。一方、含有量がある程度多くなると、高温において望ましくない相の生成や焼き割れが発生する可能性がある。通常、ニオブの含有量は、5.0質量%以下であり、好ましくは、0.1質量%以上4.0質量%以下である。
 本発明のニッケル基耐熱超合金は、その特性を損なわない限り、その他の元素として、バナジウム、レニウム、マグネシウム、ハフニウム、またはルテニウムの少なくとも一種の元素を含有することもできる。たとえば、バナジウムの含有量は2質量%以下、レニウムの含有量は5質量%以下、マグネシウムの含有量は0.1質量%以下、ハフニウムの含有量は2質量%以下、ルテニウムの含有量は3質量%以下が例示される。ルテニウムは、耐熱性および加工性の改善に有効である。
 また、本発明のニッケル基耐熱超合金は、その特性を損なわない限り、その他の元素として、ジルコニウム、炭素、またはホウ素の少なくとも一種の元素を含有することもできる。ジルコニウムは、延性、疲労特性などの改善に有効な元素である。通常、ジルコニウムの含有量は、0.01質量%以上0.2質量%以下とするのが好ましい。
 炭素は、高温における延性およびクリープ特性改善に有効な元素である。通常、炭素の含有量は、0.01質量%以上0.15質量%以下であり、好ましくは、0.01質量%以上0.10質量%以下である。さらに好ましくは、0.01質量%以上0.05質量%以下である。ホウ素は、高温におけるクリープ特性、疲労特性などを改善することができる。通常、ホウ素の含有量は、0.005質量%以上0.1質量%以下であり、好ましくは0.005質量%以上0.05質量%以下である。さらに好ましくは0.01質量%以上0.03質量%以下である。炭素およびホウ素は、上記含有量の範囲を超えると、クリープ強度を低減させたり、プロセスウィンドウを狭めたりすることがある。
 本発明のニッケル基耐熱超合金は、上記のとおりの組成に配合した原料を溶解し、インゴットを作製した後、このインゴットを鍛造することにより作製される。高コバルトおよび高チタンを含有する本発明のニッケル基耐熱超合金は、プロセスウィンドウが広く、鍛造性が良好であり、効率的に作製が可能である。作製された鍛造材は、溶体化熱処理を行った後、時効熱処理を行うことによって、本発明のニッケル基耐熱超合金となる。高コバルトおよび高チタンを含有する本発明のニッケル基耐熱超合金は、溶体化熱処理工程において、γ’固溶温度の93%以上100%未満、好ましくは、γ’固溶温度の94%以上100%未満という高温域で処理することによって、従来では達成不可能であった高温域においても優れた引張強度とクリープ寿命を兼ね備えている。
 ニッケル基耐熱超合金は、析出強化相であるγ’相が存在すると、延性が低下するため、固溶温度以上の単相域で鍛造することが一般的であった。これに対し、高コバルトおよび高チタンを含有する本発明のニッケル基耐熱超合金は、γ’固溶温度未満の温度域においても良好な鍛造性を示し、このような温度域で鍛造することにより、優れたクリープ寿命と引張強度を兼ね備えた極めて実用性の高いものとなる。
 以下、実施例を示し、本発明のニッケル基耐熱超合金についてさらに詳しく説明する。もちろん、本発明は、以下の例によって限定されることはない。
 表1に示される組成を有する3種類の発明合金(発明合金1~3)について、真空誘導溶解、エレクトロスラグ再溶解および真空アーク再溶解の3種類の異なる溶解を行うトリプルメルトによりインゴットを作製後、1200℃程度で均質化熱処理を施した。次いで、インゴットを平均1100℃で鍛造し、タービンディスクの模擬形状品を作製した。また、比較検討試料として代表的な既存合金(参照合金1~5)を用い、同様にしてタービンディスクの模擬形状品を作製した。参照合金についても化学組成を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 発明合金1~3および参照合金1(U720Li)を鋳造鍛造して得られたタービンディスクの模擬形状品について、溶体化温度条件を変えながら、空気中、4時間の熱処理後、時効熱処理を施し、処理後の試料についてクリープ寿命試験を実施した。図1は、γ’固溶温度(Ts)に対する溶体化温度(T)の比(T/Ts)とクリープ寿命の関係を示したものである。図1から明らかなように、γ’固溶温度(Ts)に対する溶体化温度(T)の比(T/Ts)をおよそ0.93以上1.0未満に設定した場合に、優れたクリープ寿命が得られることが確認される。溶体化温度(T)をγ’固溶温度(Ts)以上にするとクリープ寿命の急激な低下が認められた。また、既存のニッケル基耐熱超合金の中で最も優れた性能を有する参照合金1(U720Li)では、γ’固溶温度(Ts)に対する溶体化温度(T)の比を1.0に近付けても顕著なクリープ寿命の向上は認められず、かつクリープ寿命も発明合金1~3に比べて短かった。これらのことから、γ’固溶温度(Ts)に対する溶体化温度(T)の比(T/Ts)をおよそ0.93以上1.0未満に設定することによって、鋳造鍛造法で作製された高コバルトおよび高チタンを含有する本発明のニッケル基耐熱超合金は、特異的に優れたクリープ寿命を示すものであることが分かった。
 図2は、γ’固溶温度(Ts)に対する溶体化温度(T)の比率を99%で一定とし、発明合金1~3および参照合金1のクリープ寿命(試験温度:725℃、負荷応力:630MPa)を比較したものである。図2から明らかなように、高コバルトおよび高チタンを含有する本発明のニッケル基耐熱超合金は、市販の参照合金(U720Li)のおよそ3~5倍のクリープ寿命を有することが確認される。
 図3は、発明合金1~3と参照合金1~5について、0.2%耐力(試験温度:750℃)とクリープ寿命(試験温度:725℃、負荷応力:630MPa)との関係を示したものである。図3から明らかなように、本発明のニッケル基耐熱超合金は、既存のニッケル基耐熱超合金と比較してクリープ寿命の顕著な改善のみならず、優れた引張強度を兼ね備えていることが確認される。
 以上の試験結果より、
 1)鋳造鍛造法によって作製されたニッケル基耐熱超合金であり、
 2)組成が、2.0質量%以上25質量%以下のクロム、0.2質量%以上7.0質量%以下のアルミニウム、19.5質量%以上55.0質量%以下のコバルト、および[0.17×(コバルトの含有質量%-23)+3]質量%以上[0.17×(コバルトの含有質量%-20)+7]質量%以下でかつ5.1質量%以上のチタンを含み、残余がニッケルおよび不可避的不純物からなり、
 3)γ’固溶温度の93%以上100%未満で溶体化されたものである、
という3つの条件を満たすことにより、優れたクリープ寿命と引張強度を兼ね備え、極めて実用性の高いニッケル基耐熱超合金であることが実証される。
 主に耐熱特性が大きく改善されたニッケル基耐熱超合金が提供される。このニッケル基耐熱超合金は、航空エンジン、発電用ガスタービンなどの耐熱部材、特に、高温・高圧タービンディスクやコンプレッサーブレード、シャフト、タービンケースなどに有効である。

Claims (11)

  1.  鋳造鍛造法によって作製されたニッケル基耐熱超合金であって、
     組成が、2.0質量%以上25.0質量%以下のクロム、0.2質量%以上7.0質量%以下のアルミニウム、19.5質量%以上55.0質量%以下のコバルト、および[0.17×(コバルトの含有質量%-23)+3]質量%以上[0.17×(コバルトの含有質量%-20)+7]質量%以下でかつ5.1質量%以上のチタンを含み、残余がニッケルおよび不可避的不純物からなり、
     γ’固溶温度の93%以上100%未満で溶体化されたものである
    ことを特徴とするニッケル基耐熱超合金。
  2.  コバルトの含有量が21.8質量%以上55.0質量%以下であることを特徴とする請求項1に記載のニッケル基耐熱超合金。
  3.  チタンの含有量が5.5質量%以上12.44質量%以下であることを特徴とする請求項1または2に記載のニッケル基耐熱超合金。
  4.  チタンの含有量が6.1質量%以上12.44質量%以下であることを特徴とする請求項3に記載のニッケル基耐熱超合金。
  5.  γ’固溶温度の94%以上100%未満で溶体化したものであることを特徴とする請求項1から4のいずれか一項に記載のニッケル基耐熱超合金。
  6.  10質量%以下のモリブデンと10質量%以下のタングステンのいずれか一方または両方を含むことを特徴とする請求項1から5のいずれか一項に記載のニッケル基耐熱超合金。
  7.  モリブデンの含有量が4質量%未満である請求項6に記載のニッケル基耐熱超合金。
  8.  タングステンの含有量が3質量%未満であることを特徴とする請求項6に記載のニッケル基耐熱超合金。
  9.  10質量%以下のタンタルまたは5.0質量%以下のニオブのいずれか一方または両方を含むことを特徴とする請求項1から8のいずれか一項に記載のニッケル基耐熱超合金。
  10.  2質量%以下のバナジウム、5質量%以下のレニウム、0.1%質量以下のマグネシウム、2質量%以下のハフニウム、または3質量%以下のルテニウムの少なくともいずれか一種を含むことを特徴とする請求項1から9のいずれか一項に記載のニッケル基耐熱超合金。
  11.  12質量%以上14.9質量%以下のクロム、2.0質量%以上3.0質量%以下のアルミニウム、20.0質量%以上27.0質量%以下のコバルト、5.5質量%以上6.5質量%以下のチタン、0.8質量%以上1.5質量%以下のタングステン、2.5質量%以上3.0質量%以下のモリブデン、および0.01質量%以上0.2%質量以下のジルコニウム、0.01質量%以上0.15質量%以下の炭素、または0.005質量%以上0.1質量%以下のホウ素の少なくともいずれか一種を含み、残余がニッケルおよび不可避的不純物からなることを特徴とする請求項1から8のいずれか一項に記載のニッケル基耐熱超合金。
PCT/JP2012/082467 2011-12-15 2012-12-14 ニッケル基耐熱超合金 WO2013089218A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/365,236 US20140373979A1 (en) 2011-12-15 2012-12-14 Nickel-based heat-resistant superalloy
EP12858178.2A EP2778241B1 (en) 2011-12-15 2012-12-14 Heat-resistant nickel-based superalloy
US15/372,500 US9945019B2 (en) 2011-12-15 2016-12-08 Nickel-based heat-resistant superalloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-274604 2011-12-15
JP2011274604 2011-12-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/365,236 A-371-Of-International US20140373979A1 (en) 2011-12-15 2012-12-14 Nickel-based heat-resistant superalloy
US15/372,500 Division US9945019B2 (en) 2011-12-15 2016-12-08 Nickel-based heat-resistant superalloy

Publications (1)

Publication Number Publication Date
WO2013089218A1 true WO2013089218A1 (ja) 2013-06-20

Family

ID=48612657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082467 WO2013089218A1 (ja) 2011-12-15 2012-12-14 ニッケル基耐熱超合金

Country Status (4)

Country Link
US (2) US20140373979A1 (ja)
EP (1) EP2778241B1 (ja)
JP (2) JPWO2013089218A1 (ja)
WO (1) WO2013089218A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152985A1 (ja) * 2015-03-25 2016-09-29 日立金属株式会社 Ni基超耐熱合金およびそれを用いたタービンディスク
CN111455221A (zh) * 2020-04-03 2020-07-28 钢铁研究总院 增材制造用钴基高温合金及其制备方法和应用、增材制造产品
CN111575536A (zh) * 2020-05-28 2020-08-25 江苏隆达超合金航材有限公司 一种高W、Mo含量镍基高温合金及其制备方法
CN111719039A (zh) * 2019-03-22 2020-09-29 上海电气电站设备有限公司 一种FeCoNiAlNb高温合金均匀化处理方法
WO2021036225A1 (zh) * 2019-08-28 2021-03-04 北京钢研高纳科技股份有限公司 一种高铌高温合金大尺寸铸锭的冶炼工艺及高铌高温合金大尺寸铸锭
WO2021036226A1 (zh) * 2019-08-28 2021-03-04 北京钢研高纳科技股份有限公司 一种大尺寸高铌高温706合金铸锭及其冶炼工艺
CN113122789A (zh) * 2016-11-16 2021-07-16 三菱动力株式会社 镍基合金模具和该模具的修补方法
US11859262B2 (en) 2019-08-28 2024-01-02 Gaona Aero Material Co., Ltd. Large-sized high-Nb superalloy ingot and smelting process thereof

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584608B2 (en) * 2014-08-07 2020-03-10 United Technologies Corporation Tuned rotor disk
JP6733211B2 (ja) 2016-02-18 2020-07-29 大同特殊鋼株式会社 熱間鍛造用Ni基超合金
EP3445882A4 (en) * 2016-04-20 2019-11-13 Arconic Inc. FCC MATERIALS OF ALUMINUM, COBALT, NICKEL AND TITANIUM AND PRODUCTS MANUFACTURED THEREOF
CN106048484B (zh) * 2016-07-06 2018-02-23 中南大学 一种采用两段阶梯应变速率工艺细化gh4169合金锻件晶粒组织的方法
JP6746457B2 (ja) * 2016-10-07 2020-08-26 三菱日立パワーシステムズ株式会社 タービン翼の製造方法
CN107747019B (zh) * 2017-10-16 2019-07-16 北京科技大学 一种Ni-Co-Cr-Al-W-Ta-Mo系高熵高温合金及其制备方法
CN110724826A (zh) * 2019-04-16 2020-01-24 敬业钢铁有限公司 一种镍基高温合金的电渣重熔工艺
CN110453164B (zh) * 2019-08-14 2020-12-22 河北工业大学 一种增强锻造态Ni-Cr-Co基合金抗氧化性能的处理方法
CN111187946B (zh) * 2020-03-02 2021-11-16 北京钢研高纳科技股份有限公司 一种高铝含量的镍基变形高温合金及制备方法
CN111394590B (zh) * 2020-04-07 2021-08-03 中国航发北京航空材料研究院 一种变形高温合金gh4169的真空自耗重熔方法
CN111534720A (zh) * 2020-05-12 2020-08-14 山东大学 一种孪晶强化的镍基高温合金及其制备方法和应用
CN111575571B (zh) * 2020-05-14 2021-11-16 北京高压科学研究中心 一种Cr-V-Co-Ni合金及制备方法
CN112458351B (zh) * 2020-10-22 2021-10-15 中国人民解放军陆军装甲兵学院 高抗压强度的镍钴基高温合金
EP4063045A1 (de) * 2021-03-22 2022-09-28 Siemens Energy Global GmbH & Co. KG Nickelbasis-legierungszusammensetzung für bauteile mit reduzierter rissneigung und optimierten hochtemperatureigenschaften
CN112981186B (zh) * 2021-04-22 2021-08-24 北京钢研高纳科技股份有限公司 低层错能的高温合金、结构件及其应用
CN113528871B (zh) * 2021-07-21 2022-05-03 攀钢集团江油长城特殊钢有限公司 一种gh4098合金板材及其制备方法
CN113802041B (zh) * 2021-08-10 2022-09-02 大冶特殊钢有限公司 一种可应用于先进超超临界机组的铁镍基合金无缝管材的制造方法
CN113957365A (zh) * 2021-10-18 2022-01-21 中国华能集团有限公司 一种铸造析出强化镍基高温合金的热处理工艺
CN113981274A (zh) * 2021-10-26 2022-01-28 中国华能集团有限公司 一种高强镍基高温合金铸锭的双级均匀化热处理方法
CN114058988B (zh) * 2021-11-12 2022-11-15 哈尔滨工业大学(深圳) 使锻造态镍基粉末高温合金晶粒尺寸均匀化的热处理方法
CN115896506A (zh) * 2022-11-18 2023-04-04 陕西宝锐金属有限公司 一种低偏析gh3230合金优质板坯制备技术

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228659A (ja) * 1983-12-27 1985-11-13 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン ニツケル基超合金の可鍛性の改良
US4957567A (en) 1988-12-13 1990-09-18 General Electric Company Fatigue crack growth resistant nickel-base article and alloy and method for making
JPH05508194A (ja) * 1991-04-15 1993-11-18 ユナイテッド・テクノロジーズ・コーポレイション 超合金鍛造方法
US5529643A (en) 1994-10-17 1996-06-25 General Electric Company Method for minimizing nonuniform nucleation and supersolvus grain growth in a nickel-base superalloy
JP2666911B2 (ja) 1989-10-04 1997-10-22 ゼネラル・エレクトリック・カンパニイ ニッケル基超合金及びその製法
JP2667929B2 (ja) 1989-10-04 1997-10-27 ゼネラル・エレクトリック・カンパニイ 耐疲れ亀裂性高強度ニッケル基合金物品とその製法
JPH10195564A (ja) * 1996-12-17 1998-07-28 United Technol Corp <Utc> 切削仕上げ面を有する高強度ニッケル超合金品
JP2003089836A (ja) 2001-09-18 2003-03-28 Honda Motor Co Ltd Ni基合金および鍛造加工用金型
WO2006059805A1 (ja) 2004-12-02 2006-06-08 National Institute For Materials Science 耐熱超合金
JP2009007672A (ja) 2007-06-28 2009-01-15 General Electric Co <Ge> スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御及び微細化する方法
JP2011012346A (ja) 2009-06-30 2011-01-20 General Electric Co <Ge> スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御し改善する方法
JP2011236450A (ja) * 2010-05-06 2011-11-24 National Institute For Materials Science アニーリングツインを含有するニッケル基耐熱超合金と耐熱超合金部材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476555A (en) * 1992-08-31 1995-12-19 Sps Technologies, Inc. Nickel-cobalt based alloys

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228659A (ja) * 1983-12-27 1985-11-13 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン ニツケル基超合金の可鍛性の改良
US4957567A (en) 1988-12-13 1990-09-18 General Electric Company Fatigue crack growth resistant nickel-base article and alloy and method for making
JP2666911B2 (ja) 1989-10-04 1997-10-22 ゼネラル・エレクトリック・カンパニイ ニッケル基超合金及びその製法
JP2667929B2 (ja) 1989-10-04 1997-10-27 ゼネラル・エレクトリック・カンパニイ 耐疲れ亀裂性高強度ニッケル基合金物品とその製法
JPH05508194A (ja) * 1991-04-15 1993-11-18 ユナイテッド・テクノロジーズ・コーポレイション 超合金鍛造方法
US5529643A (en) 1994-10-17 1996-06-25 General Electric Company Method for minimizing nonuniform nucleation and supersolvus grain growth in a nickel-base superalloy
JPH10195564A (ja) * 1996-12-17 1998-07-28 United Technol Corp <Utc> 切削仕上げ面を有する高強度ニッケル超合金品
JP2003089836A (ja) 2001-09-18 2003-03-28 Honda Motor Co Ltd Ni基合金および鍛造加工用金型
WO2006059805A1 (ja) 2004-12-02 2006-06-08 National Institute For Materials Science 耐熱超合金
JP2009007672A (ja) 2007-06-28 2009-01-15 General Electric Co <Ge> スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御及び微細化する方法
JP2011012346A (ja) 2009-06-30 2011-01-20 General Electric Co <Ge> スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御し改善する方法
JP2011236450A (ja) * 2010-05-06 2011-11-24 National Institute For Materials Science アニーリングツインを含有するニッケル基耐熱超合金と耐熱超合金部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. C. WILLIAMS ET AL., ACTA MATER, vol. 51, 2003, pages 5775

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152985A1 (ja) * 2015-03-25 2016-09-29 日立金属株式会社 Ni基超耐熱合金およびそれを用いたタービンディスク
CN113122789A (zh) * 2016-11-16 2021-07-16 三菱动力株式会社 镍基合金模具和该模具的修补方法
CN113122789B (zh) * 2016-11-16 2022-07-08 三菱重工业株式会社 镍基合金模具和该模具的修补方法
US11401597B2 (en) 2016-11-16 2022-08-02 Mitsubishi Heavy Industries, Ltd. Method for manufacturing nickel-based alloy high-temperature component
CN111719039A (zh) * 2019-03-22 2020-09-29 上海电气电站设备有限公司 一种FeCoNiAlNb高温合金均匀化处理方法
WO2021036225A1 (zh) * 2019-08-28 2021-03-04 北京钢研高纳科技股份有限公司 一种高铌高温合金大尺寸铸锭的冶炼工艺及高铌高温合金大尺寸铸锭
WO2021036226A1 (zh) * 2019-08-28 2021-03-04 北京钢研高纳科技股份有限公司 一种大尺寸高铌高温706合金铸锭及其冶炼工艺
US11859262B2 (en) 2019-08-28 2024-01-02 Gaona Aero Material Co., Ltd. Large-sized high-Nb superalloy ingot and smelting process thereof
CN111455221A (zh) * 2020-04-03 2020-07-28 钢铁研究总院 增材制造用钴基高温合金及其制备方法和应用、增材制造产品
CN111455221B (zh) * 2020-04-03 2022-01-21 钢铁研究总院 增材制造用钴基高温合金及其制备方法和应用、增材制造产品
CN111575536A (zh) * 2020-05-28 2020-08-25 江苏隆达超合金航材有限公司 一种高W、Mo含量镍基高温合金及其制备方法

Also Published As

Publication number Publication date
US20170081750A1 (en) 2017-03-23
EP2778241B1 (en) 2017-08-30
JP2017075403A (ja) 2017-04-20
JPWO2013089218A1 (ja) 2015-04-27
US9945019B2 (en) 2018-04-17
US20140373979A1 (en) 2014-12-25
EP2778241A1 (en) 2014-09-17
EP2778241A4 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
WO2013089218A1 (ja) ニッケル基耐熱超合金
JP5278936B2 (ja) 耐熱超合金
JP5696995B2 (ja) 耐熱超合金
JP5398123B2 (ja) ニッケル系合金
CN102625856B (zh) 镍基超耐热合金和由所述超耐热合金制成的部件
JP6965364B2 (ja) 析出硬化型コバルト−ニッケル基超合金およびそれから製造された物品
JP5995158B2 (ja) Ni基超耐熱合金
WO2017006927A1 (ja) Ni基高強度耐熱合金部材、その製造方法、及びガスタービン翼
JP4885530B2 (ja) 高強度高延性Ni基超合金と、それを用いた部材及び製造方法
CN115747577B (zh) 涡轮盘用变形高温合金及其制备方法
JP2009149976A (ja) 三元ニッケル共晶合金
JP2014070230A (ja) Ni基超耐熱合金の製造方法
JP5395516B2 (ja) 蒸気タービンのタービンロータ用ニッケル基合金及び蒸気タービンのタービンロータ
JP2017514998A (ja) 析出硬化ニッケル合金、前記合金でできた部品、及びその製造方法
JP5645054B2 (ja) アニーリングツインを含有するニッケル基耐熱超合金と耐熱超合金部材
JP2004256840A (ja) 複合強化型Ni基超合金とその製造方法
WO2015182454A1 (ja) TiAl基鋳造合金及びその製造方法
EP2853612A1 (en) High temperature niobium-bearing nickel superalloy
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
JPH1121645A (ja) Ni基耐熱超合金、Ni基耐熱超合金の製造方法及びNi基耐熱超合金部品
JP2000239771A (ja) Ni基超合金、その製造方法およびガスタービン部品
JP2014051698A (ja) Ni基鍛造合金と、それを用いたガスタービン
JP6213185B2 (ja) ニッケル基合金
JP2012107269A (ja) ニッケル基耐熱超合金と耐熱超合金部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549323

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012858178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012858178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14365236

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE