WO2013089218A1 - ニッケル基耐熱超合金 - Google Patents
ニッケル基耐熱超合金 Download PDFInfo
- Publication number
- WO2013089218A1 WO2013089218A1 PCT/JP2012/082467 JP2012082467W WO2013089218A1 WO 2013089218 A1 WO2013089218 A1 WO 2013089218A1 JP 2012082467 W JP2012082467 W JP 2012082467W WO 2013089218 A1 WO2013089218 A1 WO 2013089218A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- nickel
- base heat
- resistant superalloy
- Prior art date
Links
- 229910000601 superalloy Inorganic materials 0.000 title claims abstract description 76
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 21
- 239000010941 cobalt Substances 0.000 claims abstract description 40
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 40
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 40
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 33
- 239000010936 titanium Substances 0.000 claims abstract description 33
- 239000006104 solid solution Substances 0.000 claims abstract description 30
- 239000000243 solution Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000005242 forging Methods 0.000 claims abstract description 22
- 238000005266 casting Methods 0.000 claims abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 239000011651 chromium Substances 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- 239000011733 molybdenum Substances 0.000 claims description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 239000010937 tungsten Substances 0.000 claims description 11
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 239000010955 niobium Substances 0.000 claims description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 description 31
- 239000000956 alloy Substances 0.000 description 31
- 238000010438 heat treatment Methods 0.000 description 15
- 239000013078 crystal Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000004663 powder metallurgy Methods 0.000 description 8
- 238000005728 strengthening Methods 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 229910002514 Co–Co Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910000816 inconels 718 Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010313 vacuum arc remelting Methods 0.000 description 1
- 229910001247 waspaloy Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/02—Die forging; Trimming by making use of special dies ; Punching during forging
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/17—Alloys
- F05D2300/175—Superalloys
Definitions
- the present invention relates to a heat-resistant member such as an aero engine and a power generation gas turbine, and more particularly to a nickel-based heat-resistant superalloy used for a turbine disk, a turbine blade, or the like.
- a heat-resistant member such as an aero engine and a power generation gas turbine for example, a turbine disk is a rotating member on which a turbine blade is mounted, and a much higher stress acts on the turbine disk than a turbine rotor blade. For this reason, a material excellent in mechanical properties such as creep strength, tensile strength and low cycle fatigue properties in a high temperature and high stress region and forgeability is required. On the other hand, with improvement in fuel efficiency and performance, improvement in engine gas temperature and weight reduction of the turbine disk are required, and higher heat resistance and strength are required for the material.
- a nickel-based forged alloy is used for the turbine disk.
- about 25 vol% of Inconel 718 (The International Nickel Company, Inc. registered trademark) using the ⁇ ′′ (gamma double prime) phase as a strengthening phase and the ⁇ ′ (gamma prime) phase, which is more stable than the ⁇ ′′ phase, are precipitated.
- Waspaloy United Technologies, Inc. registered trademark
- Udimet 720 (Special Metals, Inc. registered trademark) has been introduced from the viewpoint of increasing the temperature.
- Udimet 720 is made by precipitating about 45 vol% of the ⁇ ′ phase and added with tungsten for solid solution strengthening of the ⁇ phase, and has excellent heat resistance.
- Udimet 720 does not necessarily have sufficient tissue stability, and a harmful TCP (Topologically closed packed) phase is formed during use. It was done. However, even in the improved Udimit 720Li, the generation of the TCP phase is still unavoidable, and the use at a long time or at a high temperature is limited.
- TCP Topicologically closed packed
- powder metallurgical alloys such as AF115, N18, and Rene88DT may be used.
- the powder metallurgy alloy has an advantage that a homogeneous disk without segregation can be obtained despite containing a lot of reinforcing elements.
- powder metallurgical alloys require advanced manufacturing process management such as high-vacuum melting and optimization of mesh size during powder classification in order to suppress inclusion inclusions, which greatly increases manufacturing costs. There is a problem of going up.
- Titanium is added because it functions to strengthen the ⁇ 'phase and improve the tensile strength and crack propagation resistance.
- excessive addition of titanium alone increases the ⁇ ′ solid solution temperature, generates a harmful phase, and it is difficult to obtain a healthy ⁇ / ⁇ ′ two-phase structure up to about 5 mass%. Is limited to.
- the present inventors have studied the optimization of the chemical composition of the nickel-base heat-resistant superalloy and can suppress harmful TCP phases by positively adding cobalt to 55% by mass. I have found that. Further, the present inventors have found that it is possible to stabilize the two-phase structure of ⁇ / ⁇ ′ by increasing the titanium content at a predetermined ratio simultaneously with cobalt. Based on these findings, a nickel-based heat-resistant superalloy that can withstand a long time in a higher temperature range than conventional alloys and has good workability has been proposed (Patent Document 1).
- Patent Documents 2, 3, and 4 In order to improve the performance of nickel-base heat-resistant superalloys, several proposals have been made focusing on the microstructure of nickel-base heat-resistant alloys.
- Patent Document 7 In nickel-base heat-resistant superalloys produced by powder metallurgy, it is difficult for crystal grains to become large even after solution heat treatment in the temperature range exceeding the ⁇ 'solid solution temperature (supersolvus temperature). Crystal grain size and particle size distribution are controlled by performing aging heat treatment after solution heat treatment in a temperature range exceeding the temperature (Patent Document 7 and the like). However, although enlarging crystal grains is unlikely to occur, there are many cases where control of crystal grains is insufficient. Therefore, in order to avoid harmful crystal grain growth during solution heat treatment in a temperature range exceeding the solid solution temperature, importance of strain rate control during forging has also been proposed (for example, Patent Document 5, 6). In addition, in order to promote appropriate growth of crystal grains, a method of forging at a strain rate that is locally increased while increasing the carbon content of the nickel-base heat-resistant alloy has been proposed (Patent Document 8).
- the alloy described in the above patent document is a powder alloy with a complicated process and high production cost.
- the optimum microstructure varies depending on the chemical composition, and some limited materials and production methods are used. Is considered to be applicable only.
- a nickel-base heat-resistant superalloy produced by the casting forging method has a solution temperature that exceeds the solid solution temperature, because if the solution heat treatment is performed in a temperature range exceeding the solid solution temperature, the crystal grains become enormous and the heat resistance characteristics are significantly impaired. In general, aging heat treatment is performed after 90% or less.
- nickel-base heat-resistant superalloys produced by conventional casting and forging methods that have significantly exceeded the heat-resistance characteristics of nickel-base heat-resistant superalloys produced by powder metallurgy. is there.
- the present invention is that no nickel-base heat-resistant superalloys produced by a conventional casting forging method have been found to significantly exceed the heat-resistant properties of nickel-base heat-resistant superalloys produced by powder metallurgy.
- the present inventors have studied in detail the solution heat treatment conditions for a nickel-base heat-resistant superalloy having a specific alloy composition produced by a casting forging method, and in particular, by appropriately controlling the solution treatment temperature, Below, a nickel-base heat-resistant superalloy having excellent tensile strength and creep life was found, and the present invention was completed.
- the casting forging method is known as an inexpensive manufacturing process.
- the present inventors have cast a nickel-base heat-resistant superalloy that surpasses the high-temperature heat-resistant properties that could only be achieved by powder metallurgy, which has a high manufacturing cost. It was clarified that it can be produced by a forging method.
- the nickel-base heat-resistant superalloy of the present invention is a nickel-base heat-resistant superalloy manufactured by a casting forging method, and has a composition of 2.0 mass% or more and 25 mass% or less of chromium, 0.2 mass% or more.
- the cobalt content is preferably 21.8% by mass or more and 55.0% by mass or less.
- the titanium content is preferably 5.5% by mass or more and 12.44% by mass or less.
- the titanium content is preferably 6.1% by mass or more and 12.44% by mass or less.
- this nickel-base heat-resistant superalloy is a solution formed at 94% or more and less than 100% of the ⁇ ′ solid solution temperature.
- the molybdenum content is preferably less than 4% by mass.
- the tungsten content is preferably less than 3% by mass.
- nickel-base heat-resistant superalloy it is preferable to contain either one or both of 10% by mass or less of tantalum and 5.0% by mass or less of niobium.
- this nickel-base heat-resistant superalloy 12 mass% or more and 14.9 mass% or less of chromium, 2.0 mass% or more and 3.0 mass% or less of aluminum, 20.0 mass% or more and 27.0 mass% or less.
- the following cobalt 5.5 mass% to 6.5 mass% titanium, 0.8 mass% to 1.5 mass% tungsten, 2.5 mass% to 3.0 mass% molybdenum, and At least one of zirconium of 0.01% by mass to 0.2% by mass, carbon of 0.01% by mass to 0.15% by mass, and boron of 0.005% by mass to 0.1% by mass It is preferable that the remainder consists of nickel and inevitable impurities.
- the nickel-base heat-resistant superalloy of the present invention is 1) A nickel-based heat-resistant supermetal made by a casting forging method. 2) The composition is 2.0 mass% to 25 mass% chromium, 0.2 mass% to 7.0 mass% aluminum, 19.5 mass% to 55.0 mass% cobalt, and [ 0.17 ⁇ (cobalt mass% ⁇ 23) +3] mass% or more [0.17 ⁇ (cobalt mass% ⁇ 20) +7] mass% or less and 5.1 mass% or more of titanium, The balance consists of nickel and inevitable impurities, 3) The solution is formed in a temperature range of 93% or more and less than 100% of the ⁇ ′ solid solution temperature. By satisfying these three conditions, it has excellent tensile strength and creep life at high temperatures.
- the relationship between the creep life (time) and the solution temperature (T) with respect to the ⁇ ′ solid solution temperature (Ts) under the creep test conditions of 725 ° C. and 630 MPa is shown.
- the ratio of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) is constant at 99%, and the creep life of the inventive alloys 1 to 3 and the reference alloy 1 (test temperature: 725 ° C., load stress: 630 MPa) is compared. It is a thing.
- the relationship between 0.2% yield strength (test temperature: 750 ° C.) and creep life (test temperature: 725 ° C., load stress: 630 MPa) is shown for inventive alloys 1 to 3 and reference alloys 1 to 5.
- the nickel-base heat-resistant superalloy of the present invention contains chromium, cobalt, titanium, aluminum and nickel as main constituent elements, and allows the inclusion of additive components and inevitable impurity elements.
- Chrome is added to improve environmental resistance and fatigue crack propagation characteristics.
- content of chromium is 2.0 mass% or more and 25.0 mass% or less, Preferably, it is 5.0 mass% or more and 20.0 mass% or less, More preferably, 12 mass% or more and 14. It is 9 mass% or less.
- Cobalt is a useful component for controlling the solid solution temperature of the ⁇ 'phase. As the amount of cobalt increases, the ⁇ ' solid solution temperature decreases, and the process window (in various conditions that allow industrial processes such as forging) ) Becomes wider, and the effect of improving forgeability is also born. In particular, when a large amount of titanium is contained, cobalt can be added in a slightly larger amount in order to suppress the TCP phase and improve the high temperature strength. Usually, cobalt content is 19.5 mass% or more and 55.0 mass% or less.
- nickel-base heat-resistant superalloys with a cobalt content exceeding 55.0% by mass tend to have a low compressive strength from room temperature to 750 ° C.
- the upper limit of the amount is 55.0% by mass.
- the cobalt content is more preferably 19.5% by mass or more and 35.0% by mass or less, and further preferably 21.8% by mass or more and 27.0% by mass or less.
- Titanium is a desirable additive element for strengthening the ⁇ ′ phase and leading to strength improvement, and the content of titanium is usually 2.5% by mass or more and 15.0% by mass or less. In the case of the combined addition of cobalt and titanium, a more excellent effect is recognized by addition of 5.1 mass% or more and 15.0 mass% or less of titanium. Titanium achieves a nickel-base heat-resistant superalloy with excellent phase stability and high strength by complex addition with cobalt. Basically, a heat-resistant superalloy having a two-phase structure of ⁇ phase / ⁇ ′ phase is selected, and a Co—Co 3 Ti alloy having a two-phase structure of ⁇ phase / ⁇ ′ phase is added.
- a nickel-base heat-resistant superalloy having a stable structure up to the alloy concentration and high strength can be realized.
- the titanium content in this case is within the range represented by the following formula. That is, 0.17 ⁇ (mass% of cobalt ⁇ 23) +3 or more and 0.17 ⁇ (mass% of cobalt ⁇ 20) +7 or less.
- the titanium content exceeds 15.0 mass%, the formation of ⁇ phase, which is a harmful phase, often becomes prominent, so the upper limit of the titanium content should be 12.44 mass%. preferable.
- the content of titanium is 5.5% by mass or more and 12.44% by mass or less, and more preferably 6.1% by mass or more and 11.0% by mass or less.
- Aluminum is an element that forms a ⁇ ′ phase, and the aluminum content is adjusted so as to have an appropriate amount of ⁇ ′ phase.
- the aluminum content is 0.2% by mass or more and 7.0% by mass or less.
- the content ratio of titanium and aluminum is strongly related to the generation of the ⁇ phase, it is preferable to increase the aluminum content to some extent in order to suppress the generation of the TCP phase, which is a harmful phase.
- aluminum is directly involved in the formation of aluminum oxide on the surface of the nickel-base heat-resistant superalloy and contributes to oxidation resistance.
- the content of aluminum is preferably 1.0% by mass or more and 6.0% by mass or less, and more preferably 2.0% by mass or more and 3.0% by mass or less.
- the nickel-base heat-resistant superalloy of the present invention can also contain the following elements as additive components.
- Molybdenum has the effect of mainly strengthening the ⁇ phase and improving the creep characteristics. Since molybdenum is a high-density element, if the content is too large, the density of the nickel-base heat-resistant superalloy increases, which is not preferable in practice.
- the molybdenum content is 10% by mass or less, preferably less than 4% by mass, and more preferably 2.5% by mass or more and 3.0% by mass or less.
- Tungsten is an element that dissolves in the ⁇ phase and the ⁇ ′ phase, strengthens both phases, and is effective in improving the high temperature strength. If the content of tungsten is small, the creep characteristics may be insufficient. On the other hand, if the amount is increased, it is an element having a high density as in the case of molybdenum. Usually, the tungsten content is 10% by mass or less, preferably less than 3% by mass, and 0.8% by mass or more and 1.5% by mass or less.
- Tantalum is effective as a strengthening element.
- the content of tantalum is increased to some extent, the specific gravity increases and the cost increases.
- the content of tantalum is preferably 10% by mass or less.
- Niobium is effective as a specific gravity control and strengthening element.
- the content is increased to some extent, there is a possibility that generation of an undesired phase and cracking may occur at a high temperature.
- the niobium content is 5.0% by mass or less, and preferably 0.1% by mass or more and 4.0% by mass or less.
- the nickel-base heat-resistant superalloy of the present invention can also contain at least one element of vanadium, rhenium, magnesium, hafnium, or ruthenium as other elements, as long as the characteristics are not impaired.
- vanadium content is 2% by mass or less
- the rhenium content is 5% by mass or less
- the magnesium content is 0.1% by mass or less
- the hafnium content is 2% by mass or less
- the ruthenium content is 3%. The mass% or less is illustrated.
- Ruthenium is effective in improving heat resistance and workability.
- the nickel-base heat-resistant superalloy of the present invention can also contain at least one element of zirconium, carbon, or boron as other elements as long as the characteristics are not impaired.
- Zirconium is an element effective for improving ductility and fatigue properties.
- the zirconium content is preferably 0.01% by mass or more and 0.2% by mass or less.
- Carbon is an element effective for improving ductility and creep properties at high temperatures.
- the carbon content is 0.01% by mass or more and 0.15% by mass or less, and preferably 0.01% by mass or more and 0.10% by mass or less. More preferably, it is 0.01 mass% or more and 0.05 mass% or less.
- Boron can improve creep characteristics and fatigue characteristics at high temperatures.
- the boron content is 0.005 mass% or more and 0.1 mass% or less, preferably 0.005 mass% or more and 0.05 mass% or less. More preferably, it is 0.01 mass% or more and 0.03 mass% or less. If the content of carbon and boron exceeds the above range, the creep strength may be reduced or the process window may be narrowed.
- the nickel-base heat-resistant superalloy of the present invention is produced by melting the raw materials blended in the composition as described above, producing an ingot, and forging the ingot.
- the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium has a wide process window, good forgeability, and can be produced efficiently.
- the produced forged material is subjected to a solution heat treatment and then an aging heat treatment, whereby the nickel-base heat-resistant superalloy of the present invention is obtained.
- the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium is 93% to less than 100% of the ⁇ ′ solid solution temperature, preferably 94% to 100% of the ⁇ ′ solid solution temperature in the solution heat treatment step.
- Nickel-base heat-resistant superalloys are generally forged in a single-phase region at a temperature equal to or higher than the solid solution temperature because the ductility decreases when a ⁇ ′ phase, which is a precipitation strengthening phase, is present.
- the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium shows good forgeability even in a temperature range below the ⁇ ′ solid solution temperature, and is forged in such a temperature range. It has extremely high practicality with excellent creep life and tensile strength.
- invention alloys 1 to 3 having the composition shown in Table 1, performing three different types of melting: vacuum induction melting, electroslag remelting and vacuum arc remelting A homogenization heat treatment was performed at about 1200 ° C. Next, the ingot was forged at an average of 1100 ° C. to produce a simulated shape of a turbine disk. In addition, a typical existing alloy (reference alloys 1 to 5) was used as a comparative examination sample, and a simulated shape of a turbine disk was produced in the same manner. The chemical composition of the reference alloy is also shown in Table 1.
- FIG. 1 shows the relationship between the ratio (T / Ts) of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) and the creep life.
- the ratio (T / Ts) of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) is set to about 0.93 or more and less than 1.0, an excellent creep life is obtained. Is confirmed to be obtained.
- the ratio of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) is brought close to 1.0.
- the creep life was shorter than that of the inventive alloys 1 to 3. From these, it was produced by the casting forging method by setting the ratio (T / Ts) of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) to about 0.93 or more and less than 1.0. It has been found that the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium exhibits a particularly excellent creep life.
- FIG. 2 shows that the ratio of the solution temperature (T) to the ⁇ ′ solid solution temperature (Ts) is constant at 99%, and the creep life of the inventive alloys 1 to 3 and the reference alloy 1 (test temperature: 725 ° C., load stress: 630 MPa).
- T solution temperature
- Ts ⁇ ′ solid solution temperature
- FIG. 2 shows that the nickel-base heat-resistant superalloy of the present invention containing high cobalt and high titanium has a creep life approximately 3 to 5 times that of a commercially available reference alloy (U720Li).
- FIG. 3 shows the relationship between 0.2% yield strength (test temperature: 750 ° C.) and creep life (test temperature: 725 ° C., load stress: 630 MPa) for invention alloys 1 to 3 and reference alloys 1 to 5. Is. As is clear from FIG. 3, it is confirmed that the nickel-base heat-resistant superalloy of the present invention has not only a remarkable improvement in creep life but also excellent tensile strength as compared with the existing nickel-base heat-resistant superalloy. Is done.
- a nickel-base heat-resistant superalloy produced by a casting forging method 2) The composition is 2.0 mass% to 25 mass% chromium, 0.2 mass% to 7.0 mass% aluminum, 19.5 mass% to 55.0 mass% cobalt, and [ 0.17 ⁇ (cobalt mass% ⁇ 23) +3] mass% or more [0.17 ⁇ (cobalt mass% ⁇ 20) +7] mass% or less and 5.1 mass% or more of titanium, The balance consists of nickel and inevitable impurities, 3) Solutionized at 93% or more and less than 100% of the ⁇ ′ solid solution temperature.
- nickel-base heat-resistant superalloys with greatly improved heat resistance characteristics are provided.
- This nickel-base heat-resistant superalloy is effective for heat-resistant members such as aircraft engines and power generation gas turbines, particularly high-temperature / high-pressure turbine disks, compressor blades, shafts, and turbine cases.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
しかしながら、従来の鋳造鍛造法により作製されたニッケル基耐熱超合金の中には、粉末冶金法で作製したニッケル基耐熱超合金の耐熱特性を顕著に上回るものが見出されていないのが現状である。したがって、製造プロセス面で大幅に簡略化可能な鋳造鍛造法により、耐熱特性面およびコスト面においても粉末冶金法を凌ぐニッケル基耐熱超合金の開発が強く望まれている。
本発明は、従来の鋳造鍛造法により作製されたニッケル基耐熱超合金の中には、粉末冶金法で作製したニッケル基耐熱超合金の耐熱特性を顕著に上回るものが見出されていない現状に鑑み、耐熱特性面およびコスト面で粉末冶金法を凌ぐニッケル基耐熱超合金の開発を鋭意検討し、製造プロセス面で大幅に簡略化可能な鋳造鍛造法により作製され、粉末冶金により作製されたニッケル基超合金の耐熱特性を凌駕するニッケル基耐熱超合金を提供することを課題としている。
1)鋳造鍛造法によって作製されたニッケル基耐熱超具金である、
2)組成が、2.0質量%以上25質量%以下のクロム、0.2質量%以上7.0質量%以下のアルミニウム、19.5質量%以上55.0質量%以下のコバルト、および[0.17×(コバルトの含有質量%-23)+3]質量%以上[0.17×(コバルトの含有質量%-20)+7]質量%以下でかつ5.1質量%以上のチタンを含み、残余がニッケルおよび不可避的不純物からなる、
3)γ’固溶温度の93%以上100%未満の温度域で溶体化されたものである、
という3つの条件を満たすことにより、高温下において優れた引張強度とクリープ寿命を兼ね備えたものとなる。
すなわち、0.17×(コバルトの質量%-23)+3以上0.17×(コバルトの質量%-20)+7以下である。
ただし、チタンの含有量が15.0質量%を超えると、有害相であるη相の生成などが顕著になることも多いので、チタンの含有量の上限は12.44質量%とするのが好ましい。より好ましくは、チタンの含有量は、5.5質量%以上12.44質量%以下であり、より好ましくは、6.1質量%以上11.0質量%以下である。
モリブデンは、主としてγ相を強化させ、クリープ特性を改善するという効果がある。モリブデンは、密度の高い元素であるため、含有量があまり多くなると、ニッケル基耐熱超合金の密度が増加するので、実用上好ましくなくなる。通常、モリブデンの含有量は、10質量%以下であり、好ましくは、4質量%未満であり、より好ましくは2.5質量%以上3.0質量%以下である。
1)鋳造鍛造法によって作製されたニッケル基耐熱超合金であり、
2)組成が、2.0質量%以上25質量%以下のクロム、0.2質量%以上7.0質量%以下のアルミニウム、19.5質量%以上55.0質量%以下のコバルト、および[0.17×(コバルトの含有質量%-23)+3]質量%以上[0.17×(コバルトの含有質量%-20)+7]質量%以下でかつ5.1質量%以上のチタンを含み、残余がニッケルおよび不可避的不純物からなり、
3)γ’固溶温度の93%以上100%未満で溶体化されたものである、
という3つの条件を満たすことにより、優れたクリープ寿命と引張強度を兼ね備え、極めて実用性の高いニッケル基耐熱超合金であることが実証される。
Claims (11)
- 鋳造鍛造法によって作製されたニッケル基耐熱超合金であって、
組成が、2.0質量%以上25.0質量%以下のクロム、0.2質量%以上7.0質量%以下のアルミニウム、19.5質量%以上55.0質量%以下のコバルト、および[0.17×(コバルトの含有質量%-23)+3]質量%以上[0.17×(コバルトの含有質量%-20)+7]質量%以下でかつ5.1質量%以上のチタンを含み、残余がニッケルおよび不可避的不純物からなり、
γ’固溶温度の93%以上100%未満で溶体化されたものである
ことを特徴とするニッケル基耐熱超合金。 - コバルトの含有量が21.8質量%以上55.0質量%以下であることを特徴とする請求項1に記載のニッケル基耐熱超合金。
- チタンの含有量が5.5質量%以上12.44質量%以下であることを特徴とする請求項1または2に記載のニッケル基耐熱超合金。
- チタンの含有量が6.1質量%以上12.44質量%以下であることを特徴とする請求項3に記載のニッケル基耐熱超合金。
- γ’固溶温度の94%以上100%未満で溶体化したものであることを特徴とする請求項1から4のいずれか一項に記載のニッケル基耐熱超合金。
- 10質量%以下のモリブデンと10質量%以下のタングステンのいずれか一方または両方を含むことを特徴とする請求項1から5のいずれか一項に記載のニッケル基耐熱超合金。
- モリブデンの含有量が4質量%未満である請求項6に記載のニッケル基耐熱超合金。
- タングステンの含有量が3質量%未満であることを特徴とする請求項6に記載のニッケル基耐熱超合金。
- 10質量%以下のタンタルまたは5.0質量%以下のニオブのいずれか一方または両方を含むことを特徴とする請求項1から8のいずれか一項に記載のニッケル基耐熱超合金。
- 2質量%以下のバナジウム、5質量%以下のレニウム、0.1%質量以下のマグネシウム、2質量%以下のハフニウム、または3質量%以下のルテニウムの少なくともいずれか一種を含むことを特徴とする請求項1から9のいずれか一項に記載のニッケル基耐熱超合金。
- 12質量%以上14.9質量%以下のクロム、2.0質量%以上3.0質量%以下のアルミニウム、20.0質量%以上27.0質量%以下のコバルト、5.5質量%以上6.5質量%以下のチタン、0.8質量%以上1.5質量%以下のタングステン、2.5質量%以上3.0質量%以下のモリブデン、および0.01質量%以上0.2%質量以下のジルコニウム、0.01質量%以上0.15質量%以下の炭素、または0.005質量%以上0.1質量%以下のホウ素の少なくともいずれか一種を含み、残余がニッケルおよび不可避的不純物からなることを特徴とする請求項1から8のいずれか一項に記載のニッケル基耐熱超合金。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/365,236 US20140373979A1 (en) | 2011-12-15 | 2012-12-14 | Nickel-based heat-resistant superalloy |
EP12858178.2A EP2778241B1 (en) | 2011-12-15 | 2012-12-14 | Heat-resistant nickel-based superalloy |
US15/372,500 US9945019B2 (en) | 2011-12-15 | 2016-12-08 | Nickel-based heat-resistant superalloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-274604 | 2011-12-15 | ||
JP2011274604 | 2011-12-15 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/365,236 A-371-Of-International US20140373979A1 (en) | 2011-12-15 | 2012-12-14 | Nickel-based heat-resistant superalloy |
US15/372,500 Division US9945019B2 (en) | 2011-12-15 | 2016-12-08 | Nickel-based heat-resistant superalloy |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013089218A1 true WO2013089218A1 (ja) | 2013-06-20 |
Family
ID=48612657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082467 WO2013089218A1 (ja) | 2011-12-15 | 2012-12-14 | ニッケル基耐熱超合金 |
Country Status (4)
Country | Link |
---|---|
US (2) | US20140373979A1 (ja) |
EP (1) | EP2778241B1 (ja) |
JP (2) | JPWO2013089218A1 (ja) |
WO (1) | WO2013089218A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016152985A1 (ja) * | 2015-03-25 | 2016-09-29 | 日立金属株式会社 | Ni基超耐熱合金およびそれを用いたタービンディスク |
CN111455221A (zh) * | 2020-04-03 | 2020-07-28 | 钢铁研究总院 | 增材制造用钴基高温合金及其制备方法和应用、增材制造产品 |
CN111575536A (zh) * | 2020-05-28 | 2020-08-25 | 江苏隆达超合金航材有限公司 | 一种高W、Mo含量镍基高温合金及其制备方法 |
CN111719039A (zh) * | 2019-03-22 | 2020-09-29 | 上海电气电站设备有限公司 | 一种FeCoNiAlNb高温合金均匀化处理方法 |
WO2021036225A1 (zh) * | 2019-08-28 | 2021-03-04 | 北京钢研高纳科技股份有限公司 | 一种高铌高温合金大尺寸铸锭的冶炼工艺及高铌高温合金大尺寸铸锭 |
WO2021036226A1 (zh) * | 2019-08-28 | 2021-03-04 | 北京钢研高纳科技股份有限公司 | 一种大尺寸高铌高温706合金铸锭及其冶炼工艺 |
CN113122789A (zh) * | 2016-11-16 | 2021-07-16 | 三菱动力株式会社 | 镍基合金模具和该模具的修补方法 |
US11859262B2 (en) | 2019-08-28 | 2024-01-02 | Gaona Aero Material Co., Ltd. | Large-sized high-Nb superalloy ingot and smelting process thereof |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10584608B2 (en) * | 2014-08-07 | 2020-03-10 | United Technologies Corporation | Tuned rotor disk |
JP6733211B2 (ja) | 2016-02-18 | 2020-07-29 | 大同特殊鋼株式会社 | 熱間鍛造用Ni基超合金 |
EP3445882A4 (en) * | 2016-04-20 | 2019-11-13 | Arconic Inc. | FCC MATERIALS OF ALUMINUM, COBALT, NICKEL AND TITANIUM AND PRODUCTS MANUFACTURED THEREOF |
CN106048484B (zh) * | 2016-07-06 | 2018-02-23 | 中南大学 | 一种采用两段阶梯应变速率工艺细化gh4169合金锻件晶粒组织的方法 |
JP6746457B2 (ja) * | 2016-10-07 | 2020-08-26 | 三菱日立パワーシステムズ株式会社 | タービン翼の製造方法 |
CN107747019B (zh) * | 2017-10-16 | 2019-07-16 | 北京科技大学 | 一种Ni-Co-Cr-Al-W-Ta-Mo系高熵高温合金及其制备方法 |
CN110724826A (zh) * | 2019-04-16 | 2020-01-24 | 敬业钢铁有限公司 | 一种镍基高温合金的电渣重熔工艺 |
CN110453164B (zh) * | 2019-08-14 | 2020-12-22 | 河北工业大学 | 一种增强锻造态Ni-Cr-Co基合金抗氧化性能的处理方法 |
CN111187946B (zh) * | 2020-03-02 | 2021-11-16 | 北京钢研高纳科技股份有限公司 | 一种高铝含量的镍基变形高温合金及制备方法 |
CN111394590B (zh) * | 2020-04-07 | 2021-08-03 | 中国航发北京航空材料研究院 | 一种变形高温合金gh4169的真空自耗重熔方法 |
CN111534720A (zh) * | 2020-05-12 | 2020-08-14 | 山东大学 | 一种孪晶强化的镍基高温合金及其制备方法和应用 |
CN111575571B (zh) * | 2020-05-14 | 2021-11-16 | 北京高压科学研究中心 | 一种Cr-V-Co-Ni合金及制备方法 |
CN112458351B (zh) * | 2020-10-22 | 2021-10-15 | 中国人民解放军陆军装甲兵学院 | 高抗压强度的镍钴基高温合金 |
EP4063045A1 (de) * | 2021-03-22 | 2022-09-28 | Siemens Energy Global GmbH & Co. KG | Nickelbasis-legierungszusammensetzung für bauteile mit reduzierter rissneigung und optimierten hochtemperatureigenschaften |
CN112981186B (zh) * | 2021-04-22 | 2021-08-24 | 北京钢研高纳科技股份有限公司 | 低层错能的高温合金、结构件及其应用 |
CN113528871B (zh) * | 2021-07-21 | 2022-05-03 | 攀钢集团江油长城特殊钢有限公司 | 一种gh4098合金板材及其制备方法 |
CN113802041B (zh) * | 2021-08-10 | 2022-09-02 | 大冶特殊钢有限公司 | 一种可应用于先进超超临界机组的铁镍基合金无缝管材的制造方法 |
CN113957365A (zh) * | 2021-10-18 | 2022-01-21 | 中国华能集团有限公司 | 一种铸造析出强化镍基高温合金的热处理工艺 |
CN113981274A (zh) * | 2021-10-26 | 2022-01-28 | 中国华能集团有限公司 | 一种高强镍基高温合金铸锭的双级均匀化热处理方法 |
CN114058988B (zh) * | 2021-11-12 | 2022-11-15 | 哈尔滨工业大学(深圳) | 使锻造态镍基粉末高温合金晶粒尺寸均匀化的热处理方法 |
CN115896506A (zh) * | 2022-11-18 | 2023-04-04 | 陕西宝锐金属有限公司 | 一种低偏析gh3230合金优质板坯制备技术 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60228659A (ja) * | 1983-12-27 | 1985-11-13 | ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン | ニツケル基超合金の可鍛性の改良 |
US4957567A (en) | 1988-12-13 | 1990-09-18 | General Electric Company | Fatigue crack growth resistant nickel-base article and alloy and method for making |
JPH05508194A (ja) * | 1991-04-15 | 1993-11-18 | ユナイテッド・テクノロジーズ・コーポレイション | 超合金鍛造方法 |
US5529643A (en) | 1994-10-17 | 1996-06-25 | General Electric Company | Method for minimizing nonuniform nucleation and supersolvus grain growth in a nickel-base superalloy |
JP2666911B2 (ja) | 1989-10-04 | 1997-10-22 | ゼネラル・エレクトリック・カンパニイ | ニッケル基超合金及びその製法 |
JP2667929B2 (ja) | 1989-10-04 | 1997-10-27 | ゼネラル・エレクトリック・カンパニイ | 耐疲れ亀裂性高強度ニッケル基合金物品とその製法 |
JPH10195564A (ja) * | 1996-12-17 | 1998-07-28 | United Technol Corp <Utc> | 切削仕上げ面を有する高強度ニッケル超合金品 |
JP2003089836A (ja) | 2001-09-18 | 2003-03-28 | Honda Motor Co Ltd | Ni基合金および鍛造加工用金型 |
WO2006059805A1 (ja) | 2004-12-02 | 2006-06-08 | National Institute For Materials Science | 耐熱超合金 |
JP2009007672A (ja) | 2007-06-28 | 2009-01-15 | General Electric Co <Ge> | スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御及び微細化する方法 |
JP2011012346A (ja) | 2009-06-30 | 2011-01-20 | General Electric Co <Ge> | スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御し改善する方法 |
JP2011236450A (ja) * | 2010-05-06 | 2011-11-24 | National Institute For Materials Science | アニーリングツインを含有するニッケル基耐熱超合金と耐熱超合金部材 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5476555A (en) * | 1992-08-31 | 1995-12-19 | Sps Technologies, Inc. | Nickel-cobalt based alloys |
-
2012
- 2012-12-14 US US14/365,236 patent/US20140373979A1/en not_active Abandoned
- 2012-12-14 WO PCT/JP2012/082467 patent/WO2013089218A1/ja active Application Filing
- 2012-12-14 JP JP2013549323A patent/JPWO2013089218A1/ja active Pending
- 2012-12-14 EP EP12858178.2A patent/EP2778241B1/en active Active
-
2016
- 2016-12-08 US US15/372,500 patent/US9945019B2/en active Active
- 2016-12-15 JP JP2016243048A patent/JP2017075403A/ja active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60228659A (ja) * | 1983-12-27 | 1985-11-13 | ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン | ニツケル基超合金の可鍛性の改良 |
US4957567A (en) | 1988-12-13 | 1990-09-18 | General Electric Company | Fatigue crack growth resistant nickel-base article and alloy and method for making |
JP2666911B2 (ja) | 1989-10-04 | 1997-10-22 | ゼネラル・エレクトリック・カンパニイ | ニッケル基超合金及びその製法 |
JP2667929B2 (ja) | 1989-10-04 | 1997-10-27 | ゼネラル・エレクトリック・カンパニイ | 耐疲れ亀裂性高強度ニッケル基合金物品とその製法 |
JPH05508194A (ja) * | 1991-04-15 | 1993-11-18 | ユナイテッド・テクノロジーズ・コーポレイション | 超合金鍛造方法 |
US5529643A (en) | 1994-10-17 | 1996-06-25 | General Electric Company | Method for minimizing nonuniform nucleation and supersolvus grain growth in a nickel-base superalloy |
JPH10195564A (ja) * | 1996-12-17 | 1998-07-28 | United Technol Corp <Utc> | 切削仕上げ面を有する高強度ニッケル超合金品 |
JP2003089836A (ja) | 2001-09-18 | 2003-03-28 | Honda Motor Co Ltd | Ni基合金および鍛造加工用金型 |
WO2006059805A1 (ja) | 2004-12-02 | 2006-06-08 | National Institute For Materials Science | 耐熱超合金 |
JP2009007672A (ja) | 2007-06-28 | 2009-01-15 | General Electric Co <Ge> | スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御及び微細化する方法 |
JP2011012346A (ja) | 2009-06-30 | 2011-01-20 | General Electric Co <Ge> | スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御し改善する方法 |
JP2011236450A (ja) * | 2010-05-06 | 2011-11-24 | National Institute For Materials Science | アニーリングツインを含有するニッケル基耐熱超合金と耐熱超合金部材 |
Non-Patent Citations (1)
Title |
---|
J. C. WILLIAMS ET AL., ACTA MATER, vol. 51, 2003, pages 5775 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016152985A1 (ja) * | 2015-03-25 | 2016-09-29 | 日立金属株式会社 | Ni基超耐熱合金およびそれを用いたタービンディスク |
CN113122789A (zh) * | 2016-11-16 | 2021-07-16 | 三菱动力株式会社 | 镍基合金模具和该模具的修补方法 |
CN113122789B (zh) * | 2016-11-16 | 2022-07-08 | 三菱重工业株式会社 | 镍基合金模具和该模具的修补方法 |
US11401597B2 (en) | 2016-11-16 | 2022-08-02 | Mitsubishi Heavy Industries, Ltd. | Method for manufacturing nickel-based alloy high-temperature component |
CN111719039A (zh) * | 2019-03-22 | 2020-09-29 | 上海电气电站设备有限公司 | 一种FeCoNiAlNb高温合金均匀化处理方法 |
WO2021036225A1 (zh) * | 2019-08-28 | 2021-03-04 | 北京钢研高纳科技股份有限公司 | 一种高铌高温合金大尺寸铸锭的冶炼工艺及高铌高温合金大尺寸铸锭 |
WO2021036226A1 (zh) * | 2019-08-28 | 2021-03-04 | 北京钢研高纳科技股份有限公司 | 一种大尺寸高铌高温706合金铸锭及其冶炼工艺 |
US11859262B2 (en) | 2019-08-28 | 2024-01-02 | Gaona Aero Material Co., Ltd. | Large-sized high-Nb superalloy ingot and smelting process thereof |
CN111455221A (zh) * | 2020-04-03 | 2020-07-28 | 钢铁研究总院 | 增材制造用钴基高温合金及其制备方法和应用、增材制造产品 |
CN111455221B (zh) * | 2020-04-03 | 2022-01-21 | 钢铁研究总院 | 增材制造用钴基高温合金及其制备方法和应用、增材制造产品 |
CN111575536A (zh) * | 2020-05-28 | 2020-08-25 | 江苏隆达超合金航材有限公司 | 一种高W、Mo含量镍基高温合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170081750A1 (en) | 2017-03-23 |
EP2778241B1 (en) | 2017-08-30 |
JP2017075403A (ja) | 2017-04-20 |
JPWO2013089218A1 (ja) | 2015-04-27 |
US9945019B2 (en) | 2018-04-17 |
US20140373979A1 (en) | 2014-12-25 |
EP2778241A1 (en) | 2014-09-17 |
EP2778241A4 (en) | 2014-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013089218A1 (ja) | ニッケル基耐熱超合金 | |
JP5278936B2 (ja) | 耐熱超合金 | |
JP5696995B2 (ja) | 耐熱超合金 | |
JP5398123B2 (ja) | ニッケル系合金 | |
CN102625856B (zh) | 镍基超耐热合金和由所述超耐热合金制成的部件 | |
JP6965364B2 (ja) | 析出硬化型コバルト−ニッケル基超合金およびそれから製造された物品 | |
JP5995158B2 (ja) | Ni基超耐熱合金 | |
WO2017006927A1 (ja) | Ni基高強度耐熱合金部材、その製造方法、及びガスタービン翼 | |
JP4885530B2 (ja) | 高強度高延性Ni基超合金と、それを用いた部材及び製造方法 | |
CN115747577B (zh) | 涡轮盘用变形高温合金及其制备方法 | |
JP2009149976A (ja) | 三元ニッケル共晶合金 | |
JP2014070230A (ja) | Ni基超耐熱合金の製造方法 | |
JP5395516B2 (ja) | 蒸気タービンのタービンロータ用ニッケル基合金及び蒸気タービンのタービンロータ | |
JP2017514998A (ja) | 析出硬化ニッケル合金、前記合金でできた部品、及びその製造方法 | |
JP5645054B2 (ja) | アニーリングツインを含有するニッケル基耐熱超合金と耐熱超合金部材 | |
JP2004256840A (ja) | 複合強化型Ni基超合金とその製造方法 | |
WO2015182454A1 (ja) | TiAl基鋳造合金及びその製造方法 | |
EP2853612A1 (en) | High temperature niobium-bearing nickel superalloy | |
WO2017123186A1 (en) | Tial-based alloys having improved creep strength by strengthening of gamma phase | |
JPH1121645A (ja) | Ni基耐熱超合金、Ni基耐熱超合金の製造方法及びNi基耐熱超合金部品 | |
JP2000239771A (ja) | Ni基超合金、その製造方法およびガスタービン部品 | |
JP2014051698A (ja) | Ni基鍛造合金と、それを用いたガスタービン | |
JP6213185B2 (ja) | ニッケル基合金 | |
JP2012107269A (ja) | ニッケル基耐熱超合金と耐熱超合金部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12858178 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013549323 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012858178 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012858178 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14365236 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |