WO2012014616A1 - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- WO2012014616A1 WO2012014616A1 PCT/JP2011/064886 JP2011064886W WO2012014616A1 WO 2012014616 A1 WO2012014616 A1 WO 2012014616A1 JP 2011064886 W JP2011064886 W JP 2011064886W WO 2012014616 A1 WO2012014616 A1 WO 2012014616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- carbon
- electrode
- slurry
- conductive agent
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/049—Processes for forming or storing electrodes in the battery container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
Definitions
- the present invention relates to a carbon slurry and a preparation method thereof, an electrode for a nonaqueous electrolyte secondary battery and a production method thereof, and a nonaqueous electrolyte secondary battery and a production method thereof.
- an active material slurry is prepared by mixing an active material, a carbon conductive agent, and a binder into a solvent and then kneading with a mixer or the like.
- the active material slurry is applied on a current collector and then dried.
- the electrode produced in this manner has a problem that the performance of the active material cannot be sufficiently obtained due to poor dispersion of the carbon conductive agent.
- Patent Documents 1 to 3 have the following problems. (1) Problems of the technology disclosed in Patent Document 1 Even when the dispersant is used as described above, the active material and the carbon conductive agent are electrically repelled, so that current collection at the electrode is insufficient. Thus, the output characteristics cannot be improved.
- the effect of dispersing the surfactant in an organic solvent such as N-methyl-2-pyrrolidone is significantly lower than the effect of dispersing the surfactant in an aqueous solution. Therefore, in order to enhance the dispersion effect in the organic solvent, a larger amount of surfactant must be added, and as a result, the problem of a decrease in conductivity in the electrode becomes more apparent.
- the present invention takes the above-mentioned conventional problems into consideration, and improves the dispersibility of the carbon conductive agent and improves the electronic conductivity between the active materials, thereby providing good conductivity in the electrode plate.
- An object of the present invention is to provide a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and the like that can form a network and thereby can dramatically improve battery characteristics.
- N-methyl-2-pyrrolidone as a dispersion medium contains a carbon conductive agent, a polyvinylpyrrolidone polymer as a dispersant, and a nonionic surfactant. It is characterized by being.
- the output characteristics can be improved, the stability of the carbon slurry and the active material slurry can be increased, and the viscosity of the slurry can be significantly reduced. Therefore, since the amount of N-methyl-2-pyrrolidone that is a dispersion medium can be reduced, the production cost of the nonaqueous electrolyte secondary battery can be drastically reduced.
- both the addition amount of the polyvinylpyrrolidone polymer to the carbon conductive agent and the addition amount of the nonionic surfactant to the carbon conductive agent are both It is preferably 20% by mass or less, and particularly preferably 0.01% by mass or more and 10% by mass or less. Moreover, when using carbon black as a carbon electrically conductive agent, it is preferable that said 2 addition amount is 0.01 to 10 mass%.
- the nonionic surfactant preferably contains a fatty acid ester surfactant, and the fatty acid ester surfactant is preferably a ricinoleic acid ester, and the ricinoleic acid ester is a polyglycerin condensed ricinolein.
- the acid ester is desirable.
- the nonionic surfactant preferably includes a higher alkyl ether surfactant, and the higher alkyl ether surfactant is preferably a polyoxyethylene alkyl ether.
- the higher alkyl ether surfactant is a surfactant having a structure in which an alkyl group having 6 or more carbon atoms is ether-bonded, and the polyoxyethylene alkyl ether has 6 or more carbon atoms. It is a surfactant having a structure in which an alkyl group and polyoxyethylene are ether-bonded.
- the alkyl group of the higher alkyl ether surfactant may have 6 or more carbon atoms, but preferably has 6 to 22 carbon atoms, more preferably 10 to 18 carbon atoms. This is because the surface activity is poor when the number of carbon atoms is small, and the viscosity is high and the handling properties are poor when the number of carbon atoms is large.
- the carbon conductive agent desirably contains carbon black such as furnace black, acetylene black, ketjen black and the like.
- the present invention includes mixing N-methyl-2-pyrrolidone as a dispersion medium with a carbon conductive agent, a polyvinylpyrrolidone polymer as a dispersant, and a nonionic surfactant.
- the present invention has an active material layer formed on the surface of the current collector.
- the active material layer includes an active material, a binder, a carbon conductive agent, and a dispersant.
- a polyvinyl pyrrolidone polymer and a nonionic surfactant are included.
- polyvinyl pyrrolidone polymer examples include, but are not limited to, a polymer of vinyl pyrrolidone and a copolymer of vinyl pyrrolidone and other vinyl compounds.
- binder examples include thermoplastic resins, and examples thereof include polyvinylidene fluoride and polyimide.
- the active material is preferably a positive electrode active material.
- the active material is not limited to the positive electrode active material, and may be a negative electrode active material.
- the negative electrode active material in this case include carbon materials such as graphite, metal oxides such as lithium titanate and molybdenum dioxide, silicon, and tin.
- the positive electrode active material is preferably a nickel-manganese lithium composite oxide having a layered structure.
- the positive electrode active material is not limited to those described above, and may be other lithium-containing transition metal composite oxides or lithium-containing transition metal oxyanion compounds.
- Specific examples of other lithium-containing transition metal composite oxides include, for example, lithium cobalt oxide, cobalt-nickel-manganese lithium composite oxide, aluminum-nickel-manganese lithium composite oxide, and aluminum-nickel-cobalt composite. An oxide etc. are mentioned.
- Specific examples of the lithium-containing transition metal oxyanion compound include lithium iron phosphate.
- LiNi 1/3 Co 1/3 Mn 1/3 O 2 and the general formula Li 1 + x Ni a Mn b Co c O 2 + d (wherein x, a, b, c, d are x + a + b + c 1, 0.7 ⁇ a + b, 0 ⁇ x ⁇ 0.1, 0 ⁇ c / (a + b) ⁇ 0.35, 0.7 ⁇ a / b ⁇ 2.0, ⁇ 0.1 ⁇ d ⁇ 0
- the lithium composite oxide of cobalt-nickel-manganese represented by the following condition is preferably used.
- the present invention provides N-methyl-2-pyrrolidone as a dispersion medium, an active material, a binder, a carbon conductive agent, a polyvinylpyrrolidone polymer as a dispersant, and a nonionic type.
- An active material slurry preparation step in which an active material slurry is prepared by mixing with a surfactant, and an active material layer formation in which the active material slurry is applied on a current collector to form an active material layer on the current collector And a process.
- a carbon slurry was prepared by mixing N-methyl-2-pyrrolidone with a carbon conductive agent, a polyvinylpyrrolidone polymer as a dispersant, and a nonionic surfactant. Thereafter, it is desirable to prepare an active material slurry by mixing the carbon slurry with an active material and a binder. This is because such a method further improves the dispersibility of the carbon conductive agent.
- N-methyl-2-pyrrolidone, a polyvinylpyrrolidone polymer as a dispersant, a nonionic surfactant After mixing, it is desirable to add a carbon conductive agent thereto.
- the present invention includes an electrode body composed of the positive electrode, the negative electrode, and a separator disposed between the positive and negative electrodes, a nonaqueous electrolyte, the electrode body, and the nonaqueous electrolyte.
- a battery outer body Further, in order to achieve the above object, the present invention prepares an electrode body by arranging a separator between the positive electrode and the negative electrode described above, and then accommodates the electrode body and the nonaqueous electrolyte in the battery casing. It is characterized by.
- a solute of the non-aqueous electrolyte a known lithium salt that has been conventionally used can be used.
- the solute is usually used after being dissolved in a solvent at a concentration of 0.1 to 1.5 M / L, preferably 0.5 to 1.5 M / L.
- the solvent of the non-aqueous electrolyte includes cyclic carbonates, cyclic carbonates in which a part of hydrogen groups are fluorinated, chain carbonates, and chain carbonates in which some hydrogen groups are fluorinated.
- examples include esters, esters, cyclic ethers, chain ethers, nitriles, amides and the like.
- Specific examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate and the like.
- Specific examples of the cyclic carbonate in which a part of the hydrogen group is fluorinated include trifluoropropylene carbonate and fluoroethyl carbonate.
- Examples of the chain carbonate include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and methyl isopropyl carbonate.
- the dispersibility of the carbon conductive agent is remarkably improved and a good conductive network can be formed, so that the output characteristics of the nonaqueous electrolyte secondary battery can be remarkably improved. Has an effect.
- N-methyl-2- in which a positive electrode active material represented by LiNi 1/3 Co 1/3 Mn 1/3 O 2 , the carbon black paste, and polyvinylidene fluoride as a binder are dissolved.
- a positive electrode active material slurry was prepared by mixing the pyrrolidone solution so that the mass ratio of the positive electrode active material, the carbon conductive agent, and the binder was 92: 5: 3.
- the positive electrode active material slurry was applied on a positive electrode current collector made of aluminum foil at a speed of 0.5 m / min, and then dried at 120 ° C. and an air flow rate of 5 m / sec. After that, it was rolled with a rolling roller, and a positive electrode current collecting tab made of aluminum was attached to produce a positive electrode (working electrode).
- LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 3: 3: 4 so as to have a concentration of 1 mol / liter, and further 1% by mass of vinylene carbonate. Prepared by dissolving.
- FIG. 1 Using the positive electrode (working electrode), negative electrode (counter electrode), reference electrode, and non-aqueous electrolyte, a three-electrode test cell 10 shown in FIG. 1 was produced.
- 11 is a positive electrode
- 12 is a negative electrode
- 13 is a reference electrode
- 14 is a non-aqueous electrolyte.
- the positive electrode has been described as an example, but the present invention can also be applied to the negative electrode.
- the present invention can be applied when a carbon material, a metal oxide such as lithium titanate and molybdenum dioxide, silicon, tin, or the like is used as the negative electrode active material.
- Example 1 The cell shown in the mode for carrying out the invention was used. The cell thus produced is hereinafter referred to as the present invention cell A1.
- Example 2 A test cell was prepared in the same manner as in Example 1 except that polyoxyethylene alkyl ether (Leocor SC-70 manufactured by Lion Corporation) was used as the nonionic surfactant. The cell thus produced is hereinafter referred to as the present invention cell A2.
- polyoxyethylene alkyl ether Leocor SC-70 manufactured by Lion Corporation
- Example 3 A test cell was prepared in the same manner as in Example 2 except that furnace black was used as the carbon conductive agent and LiNi 0.5 Co 0.2 Mn 0.3 O 2 was used as the positive electrode active material. The cell thus produced is hereinafter referred to as the present invention cell A3.
- Example 4 A test cell was fabricated in the same manner as in Example 1 except that LiNi 0.6 Mn 0.4 O 2 was used as the positive electrode active material. The cell thus produced is hereinafter referred to as the present invention cell A4.
- Comparative Example 1 A test cell was prepared in the same manner as in Example 1 except that the polyvinylpyrrolidone polymer and the nonionic surfactant were not added. The cell thus produced is hereinafter referred to as a comparison cell Z1.
- Comparative Example 2 A test cell was prepared in the same manner as in Example 1 except that the amount of the polyvinylpyrrolidone polymer added to acetylene black was 2.8% by mass, but no nonionic surfactant was added. The cell thus fabricated is hereinafter referred to as a comparison cell Z2.
- Example 3 A test cell was prepared in the same manner as in Example 1 except that the amount of the polyvinylpyrrolidone polymer added to acetylene black was 11.3% by mass, but no nonionic surfactant was added.
- the cell thus fabricated is hereinafter referred to as a comparison cell Z3.
- Comparative Example 4 A test cell was prepared in the same manner as in Example 3 except that the polyvinylpyrrolidone polymer and the nonionic surfactant were not added. The cell thus fabricated is hereinafter referred to as a comparison cell Z4.
- Example 5 A test cell was prepared in the same manner as in Example 4 except that the polyvinylpyrrolidone polymer and the nonionic surfactant were not added. The cell thus fabricated is hereinafter referred to as a comparison cell Z5.
- the present invention cells A1 and A2 to which both the polyvinylpyrrolidone polymer and the nonionic surfactant are added are compared to the comparative cell Z1 to which neither the polyvinylpyrrolidone polymer and the nonionic surfactant are added.
- the output characteristics were improved at normal temperature (25 ° C.) and low temperature ( ⁇ 30 ° C.). This is considered to be due to the fact that a cell in which both a polyvinylpyrrolidone polymer and a nonionic surfactant were added could efficiently collect current from the positive electrode active material and form a good conductive network.
- the comparative cell Z2 to which a small amount of polyvinylpyrrolidone-based polymer (2.8% by mass) but no nonionic surfactant is added has a normal temperature (25 ° C.) and a lower temperature than the comparative cell Z1. At ( ⁇ 30 ° C.), the output characteristics are improved, but the degree of improvement is slight compared with the cells A1 and A2 of the present invention.
- comparison cell Z3 which is different from comparison cell Z2 only in that a large amount of polyvinylpyrrolidone-based polymer is added (2.8% by mass), compared to comparison cell Z1, it is at normal temperature (25 ° C.) and low temperature ( ⁇ At 30 ° C., the output characteristics are degraded.
- the same results as above were obtained even when the composition of the positive electrode active material and the seed of the carbon conductive agent were changed. That is, the cells A3 and A4 of the present invention to which both the polyvinylpyrrolidone polymer and the nonionic surfactant are added are at room temperature (25 ° C.) and at a low temperature ( ⁇ It was confirmed that the output characteristics were improved at 30 ° C.
- the secondary battery according to the present invention can be used as various drive power sources.
- the utility value is high for applications that require high output such as tools and automobiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
しかしながら、このようにして作製した電極では、炭素導電剤の分散不良により、活物質の性能を十分引き出すことができないという課題がある。
また、正極合剤層中にフッ素系ノニオン型界面活性剤を添加することで、電池特性を改善する提案がなされている(下記特許文献2参照)。
更に、活物質上に炭素導電剤、又は炭素導電剤と伝導性高分子分散剤との混合物からなる被覆層を設けて、電池特性を向上させる提案がなされている(下記特許文献3参照)。
(1)特許文献1に示される技術の課題
上記の如く分散剤を用いた場合であっても、活物質と炭素導電剤とが電気的に反発するため、電極における集電が不十分となって、出力特性を向上させることができない。
一般的に、炭素材料表面への界面活性剤の吸着力は弱いため、界面活性剤によって炭素材料を十分に分散させるためには、界面活性剤を多量に添加する必要がある。しかしながら、このような構成とした場合、電極内における導電性が低下する。このため、炭素材料の分散性が向上することによる電池特性の向上効果が、電極内における導電性の低下に起因する電池特性の低下により相殺されるため、電池特性の向上は望めない。特に、N-メチル-2-ピロリドンのような有機溶剤中における界面活性剤の分散効果は、水溶液中における界面活性剤の分散効果に比べて著しく低い。したがって、上記有機溶剤中で分散効果を高めるためには、界面活性剤を更に多量に添加しなければならず、この結果、電極内における導電性の低下という問題が一層顕在化する。
活物質上に炭素導電剤、又は炭素導電剤と伝導性高分子分散剤との混合物からなる被覆層を設けただけでは、活物質間の電子導電性が不十分となって、電極内の内部抵抗が大きくなる。
したがって、電池特性を向上させることができない。
更に、上記炭素導電剤には、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどのカーボンブラックが含まれることが望ましい。
上記結着剤としては、熱可塑性樹脂を挙げることができ、ポリフッ化ビニリデンやポリイミドなどが例示される。
但し、活物質としては正極活物質に限定するものではなく、負極活物質でも良い。この場合の負極活物質としては、グラファイト等の炭素材料、チタン酸リチウム及び二酸化モリブデン等の金属酸化物、シリコン並びにスズ等が例示される。
このように、コバルトを含んでいない正極活物質を用いれば、電池の低コスト化を達成できる。但し、正極活物質としては上記のものに限定するものではなく、他のリチウム含有遷移金属複合酸化物やリチウム含有遷移金属オキシアニオン化合物であっても良い。他のリチウム含有遷移金属複合酸化物の具体例としては、例えば、コバルト酸リチウム、コバルト-ニッケル-マンガンのリチウム複合酸化物、アルミニウム-ニッケル-マンガンのリチウム複合酸化物、アルミニウム-ニッケル-コバルトの複合酸化物等が挙げられる。
また、上記リチウム含有遷移金属オキシアニオン化合物の具体例としては、例えば、リン酸鉄リチウムが挙げられる。これらの正極活物質の中でも、LiNi1/3Co1/3Mn1/3O2や、一般式Li1+xNiaMnbCocO2+d(式中、x,a,b,c,dはx+a+b+c=1、0.7≦a+b、0<x≦0.1、0≦c/(a+b)<0.35、0.7≦a/b≦2.0、-0.1≦d≦0.1の条件を満たす。)で表されるコバルト-ニッケル-マンガンのリチウム複合酸化物が好ましく用いられる。
このような方法であれば、炭素導電剤の分散性が一層向上するからである。
また、炭素導電剤の分散性をより一層向上させるためには、上記カーボンスラリーを調製する際、N-メチル-2-ピロリドンに、分散剤としてポリビニルピロリドン系高分子と、ノニオン系界面活性剤とを混合した後、これに炭素導電剤を添加することが望ましい。
また、上記溶質は、通常、0.1~1.5M/L、好ましくは0.5~1.5M/Lの濃度で溶媒に溶解されて使用される。
先ず、分散媒としてのN-メチル-2-ピロリドンに、ポリビニルピロリドン系高分子としてのピッツコールK-30(第一工業製薬株式会社製)と、及びノニオン系界面活性剤としてポリグリセリン縮合リシノレイン酸エステルとを溶解した後、炭素導電剤としてのアセチレンブラックを混合することにより、カーボンブラックペーストを調製した。尚、上記アセチレンブラックに対する上記ポリビニルピロリドン系高分子の割合と、上記アセチレンブラックに対する上記ポリグリセリン縮合リシノレイン酸エステルの割合とは、共に1.4質量%とした。
負極(対極)と参照極とには、共に金属リチウムを用いた。
エチレンカーボネートとメチルエチルカーボネートとジメチルカーボネートとを3:3:4の体積比で混合させた混合溶媒に、LiPF6を1モル/リットルの濃度になるように溶解させ、更にビニレンカーボネートを1質量%溶解させて調製した。
上記正極(作用極)、負極(対極)、参照極、及び非水電解液を用いて、図1に示す三電極式試験セル10を作製した。図1において、11は正極、12は負極、13は参照極、14は非水電解液である。
上記形態では正極を例にとって説明したが、本発明は負極にも適用できる。例えば、負極活物質として炭素材料、チタン酸リチウム及び二酸化モリブデン等の金属酸化物、シリコン並びにスズ等を用いた場合に適用できる。
上記発明を実施するための形態で示したセルを用いた。
このようにして作製したセルを、以下、本発明セルA1と称する。
ノニオン系界面活性剤として、ポリオキシエチレンアルキルエーテル(ライオン株式会社製レオコールSC-70)を用いた以外は、上記実施例1と同様にして試験セルを作製した。
このようにして作製したセルを、以下、本発明セルA2と称する。
炭素導電剤にファーネスブラックを、正極活物質にLiNi0.5Co0.2Mn0.3O2を用いたこと以外は、上記実施例2と同様にして試験セルを作製した。
このようにして作製したセルを、以下、本発明セルA3と称する。
正極活物質にLiNi0.6Mn0.4O2を用いたこと以外は、上記実施例1と同様にして試験セルを作製した。
このようにして作製したセルを、以下、本発明セルA4と称する。
ポリビニルピロリドン系高分子とノニオン系界面活性剤とを添加しなかったこと以外は、上記実施例1と同様にして試験セルを作製した。
このようにして作製したセルを、以下、比較セルZ1と称する。
アセチレンブラックに対するポリビニルピロリドン系高分子の添加量を2.8質量%とする一方、ノニオン系界面活性剤を添加しなかったこと以外は、上記実施例1と同様にして試験セルを作製した。
このようにして作製したセルを、以下、比較セルZ2と称する。
アセチレンブラックに対するポリビニルピロリドン系高分子の添加量を11.3質量%とする一方、ノニオン系界面活性剤を添加しなかったこと以外は、上記実施例1と同様にして試験セルを作製した。
このようにして作製したセルを、以下、比較セルZ3と称する。
ポリビニルピロリドン系高分子とノニオン系界面活性剤とを添加しなかったこと以外は、上記実施例3と同様にして試験セルを作製した。
このようにして作製したセルを、以下、比較セルZ4と称する。
ポリビニルピロリドン系高分子とノニオン系界面活性剤とを添加しなかったこと以外は、上記実施例4と同様にして試験セルを作製した。
このようにして作製したセルを、以下、比較セルZ5と称する。
上記本発明セルA1~A4及び比較セルZ1~Z5を下記の条件で充放電し、25℃及び-30℃の条件で放電したときの出力測定を行ったので、その結果を活物質種別に表1~3に示す。尚、表1では比較セルZ1の出力を、表2では比較セルZ4の出力を、表3では比較セルZ5の出力を、それぞれ100としたときの指数で表示している。
25℃の温度条件下において、0.2mA/cm2の電流密度で4.3V(vs.Li/Li+)まで定電流充電を行い、4.3V(vs.Li/Li+)の定電圧で電流密度が0.04mA/cm2になるまで定電圧充電を行った。その後、0.2mA/cm2の電流密度で2.5V(vs.Li/Li+)まで定電流放電を行った。
11 作用極(正極)
12 対極(負極)
13 参照極
14 非水電解液
Claims (17)
- 分散媒としてのN-メチル-2-ピロリドンには、炭素導電剤と、分散剤としてポリビニルピロリドン系高分子と、ノニオン系界面活性剤とが含まれていることを特徴とするカーボンスラリー。
- 上記ノニオン系界面活性剤には脂肪酸エステル系界面活性剤が含まれる、請求項1に記載のカーボンスラリー。
- 上記脂肪酸エステル系界面活性剤がリシノレイン酸エステルである、請求項2に記載のカーボンスラリー。
- 上記リシノレイン酸エステルがポリグリセリン縮合リシノレイン酸エステルである、請求項3に記載のカーボンスラリー。
- 上記ノニオン系界面活性剤には高級アルキルエーテル系界面活性剤が含まれる、請求項1に記載のカーボンスラリー。
- 上記高級アルキルエーテル系界面活性剤がポリオキシエチレンアルキルエーテルである、請求項5に記載のカーボンスラリー。
- 上記炭素導電剤にはカーボンブラックが含まれる、請求項1~6の何れか1項に記載のカーボンスラリー。
- 分散媒としてのN-メチル-2-ピロリドンに、炭素導電剤と、分散剤としてポリビニルピロリドン系高分子と、ノニオン系界面活性剤とを混合することを特徴とするカーボンスラリーの調製方法。
- 集電体の表面に活物質層が形成され、この活物質層には、活物質と、結着剤と、炭素導電剤と、分散剤としてポリビニルピロリドン系高分子と、ノニオン系界面活性剤とが含まれていることを特徴とする非水電解質二次電池用電極。
- 上記活物質は正極活物質である、請求項9に記載の非水電解質二次電池用電極。
- 上記正極活物質が、層状構造を有するニッケル-マンガンのリチウム複合酸化物である、請求項10に記載の非水電解質二次電池用電極。
- 分散媒としてのN-メチル-2-ピロリドンに、活物質と、結着剤と、炭素導電剤と、分散剤としてポリビニルピロリドン系高分子と、ノニオン系界面活性剤とを混合して活物質スラリーを調製する活物質スラリー調製工程と、
上記活物質スラリーを集電体上に塗布して、集電体上に活物質層を形成する活物質層形成工程と、
を含むことを特徴とする非水電解質二次電池用電極の製造方法。 - 上記活物質スラリー調製工程において、N-メチル-2-ピロリドンに、炭素導電剤と、分散剤としてポリビニルピロリドン系高分子と、ノニオン系界面活性剤とを混合してカーボンスラリーを調製した後、このカーボンスラリーに、活物質と結着剤とを混合して活物質スラリーを調製する、請求項12に記載の非水電解質二次電池用電極の製造方法。
- 上記カーボンスラリーを調製する際、N-メチル-2-ピロリドンに、分散剤としてポリビニルピロリドン系高分子と、ノニオン系界面活性剤とを混合した後、これに炭素導電剤を添加する、請求項13に記載の非水電解質二次電池用電極の製造方法。
- 上記活物質は正極活物質である、請求項12~14の何れか1項に記載の非水電解質二次電池用電極の製造方法。
- 上記請求項10又は11に記載の正極、負極、及びこれら正負両極間に配置されたセパレータから成る電極体と、非水電解質と、上記電極体と上記非水電解質とが収納された電池外装体と、を含むことを特徴とする非水電解質二次電池。
- 上記請求項15に記載の方法で作製された正極と負極との間にセパレータを配置して電極体を作製した後、この電極体と非水電解質とを電池外装体内に収納することを特徴とする非水電解質二次電池の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/812,540 US20130122354A1 (en) | 2010-07-30 | 2011-06-29 | Nonaqueous electrolyte secondary battery |
CN201180037324.7A CN103038926B (zh) | 2010-07-30 | 2011-06-29 | 非水电解质二次电池 |
JP2012526388A JP5627688B2 (ja) | 2010-07-30 | 2011-06-29 | 非水電解質二次電池 |
KR1020137002404A KR20130143543A (ko) | 2010-07-30 | 2011-06-29 | 비수 전해질 이차 전지 |
EP11812209.2A EP2600450A1 (en) | 2010-07-30 | 2011-06-29 | Non-aqueous electrolyte rechargeable battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-171534 | 2010-07-30 | ||
JP2010171534 | 2010-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012014616A1 true WO2012014616A1 (ja) | 2012-02-02 |
Family
ID=45529836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064886 WO2012014616A1 (ja) | 2010-07-30 | 2011-06-29 | 非水電解質二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130122354A1 (ja) |
EP (1) | EP2600450A1 (ja) |
JP (1) | JP5627688B2 (ja) |
KR (1) | KR20130143543A (ja) |
CN (1) | CN103038926B (ja) |
WO (1) | WO2012014616A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016017366A1 (ja) * | 2014-07-29 | 2016-02-04 | 住友化学株式会社 | 多孔質膜 |
WO2018021073A1 (ja) | 2016-07-28 | 2018-02-01 | デンカ株式会社 | 電極用導電性樹脂組成物及び電極組成物、並びにそれを用いた電極及びリチウムイオン電池 |
WO2018037910A1 (ja) | 2016-08-24 | 2018-03-01 | デンカ株式会社 | 電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池 |
WO2020158224A1 (ja) * | 2019-01-31 | 2020-08-06 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極及び非水電解質二次電池 |
US11824197B2 (en) | 2017-06-13 | 2023-11-21 | Denka Company Limited | Positive electrode composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002075330A (ja) | 2000-09-01 | 2002-03-15 | Hitachi Maxell Ltd | 非水二次電池およびその製造方法 |
JP2003142097A (ja) | 2001-09-05 | 2003-05-16 | Samsung Sdi Co Ltd | 電池用活物質およびその製造方法 |
JP2003157846A (ja) | 2001-11-19 | 2003-05-30 | Mikuni Color Ltd | カーボンブラックスラリー及びリチウム二次電池用電極 |
JP2004281096A (ja) * | 2003-03-13 | 2004-10-07 | Hitachi Maxell Ltd | リチウム二次電池用正極、その製造方法および前記正極を用いたリチウム二次電池 |
JP2010086955A (ja) * | 2008-09-04 | 2010-04-15 | Toyo Ink Mfg Co Ltd | 電池電極用複合材料 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7205072B2 (en) * | 2002-11-01 | 2007-04-17 | The University Of Chicago | Layered cathode materials for lithium ion rechargeable batteries |
KR100508570B1 (ko) * | 2003-04-07 | 2005-08-17 | 주식회사 엘지화학 | 전극 활물질 슬러리 제조시의 분산제 조성 및 그 이용 |
CN1795574A (zh) * | 2003-05-28 | 2006-06-28 | 加拿大国家研究委员会 | 用于锂电池和电池组的锂金属氧化物电极 |
US7320822B2 (en) * | 2003-11-28 | 2008-01-22 | Canon Kabushiki Kaisha | Electrophotographic conductive member and electrophotographic apparatus |
JP4819342B2 (ja) * | 2004-11-08 | 2011-11-24 | エレクセル株式会社 | リチウム電池用正極及びこれを用いたリチウム電池 |
KR100893229B1 (ko) * | 2006-02-06 | 2009-04-16 | 주식회사 엘지화학 | 전극 활물질에 계면활성제를 포함하고 있는 리튬 이차전지 |
KR101114122B1 (ko) * | 2006-06-27 | 2012-03-13 | 닛산 지도우샤 가부시키가이샤 | 리튬이온 전지용 복합 양극재료 및 이것을 이용한 전지 |
CN101207194A (zh) * | 2006-12-21 | 2008-06-25 | 比亚迪股份有限公司 | 一种复合碳材料的制备方法 |
KR20090038309A (ko) * | 2007-10-15 | 2009-04-20 | 삼성전자주식회사 | 이차전지용 전극, 그 제조방법 및 이를 채용한 이차전지 |
CN101757875B (zh) * | 2008-12-25 | 2012-10-17 | 比亚迪股份有限公司 | 复合分散剂和正极材料组合物与正极及锂离子二次电池 |
JP5522364B2 (ja) * | 2009-09-30 | 2014-06-18 | 日本ゼオン株式会社 | 電極用スラリー組成物 |
-
2011
- 2011-06-29 WO PCT/JP2011/064886 patent/WO2012014616A1/ja active Application Filing
- 2011-06-29 KR KR1020137002404A patent/KR20130143543A/ko not_active Application Discontinuation
- 2011-06-29 US US13/812,540 patent/US20130122354A1/en not_active Abandoned
- 2011-06-29 EP EP11812209.2A patent/EP2600450A1/en not_active Withdrawn
- 2011-06-29 CN CN201180037324.7A patent/CN103038926B/zh not_active Expired - Fee Related
- 2011-06-29 JP JP2012526388A patent/JP5627688B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002075330A (ja) | 2000-09-01 | 2002-03-15 | Hitachi Maxell Ltd | 非水二次電池およびその製造方法 |
JP2003142097A (ja) | 2001-09-05 | 2003-05-16 | Samsung Sdi Co Ltd | 電池用活物質およびその製造方法 |
JP2003157846A (ja) | 2001-11-19 | 2003-05-30 | Mikuni Color Ltd | カーボンブラックスラリー及びリチウム二次電池用電極 |
JP2004281096A (ja) * | 2003-03-13 | 2004-10-07 | Hitachi Maxell Ltd | リチウム二次電池用正極、その製造方法および前記正極を用いたリチウム二次電池 |
JP2010086955A (ja) * | 2008-09-04 | 2010-04-15 | Toyo Ink Mfg Co Ltd | 電池電極用複合材料 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016031833A (ja) * | 2014-07-29 | 2016-03-07 | 住友化学株式会社 | 多孔質膜 |
US10062888B2 (en) | 2014-07-29 | 2018-08-28 | Sumitomo Chemical Company, Limited | Porous membrane |
WO2016017366A1 (ja) * | 2014-07-29 | 2016-02-04 | 住友化学株式会社 | 多孔質膜 |
WO2018021073A1 (ja) | 2016-07-28 | 2018-02-01 | デンカ株式会社 | 電極用導電性樹脂組成物及び電極組成物、並びにそれを用いた電極及びリチウムイオン電池 |
US11028209B2 (en) | 2016-07-28 | 2021-06-08 | Denka Company Limited | Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery |
WO2018037910A1 (ja) | 2016-08-24 | 2018-03-01 | デンカ株式会社 | 電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池 |
KR20190040300A (ko) | 2016-08-24 | 2019-04-17 | 덴카 주식회사 | 전지용 카본 블랙, 전극용 도전성 조성물, 전지용 전극 및 전지 |
US11098201B2 (en) | 2016-08-24 | 2021-08-24 | Denka Company Limited | Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery |
US11824197B2 (en) | 2017-06-13 | 2023-11-21 | Denka Company Limited | Positive electrode composition |
WO2020158224A1 (ja) * | 2019-01-31 | 2020-08-06 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極及び非水電解質二次電池 |
JPWO2020158224A1 (ja) * | 2019-01-31 | 2021-12-02 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極及び非水電解質二次電池 |
JP7557726B2 (ja) | 2019-01-31 | 2024-09-30 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極及び非水電解質二次電池 |
US12113198B2 (en) | 2019-01-31 | 2024-10-08 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
EP2600450A1 (en) | 2013-06-05 |
KR20130143543A (ko) | 2013-12-31 |
JP5627688B2 (ja) | 2014-11-19 |
CN103038926A (zh) | 2013-04-10 |
US20130122354A1 (en) | 2013-05-16 |
CN103038926B (zh) | 2015-12-16 |
JPWO2012014616A1 (ja) | 2013-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5219401B2 (ja) | 二次電池用非水電解液及びこれを用いた非水電解液二次電池 | |
US8945433B2 (en) | Conductive agent, positive electrode slurry composition for lithium secondary battery including the conductive agent, and lithium secondary battery including the conductive agent | |
KR101678798B1 (ko) | 비수 전해액 2차 전지의 제조 방법 | |
JP5425505B2 (ja) | リチウムイオン二次電池 | |
US20120052386A1 (en) | Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery | |
JP2009224307A (ja) | 非水電解質二次電池及びその製造方法 | |
JP7427629B2 (ja) | 正極及び該正極を含むリチウム電池 | |
CN102859781B (zh) | 锂离子二次电池 | |
EP2337122A1 (en) | Nonaqueous electrolyte secondary battery | |
WO2011016553A1 (ja) | 非水電解質二次電池 | |
JP2008091236A (ja) | 非水電解質二次電池 | |
US20110059372A1 (en) | Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same | |
JP5627688B2 (ja) | 非水電解質二次電池 | |
KR20180088283A (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
JP2003077476A (ja) | リチウムイオン二次電池 | |
JP4530822B2 (ja) | 非水電解質二次電池及びその充電方法 | |
JP2012049124A (ja) | 非水電解質二次電池 | |
JP2009218112A (ja) | 非水電解質二次電池及びその製造方法 | |
WO2013183769A1 (ja) | リチウムイオン二次電池 | |
EP4044313A1 (en) | Electrolyte and electrochemical device and electronic device comprising same | |
JP5708964B2 (ja) | リチウム二次電池とその製造方法 | |
JP2006073253A (ja) | 非水電解質電池 | |
JP2006127933A (ja) | 非水電解液及びこれを用いた非水電解質二次電池 | |
US20220311008A1 (en) | Lithium ion secondary battery | |
EP4468386A1 (en) | Electrochemical device, and electronic device comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180037324.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11812209 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012526388 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13812540 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137002404 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011812209 Country of ref document: EP |