[go: up one dir, main page]

WO2011024799A1 - 電極板用の水系塗工液、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置 - Google Patents

電極板用の水系塗工液、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置 Download PDF

Info

Publication number
WO2011024799A1
WO2011024799A1 PCT/JP2010/064264 JP2010064264W WO2011024799A1 WO 2011024799 A1 WO2011024799 A1 WO 2011024799A1 JP 2010064264 W JP2010064264 W JP 2010064264W WO 2011024799 A1 WO2011024799 A1 WO 2011024799A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
electrode plate
storage device
coating film
coating
Prior art date
Application number
PCT/JP2010/064264
Other languages
English (en)
French (fr)
Inventor
小林 誠幸
山南 隆徳
土田 真也
義彦 飯島
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to EP10811849.8A priority Critical patent/EP2472646B1/en
Priority to US13/392,066 priority patent/US8945767B2/en
Priority to JP2011528795A priority patent/JP5499041B2/ja
Priority to KR1020127007790A priority patent/KR101420029B1/ko
Priority to CN201080038019.5A priority patent/CN102576854B/zh
Publication of WO2011024799A1 publication Critical patent/WO2011024799A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/04Starch derivatives
    • C09D103/08Ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer

Definitions

  • the present invention relates to a coating liquid for forming a coating film disposed between a current collector and an electrode active material layer, an electrode plate for a power storage device, and a power storage device including the electrode plate. More specifically, in a power storage device such as a secondary battery or a capacitor, a coating film excellent in solvent resistance is provided between a current collector and an electrode active material layer (hereinafter referred to as an electrode layer).
  • the electrode plate for a power storage device that is effective for improving the adhesion between the current collector and the electrode layer, reducing the internal resistance, and improving the cycle characteristics, and the power storage including the electrode plate. The purpose is to provide a device. Since the coating solution is water-based, it is environmentally friendly and can form a coating film having excellent dispersibility and solvent resistance.
  • Non-Patent Documents 1 and 2 In order to achieve higher capacity and higher output of power storage devices, it is effective to reduce internal resistance. For this purpose, charge transfer phenomenon at the interface of each layer such as electrode layer, current collector, electrolyte layer, etc. Is important (Non-Patent Documents 1 and 2), and various proposals have been made.
  • a surface resistance film called an SEI film formed by decomposition of the electrolytic solution or decomposition of a lithium-based compound as a supporting salt has a significant effect on maintaining the performance of the battery.
  • catechol carbonate and its derivatives By adding catechol carbonate and its derivatives to the electrolyte, the thickness of the SEI film is reduced and the film resistance is reduced (Non-patent Document 2).
  • the aluminum positive electrode current collector becomes passivated by forming a barrier film on its surface in an electrolyte containing fluorine, and this passive film affects cycle characteristics.
  • the body has been heat-treated, and by applying an ultrafine carbon dispersion to this, it has succeeded in imparting conductivity to the passive film (Non-patent Document 3).
  • an all-solid-state lithium ion battery using a nonflammable electrolyte is attracting attention as a power storage device having safety.
  • the all-solid-state lithium ion battery has a drawback that the output performance is not yet sufficient.
  • various problems related to the interface between the electrode layer and the electrolyte layer which is the rate-determining step of output, have been investigated.
  • an oxide solid electrolyte is interposed as a buffer layer between the electrode layer and the electrolyte layer. It has been reported that the output performance has been greatly improved (Non-Patent Document 4).
  • a fluorine-based polymer whose conductivity is close to that of a liquid electrolyte is used.
  • fluorine-based polymers have the disadvantage that they do not adhere well to the current collector metal, and are therefore collected with acid-modified polyolefins in order to solve this disadvantage and to maintain excellent cycle characteristics.
  • the proposal which coats an electric body is indicated (patent documents 3).
  • the electrode plate As a main “system including an interface” in a power storage device.
  • the electrode plate has a great influence on the performance of the power storage device, and is an electrode member in which unit members such as an electrode layer and a current collector are integrated.
  • the charge / discharge cycle life is extended and high performance is achieved. It has been proposed to increase the area of the thin film in order to increase the energy density.
  • a positive electrode active material powder such as a metal oxide, sulfide, or halide, a conductive material and a binder in an appropriate solvent. Disperse and dissolve to prepare a paste-like coating liquid, and use a current collector made of a metal foil such as aluminum as a base, and apply the coating liquid on the surface of the base to form a coating film layer.
  • a positive electrode plate is disclosed.
  • a capacitor using an electric double layer formed at the interface between a polarizable electrode plate and an electrolyte is used as a memory backup power source, and can also be applied to applications requiring a large output such as a power source for an electric vehicle. Attention has been focused on achieving both high capacitance and low internal resistance for high output.
  • the electrode plate for a capacitor is generally manufactured by applying and drying a coating solution, which is a mixture of a binder and a conductive material, on a current collector, like the negative electrode plate of the battery.
  • the binder used in the electrode plate coating liquid for power storage devices such as lithium ion batteries and capacitors
  • a fluorine resin such as polyvinylidene fluoride or a silicone / acrylic copolymer is used.
  • the negative electrode plate (battery) and the polarizable electrode plate (capacitor) are prepared by adding a binder dissolved in an appropriate solvent to an active material such as a carbonaceous material to prepare a paste-like coating solution. This is obtained by applying it to a current collector.
  • the binder used for the preparation of the coating solution is electrochemically stable with respect to the non-aqueous electrolyte solution and does not elute into the battery or capacitor electrolyte solution. Since it does not swell and is applied, it must be soluble in some solvent.
  • a protective film on the surface of a metal material such as aluminum which is a material metal of the current collector is formed by applying various resin solutions, but the adhesion of the formed film to the metal surface is Although excellent, the film has a problem that the durability against organic solvents is insufficient.
  • the battery and capacitor electrode plates obtained by applying the coating liquid applied to the surface of an aluminum foil or copper foil as a current collector to the current collector a coating formed by being applied and dried.
  • the film layer has insufficient adhesion and flexibility to the current collector, and has a large contact resistance to the current collector. Also, during the assembly process and charge / discharge of the battery or capacitor, There was a problem that peeling, dropping, cracking, etc. occurred.
  • JP 2006-310010 A JP 2007-95641 A JP 11-297332 A JP 63-10456 A JP-A-3-285262
  • the present invention has been made in view of the above circumstances.
  • the object of the present invention is to overcome the above-mentioned problems of the prior art, and to form a coating film between the current collector and the electrode layer using a water-based coating liquid having a low environmental load. Is placed between the current collector and the electrode layer as an undercoat layer excellent in solvent resistance and electrical characteristics, so that the electrode layer has adhesion to the current collector made of aluminum foil or copper foil.
  • An object of the present invention is to provide an electrode plate for a power storage device that has excellent electrolytic solution resistance and improved contact resistance with a current collector, and a power storage device including the electrode plate.
  • the present inventors have found that, for example, a specific resin binder, a conductive material, a polybasic acid (a derivative of a polybasic acid) is provided between the current collector and the electrode layer. It has been found that it is effective to dispose a coating film having an essential component as an essential component. And the suitable structure as a coating liquid for forming a coating film layer in the electrode plate of such an electrical storage apparatus was discovered, and it came to complete this invention.
  • the present invention provides an aqueous electrode plate coating solution for forming a coating film layer on an electrode plate of a power storage device, and includes (1) a resin binder in an aqueous medium containing at least water as a polar solvent. And a saponification degree of 40% or more and at least one selected from the group consisting of unmodified polyvinyl alcohol, modified polyvinyl alcohol, unmodified ethylene vinyl alcohol copolymer and modified ethylene vinyl alcohol copolymer; (2) conductive material and (3) 1,2,3,4-butanetetracarboxylic acid, pyromellitic acid, citric acid, ethylenediaminetetraacetic acid, 1,2,3-propanetricarboxylic acid, 1,2, 4-cyclohexanetricarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, trimellitic acid, 1,4,5,8-naphthalene At least one polybasic acid selected from the group consisting of lacarboxylic acid and 1,2,3,
  • the component ratio of (1) to (3) is 0.1 to 3 parts by mass of the resin binder of (1) with respect to 1 part by mass of the conductive material of (2).
  • a coating liquid characterized in that the polybasic acid is 0.01 to 6 parts by mass and the solid content of the coating liquid is 0.02 to 40% by mass.
  • coating liquid for power storage device of the present invention contains at least one selected from the group consisting of homopolymers (polyvinylpyrrolidone) having vinylpyrrolidone as a constituent monomer, copolymers having vinylpyrrolidone as an essential constituent monomer, chitosan and chitosan derivatives; Is any of 1,2,3,4-butanetetracarboxylic acid, pyromellitic acid or their anhydrides; a 4 ⁇ m-thick coating film is formed on a glass plate at 200 ° C.
  • the coating liquid at 25 ° C. is the B-type rotational viscosity
  • the viscosity when measured with a total of 60 rpm and a rotor number of 2 to 4 is 100 to 10,000 mPa ⁇ s, and the coating solution is diluted with the same weight of distilled water. After that, the pH measured at 25 ° C.
  • the conductive material contains any one of acetylene black, ketjen black, carbon nanofibers, carbon nanotubes, and other carbon-based conductive assistants;
  • the medium other than water is at least one selected from the group consisting of methyl alcohol, ethyl alcohol, isopropyl alcohol, N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, and N, N-dimethylformamide.
  • a 1 ⁇ m dry coated film obtained by drying with air at 60 ° C. is soluble in boiling water, and the dried coated film is further heated at 150 ° C. or higher for 30 minutes or longer.
  • the mass of the coating film after heating for 10 minutes after boiling with boiling water is Y, and ((XY) / ) ⁇ preferably satisfies 100 ⁇ 5% relationship.
  • an electrode plate for a power storage device wherein a coating film formed of any one of the above coating liquids is disposed between a current collector and an electrode active material layer.
  • I will provide a.
  • the coating film is formed by heat treatment at 100 to 250 ° C., and the film thickness of the coating film is 0.1 to 10 ⁇ m in terms of solid content; the current collector is an aluminum foil.
  • the electrode active material layer comprises a positive electrode active material; the current collector is a copper foil; the electrode active material layer comprises a negative electrode active material; and the current collector is an aluminum foil. It is preferable that the electrode active material layer includes a polarizable electrode.
  • the present invention is characterized in that an electrode active material layer is formed on the coating film after the coating liquid described in any of the above is applied to the surface of the current collector to form a coating film.
  • a method for manufacturing an electrode plate for a power storage device is provided.
  • the coating liquid is applied, and then the medium is heated and removed, or while the medium is heated or removed, the temperature is 100 ° C. or higher and 250 ° C. or lower. Then, it is preferable to perform heat treatment for 1 second to 60 minutes.
  • the present invention also provides a power storage device comprising the electrode plate as described above.
  • the power storage device include a secondary battery, a non-aqueous lithium ion battery, a capacitor, and an electric double layer or a lithium ion capacitor.
  • the electrode plate of the power storage device is constituted by the coating liquid, even though it is a water-based coating liquid using a polymer having a low environmental load as a binder.
  • a current collector and an electrode It is possible to dispose a coating film (thin film) serving as an undercoat layer having excellent adhesion and solvent resistance to the surface of a metal material such as an aluminum material between the layers.
  • the electrode layer is provided in a state excellent in adhesion and electrolytic solution resistance to a current collector made of aluminum foil or copper foil, and the contact resistance with the current collector is also improved.
  • a power storage device electrode plate such as a battery electrode plate or a capacitor polarizable electrode plate having excellent characteristics, and a power storage device including them.
  • Polyvinyl alcohol (hereinafter referred to as PVA) and / or ethylene vinyl alcohol copolymer (hereinafter referred to as EVOH) used as a resin binder in the present invention is a polymer with a low environmental load, and is more environmentally friendly than conventional ones. The effect of is less.
  • the inventors have selected a material having a specific saponification degree from these materials, added a conductive material such as a carbon-based filler, and a polybasic acid having a resin curing function, and further added these.
  • an aqueous slurry composition containing a specific component ratio is particularly useful as a coating solution for a coating film formed on an electrode plate of a power storage device, and has completed the present invention. That is, for example, this coating liquid is applied between the current collector and the electrode layer of the power storage device, and the formed coating film (thin film) is used as an undercoat layer, so that It was found that a remarkable effect can be obtained. More specifically, the present inventors apply 0.1 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m, in terms of solid content, the coating liquid of the present invention having a low environmental impact on the surface of the current collector.
  • a coating film layer is formed by coating to a thickness of 0.1 to 2 ⁇ m to form an undercoat layer, on which a positive electrode layer for a battery, a negative electrode layer for a battery, or an electric double layer capacitor
  • a positive electrode layer or a negative electrode layer for use the resistance between these electrode layers and the current collector is not increased at all, but rather the resistance is lowered, so that the adhesion between the electrode layer and the current collector is reduced. As a result, the present invention has been found.
  • a water-based coating liquid for forming a coating film layer (undercoat layer) on the electrode plate of the power storage device, and a coating film formed by the coating liquid include a current collector and an electrode layer.
  • a battery electrode plate or a capacitor electrode plate which is disposed between them, and a secondary battery or capacitor comprising the electrode plate.
  • the resin binder has a saponification degree of 40% or more and is selected from the group consisting of unmodified polyvinyl alcohol, modified polyvinyl alcohol, unmodified ethylene vinyl alcohol copolymer and modified ethylene vinyl alcohol copolymer. At least one kind is used, and in addition to reducing the burden on the environment, the following effects can be obtained.
  • a binder such as polyvinylidene fluoride, polytetrafluoroethylene, acrylic resin, polyimide resin, polyamideimide resin, silicone acrylic resin, styrene-butadiene copolymer rubber has been used.
  • the coating liquid of the present invention comprises (1) a resin binder selected from PVA and EVOH (hereinafter referred to as PVA resin) having a saponification degree of 40% or more in an aqueous medium containing at least water as a polar solvent, (2 ) Conductive material and (3) polybasic acids or their anhydrides (polybasic acids), and the ratio of these components (1) to (3) is 1 part by weight of the conductive material of (2).
  • the resin binder (1) is 0.1 to 3 parts by mass
  • the polybasic acid (3) is 0.01 to 6 parts by mass
  • the solid content of the coating solution is 0.00. It is characterized by being 02% by mass to 40% by mass.
  • the coating liquid of this invention can contain (4) vinylpyrrolidone polymer, chitosan, or its derivative (s) as needed.
  • polymers having a hydroxyl group or an amino group in the molecule such as cellulose, starch, chitin, chitosan, alginic acid, PVA, EVOH, polyallylamine, and polyvinylamine have excellent adhesion to metal materials such as aluminum. It is known to provide a film with. However, there is a problem that the film swells with a polar solvent such as water or N-methylpyrrolidone and easily peels from the surface of the metal material. In addition, when the above polymer is used as a binder of a coating liquid for producing an electrode plate, although the adhesion of the formed coating film layer to the current collector is excellent, ethylene carbonate, propylene carbonate, etc. There existed a subject that durability with respect to the electrolyte solution of a battery was low.
  • the present inventors paid attention to PVA-based resins that have a low environmental impact among the above-mentioned polymers, and studied to improve the organic solvent resistance of a film formed from this PVA-based resin.
  • a coating liquid prepared by adding a PVA resin to an aqueous medium together with polybasic acids forms a film having excellent adhesion and solvent resistance on the surface of a metal material.
  • the polybasic acids used in combination are used as a crosslinking agent for the PVA resin at the time of heating and drying.
  • the film made of the above PVA-based resin loses solubility and swelling in organic solvents and electrolytes, and exhibits excellent adhesion and solvent resistance to the metal material surface and current collector. I found.
  • PVA resin The PVA used in the present invention may be unmodified PVA or modified PVA.
  • Unmodified PVA is a known resin obtained by saponifying polyvinyl acetate, and any known unmodified PVA can be used in the present invention, but one having a saponification degree of 40% or more is used.
  • a saponification degree of 70 to 100% is used. It is particularly preferable to use unmodified PVA having a polymerization degree of 300 to 5,000 and a saponification degree of 70 to 100%.
  • the unmodified PVA as described above includes Kuraray Poval (manufactured by Kuraray Co., Ltd.), Gohsenol (manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd.), Denka Poval (manufactured by Denki Kagaku Kogyo Co., Ltd.), J-Poval (manufactured by Nippon Vinegar Poval Co., Ltd.), etc.
  • Various grades of product names can be obtained from the market and used.
  • the modified PVA used in the present invention is obtained by introducing a functional group other than a hydroxyl group and an acetic acid group into the above-mentioned unmodified PVA, and carboxyl group-modified PVA, carbonyl group-modified PVA, silanol group-modified PVA, and amino group-modified PVA. Cation-modified PVA, sulfonic acid group-modified PVA, acetoacetyl group-modified PVA, and the like.
  • gooselan sulfonic acid group-modified PVA
  • goosephimer K cation-modified PVA
  • goosephimer Z acetoacetyl group-modified PVA
  • goosenal carboxyl group-modified PVA
  • D polymer carbonyl group modified PVA
  • a series carboxyl group modified PVA
  • Kuraray C polymer cation modified PVA
  • Kuraray Various modified PVA can be obtained from the market and used under the trade name.
  • the EVOH used in the present invention may be unmodified EVOH or modified EVOH.
  • Unmodified EVOH is a known resin obtained by saponifying a copolymer of ethylene and vinyl acetate.
  • EVOH having a saponification degree of 40% or more is used.
  • a saponification degree of 70 to 100% is used.
  • the unmodified EVOH as described above is a product name such as EVAL (registered trademark: manufactured by Kuraray Co., Ltd.), and those having various ethylene copolymerization rates can be obtained from the market.
  • the modified EVOH that can be used in the present invention can be obtained, for example, according to the production method described in JP-A-9-227633. Moreover, you may obtain directly from a market and use it.
  • the coating liquid of the present invention contains a conductive material as an essential component.
  • the conductive material used in the present invention include acetylene black, ketjen black, graphite, furnace black, carbon nanofiber, single-walled or multi-walled carbon nanotube.
  • the coating liquid of the present invention contains a polybasic acid or an acid anhydride thereof as an essential component.
  • the polybasic acids used in the present invention are preferably trivalent or higher polybasic acids from the viewpoint of crosslinkability with respect to the PVA resin used as the resin binder. Specifically, at least one polybasic acid or acid anhydride thereof selected from the group consisting of the following is used.
  • polybasic acids as listed below may be used in combination.
  • tribasic acids such as isocitric acid, aconitic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, carboxyethylthiosuccinic acid, trimesic acid, ethylenediamine N, N′-succinic acid, 1,4,5,8-naphthalene Tetracarboxylic acid, pentenetetracarboxylic acid, hexenetetracarboxylic acid, glutamic acid diacetic acid, maleated methylcyclohexenetetracarboxylic acid, furantetracarboxylic acid, benzophenonetetracarboxylic acid, phthalocyaninetetracarboxylic acid, 1,2,3,4-cyclobutane Monocyclic tetracarboxylic acids such as tetracarboxylic acid and cyclopentanetetrac
  • the coating liquid of the present invention is obtained by adding and kneading a PVA resin, a conductive material, and the polybasic acid to an aqueous medium.
  • the addition ratio of each of the above components in the coating liquid of the present invention is such that when the conductive material is 1 part by mass, the PVA-based resin is 0.1 to 3 parts by mass, more preferably 0.3 to 2 parts by mass.
  • the basic acid is 0.01 to 6 parts by mass, more preferably 0.1 to 3 parts by mass.
  • the solid content of the coating liquid is 0.02% by mass to 40% by mass or less, particularly 0.02% by mass to 35% by mass, and more preferably 0.1% by mass with respect to 100% by mass of the total amount. ⁇ 30% by mass.
  • the amount of polybasic acids used in the coating liquid of the present invention is about 1 to 300 parts by weight, more preferably 10 to 200 parts by weight, per 100 parts by weight of the polymer containing the PVA resin.
  • the amount of the polybasic acid used is less than 1 part by mass, the degree of crosslinking is insufficient, the crosslinking density of the crosslinked PVA resin is low, and the coating film layer that is the undercoat layer to be formed is collected. It is insufficient in terms of adhesion to an electric body and insolubility, non-swelling property, and electrochemical stability of a crosslinked PVA resin in an electrolyte.
  • the amount used exceeds 300 parts by mass, the flexibility of the formed film or the coating film layer is lowered and it is uneconomical.
  • the ratio of each component in the coating liquid of the present invention is preferably included in the following ranges when the coating liquid is 100 parts by mass.
  • the polymer containing the PVA-based resin may be 1 to 40 parts by mass, more preferably 1 to 20 parts by mass, and still more preferably 5 to 10 parts by mass.
  • the polybasic acid is 0.2 to 20 parts by mass, more preferably 2 to 10 parts by mass, and the conductive material is 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, and further preferably 2 to 15 parts by mass. It is preferable that it is a mass part.
  • the solid content of the coating solution is preferably 1 to 35% by mass.
  • the amount of the polymer containing the PVA resin is less than 1 part by mass when the entire coating liquid is 100 parts by mass, the strength of the coating film layer to be formed and the adhesion to the current collector May be insufficient.
  • the concentration exceeds 40 parts by mass it is difficult to obtain a uniform solution.
  • the usage-amount of polybasic acids is less than 0.2 mass part, the intensity
  • the usage-amount of polybasic acid exceeds 20 mass parts, since the flexibility of the said coating film layer formed may fall, it is unpreferable.
  • the amount of the conductive material used in the coating liquid of the present invention varies depending on the application, but is 0.1 to 30 parts by mass when the total coating liquid is 100 parts by mass. When the amount of the conductive material used is less than 0.1 parts by mass, the conductivity of the formed coating film layer may be insufficient. On the other hand, when the usage-amount of an electroconductive material exceeds 30 mass parts, the performance of the coating film layer formed by lacking another component may fall.
  • the polybasic acids used in the present invention general commercial products can be used as they are, but they may be used after being purified as necessary.
  • the order in which the PVA resin and the polybasic acid are added to the aqueous medium is Whichever comes first may be simultaneous.
  • the dissolution method may be room temperature stirring, but may be heated as necessary. Heat dissolution at 80 ° C. or higher is preferable.
  • the aqueous coating liquid of the present invention includes, in addition to the above essential components, a homopolymer having polyvinyl pyrrolidone as a constituent monomer (polyvinyl pyrrolidone), or a copolymer having vinyl pyrrolidone as an essential constituent monomer, Chitosan or a derivative thereof can be added.
  • These additives may be one kind or a mixture. According to the study of the present inventors, by further containing these components in the coating liquid of the present invention, the dispersibility of the conductive material in the coating liquid can be improved, or a further film-forming component. As a result, the effect of enabling the formation of a better coating film can be obtained.
  • the homopolymer (polyvinylpyrrolidone) having vinylpyrrolidone as a constituent monomer used in the present invention is a highly safe nonionic polymer, for example, polyvinylpyrrolidone K-30, polyvinylpyrrolidone K-85, polyvinylpyrrolidone K-90.
  • Various products can be obtained from the market and used under the trade names such as Nippon Shokubai Co., Ltd. and Pitzkor (Daiichi Kogyo Seiyaku Co., Ltd.).
  • the polymer having vinylpyrrolidone as a constituent monomer may be any copolymer with a monomer having a vinyl group copolymerizable with vinylpyrrolidone, such as acrylic acid, methacrylic acid, methyl acrylate, Alkyl esters of acrylic acid such as ethyl acrylate, alkyl esters of methacrylic acid such as methyl methacrylate and ethyl methacrylate, aminoalkyl esters of acrylic acid such as diethylaminoethyl acrylate, aminoalkyl esters of methacrylic acid, hydroxyethyl acrylate, etc.
  • acrylic acid methacrylic acid, methyl acrylate
  • Alkyl esters of acrylic acid such as ethyl acrylate
  • alkyl esters of methacrylic acid such as methyl methacrylate and ethyl methacrylate
  • aminoalkyl esters of acrylic acid such as diethylaminoethyl acryl
  • Monoesters of acrylic acid and glycol monoesters of methacrylic acid and glycol such as hydroxyethyl methacrylate, alkali metal salts of acrylic acid, alkali metal salts of methacrylic acid, acrylic acid Nium salt, ammonium salt of methacrylic acid, quaternary ammonium derivative of aminoalkyl ester of acrylic acid, quaternary ammonium derivative of aminoalkyl ester of methacrylic acid, vinyl methyl ether, vinyl ethyl ether, vinyl acetate, N-vinylimidazole , N-vinylacetamide, N-vinylformamide, N-vinylcaprolactam, N-vinylcarbazole, acrylamide, methacrylamide, N-alkylacrylamide, N-methylolacrylamide, etc.
  • vinyl pyrrolidone / vinyl acetate / vinyl propionate copolymer Lubicol VAP, manufactured by BASF
  • vinyl acetate / crotonic acid / vinyl pyrrolidone copolymer Polymer (rubyset CAP, manufactured by BASF), vinylpyrrolidone / acrylate copolymer (rubyflex, manufactured by BASF), quaternized vinylpyrrolidone / dimethylaminoethyl methacrylate (GAFQUAT, manufactured by ISP), methylvinylimidazolium Chloride / vinyl pyrrolidone copolymer (ruby coat, manufactured by BASF), vinyl pyrrolidone / vinyl acetate copolymer (rubiscol VA, manufactured by BASF), vinyl pyrrolidone / dimethylaminoethyl methacrylate copolymer (copolymer
  • the chitosan and chitosan derivative used in the present invention can be obtained from the market and used as they are, but the chitosan derivative is more preferable from the viewpoint of solubility in an aqueous medium.
  • the chitosan derivative include hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxybutyl chitosan, hydroxybutylhydroxypropyl chitosan, carboxymethyl chitosan, succinyl chitosan, glycerylated chitosan, and cationized chitosan.
  • the amount of vinylpyrrolidone polymer and / or chitosan polymer used is preferably 0.1 to 20 parts by mass when the coating solution is 100 parts by mass. If the amount of the vinyl pyrrolidone polymer and / or chitosan polymer used is less than 0.1 parts by mass, it is too small, and it becomes difficult to obtain the above-described effect obtained by adding. On the other hand, if the amount of vinylpyrrolidone-based polymer and / or chitosan-based polymer used exceeds 20 parts by mass, another problem such as reduction in oxidation resistance of the formed coating film layer may occur, which is not preferable.
  • Aqueous medium used for the coating liquid of the present invention will be described.
  • an aqueous medium containing at least water which is a polar solvent is used.
  • polar solvents other than water in the coating solution include the following.
  • Alcohols methyl alcohol, ethyl alcohol, isopropyl alcohol, propyl alcohol, butyl alcohol, etc.
  • ethers diethyl ether, diisopropyl ether, tetrahydrofuran, 1,2-dioxane, etc.
  • carbonates ethylene carbonate, ethyl methyl carbonate, diethyl
  • carbonates dimethyl carbonate, propylene carbonate, butylene carbonate, etc.
  • amides formamide, N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N-diethylformamide, vinylformamide, vinylacetamide, acetamide, acetamide, N-methylacetamide, N-ethylacetamide, N, N-dimethylacetamide, N, N-diethylacetoa N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, vinylpyrrolidone, piperidone
  • alcohols such as water, methyl alcohol, ethyl alcohol, isopropyl alcohol, propyl alcohol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N- Aprotic polar solvents such as ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone and dimethyl sulfoxide.
  • Polar solvents other than water in these aqueous media may be used alone or in combination.
  • polar solvent a general commercial product can be used as it is, but it may be used after purification if necessary.
  • the coating liquid of this invention may contain arbitrary components other than the said component, for example, another crosslinking agent.
  • crosslinking agents include, for example, epoxy compounds such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether; toluylene diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, phenyl diisocyanate.
  • Isocyanate compounds such as phenols, alcohols, active methylenes, mercaptans, acid amides, imides, amines, imidazoles, ureas, carbamic acids, imines, oximes, sulfites, etc.
  • blocked isocyanate compounds blocked with a blocking agent aldehyde compounds such as glyoxal, glutaraldehyde, and dialdehyde starch.
  • (meth) acrylate compounds such as polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, and hexanediol diacrylate; methylol compounds such as methylol melamine and dimethylol urea; organic acid metal salts such as zirconyl acetate, zirconyl carbonate, and titanium lactate; aluminum Such as trimethoxide, aluminum tributoxide, titanium tetraethoxide, titanium tetrabutoxide, zirconium tetrabutoxide, aluminum dipropoxide acetylacetonate, titanium dimethoxide bis (acetylacetonate), titanium dibutoxide bis (ethylacetoacetate) A metal alkoxide compound is mentioned.
  • vinyl methoxy silane, vinyl ethoxy silane, 3-glycidoxy propyl trimethoxy silane, 3-glycidoxy propyl triethoxy silane, 3-methacryloxy propyl trimethoxy silane, 3-aminopropyl trimethoxy silane, 3-amino Examples include silane coupling agents such as propyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, and imidazolesilane; silane compounds such as methyltrimethoxysilane, tetraethoxysilane, and methyltriethoxysilane; carbodiimide compounds.
  • Use of these crosslinking agents is not essential, but when used, the amount of the crosslinking agent is preferably 0.01 to 200% by mass of the PVA resin used as the resin binder.
  • the specific preparation method of the coating liquid of this invention is demonstrated.
  • the PVA resin, conductive material, polybasic acid, and the vinyl pyrrolidone polymer and chitosan polymer added as necessary are added to the aqueous medium to the above ratio.
  • the coating liquid can be prepared by mixing and dispersing.
  • a conventionally known disperser such as a homogenizer, a bead mill, a ball mill, a sand mill, a roll mill, or a kneading machine such as a planetary mixer can be used.
  • the coating liquid of the present invention can be prepared as described above, but it is preferable to perform physical processing before coating.
  • the physical processing is performed by processing the coating liquid before coating using a conventionally known physical processing means.
  • the physical processing means include processing means using a bead mill, ball mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, Hobart mixer, and the like.
  • the specific means of physical processing applied to the coating liquid of the present invention may be carried out as follows.
  • ceramic beads are filled with zirconia beads (diameter 0.03 to 3 mm) at a filling rate of 50 to 95%, and the rotor peripheral speed is 5 to 20 m / s, batchwise or continuously circulating.
  • the rotor peripheral speed is 5 to 20 m / s, batchwise or continuously circulating.
  • the coating film formed by the coating liquid of the present invention is a 1 ⁇ m dry coating film obtained by drying with 60 ° C. air, and is soluble in boiling water.
  • X mass of the coating film after heating at 150 ° C. or more for 30 minutes or more
  • Y mass of the coating film after boiling for 10 minutes with boiling water after heating
  • the coating liquid of the present invention has a viscosity of 100 to 10,000 mPa ⁇ s when the viscosity at 25 ° C. of the coating liquid is measured with a B-type rotational viscometer, a rotational speed of 60 rpm and a rotor number of 1 to 4.
  • the pH measured at 25 ° C. is 6 or less after the coating liquid is diluted with the same weight of distilled water.
  • the surface resistivity of the coating film formed by the coating solution of the present invention is 3,000 ⁇ / ⁇ or less.
  • the surface resistivity can be measured in accordance with JIS K 7194 after forming a 4 ⁇ m thick coating film on a glass plate, heating at 200 ° C. for 1 minute, cooling to 30 ° C.
  • the electrode plate for a power storage device of the present invention has an undercoat layer that is a coating film layer between the current collector and the electrode active material layer (electrode layer) using the coating liquid of the present invention described above. It is formed and arranged. Therefore, the said coating film layer contains the polymers containing PVA-type resin as a resin binder, polybasic acids, and an electroconductive material as an essential component.
  • the electrode plate for a power storage device of the present invention will be described.
  • the coating film layer has a surface resistivity measured by the above-described method of 3,000 ⁇ / ⁇ or less. That is, when a coating film having a surface resistivity exceeding 3,000 ⁇ / ⁇ is applied to the electrode plate, the internal resistance increases, making it difficult to obtain a battery and a capacitor with high efficiency and long life.
  • the surface resistivity of the coating film layer is preferably 3,000 ⁇ / ⁇ or less, more preferably 2,000 ⁇ / ⁇ or less.
  • the surface resistivity specifying the coating film in the present invention can be measured by the following method.
  • a coating solution for forming a coating film in the present invention was applied on a glass plate and then dried at 200 ° C. for 1 minute to form a coating film (dry film thickness 4 ⁇ m).
  • the surface resistivity of the coating film was determined by the four probe method according to JIS K 7194. In the present invention, the measurement was performed under the conditions of 25 ° C. and 60% relative humidity using Lorester GP, MCP-T610 manufactured by Mitsubishi Chemical Analytech.
  • the coating liquid for forming the coating film in the present invention contains at least a PVA-based resin, a polybasic acid, and a conductive material as essential components in the polar solvent, and if necessary, Other resins such as a (co) polymer having vinyl pyrrolidone as an essential constituent monomer having a hydroxyl group and / or an amino group, chitosan and chitosan derivatives are added and used.
  • polybasic acids used in the present invention polybasic acids themselves or their acid anhydrides are used, but some or all of the carboxyl groups of the polybasic acids, particularly ammonium salts, amine salts, polybasic acids. Also used are alkyl esters, amides, imides, amideimides of some or all of the carboxyl groups, derivatives of these compounds modified by one or more of N-hydroxysuccinimide, N-hydroxysulfosuccinimide, or derivatives thereof. be able to. These polybasic acid derivatives are preferably compounds that regenerate the polybasic acid when the coating film layer to be formed later is heated.
  • the electrode plate of the present invention forms and arranges a coating film, which is an undercoat layer, for example, between the current collector and the electrode using the coating liquid of the present invention.
  • the current collector used in the production of the electrode plate include, as the positive electrode current collector, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and the like.
  • the metal foil include copper.
  • the positive electrode current collector aluminum that has excellent corrosion resistance in the electrolytic solution, is lightweight, and is easy to machine is preferable.
  • the thickness of the metal foil is about 5 to 30 ⁇ m, preferably about 8 to 25 ⁇ m.
  • the surface of these current collectors can be previously treated with a coupling agent such as silane, titanate, or aluminum.
  • the coating liquid of the present invention is applied to the surface of the current collector in a range of 0.1 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m in dry thickness using various coating methods.
  • the coating film layer which is an undercoat layer is obtained by heating and drying.
  • various coating methods gravure coating, gravure reverse coating, roll coating, Meyer bar coating, blade coating, knife coating, air knife coating, comma coating, slot die coating, slide die coating, dip coating, and the like can be used.
  • the thickness of the coating film is less than 0.1 ⁇ m, it is difficult to apply uniformly, and when the thickness exceeds 10 ⁇ m, the flexibility of the coating film may be lowered.
  • the current collector is coated with the coating liquid of the present invention, and is subjected to heat drying after or after removing the medium by heating.
  • the polymer containing the PVA resin as the resin binder is sufficiently cross-linked, and the adhesion of the coating film layer, which is the undercoat layer, to the current collector and the electricity of the resin binder to the electrolyte solution
  • the heat treatment condition is less than 100 ° C. or less than 1 second, the adhesion of the undercoat layer to the current collector and the electrochemical stability of the resin binder to the electrolytic solution may not be satisfied.
  • an electrode layer is applied on the undercoat layer, which is a coating film formed by coating and drying as described above, to form an electrode plate.
  • the electrode layer is also preferable that the electrode layer is subjected to a press treatment using a metal roll, a heating roll, a sheet press machine or the like to form the electrode plate of the present invention.
  • the pressing conditions at this time if it is less than 500 kgf / cm 2, it is difficult to obtain uniformity of the electrode layer, and if it exceeds 7,500 kgf / cm 2 , the electrode plate itself including the current collector is damaged. Therefore, the pressing conditions are preferably in the range of 500 to 7,500 kgf / cm 2 .
  • the electrode plate of the present invention obtained as described above includes a conductive material moderately dispersed between the current collector and the electrode layer, and a PVA resin which is a resin binder cross-linked with a polybasic acid.
  • An undercoat layer composed of polymers and having excellent adhesion and flexibility is formed and disposed.
  • the undercoat layer has the characteristics as described above.
  • a secondary battery such as a non-aqueous electrolyte secondary battery can be manufactured using the positive and negative electrode plates of the present invention manufactured as described above.
  • a non-aqueous electrolyte obtained by dissolving a solute lithium salt in an organic solvent or an ionic liquid is used as the electrolyte.
  • solute lithium salt forming the nonaqueous electrolyte examples include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, and LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 3 F 7 , LiOSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 Organic lithium salts such as C 6 F 13 and LiOSO 2 C 7 F 15 are used.
  • inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, and LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiOS
  • Examples of the organic solvent used at this time include cyclic esters, chain esters, cyclic ethers, chain ethers and the like.
  • Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, vinylene carbonate, 2-methyl- ⁇ -butyrolactone, acetyl- ⁇ -butyrolactone, and ⁇ -valerolactone.
  • chain esters examples include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, and propionic acid alkyl ester. , Malonic acid dialkyl ester, acetic acid alkyl ester and the like.
  • cyclic ethers examples include tetrahydrofuran, alkyltetrahydrofuran, dialkylalkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane and the like.
  • chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether.
  • the ionic liquid is a liquid composed only of ions by a combination of an organic cation and an anion.
  • organic cation examples include dialkyl imidazolium cations such as 1-ethyl-3-methylimidazolium ion, 1,2-dimethyl-3, and the like.
  • Trialkylimidazolium cations such as propylimidazolium ion, tetraalkylammonium ions such as dimethylethylmethoxyammonium ion, alkylpyridinium ions such as 1-butylpyridinium ion, dialkylpyrrolidinium ions such as methylpropylpyrrolidinium ion, methylpropyl Examples include at least one dialkylpiperidinium ion such as piperidinium ion.
  • Examples of the anion which is a pair of these organic cations include AlCl 4 ⁇ , PF 6 ⁇ , PF 3 (C 2 F 5 ) 3 ⁇ , PF 3 (CF 3 ) 3 ⁇ , BF 4 ⁇ and BF 2 (CF 3 ).
  • 2 ⁇ , BF 3 (CF 3 ) ⁇ , CF 3 SO 3 ⁇ (TfO; triflate anion), (CF 3 SO 2 ) 2 N ⁇ (TFSI; trifluoromethanesulfonyl), (FSO 2 ) 2 N ⁇ (FSI) Fluorosulfonyl), (CF 3 SO 2 ) 3 C ⁇ (TFSM), and the like can be used.
  • the other structure of a battery is the same as that of the case of a prior art.
  • the coating film for an electrode plate for a capacitor contains a polymer such as the PVA resin, a polybasic acid, and a conductive material.
  • Examples of the capacitor manufactured using the coating liquid of the present invention include an electric double layer capacitor and a lithium ion capacitor.
  • the coating liquid used to form the coating film has a solid content per 100 parts by weight of the coating liquid, preferably 1 to 40. Part by mass, more preferably 1 to 20 parts by mass, still more preferably 5 to 10 parts by mass. If the amount of the polymer is too small, the coating film component tends to fall off from the coating film layer. Conversely, if the amount is too large, the conductive material may be covered with the polymer and the internal resistance of the electrode plate may increase. .
  • the above-described tribasic or higher polybasic acids and acid anhydrides thereof are preferable from the viewpoint of the crosslinkability of the polymers used as the resin binder.
  • These polybasic acids are mixed and used in the coating solution.
  • the amount of the polybasic acid used in the coating solution used for forming the coating film is 1 to 300 per 100 parts by mass of the polymer. It is more preferably 10 to 200 parts by mass.
  • the amount of the polybasic acid used is less than 1 part by mass, the crosslinking density of the crosslinked polymer is low, the adhesion of the formed coating film layer to the current collector and the insolubility of the crosslinked polymer in the electrolyte solution, non- On the other hand, it is insufficient in terms of swellability and electrochemical stability. On the other hand, if the amount used exceeds 300 parts by mass, the flexibility of the formed film or coating film layer is lowered and it is uneconomical.
  • Conductive carbon such as acetylene black, ketjen black, carbon black, carbon nanofiber, and carbon nanotube is used as the conductive material to be included in the coating liquid used when manufacturing the capacitor electrode plate.
  • the electrical contact of the coating film is further improved, the internal resistance of the capacitor is lowered, and the capacitance density can be increased.
  • the amount of the conductive material used is usually 0.1 to 20 parts by mass, preferably 2 to 15 parts by mass with respect to 100 parts by mass of the coating liquid.
  • the coating solution used when manufacturing the electrode plate for a capacitor uses a solution obtained by mixing a polymer solution such as a PVA resin, a polybasic acid, a conductive material, and other additives. Before coating, it is preferable to process the coating solution by physical processing means.
  • processing means using a bead mill, ball mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, Hobart mixer and the like can be used.
  • the conductive material is first mixed using a mixer such as a crusher, a planetary mixer, a Henschel mixer, an omni mixer, etc., and then a polymer solution that is a resin binder is added to make it uniform.
  • a method of mixing is also preferable. By adopting this method, a uniform coating solution can be easily obtained, and a better capacitor electrode plate can be obtained.
  • the electrode plate for a capacitor of the present invention is formed by forming a coating film layer between the current collector and the electrode layer, and placing the coating film layer as an undercoat layer.
  • a material having conductivity and electrochemical durability is used as the current collector. Among these, from the viewpoint of heat resistance, metal materials such as aluminum, titanium, tantalum, stainless steel, gold, and platinum are preferable, and aluminum and platinum are particularly preferable.
  • the shape of the current collector is not particularly limited, but usually a sheet-like one having a thickness of about 0.001 to 0.5 mm is used.
  • the method for forming the coating film layer is not particularly limited.
  • a coating solution for a capacitor electrode is applied between the current collector and the electrode layer, and dried to form a coating film layer between the current collector and the electrode layer. It is a method of forming.
  • the application method of the coating liquid include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, and a spray coating method.
  • the viscosity of the coating liquid used in the above case varies depending on the type of coating machine and the shape of the coating line, but is usually 10 to 100,000 mPa ⁇ s, preferably 50 to 50,000 mPa ⁇ s, More preferably, it is 100 to 20,000 mPa ⁇ s.
  • the amount of the coating liquid to be applied is not particularly limited, but the thickness of the coating film layer formed after drying and removing the solvent is usually 0.05 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m. The amount is common.
  • the drying method and drying conditions of the coating film layer are the same as those in the battery electrode plate.
  • the capacitor of the present invention having the above electrode plate can produce an electric double layer capacitor or a lithium ion capacitor according to a conventional method using the above electrode plate, electrolytic solution, separator and other components. Specifically, for example, it can be manufactured by stacking electrode plates through a separator, winding the plate according to the shape of the capacitor, folding the plate into a container, injecting the electrolyte into the container, and sealing.
  • the electrolytic solution is not particularly limited, but a nonaqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent is preferable.
  • a nonaqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent is preferable.
  • any conventionally known electrolyte can be used, and examples thereof include tetraethylammonium tetrafluoroborate, triethylmonomethylammonium tetrafluoroborate, and tetraethylammonium hexafluorophosphate.
  • the electrolyte for the lithium ion capacitor include lithium salts such as LiI, LiClO 4 , LiAsF 6 , LiBF 4 , and LiPF 6 .
  • the solvent for dissolving these electrolytes is not particularly limited as long as it is generally used as an electrolytic solution solvent.
  • Specific examples include carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate; lactones such as ⁇ -butyrolactone; sulfolanes; nitriles such as acetonitrile. These are used alone or as a mixed solvent of two or more. can do. Of these, carbonates are preferred because of their high withstand voltage.
  • the concentration of the electrolytic solution is usually 0.5 mol / L or more, preferably 0.8 mol / L or more.
  • separator a known material such as a microporous film or nonwoven fabric made of polyolefin such as polyethylene or polypropylene; a porous film generally made of pulp called electrolytic capacitor paper; Alternatively, an inorganic ceramic powder and a resin binder may be dispersed in a solvent, applied onto the electrode layer, and dried to form a separator. A solid electrolyte or a gel electrolyte may be used instead of the separator. Moreover, as for other materials such as a container, any of those used for ordinary capacitors can be used.
  • 1,2,3-propanetricarboxylic acid was abbreviated as PTC
  • 1,2,3,4-butanetetracarboxylic acid was abbreviated as BTC
  • organic solvents methyl alcohol was abbreviated as MeOH
  • ethyl alcohol as EtOH
  • isopropyl alcohol as IPA
  • NMP N-methyl-2-pyrrolidone
  • Example 1-1 To 85 parts of ion-exchanged water, 10 parts of unmodified PVA [manufactured by Kuraray Co., Ltd., Kuraray Poval 117 (degree of saponification 99%, degree of polymerization 1,700)] and 5 parts of BTC were added, and then at 95 ° C. for 2 hours. By stirring and dissolving, 100 parts of a polymer solution for coating solution was prepared.
  • unmodified PVA manufactured by Kuraray Co., Ltd., Kuraray Poval 117 (degree of saponification 99%, degree of polymerization 1,700)
  • Examples 1-2 to 1-18> As shown in Table 1, types and masses of unmodified and / or modified PVA, unmodified and / or modified EVOH, types and masses of vinylpyrrolidone polymers and / or chitosan polymers, types of polybasic acids and A polymer solution for a coating solution used in the present invention in which the mass, the type and mass of the aqueous medium were changed was prepared in the same manner as in Example 1-1.
  • Example 1 The conductive coating solution used in this example was produced by the following method.
  • the conductive coating liquid was obtained by stirring and mixing with a planetary mixer at a rotation speed of 60 rpm for 120 minutes at a compounding ratio of 10 parts of acetylene black as a conductive material and 90 parts of the coating liquid of Example 1-1 in Table 1 above. It was.
  • the viscosity of the obtained conductive coating liquid was measured with a B-type rotational viscometer (25 ° C., 60 rpm, rotor No. 4), the slurry viscosity was 2,110 mPa ⁇ s and the solid content was 23.5%. It was.
  • a conductive coating solution was coated on one side of the substrate with a comma roll coater using a current collector made of aluminum foil having a thickness of 20 ⁇ m as the substrate. Then, it is dried in an oven at 110 ° C. for 2 minutes, further dried in an oven at 180 ° C. for 2 minutes to remove the solvent and crosslink the polymer component, and the coating film having a dry film thickness of 1 ⁇ m on the current collector Formed.
  • the coating film layer formed with the above mesh is 1 as a supporting salt in a mixed solvent in which EC (ethylene carbonate): PC (propylene carbonate): DME (dimethoxyethane) is blended at a volume ratio of 1: 1: 2. It was immersed in a solution in which molar LiPF 6 was dissolved at 70 ° C. for 72 hours. The state of the subsequent coating film layer was visually observed and evaluated. The evaluation criteria are shown in Table 2 as those having no change and having the solubility / swellability “good” and those having the coating film layer peeled or swollen as the solubility / swellability “bad”.
  • the conductivity of the coating film layer formed as described above was evaluated as follows. First, the coating solution was applied onto a glass plate with a comma roll coater, and then dried in an oven at 200 ° C. for 1 minute to form a conductive coating film (dry film thickness 4 ⁇ m). Next, the surface resistivity of the obtained coating film was determined by a four-probe method according to JIS K 7194. The measurement was performed under the conditions of 25 ° C. and 60% relative humidity using a Lorester GP, MCP-T610 manufactured by Mitsubishi Chemical Analytech.
  • Examples 2 to 16, Comparative Examples 1 and 2 The same as in Example 1 except that the type and mass of the polymer solution for coating liquid in Example 1-1 and the type and usage of the conductive material in Example 1 were changed to the types and usages shown in Table 2.
  • a coating film layer was prepared using each conductive coating solution and the coating solution.
  • the viscosity 25 degreeC, 60 rpm, the rotor at the time of a measurement selects suitably according to a viscosity, and uses
  • the dissolution / swellability, adhesion, and surface resistivity were examined in the same manner as in Example 1, and the evaluation results are shown in Table 2.
  • a 5% NMP solution (PVDF solution) of polyvinylidene fluoride was used as a coating solution.
  • Table 3 shows the compositions of the polymer solutions for various coating solutions used in the examples and comparative examples.
  • the polar solvents used in the polymer solutions for various coating solutions are N, N-dimethylformamide for DMF, N, N-dimethylacetamide for DMAc, and 1,3-dimethyl-2-imidazolidinone for DMI. did.
  • Example 2-1> After 5 parts of unmodified polyvinyl alcohol [Kuraray Poval 420, Kuraray Co., Ltd., saponification degree 80%, polymerization degree 2,000] is dispersed in 92 parts of DMF, 3 parts of pyromellitic anhydride is added to the dispersion.
  • the polymer solution for coating solution containing 100 parts of unmodified polyvinyl alcohol was prepared by stirring and dissolving at 50 ° C. for 2 hours.
  • Reference example 1 A coating solution containing the conductive material used in this reference example was produced by the following method. The mixture ratio of 7 parts of acetylene black as a conductive material and 93 parts of the polymer solution for coating liquid of Example 2-1 in Table 3 above was stirred and mixed at a rotation speed of 60 rpm for 120 minutes with a planetary mixer. A coating solution was obtained.
  • the coating film layer in which the above-mentioned mesh is formed is 1 mol as a supporting salt in a mixed solvent in which EC (ethylene carbonate): PC (propylene carbonate): DME (dimethoxyethane) is mixed at a volume ratio of 1: 1: 2.
  • a coating solution is applied on the glass plate with a comma roll coater, and then dried in an oven at 200 ° C. for 1 minute, and then the conductive coating film. (Dry film thickness 4 ⁇ m) was formed.
  • the surface resistance value of the obtained coating film was determined by a four-probe method according to JIS K 7194. The measurement was performed under the conditions of 25 ° C. and 60% relative humidity using a Lorester GP, MCP-T610 manufactured by Mitsubishi Chemical Analytech.
  • Comparative Examples 4 and 5 A coating film was prepared in the same manner as in Reference Example 1 except that the coating solution polymer solution described in Table 4 below was used instead of the coating solution polymer solution of Example 2-1 in Reference Example 1. The adhesion, solubility / swellability, and surface resistance were examined, and the results shown in Table 4 below were obtained. In Comparative Example 5, styrene butadiene copolymer latex (using sodium carboxymethyl cellulose as a thickener) was used.
  • Example 17 (positive electrode plate, negative electrode plate, battery) (Positive electrode plate)
  • a positive electrode solution containing a positive electrode active material was prepared by the following method.
  • As a material of the positive electrode solution 90 parts of LiCoO 2 powder having a particle diameter of 1 to 100 ⁇ m, 5 parts of acetylene black as a conductive assistant, and 50 parts of 5% NMP solution (PVDF solution) of polyvinylidene fluoride as a binder are used.
  • the mixture was mixed and stirred for 120 minutes at a rotational speed of 60 rpm with a planetary mixer to obtain a positive electrode solution containing a slurry-like positive electrode active material.
  • the surface of the coating film layer of Example 1 was coated with a comma roll coater, dried in an oven at 110 ° C. for 2 minutes, and further dried in an oven at 180 ° C. for 2 minutes.
  • the solvent was removed to obtain a positive electrode composite layer in which an active material layer having a dry film thickness of 100 ⁇ m was formed on the coating film layer.
  • the positive electrode composite layer obtained by the above method was pressed under the condition of 5,000 kgf / cm 2 to make the film uniform.
  • aging was performed in a vacuum oven at 80 ° C. for 48 hours to sufficiently remove volatile components (such as a solvent and unreacted polybasic acid), and a positive electrode plate was obtained.
  • Example 2 (Negative electrode plate) Using the coating liquid of Example 1, using a copper foil current collector as a base, coating the coating liquid on one side of the base with a comma roll coater, followed by drying in an oven at 110 ° C. for 2 minutes, It dried for 2 minutes in 180 degreeC oven, the solvent was removed, and the resin binder was bridge
  • a negative electrode solution containing a negative electrode active material was prepared by the following method.
  • a material for the negative electrode solution 90 parts of carbon powder obtained by pyrolyzing coal coke at 1,200 ° C., 5 parts of acetylene black as a conductive additive, and 5% NMP solution of polyvinylidene fluoride as a binder (PVDF Solution)
  • PVDF Solution NMP solution of polyvinylidene fluoride as a binder
  • the surface of the coating film layer was coated with a comma roll coater, dried in an oven at 110 ° C. for 2 minutes, and further dried in an oven at 180 ° C. for 2 minutes. And a negative electrode composite layer in which an active material layer having a dry film thickness of 100 ⁇ m was formed on the coating film layer was obtained.
  • the negative electrode composite layer obtained by the above method was pressed under the condition of 5,000 kgf / cm 2 to make the film uniform. Next, aging was performed in a vacuum oven at 80 ° C. for 48 hours to sufficiently remove volatile components (such as a solvent and unreacted polybasic acid) to obtain a negative electrode plate.
  • the battery From the polyolefin film (polypropylene, polyethylene or copolymer thereof) having a three-dimensional pore structure (spongy) wider than the positive electrode plate, using the positive electrode plate and the negative electrode plate obtained above.
  • the electrode body was first constructed by winding it in a spiral through a separator. Next, this electrode body was inserted into a bottomed cylindrical stainless steel container also serving as a negative electrode terminal, and a battery with an AA size and a rated capacity of 500 mAh was assembled.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DME dimethyl methoxyethane
  • a charge / discharge measuring device For the measurement of battery characteristics, a charge / discharge measuring device was used, and each cell was charged at a temperature of 25 ° C. with a current value of a charging current of 0.2 CA, and charged from the charging direction to a battery voltage of 4.1 V. After 10 minutes of rest, the battery was discharged at the same current until it reached 2.75 V. After 10 minutes of rest, 100 cycles of charge / discharge were repeated under the same conditions to measure charge / discharge characteristics. When the charge / discharge capacity value at the first cycle was set to 100, the charge / discharge capacity value at the 100th time (charge / discharge capacity retention rate) was 99%.
  • Example 18 to 22 Reference Example 4, Comparative Example 6 (positive electrode plate, negative electrode plate, battery)
  • the coating liquid and coating film shown in Table 5 below were used in place of the coating liquid and coating film of Example 1 used for the production of the positive electrode plate and the negative electrode plate used in Example 17.
  • Example 23 (Capacitor) Using the coating liquid of Example 1, using a current collector made of an aluminum foil having a thickness of 20 ⁇ m as a base, coating the coating liquid on one side of the base with a comma roll coater, and then in an oven at 110 ° C., 2 The coating was dried for 2 minutes in an oven at 180 ° C. for 2 minutes to remove the solvent and crosslink the resin binder to form a coating film layer having a dry film thickness of 0.5 ⁇ m on the current collector.
  • an electrode solution containing an active material was produced by the following method.
  • a material for the electrode solution 100 parts of high-purity activated carbon powder having a specific surface area of 1,500 m 2 / g and an average particle diameter of 10 ⁇ m and 8 parts of acetylene black as a conductive material are charged into a planetary mixer, A polyvinylidene fluoride NMP solution was added to 45% and mixed for 60 minutes. Then, it diluted with NMP so that solid content concentration might be 42%, and also mixed for 10 minutes, and obtained the electrode solution.
  • This electrode solution was applied onto the coating film layer using a doctor blade, and dried at 80 ° C. for 30 minutes with a blow dryer. Thereafter, pressing was performed using a roll press machine to obtain a polarizable electrode plate for a capacitor having a thickness of 80 ⁇ m and a density of 0.6 g / cm 3 .
  • Two sheets of capacitor polarizable electrode plates manufactured as described above were cut out into a circle having a diameter of 15 mm, and dried at 200 ° C. for 20 hours.
  • the electrode layer surfaces of the two electrode plates were opposed to each other, and a circular cellulose separator having a diameter of 18 mm and a thickness of 40 ⁇ m was sandwiched between them.
  • This was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the container is sealed, and the diameter is 20 mm.
  • a coin-type capacitor having a thickness of about 2 mm was manufactured.
  • As the electrolytic solution a solution in which tetraethylammonium tetrafluoroborate was dissolved in propylene carbonate at a concentration of 1 mol / liter was used. Table 6 shows the results of measuring the capacitance and internal resistance of the capacitor thus obtained.
  • Examples 24-28 (capacitors) Instead of the coating liquid of Example 1 used in Example 23, an electrode plate and a capacitor were prepared in the same manner as in Example 23, except that the coating liquid described in Table 4 below was used. Evaluated. The results are shown in Table 6.
  • Comparative Example 7 (capacitor) Instead of the coating solution of Example 1 used in Example 23, an electrode plate and a capacitor were prepared in the same manner as in Example 23 except that the coating solution of Comparative Example 3 was used, and each characteristic was evaluated. . The results are shown in Table 6.
  • the internal resistance and capacitance in Table 6 below were measured and evaluated as follows.
  • the obtained capacitor was measured for capacitance and internal resistance at a current density of 20 mA / cm 2 , and evaluated according to the following evaluation criteria based on Comparative Example 7.
  • Capacitance evaluation criteria A: The capacitance is 20% or more larger than that of Comparative Example 7. B: Capacitance larger than Comparative Example 7 by 10% or more and less than 20%. C: The capacitance is equal to or less than that of Comparative Example 7. (Evaluation criteria for internal resistance) A: Internal resistance is 20% or less smaller than that of Comparative Example 7. B: The internal resistance is smaller than Comparative Example 7 by 10% or more and less than 20%. C: The internal resistance is equal to or less than that of Comparative Example 7.
  • PVA and / or EVOH which is a resin binder with a low environmental load
  • a coating liquid for power storage devices such as secondary batteries and capacitors.
  • Certain conductive materials (3) Three components of polybasic acids having a resin curing function as essential components, and by using an aqueous slurry containing these components in specific component ratios, excellent environmental performance and film characteristics Provided is a coating solution for a power storage device.
  • a coating film (thin film) which is an undercoat layer having excellent adhesion and solvent resistance with respect to the surface of a metal material such as an aluminum material is disposed between the current collector and the electrode layer.
  • the electrode layer has excellent adhesion and electrolytic solution resistance to a current collector made of an aluminum foil or copper stay, and has improved contact resistance with the current collector.
  • An electrode plate for a power storage device such as a polarizable electrode plate for power storage and a power storage device including them are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Paints Or Removers (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

 本発明の目的は、環境に対する負荷の少ない水系の塗工液を用いて、集電体と電極層の間に塗工膜を形成させ、この塗工膜を耐溶剤性や電気的特性に優れたアンダーコート層として集電体と電極層との間に配置することにより、電極層がアルミニウム箔や銅箔などからなる集電体に対して密着性と耐電解液性が優れており、かつ集電体との接触抵抗も改良されている蓄電装置用電極板及び該電極板を含む蓄電装置の提供を可能とすることにある。 本発明は、蓄電装置の電極板に塗工膜層を形成するための水系の電極板用塗工液であって、極性溶媒である水を含む水系媒体に、鹸化度が、40%以上であって、かつ、未変性或いは変性ポリビニルアルコール、未変性或いは変性エチレンビニルアルコール共重合体から選らばれる少なくとも1種と、導電性材料と、特定の多塩基酸又はそれらの酸無水物と、を含み、導電性材料1質量部に対して、樹脂バインダーが0.1~3質量部、多塩基酸類が0.01~6質量部であり、かつ、塗工液の固形分が、0.02質量%~40質量%である水系の電極板用塗工液である。

Description

電極板用の水系塗工液、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置
 本発明は、集電体と電極活物質層との間に配置する塗工膜の形成用塗工液、蓄電装置用電極板及び該電極板を含む蓄電装置に関する。更に詳しくは、二次電池やキャパシタなどの蓄電装置において、集電体と電極活物質層(以下、電極層と呼ぶ)との間に耐溶剤性に優れた塗工膜を特有の塗工液で形成して配置することにより、集電体と電極層の密着性を高めるとともに、内部抵抗を低減し、サイクル特性を向上するのにも有効な蓄電装置用電極板及び該電極板を含む蓄電装置の提供を目的とする。該塗工液は、水系であるので環境に優しく、しかも分散性や耐溶剤性に優れた塗工膜の形成を可能にする。
 近年、電子機器や通信機器の小型化及び軽量化が急速に進んでおり、これらの駆動用電源として用いられる二次電池などの蓄電装置に対しても小型化及び軽量化の要求が強くなってきている。これらの要求に対して、従来のアルカリ蓄電池の代わりに、リチウムイオン二次電池に代表されるような高エネルギー密度でかつ高電圧を有する二次電池が開発され、普及するとともに、更なる高容量化を目指した蓄電装置又はその部材が提案されている(特許文献1及び2)。
 他方、電気自動車やハイブリッド車両などの用途向けに蓄電装置の大型化も望まれているが、実用化のためには課題も多い。例えば、リチウムイオン電池の場合、可燃性物資である電解質の増大に対応した安全性の具備や実用に供することができる出入力特性の確保が挙げられる。したがって、安全性の向上と並んで高容量化や高出力化が今後解決されるべき蓄電装置の課題となっている。
 蓄電装置の高容量化や高出力化を実現するためには、内部抵抗を低減させることが有効であるが、そのためには電極層、集電体、電解質層などの各層界面での電荷移動現象の制御が重要であり(非特許文献1及び2)、様々な提案もなされている。
 例えば、リチウムイオン電池の黒鉛負極界面では、電解液の分解や支持塩であるリチウム系化合物の分解などにより形成されるSEI膜と呼ばれる表面抵抗皮膜が電池の性能維持に重大な影響を及ぼすが、カテコールカーボネートとその誘導体を電解液に添加することによりSEI膜の厚さが薄くなり、皮膜抵抗が低減される(非特許文献2)。
 又、リチウムイオン電池では、フッ素を含有する電解液中でアルミニウム正極集電体はその表面にバリヤ皮膜を形成して不働態化し、この不働態皮膜がサイクル特性に影響を及ぼすが、アルミニウム集電体を熱処理し、これに超微粒炭素分散液を塗布することにより、不働態皮膜に導電性を付与することに成功している(非特許文献3)。
 一方、安全性向上については、安全性を具備した蓄電装置として不燃性電解質を用いた全固体リチウムイオン電池が注目されている。しかし、全固体リチウムイオン電池は、未だ出力性能が十分ではないという欠点を有している。最近、この欠点を解決するために、出力の律速段階である電極層と電解質層の界面に関係する諸問題を検討した結果、電極層と電解質層の間に酸化物固体電解質を緩衝層として介在させる試みがなされ、出力性能が大幅に向上したことが報告されている(非特許文献4)。
 又、固体電解質を有する蓄電装置では、導電率が液体の電解質に近いフッ素系ポリマーが用いられている。しかし、フッ素系ポリマーは、集電体金属とよく密着しないという欠点を有しているので、この欠点を解決し、加えて優れたサイクル特性をも維持することを目的として、酸変性ポリオレフィンで集電体をコーティングする提案が開示されている(特許文献3)。
 しかしながら、これらの提案は、解決すべき課題が特定の条件下の課題に絞られ、限定的、個別的解決策が多い。その理由は、蓄電装置における各層間の界面での電荷移動やイオン移動の現象に、未だ不明な点が多い(非特許文献3)ことによると思われる。本発明者らは、このような状況下で、実用性を第一の要点として考慮すると、視点を広げ、蓄電装置における各構成単位間の現象を、界面を含む一つのシステムとして捉え、このシステムの妥当性を検討し、課題解決を図ることが必要であると考えるに至った。
 蓄電装置における、主要な「界面を含むシステム」として電極板がある。電極板は、蓄電装置の性能に大きく影響を及ぼし、電極層や集電体などの単位部材を一体化した電極部材であるが、電極板に関しては、充放電サイクル寿命を延長させ、かつ、高エネルギー密度化のために薄膜大面積化を図ることが提案されている。例えば、リチウムイオン電池について、特許文献4や特許文献5などに記載されているように、金属酸化物、硫化物、ハロゲン化物などの正極活物質粉末に、導電性材料及びバインダーを適当な溶媒に分散溶解させて、ペースト状の塗工液を調製し、アルミニウムなどの金属箔からなる集電体を基体とし、該基体表面に上記塗工液を塗布して塗工膜層を形成して得られる正極電極板が開示されている。
 又、分極性電極板と電解質との界面で形成される電気二重層を利用したキャパシタは、メモリバックアップ電源として使用され、又、電気自動車用電源などの大出力を必要とする用途への適用も注目され、大出力のために高い静電容量と低い内部抵抗の両立が求められている。上記キャパシタ用の電極板は、上記電池の負極板と同様に、一般にバインダーと導電性材料などを混合した塗工液を集電体に塗布及び乾燥して製造されている。
 上記リチウムイオン電池及びキャパシタなどの蓄電装置の電極板用塗工液に使用するバインダーとしては、例えば、ポリフッ化ビニリデンなどのフッ素系樹脂、又はシリコーン・アクリル共重合体が用いられている。又、負極電極板(電池)及び分極性電極板(キャパシタ)は、炭素質材料などの活物質に、バインダーを適当な溶媒に溶解させたものを加えて、ペースト状の塗工液を調製し、これを集電体に塗布して得られる。上記塗布型の電極板において、塗工液の調製に用いられるバインダーは、非水電解液に対して電気化学的に安定であって、電池又はキャパシタの電解液へ溶出しないこと、電解液によって大きく膨潤しないこと、更には塗布することから何らかの溶媒に可溶であることが必要である。
 一方、集電体の素材金属であるアルミニウムなどの金属材料表面の保護皮膜を、各種樹脂の溶液を塗布して形成することが行われているが、形成される皮膜の金属表面に対する密着性は優れているが、該皮膜は有機溶剤に対する耐久性が不十分であるという問題がある。
 更に、集電体であるアルミニウム箔や銅箔などの表面に塗布する前記の塗工液を集電体に塗布して得られる電池及びキャパシタの電極板において、塗布及び乾燥されて形成される塗工膜層は、集電体に対する密着性及び可撓性が不十分であり、集電体に対する接触抵抗が大であり、又、電池やキャパシタの組立工程及び充放電時に、塗工膜層の剥離、脱落、ひび割れなどが生じるという問題があった。
 従来の電池及びキャパシタにおいては、上記のように電極層と集電体(基板)との密着性不良、電極層と基板との界面の高抵抗という問題があった。これらの課題を解決するために種々の塗工液が提案されているが、これらの塗工液により形成された塗工膜層により、上記密着性の問題は改善されるものの、電極層と集電体との間の抵抗がより一層高くなり、課題の解決には至っていない。近年、上記のリチウムイオン電池や電気二重層キャパシタといった蓄電装置並びにそれらの関連製品に対しても、環境に配慮した製品作りが求められるようになってきており、環境に対して負荷の少ない成分、材料、製造方法を用いた塗工液や蓄電装置が求められている。
特開2006-310010号公報 特開2007-95641号公報 特開平11-297332号公報 特開昭63-10456号公報 特開平3-285262号公報
安部武志、小久見善八:「リチウムイオン電池における界面電荷移動反応」、表面科学、第27巻、第10号、第609頁~第612頁、2006年 吉武秀哉、石原達己、芳尾真幸:「リチウムイオン電池黒鉛負極界面の制御」、表面技術、第53巻、第12号、第887頁~第889頁、2002年 仁科辰夫、立花和宏、遠藤孝志、尾形健明:「リチウムイオン二次電池系のアルミニウム集電体上に生成する不働態皮膜の充放電特性に対する影響」、電池技術、第15巻、第28頁~第40頁、2003年 高田和典:「全固体リチウムイオン電池の高出力化」、電子情報通信学会技術研究報告、第107巻、第493号、第43頁~第47頁、2008年
 本発明は上記の事情に鑑みてなされたものである。本発明の目的は、上記従来技術の問題点を克服し、環境に対する負荷の少ない水系の塗工液を用いて、集電体と電極層の間に塗工膜を形成させ、この塗工膜を耐溶剤性や電気的特性に優れたアンダーコート層として集電体と電極層との間に配置することにより、電極層がアルミニウム箔や銅箔などからなる集電体に対して密着性と耐電解液性が優れており、かつ集電体との接触抵抗も改良されている蓄電装置用電極板及び該電極板を含む蓄電装置の提供を可能とすることにある。
 上記の目的は、下記の本発明によって達成される。本発明者らは、上記の目的を達成すべく鋭意研究の結果、例えば、集電体と電極層との間に、特定の樹脂バインダー、導電性材料、多塩基酸類(多塩基酸の誘導体を含む)を必須成分とする塗工膜を配置することが有効であることを見出した。そして、このような蓄電装置の電極板に塗工膜層を形成するための塗工液として好適な構成を見出して、本発明を完成するに至った。
 すなわち、本発明は、蓄電装置の電極板に塗工膜層を形成するための水系の電極板用塗工液であって、少なくとも極性溶媒である水を含む水系媒体に、(1)樹脂バインダーとして、鹸化度が、40%以上であって、かつ、未変性ポリビニルアルコール、変性ポリビニルアルコール、未変性エチレンビニルアルコール共重合体及び変性エチレンビニルアルコール共重合体からなる群から選らばれる少なくとも1種と、(2)導電性材料と、(3)1,2,3,4-ブタンテトラカルボン酸、ピロメリット酸、クエン酸、エチレンジアミンテトラ酢酸、1,2,3-プロパントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、トリメリット酸、1,4,5,8-ナフタレンテトラカルボン酸及び1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸からなる群から選ばれる少なくとも1種の多塩基酸又はそれらの酸無水物(以下、多塩基酸類とも呼ぶ)と、を含み、上記(1)~(3)の成分比率が、(2)の導電性材料1質量部に対して、それぞれ、(1)の樹脂バインダーが0.1~3質量部、(3)の多塩基酸類が0.01~6質量部であり、かつ、塗工液の固形分が、0.02質量%~40質量%であることを特徴とする塗工液を提供する。
 上記本発明の蓄電装置用塗工液においては、下記に挙げる形態とすることが好ましい。更に、ビニルピロリドンを構成モノマーとするホモポリマー(ポリビニルピロリドン)、ビニルピロリドンを必須構成モノマーとする共重合体、キトサン及びキトサンの誘導体からなる群から選ばれる少なくとも1種を含むこと;前記多塩基酸が、1,2,3,4-ブタンテトラカルボン酸又はピロメリット酸又はそれらの酸無水物のいずれかであること;硝子板の上に厚さ4μmの塗工膜を形成し、200℃で1分加熱した後、30℃まで冷却し、JIS K 7194で表面抵抗率を測定した場合、その値が3,000Ω/□以下であること;塗工液の25℃における粘度をB型回転粘度計、回転数60rpm、ローターナンバー2~4で測定した時の粘度が100~10,000mPa・sであり、且つ、塗工液を同重量の蒸留水で希釈した後、25℃で測定したpHが6以下であること;導電性材料がアセチレンブラック、ケッチェンブラック、カーボンナノファイバー、カーボンナノチューブ及びその他の炭素系導電助剤のいずれかを含むこと;前記水系媒体中の水以外の媒体が、メチルアルコール、エチルアルコール、イソプロピルアルコール、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、N,N-ジメチルホルムアミドからなる群から選ばれる1種以上であること;60℃の空気で乾燥して得られる1μmの乾燥塗工膜が、沸騰水に可溶であり、かつ、上記乾燥塗工膜を更に150℃以上で30分以上加熱した後の塗工膜の質量をXとし、加熱した後、沸騰水で10分間煮沸した後の塗工膜の質量をYとした場合に、((X-Y)/X)×100≦5%の関係を満たすことが好ましい。
 又、本発明は、集電体と電極活物質層との間に、上記いずれかに記載の塗工液によって形成された塗工膜が配置されていることを特徴とする蓄電装置用電極板を提供する。
 上記本発明の蓄電装置用電極板においては、下記に挙げる形態とすることが好ましい。前記塗工膜が、100~250℃の熱処理によって形成されてなり、塗工膜の膜厚が、固形分換算にて0.1~10μmであること;前記集電体が、アルミニウム箔であり、電極活物質層が、正極活物質を含んでなること;前記集電体が、銅箔であり、電極活物質層が、負極活物質を含んでなること;前記集電体が、アルミニウム箔であり、電極活物質層が、分極性電極を含んでなることが好ましい。
 又、本発明は、集電体の表面に、上記いずれかに記載の塗工液を塗布して塗工膜を形成後、該塗工膜上に電極活物質層を形成することを特徴とする蓄電装置用電極板の製造方法を提供する。
 上記本発明の蓄電装置用電極板の製造方法においては、前記塗工膜を形成する際に、塗工液を塗布した後、媒体を加熱除去し、又は除去しながら、100℃以上250℃以下で、1秒以上60分間以下、加熱処理することが好ましい。
 又、本発明は、前記いずれかに記載の電極板を有してなることを特徴とする蓄電装置を提供する。蓄電装置としては、二次電池、更には非水リチウムイオン電池、キャパシタ、更には、キャパシタが電気二重層あるいはリチウムイオンキャパシタが挙げられる。
 本発明によれば、環境に対する負荷の少ないポリマーをバインダーとする水系の塗工液であるにもかかわらず、該塗工液によって、蓄電装置の電極板を構成する、例えば、集電体と電極層との間に、アルミニウム材料などの金属材料表面に対して密着性とともに耐溶剤性に優れたアンダーコート層となる塗工膜(薄膜)を配置することが可能になる。この結果、電極層が、アルミニウム箔や銅箔などからなる集電体に対して密着性及び耐電解液性に優れた状態で設けられ、かつ集電体との接触抵抗も改良されるので、特性に優れる電池用電極板やキャパシタ用分極性電極板などの蓄電装置用電極板、及びそれらを含む蓄電装置の提供が可能となる。
 次に好ましい実施の形態を挙げて本発明を更に詳細に説明する。
 本発明で樹脂バインダーとして使用する、ポリビニルアルコール(以下PVA)及び/又はエチレンビニルアルコール共重合体(以下EVOH)は、いずれも環境に対する負荷の少ないポリマーであり、従来のものに比べて、環境への影響は少なくなる。本発明者らは、これらの材料の中から特定の鹸化度のものを選択し、これに炭素系フィラー等の導電性材料と、樹脂硬化機能を有する多塩基酸類とを加え、更に、これらを特定の成分比率で含有させてなる水系スラリー組成物は、特に、蓄電装置の電極板に形成する塗工膜用の塗工液として有用であることを見出し、本発明を完成するに至った。すなわち、例えば、この塗工液を、蓄電装置の、集電体と電極層の間に塗布し、形成した塗工膜(薄膜)をアンダーコート層とすることで、先に挙げた本発明の顕著な効果が得られることを見出した。より具体的には、本発明者らは、環境に対する負荷の少ない本発明の塗工液を集電体の表面に、固形分換算にて、0.1~10μm、好ましくは0.1~5μm、更に好ましくは0.1~2μmの厚みに塗布して塗工膜層を形成し、アンダーコート層となし、その上に電池用正極電極層、電池用負極電極層、あるいは、電気二重層キャパシタ用の正極電極層や負極電極層を形成することにより、これらの電極層と集電体との間の抵抗を何ら高めることなく、むしろ抵抗を低くして、電極層と集電体との密着性を著しく向上させることができることを見いだして、本発明に至った。
 本発明では、蓄電装置の電極板に塗工膜層(アンダーコート層)を形成するための水系の塗工液、及び該塗工液により形成される塗工膜が集電体と電極層の間に配置されていることを特徴とする電池用電極板又はキャパシタ用電極板、及び該電極板を有することを特徴とする二次電池又はキャパシタを提供する。
 本発明では、樹脂バインダーとして、鹸化度が40%以上であって、かつ、未変性ポリビニルアルコール、変性ポリビニルアルコール、未変性エチレンビニルアルコール共重合体及び変性エチレンビニルアルコール共重合体からなる群から選らばれる少なくとも1種を用いるが、これによって、環境に対する負荷が低減されることに加えて、下記の効果が得られる。従来は、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、アクリル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンアクリル樹脂、スチレン-ブタジエン共重合体ゴムなどのバインダーが用いられているが、この場合には、従来は、電極層と集電体との密着性を向上させるために、例えば、アルミニウム箔の表面を化成処理することが必須であった。これに対し、本発明の塗工液を用いれば、このような煩雑かつ高コストの化成処理は不要であり、一層優れた密着性と低抵抗化を実現することができ、この結果、高効率かつ長寿命の電池及びキャパシタが提供される。
<塗工液>
 本発明の塗工液は、少なくとも極性溶媒である水を含む水系媒体中に、(1)鹸化度が、40%以上であるPVAやEVOH(以下PVA系樹脂)から選ばれる樹脂バインダー、(2)導電性材料及び(3)多塩基酸又はそれらの酸無水物(多塩基酸類)を含み、これらの(1)~(3)の成分比率が、(2)の導電性材料1質量部に対して、それぞれ、(1)の樹脂バインダーが0.1~3質量部、(3)の多塩基酸類が0.01~6質量部であり、かつ、塗工液の固形分が、0.02質量%~40質量%であることを特徴とする。以下、上記の成分について詳述するが、本発明の塗工液は、必要に応じて上記の樹脂バインダーに加えて、(4)ビニルピロリドン重合物、キトサンあるいはその誘導体を含有させることができる。
 従来より、セルロース、澱粉、キチン、キトサン、アルギン酸、PVA、EVOH、ポリアリルアミン、ポリビニルアミンなどの、その分子中に水酸基あるいはアミノ基を有するポリマー類は、アルミニウムなどの金属材料に優れた密着性を有する皮膜を与えることが知られている。しかし、該皮膜は、例えば、水やN-メチルピロリドンなどの極性溶媒により膨潤し、金属材料表面から容易に剥離するという課題がある。又、上記のポリマーを、電極板を製造するための塗工液のバインダーとして使用すると、形成される塗工膜層の集電体に対する密着性は優れているものの、エチレンカーボネートやプロピレンカーボネートなどの電池の電解液に対する耐久性が低いという課題があった。
 本発明者らは、上記したポリマー類の中でも環境に対して負荷の少ないPVA系樹脂に着目し、このPVA系樹脂から形成される皮膜の耐有機溶剤性を改善すべく検討した。その結果、PVA系樹脂を、多塩基酸類とともに水系媒体に加えて調製した塗工液は、金属材料表面に、優れた密着性と耐溶剤性を有する皮膜を形成することを見いだした。又、該PVA系樹脂をバインダーとして使用した上記構成の塗工液を塗布後、加熱して塗工膜層を形成すると、加熱乾燥時に、併用する多塩基酸類が上記PVA系樹脂の架橋剤として作用し、上記PVA系樹脂からなる皮膜が有機溶剤や電解液に対する溶解性・膨潤性がなくなり、金属材料表面や集電体に対して優れた密着性及び耐溶剤性を発揮するものとなることを見いだした。
(1)PVA系樹脂
 本発明に使用するPVAは、未変性PVAでも変性PVAでもよい。未変性PVAは、ポリ酢酸ビニルを鹸化することによって得られる公知の樹脂であり、本発明においては、公知のいずれの未変性PVAも使用できるが、鹸化度が40%以上のものを用いる。好ましくは鹸化度が70~100%のものを用いる。特に好ましくは、重合度300~5,000で、鹸化度が70~100%の未変性PVAを使用することが好ましい。以上の如き未変性PVAは、クラレポバール(クラレ社製)、ゴーセノール(日本合成化学工業社製)、デンカポバール(電気化学工業社製)、J-ポバール(日本酢ビ・ポバール社製)などの商品名で種々のグレードのものが市場から入手して使用できる。
 本発明で使用する変性PVAは、上記した未変性PVAに、水酸基、酢酸基以外の官能基を導入したものであり、カルボキシル基変性PVA、カルボニル基変性PVA、シラノール基変性PVA、アミノ基変性PVA、カチオン変性PVA、スルホン酸基変性PVA及びアセトアセチル基変性PVAなどが挙げられる。これらのPVA類の入手に際しては、例えば、ゴーセラン(スルホン酸基変性PVA)、ゴーセファイマーK(カチオン変性PVA)、ゴーセファイマーZ(アセトアセチル基変性PVA)、ゴーセナール(カルボキシル基変性PVA)(日本合成化学工業社製)、Dポリマー(カルボニル基変性PVA)、Aシリーズ(カルボキシル基変性PVA)(日本酢ビ・ポバール社製)、クラレCポリマー(カチオン変性PVA)(クラレ社製)などの商品名で種々の変性PVAが市場から入手して使用できる。
 本発明に使用するEVOHは、未変性EVOHでも変性EVOHでもよい。未変性EVOHは、エチレンと酢酸ビニルの共重合物を鹸化することによって得られる公知の樹脂であり、本発明においては、鹸化度が40%以上のEVOHを使用する。好ましくは鹸化度が70~100%のものを用いる。特に、エチレン共重合率が60モル%以下の共重合体、より好ましくは50モル%以下の共重合体、更に好ましくはエチレン共重合率が40モル%以下の未変性EVOHを使用する。鹸化度が40%未満では、集電体に対する密着性が低下するので好ましくない。その重合度が300~5,000のものを使用するとよい。以上の如き未変性EVOHは、エバール(登録商標:クラレ社製)などの商品名で、種々のエチレン共重合率のものが市場から入手できるので、これらを使用すればよい。
 本発明に使用できる変性EVOHは、例えば、特開平9-227633号公報に記載の製造方法に従って得ることができる。又、市場から直接入手して使用してもよい。
(2)導電性材料
 本発明の塗工液は、導電性材料を必須成分として含有している。本発明に使用される導電性材料としては、アセチレンブラック、ケッチェンブラック、黒鉛、ファーネスブラック、カーボンナノファイバー、単層あるいは多層カーボンナノチューブなどが挙げられる。これらの導電性材料を使用することにより、塗工膜の電気的接触が一段と向上し、電極層の内部抵抗が低くなり、かつ、容量密度を高くすることができる。
(3)多塩基酸類
 本発明の塗工液は、多塩基酸又はその酸無水物を必須成分として含有している。本発明で使用する多塩基酸類は、前記した樹脂バインダーとして使用するPVA系樹脂に対する架橋性の面から、3価以上の多塩基酸を用いることが好ましい。具体的には、下記のものからなる群から選ばれる少なくとも1種の多塩基酸又はそれらの酸無水物を用いる。
<3塩基酸>クエン酸、1,2,3-プロパントリカルボン酸、1,2,4-ブタントリカルボン酸、2-ホスホノ-1,2,4-ブタントリカルボン酸、トリメリット酸、1,2,4-シクロヘキサントリカルボン酸
<4塩基酸>エチレンジアミンテトラ酢酸、1,2,3,4-ブタンテトラカルボン酸、ピロメリット酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,4,5,8-ナフタレントリカルボン酸
<6塩基酸>1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸
 なお、本発明においては、上記以外でも、下記に挙げるようなその他の多塩基酸を併用してもよい。例えば、イソクエン酸、アコニット酸、ニトリロ三酢酸、ヒドロキシエチルエチレンジアミン三酢酸、カルボキシエチルチオコハク酸、トリメシン酸等の3塩基酸、エチレンジアミンN,N’-コハク酸、1,4,5,8-ナフタレンテトラカルボン酸、ペンテンテトラカルボン酸、ヘキセンテトラカルボン酸、グルタミン酸二酢酸、マレイン化メチルシクロヘキセンテトラカルボン酸、フランテトラカルボン酸、ベンゾフェノンテトラカルボン酸、フタロシアニンテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、シクロペンタンテトラカルボン酸などの単環式テトラカルボン酸類、ビシクロ[2,2,1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸などに代表されるビシクロ環、あるいはノルボルナン環、テトラシクロ環構造を持つ多環式テトラカルボン酸類等の4塩基酸、ジエチレントリアミン五酢酸等の5塩基酸、フタロシアニンポリカルボン酸、フィチン酸、ヘキサメタリン酸、ポリリン酸、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリマレイン酸及びそれらの共重合体、スチレン・マレイン酸共重合体、イソブチレン・マレイン酸共重合体、ビニルエーテル・マレイン酸共重合体、ペクチン酸、ポリグルタミン酸、ポリリンゴ酸、ポリアスパラギン酸、アクリル酸・マレイン酸・ビニルアルコール共重合体などが挙げられる。
(組成)
 本発明の塗工液は、水系媒体にPVA系樹脂と導電性材料、及び上記多塩基酸類を添加して混練することによって得られる。本発明の塗工液における上記各成分の添加割合は、導電性材料を1質量部とした場合、PVA系樹脂が0.1~3質量部、より好ましくは0.3~2質量部、多塩基酸類が0.01~6質量部、より好ましくは0.1~3質量部である。又、上記塗工液の固形分は全体量の100質量%に対して0.02質量%~40質量%以下、特に、0.02質量%~35質量%、より好ましくは0.1質量%~30質量%である。
 本発明の塗工液中における多塩基酸類の使用量は、上記PVA系樹脂を含むポリマー類100質量部当たり、1~300質量部程度であり、10~200質量部がより好ましい。上記多塩基酸類の使用量が1質量部未満であると、架橋の程度が不十分であり、架橋したPVA系樹脂の架橋密度が低く、形成されるアンダーコート層である塗工膜層の集電体に対する密着性、及び架橋PVA系樹脂の電解液に対する不溶解性、非膨潤性、電気化学的安定性といった点で不十分である。一方、上記使用量が300質量部を超えると、形成される皮膜あるいは上記塗工膜層の可撓性が低下するとともに、不経済である。
 本発明の塗工液における各成分の割合は、塗工液を100質量部とした場合、それぞれ下記の範囲で含有させることが好ましい。PVA系樹脂を含むポリマー類は、1~40質量部、より好ましくは1~20質量部、更に好ましくは5~10質量部とするとよい。多塩基酸が0.2~20質量部、より好ましくは2~10質量部及び導電性材料が0.1~30質量部、より好ましくは0.1~20質量部、更に好ましくは2~15質量部であることが好ましい。又、塗工液の固形分は1~35質量%であることが好ましい。
 上記において、PVA系樹脂を含むポリマー類の使用量が塗工液全体を100質量部とした場合に1質量部未満であると、形成される塗工膜層の強度及び集電体に対する密着性が不足する場合がある。一方、上記濃度が40質量部を超えると均一な溶液を得にくくなる。又、多塩基酸類の使用量が0.2質量部未満であると、形成される塗工膜層の強度、集電体に対する密着性及び電解液に対する電気化学的安定性が不足する場合がある。一方、多塩基酸類の使用量が20質量部を超えると、形成される上記塗工膜層の可撓性が低下する場合があるので好ましくない。
 又、本発明の塗工液における導電性材料の使用量は、用途によっても異なるが、塗工液全体を100質量部とした場合、0.1~30質量部である。導電性材料の使用量が0.1質量部未満であると、形成される塗工膜層の導電性が不足する場合がある。一方、導電性材料の使用量が30質量部を超えると、他の成分が不足し形成される塗工膜層の性能が低下する場合がある。
 本発明で使用する先に挙げたような多塩基酸類は、一般市販品をそのまま用いることができるが、必要に応じて精製してから使用してもよい。又、本発明で樹脂バインダーとして用いるPVA系樹脂溶液の製造において、PVA系樹脂及び多塩基酸類を、水系媒体に溶解するにあたり、水系媒体に添加する順番は、PVA系樹脂又は多塩基酸類のうちどちらを先にしても、同時としてもよい。溶解方法は室温攪拌でもよいが、必要に応じて加熱してもよい。80℃以上の加熱溶解が好ましい。
(4)その他の添加樹脂
 本発明の水系塗工液は、上記必須成分に加えて、ビニルピロリドンを構成モノマーとするホモポリマー(ポリビニルピロリドン)、あるいはビニルピロリドンを必須構成モノマーとする共重合体、キトサン、あるいはその誘導体を添加することができる。これらの添加物は1種類でもよいし、混合物でもよい。本発明者らの検討によれば、本発明の塗工液中に、更に、これらの成分を含有させることで、塗工液中における導電性材料の分散性を向上させたり、さらなる皮膜形成成分として機能することで、より良好な塗工膜の形成を可能にするといった効果が得られる。
 本発明で使用するビニルピロリドンを構成モノマーとするホモポリマー(ポリビニルピロリドン)は、安全性の高い非イオン性ポリマーであり、例えば、ポリビニルピロリドンK-30、ポリビニルピロリドンK-85、ポリビニルピロリドンK-90(日本触媒社製)、ピッツコール(第一工業製薬社製)などの商品名で種々のものを市場から入手して使用できる。又、ビニルピロリドンを構成モノマーとする重合体については、ビニルピロリドンと共重合可能なビニル基を有するモノマーとの共重合体であればいずれでもよく、例えば、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチルなどのアクリル酸のアルキルエステル、メタクリル酸メチル、メタクリル酸エチルなどのメタクリル酸のアルキルエステル、ジエチルアミノエチルアクリレートなどのアクリル酸のアミノアルキルエステル、メタクリル酸のアミノアルキルエステル、ヒドロキシエチルアクリレートなどのアクリル酸とグリコールとのモノエステル、ヒドロキシエチルメタクリレートなどのメタクリル酸とグリコールとのモノエステル、アクリル酸のアルカリ金属塩、メタクリル酸のアルカリ金属塩、アクリル酸のアンモニウム塩、メタクリル酸のアンモニウム塩、アクリル酸のアミノアルキルエステルの第4級アンモニウム誘導体、メタクリル酸のアミノアルキルエステルの第4級アンモニウム誘導体、ビニルメチルエーテル、ビニルエチルエーテル、酢酸ビニル、N-ビニルイミダゾール、N-ビニルアセトアミド、N-ビニルホルムアミド、N-ビニルカプロラクタム、N-ビニルカルバゾール、アクリルアミド、メタクリルアミド、N-アルキルアクリルアミド、N-メチロールアクリルアミドなどのビニルモノマーとビニルピロリドンとの共重合体が挙げられる。これらのビニルピロリドンを構成モノマーとする重合体の入手に際しては、例えば、ビニルピロリドン/ビニルアセテート/ビニルプロピオネート共重合体(ルビスコールVAP、BASF社製)、ビニルアセテート/クロトン酸/ビニルピロリドン共重合体(ルビセットCAP、BASF社製)、ビニルピロリドン/アクリレート共重合体(ルビフレックス、BASF社製)、ビニルピロリドン/ジメチルアミノエチルメタクリレートの4級化物(GAFQUAT、ISP社製)、メチルビニルイミダゾリウムクロリド/ビニルピロリドン共重合体(ルビコート、BASF社製)、ビニルピロリドン/酢酸ビニル共重合体(ルビスコールVA、BASF社製)、ビニルピロリドン/ジメチルアミノエチルメタクリレート共重合体(コポリマー937、ISP社製)、ビニルカプロラクタム/ビニルピロリドン/ジメチルアミノエチルメタクリレート共重合体(コポリマーVC713、ISP社製)などの商品名で種々の重合体が市場から入手して使用できる。
 本発明で使用するキトサン及びキトサン誘導体は、市場から入手してそのまま使用できるが、水系媒体に対する溶解性の点から、キトサン誘導体がより好ましい。キトサン誘導体としては、例えば、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、ヒドロキシブチルヒドロキシプロピルキトサン、カルボキシメチルキトサン、サクシニルキトサン、グリセリル化キトサン、カチオン化キトサンなどが挙げられる。
 ビニルピロリドン系ポリマー及び/又はキトサン系ポリマーの使用量は、塗工液を100質量部とした場合、0.1~20質量部が好ましい。ビニルピロリドン系ポリマー及び/又はキトサン系ポリマーの使用量が0.1質量部未満であると少な過ぎて、添加することによって得られる前記した効果を得難くなる。一方、ビニルピロリドン系ポリマー及び/又はキトサン系ポリマーの使用量が20質量部を超えると、形成される塗工膜層の耐酸化性が低下するといった別の問題を生じるおそれがあるので好ましくない。
(5)水系媒体
 本発明の塗工液に用いる水系媒体について説明する。本発明では、少なくとも極性溶媒である水を含む水系媒体を使用する。塗工液中の水以外の極性溶媒としては、例えば、下記のものが挙げられる。アルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、プロピルアルコール、ブチルアルコールなど)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,2-ジオキサンなど)、カーボネート類(エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ブチレンカーボネートなど)、アミド類(ホルムアミド、N-メチルホルムアミド、N-エチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、ビニルホルムアミド、ビニルアセトアミド、アセトアミド、N-メチルアセトアミド、N-エチルアセトアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ビニルピロリドン、ピペリドン、N-メチルピペリドン、N-エチルピペリドン、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン、メチルオキサゾリジノン、エチルオキサゾリジノンなど)、スルホキシド類(ジメチルスルホキシドなど)及びスルホン類(テトラメチレンスルホンなど)などを挙げることができる。これらの中でもより好ましくは、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、プロピルアルコールなどのアルコール類や、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン及びジメチルスルホキシドなどの非プロトン性極性溶媒が挙げられる。これらの水系媒体中の水以外の極性溶媒は、単独で用いても混合して用いてもよい。上記の極性溶媒は一般市販品をそのまま用いることができるが、必要に応じて精製してから使用してもよい。
(6)その他の成分
 本発明の塗工液は、上記成分以外の任意の成分、例えば、他の架橋剤などを含み得る。その他の架橋剤としては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテルの如きエポキシ化合物;トルイレンジイソシアナート、キシリレンジイソシアナート、ヘキサメチレンジイソシアナート、フェニルジイソシアナートの如きイソシアナート化合物やそれらをフェノール類、アルコール類、活性メチレン類、メルカプタン類、酸アミド類、イミド類、アミン類、イミダゾール類、尿素類、カルバミン酸類、イミン類、オキシム類、亜硫酸類などのブロック剤でブロックしたブロックイソシアナート化合物;グリオキサール、グルタルアルデヒド、ジアルデヒド澱粉の如きアルデヒド化合物が挙げられる。
 又、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ヘキサンジオールジアクリレートの如き(メタ)アクリレート化合物;メチロールメラミン、ジメチロール尿素の如きメチロール化合物;酢酸ジルコニル、炭酸ジルコニル、乳酸チタンの如き有機酸金属塩;アルミニウムトリメトキシド、アルミニウムトリブトキシド、チタニウムテトラエトキシド、チタニウムテトラブトキシド、ジルコニウムテトラブトキシド、アルミニウムジプロポキシドアセチルアセトネート、チタニウムジメトキシドビス(アセチルアセトネート)、チタニウムジブトキシドビス(エチルアセトアセテート)の如き金属アルコキシド化合物が挙げられる。
 又、ビニルメトキシシラン、ビニルエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、イミダゾールシランの如きシランカップリング剤;メチルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシランの如きシラン化合物;カルボジイミド化合物などが挙げられる。これらの架橋剤の使用は必須ではないが、使用する場合には、架橋剤の量は樹脂バインダーとして用いられるPVA系樹脂の0.01~200質量%が好適である。
(7)調製方法等
 本発明の塗工液の具体的な調製方法について説明する。先ず、上記に挙げた樹脂バインダーであるPVA系樹脂、導電性材料、多塩基酸類、更に、必要に応じて添加するビニルピロリドン系ポリマーやキトサン系ポリマーを前記の割合となるように水系媒体に添加し、混合分散することによって塗工液を調製することができる。混合分散の際に、必要に応じて、物理的加工手段である従来公知のホモジナイザー、ビーズミル、ボールミル、サンドミル、ロールミルなどの分散機や、プラネタリーミキサーのような混練機を用いることができる。
 本発明の塗工液は、上記のようにして調製することができるが、塗工する前に物理的加工処理を施すことが好ましい。物理的加工処理は、塗工前の塗工液を従来公知の物理的加工手段を用いて加工処理することによって行われる。物理的加工手段としては、例えば、ビーズミル、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサー、などを用いた加工手段が挙げられる。
 本発明の塗工液に施す物理的加工の具体的手段としては、以下のようにして実施すればよい。例えば、ビーズミルの場合、セラミック製ベッセルに、ジルコニア製ビーズ(直径0.03~3mm)を充填率50~95%で充填し、ローター周速5~20m/sで、バッチ式又は連続循環式にて分散処理を行う。
 本発明の塗工液により形成される塗工膜は、60℃の空気で乾燥して得られる1μmの乾燥塗工膜が、沸騰水に可溶であり、かつ、上記乾燥塗工膜を更に150℃以上で30分以上加熱した後の塗工膜の質量をXとし、加熱した後、沸騰水で10分間煮沸した後の塗工膜の質量をYとした場合に、((X-Y)/X)×100≦5%の関係を満たすものであることが好ましい。
 又、本発明の塗工液は、該塗工液の25℃における粘度をB型回転粘度計、回転数60rpm、ローターナンバー1~4で測定した時の粘度が、100~10,000mPa・sであり、かつ、該塗工液を同重量の蒸留水で希釈した後、25℃で測定したpHが6以下であることが好ましい。
 更に、本発明の塗工液によって形成した塗工膜の表面抵抗率が、3,000Ω/□以下となるように調整することが好ましい。表面抵抗率は、硝子板の上に厚さ4μmの塗工膜を形成し、200℃で1分加熱した後、30℃まで冷却し、JIS K 7194に準じて測定することができる。
<蓄電装置用電極板>
 本発明の蓄電装置用電極板は、集電体と電極活物質層(電極層)の間に、上記で説明した本発明の塗工液を用いて塗工膜層であるアンダーコート層を、形成、配置してなることを特徴とする。従って、上記塗工膜層は、樹脂バインダーとしてのPVA系樹脂を含むポリマー類と、多塩基酸類、及び導電性材料を必須成分として含有してなる。以下、本発明の蓄電装置用電極板について説明する。
 上記塗工膜層は、前記した方法で測定される表面抵抗率が3,000Ω/□以下であることが好ましい。すなわち、表面抵抗率が3,000Ω/□を超える塗工膜を電極板に適用した場合には、内部抵抗が高くなるため、高効率かつ長寿命の電池及びキャパシタを得ることが困難となる。このため、本発明では、上記塗工膜層の表面抵抗率を3,000Ω/□以下、より望ましくは2,000Ω/□以下にすることが好ましい。
(表面抵抗率の測定)
 本発明における塗工膜を特定する表面抵抗率は、次のような方法によって測定することができる。本発明における塗工膜を形成させる塗工液を、硝子板上に塗布した後、200℃で1分間乾燥し塗工膜(乾燥膜厚4μm)を形成した。塗工膜の表面抵抗率をJIS K 7194に従い、四探針法により求めた。本発明では、測定は、三菱化学アナリテック製ロレスターGP、MCP-T610を用い、25℃、相対湿度60%の条件下で測定した。
 本発明における塗工膜を形成させる塗工液は、先に説明したように、極性溶媒中に、少なくともPVA系樹脂、多塩基酸類、導電性材料を必須成分として含み、更に必要に応じて、水酸基及び/又はアミノ基を持つ、ビニルピロリドンを必須構成モノマーとする(共)重合体や、キトサン及びキトサンの誘導体といった他の樹脂を添加して用いる。
 本発明で使用する多塩基酸類としては、多塩基酸自体、又はそれらの酸無水物を用いるが、多塩基酸の一部又は全部のカルボキシル基の塩、特にアンモニウム塩やアミン塩、多塩基酸の一部又は全部のカルボキシル基のアルキルエステル、アミド、イミド、アミドイミド、これらの化合物のカルボキシル基をN-ヒドロキシスクシンイミド、N-ヒドロキシスルホスクシンイミド、又はこれらの誘導体によって1つ以上修飾した誘導体なども用いることができる。これらの多塩基酸の誘導体としては、後に形成される塗工膜層の加熱時に多塩基酸を再生する化合物であることが好ましい。
 以下に、本発明の蓄電装置用電極板の製造方法を説明する。本発明の電極板は、本発明の塗工液を用いて、例えば、集電体と電極の間にアンダーコート層である塗工膜を形成・配置する。電極板の製造に用いる集電体としては、例えば、正極集電体として、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなどが挙げられ、負極集電体としては銅などの金属箔が挙げられる。正極集電体としては、電解液に優れた耐食性を有し、軽量で機械加工が容易なアルミニウムが好ましい。金属箔の厚さとしては、5~30μm程度のもの、好ましくは8~25μm程度のものを用いる。これらの集電体の表面は予め、シラン系、チタネート系、アルミニウム系などのカップリング剤により処理しておくことができる。
 本発明の塗工液を前記集電体の表面に、各種塗工方法を用いて、乾燥厚みで0.1~10μm、好ましくは0.1~5μm、より好ましくは0.1~2μmの範囲で塗布した後、加熱乾燥してアンダーコート層である塗工膜層が得られる。各種塗工方法としては、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマコート、スロットダイコート、スライドダイコート、ディップコートなどの方法が使用できる。塗工膜の膜厚が0.1μm未満では均一に塗工するのが難しく、膜厚が10μmを超えると塗工膜の可撓性が低下する場合がある。
 電極板の製造時には、集電体に、本願発明の塗工液を塗布し、媒体を加熱除去後、あるいは除去しつつ、加熱乾燥に付する。加熱乾燥に際しては、樹脂バインダーであるPVA系樹脂を含むポリマー類を十分に架橋させて、形成されるアンダーコート層である塗工膜層の集電体に対する密着性及び電解液に対する樹脂バインダーの電気化学的安定性を向上させるために、100℃以上250℃以下、1秒以上60分以下で加熱することが好ましい。加熱処理条件が100℃未満又は1秒未満では、集電体に対するアンダーコート層の密着性及び電解液に対する樹脂バインダーの電気化学的安定性が満足できない場合がある。
 更に、上記のようにして塗工及び乾燥処理して形成された塗工膜であるアンダーコート層の上に電極層を塗工し、電極板を形成する。均質性をより向上させるために、該電極層に金属ロール、加熱ロール、シートプレス機などを用いてプレス処理を施し、本発明の電極板を形成することも好ましい。この際のプレス条件としては、500kgf/cm2未満では電極層の均一性が得られにくく、又、7,500kgf/cm2を超えると、集電体を含めた電極板自体が破損してしまうため、プレス条件は500~7,500kgf/cm2の範囲が好ましい。
 以上の如くして得られる本発明の電極板は、集電体と電極層の間に、適度に分散された導電性材料と、多塩基酸で架橋された樹脂バインダーであるPVA系樹脂などのポリマー類とからなる、密着性に優れ可撓性を有するアンダーコート層が形成・配置されたものとなる。該アンダーコート層は前記の通りの特性を有している。
(二次電池)
 以上のようにして作製した本発明の正極及び負極の電極板を用いて、非水電解液二次電池などの二次電池を作製することができる。例えば、リチウム系の非水リチウムイオン電池を作製する場合には、電解液として、溶質のリチウム塩を有機溶剤やイオン液体に溶かした非水電解液が用いられる。非水電解液を形成する溶質のリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAsF6、LiCl、LiBrなどの無機リチウム塩、及びLiB(C65)4、LiN(SO2CF3)2、LiC(SO2CF3)3、LiOSO2CF3、LiOSO225、LiOSO237、LiOSO249、LiOSO2511、LiOSO2613、LiOSO2715などの有機リチウム塩などが用いられる。
 この際に使用される有機溶剤としては、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類などが挙げられる。環状エステル類としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、ビニレンカーボネート、2-メチル-γ-ブチロラクトン、アセチル-γ-ブチロラクトン、γ-バレロラクトンなどが挙げられる。
 鎖状エステル類としては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルなどが挙げられる。
 環状エーテル類としては、例えば、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3-ジオキソラン、アルキル-1,3-ジオキソラン、1,4-ジオキソランなどが挙げられる。鎖状エーテル類としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテルなどが挙げられる。
 イオン液体は、有機カチオンとアニオンの組み合わせによるイオンのみからなる液体であり、有機カチオンとしては、例えば、1-エチル-3-メチルイミダゾリウムイオンなどのジアルキルイミダゾリウムカチオン、1,2-ジメチル-3-プロピルイミダゾリウムイオンなどのトリアルキルイミダゾリウムカチオン、ジメチルエチルメトキシアンモニウムイオンなどのテトラアルキルアンモニウムイオン、1-ブチルピリジニウムイオンなどのアルキルピリジニウムイオン、メチルプロピルピロリジニウムイオンなどのジアルキルピロリジニウムイオン、メチルプロピルピペリジニウムイオンなどのジアルキルピペリジニウムイオンの少なくとも一種が挙げられる。
 これらの有機カチオンの対となるアニオンとしては、AlCl4 -、PF6 -、PF3(C25)3 -、PF3(CF3)3 -、BF4 -、BF2(CF3)2 -、BF3(CF3)-、CF3SO3 -(TfO;トリフレートアニオン)、(CF3SO2)2-(TFSI;トリフルオロメタンスルフォニル)、(FSO2)2-(FSI;フルオロスルフォニル)、(CF3SO2)3-(TFSM)などを用いることができる。なお、電池の他の構成は従来技術の場合と同様である。
(キャパシタ)
 本発明の塗工液により形成される塗工膜を、キャパシタ用電極板及びキャパシタの製造に応用する場合を以下に説明する。キャパシタ用電極板用の塗工膜は、前記PVA系樹脂などのポリマー類と多塩基酸と導電性材料とを含有してなる。本発明の塗工液を用いて製造されるキャパシタとしては、電気二重層キャパシタ或いはリチウムイオンキャパシタが挙げられる。
 キャパシタ用電極板の製造に応用する場合に上記塗工膜の形成に用いる塗工液は、樹脂バインダーであるポリマー類の量が、塗工液100質量部あたり固形分量で、好ましくは1~40質量部、より好ましくは1~20質量部、更に好ましくは5~10質量部である。ポリマー類の量が少な過ぎると塗工膜層から塗工膜成分が脱落しやすくなり、逆に多過ぎると導電性材料がポリマー類に覆い隠されて電極板の内部抵抗が増大する畏れがある。
 多塩基酸としては、樹脂バインダーとして使用されるポリマー類の架橋性の面から、先に挙げた3価以上の多塩基酸及びそれらの酸無水物が好ましい。これらの多塩基酸は上記塗工液に混合して使用するが、上記塗工膜を形成する際に用いる塗工液における多塩基酸の使用量は、上記ポリマー類100質量部当たり1~300質量部であり、10~200質量部とすることがより好ましい。上記多塩基酸の使用量が1質量部未満であると、架橋ポリマーの架橋密度が低く、形成される塗工膜層の集電体に対する密着性及び架橋ポリマーの電解液に対する不溶解性、非膨潤性、電気的化学安定性の点で不十分であり、一方、上記使用量が300質量部を超えると形成される皮膜あるいは塗工膜層の可撓性が低下するとともに不経済である。
 キャパシタ用電極板を製造する場合に用いる塗工液中に含有させる導電性材料としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、カーボンナノファイバー、カーボンナノチューブなどの導電性カーボンを使用するが、このような導電性材料を使用することにより、塗工膜の電気的接触が一段と向上し、キャパシタの内部抵抗が低くなり、かつ容量密度を高くすることができる。この場合における導電性材料の使用量は、塗工液100質量部に対して通常0.1~20質量部、好ましくは2~15質量部である。
 キャパシタ用電極板を製造する場合に用いる塗工液は、PVA系樹脂などのポリマー類溶液、多塩基酸、導電性材料、その他の添加剤を混合してなるものを使用するが、必要に応じて、塗工前に、塗工液を物理的加工手段によって加工処理することが好ましい。物理的加工手段としては、ビーズミル、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いた加工手段を用いることができる。又、混合する際に、導電性材料を擂潰機、プラネタリーミキサー、ヘンシェルミキサー、オムニミキサーなどの混合機を用いて先ず混合し、次いで、樹脂バインダーであるポリマー類溶液を添加して均一に混合する方法も好ましい。この方法を採ることにより、容易に均一な塗工液とでき、より良好なキャパシタ用電極板を得ることができる。
 本発明のキャパシタ用電極板は、前記の塗工液を、集電体と電極層間に塗工膜層を形成し、この塗工膜層をアンダーコート層として配置させてなる。集電体は、導電性を有しかつ電気化学的に耐久性のある材料が用いられる。中でも、耐熱性を有するとの観点から、アルミニウム、チタン、タンタル、ステンレス鋼、金、白金などの金属材料が好ましく、アルミニウム及び白金が特に好ましい。集電体の形状は特に制限されないが、通常、厚さ0.001~0.5mm程度のシート状のものを用いる。
 上記塗工膜層の形成方法は特に限定されないが、好ましくは、キャパシタ電極用の塗工液を集電体-電極層間に塗布し、乾燥して集電体-電極層間に塗工膜層を形成する方法である。上記塗工液の塗布方法としては、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法、スプレーコート法などの方法が挙げられる。
 上記の場合に使用する塗工液の粘度は、塗工機の種類や塗工ラインの形状によっても異なるが、通常、10~100,000mPa・s、好ましくは、50~50,000mPa・s、より好ましくは100~20,000mPa・sである。塗布する塗工液の量は特に制限されないが、乾燥して溶剤を除去した後に形成される塗工膜層の厚さが、通常、0.05~100μm、好ましくは0.1~10μmになる量が一般的である。上記塗工膜層の乾燥方法及び乾燥条件などは、前記電池用電極板における場合と同様である。
 上記の電極板を有する本発明のキャパシタは、上記の電極板、電解液、セパレーターなどの部品を用いて、常法に従って電気二重層キャパシタやリチウムイオンキャパシタを製造することができる。具体的には、例えば、セパレーターを介して電極板を重ね合わせ、これをキャパシタ形状に応じて巻く、折るなどして容器に入れ、容器に電解液を注入して封口して製造できる。
 電解液は、特に限定されないが、電解質を有機溶媒に溶解した非水電解液が好ましい。例えば、電気二重層キャパシタ用の電解質としては、従来より公知のものがいずれも使用でき、テトラエチルアンモニウムテトラフルオロボレート、トリエチルモノメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロフォスフェートなどが挙げられる。又、リチウムイオンキャパシタ用の電解質としては、例えば、LiI、LiClO4、LiAsF6、LiBF4、LiPF6などのリチウム塩が挙げられる。
 これらの電解質を溶解させる溶媒(電解液溶媒)も、一般的に電解液溶媒として用いられるものであれば特に限定されない。具体的には、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネートなどのカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類が挙げられ、これらは単独又は二種以上の混合溶媒として使用することができる。中でも、耐電圧が高いのでカーボネート類が好ましい。電解液の濃度は通常0.5モル/L以上、好ましくは0.8モル/L以上である。
 セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔膜又は不織布;一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜;など公知のものを用いることができる。又、無機セラミック粉末と樹脂バインダーとを溶剤に分散させ、電極層上に塗布、乾燥してセパレーターを形成してもよい。セパレーターに代えて固体電解質あるいはゲル電解質を用いてもよい。又、容器などの他の材料については通常のキャパシタに用いられるものをいずれも使用できる。
 次に、実施例及び比較例を挙げて本発明を更に具体的に説明する。なお、文中の「部」又は「%」は質量基準である。又、本発明はこれら実施例によって限定されるものではない。
<各種塗工液用ポリマー溶液の作製>
 表1に、実施例及び比較例で用いた各種塗工液用ポリマー溶液の組成を示した。なお、塗工液用ポリマー溶液に使用した各成分については、下記の略記を使用した。ポリビニルアルコールをPVA、エチレンビニルアルコール共重合体をEVOH、ポリビニルピロリドンをPVPと略した。又、多塩基酸として用いた成分については、1,2,3-プロパントリカルボン酸をPTC、1,2,3,4-ブタンテトラカルボン酸をBTCと略した。又、有機溶媒としては、メチルアルコールをMeOH、エチルアルコールをEtOH、イソプロピルアルコールをIPA、N-メチル-2-ピロリドンをNMPと略した。
<例1-1>
 イオン交換水85部に、未変性PVA〔(株)クラレ製、クラレポバール117(鹸化度99%、重合度1,700)〕10部と、BTCを5部加えた後、95℃で2時間撹拌溶解し、100部の塗工液用ポリマー溶液を調製した。
<例1-2~1-18>
 表1に示すように、未変性及び/又は変性PVA、未変性及び/又は変性EVOHの、種類及び質量、ビニルピロリドン系ポリマー及び/又はキトサン系ポリマーの、種類及び質量、多塩基酸の種類及び質量、水系媒体の種類及び質量を、それぞれ変えた本発明に用いる塗工液用ポリマー溶液を、例1-1と同様の方法により調製した。
Figure JPOXMLDOC01-appb-I000001
<各種導電性塗工液の作製並びに物性評価>
[実施例1]
 本実施例で用いた導電性塗工液を以下の方法により作製した。導電性材料としてアセチレンブラック10部及び前記表1の例1-1の塗工液90部の配合比で、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させて導電性塗工液を得た。得られた導電性塗工液の粘度をB型回転粘度計(25℃、60rpm、ローターNo.4)で測定したところ、スラリー粘度は2,110mPa・s、固形分は23.5%であった。
 上記で得られた導電性塗工液を用い、厚さ20μmのアルミニウム箔からなる集電体を基体として、該基体上の片面にコンマロールコーターにて導電性塗工液を塗工した。その後、110℃のオーブンで2分間乾燥処理し、更に180℃のオーブンで2分間乾燥して溶媒を除去するとともにポリマー成分を架橋させて、集電体上に乾燥膜厚が1μmの塗工膜を形成した。
(評価)
 上記のようにして形成した塗工膜層の密着性並びに溶解・膨潤性を下記のようにして評価した。
 塗工膜層に、カッターを用いて直交する縦横11本ずつの平行線を1mmの間隔で引いて、1cm2の中に100個の升目を形成した。この面にメンディングテープを貼り付け、その後、テープ剥離を行い、剥離しなかった升目の個数を求め、集電体との密着性の尺度とした。10回の平均値は100個であった。結果を表2に示した。又、上記升目を形成した塗工膜層を、EC(エチレンカーボネート):PC(プロピレンカーボネート):DME(ジメトキシエタン)をそれぞれ体積比1:1:2で配合した混合溶媒に、支持塩として1モルのLiPF6を溶解した溶液中に、70℃で72時間浸漬した。その後の塗工膜層の状態を目視で観察して評価した。なお、評価基準は、変化のないものを溶解・膨潤性「良」とし、塗工膜層が剥離又は膨潤したものを溶解・膨潤性「不良」として評価して、表2中に表示した。
 更に、上記で形成した塗工膜層の導電性を下記のようにして評価した。まず、コンマロールコーターにて塗工液を硝子板上に塗工した後、200℃のオーブンで1分間乾燥処理し、導電性塗工膜(乾燥膜厚4μm)を形成した。次に、得られた塗工膜の表面抵抗率を、JIS K 7194に従って四探針法により求めた。測定は、三菱化学アナリテック製ロレスターGP、MCP-T610を用い、25℃、相対湿度60%の条件下で測定した。
[実施例2~16、比較例1~2]
 実施例1における例1-1の塗工液用ポリマー溶液の種類と質量、及び導電性材料の種類と使用量を、表2に記載の種類と使用量に変えた以外は実施例1と同様にして、各導電性塗工液及び該塗工液を用いて塗工膜層を作製した。そして、各塗工液の粘度(25℃、60rpm、測定時のローターは粘度に合わせ適宜選択して使用)を測定した。又、各塗工膜層について、実施例1で行ったと同様の方法で、溶解・膨潤性、密着性、表面抵抗率を調べ、その評価結果を表2に示した。なお、比較例3では、ポリビニリデンフルオライドの5%NMP溶液(PVDF溶液)を塗工液として用いた。
Figure JPOXMLDOC01-appb-I000002
<各種塗工液用ポリマー溶液の作製>
 表3に、実施例及び比較例で用いた各種塗工液用ポリマー溶液の組成を示した。各種塗工液用ポリマー溶液に使用した極性溶媒は、それぞれ、N,N-ジメチルホルムアミドをDMF、N,N-ジメチルアセトアミドをDMAc、及び1,3-ジメチル-2-イミダゾリジノンをDMIと略した。
<例2-1>
 DMF92部中に未変性ポリビニルアルコール〔クラレポバール420、(株)クラレ製、鹸化度80%、重合度2,000〕5部を分散し、該分散液に無水ピロメリット酸を3部加えた後、50℃で2時間撹拌溶解し、100部の未変性ポリビニルアルコール含有の塗工液用ポリマー溶液を調製した。
<例2-2~2-4>
 表3に示すように、ポリマーの種類及び質量、多塩基酸の種類及び質量、極性溶媒の種類及び質量を変えた本発明の塗工液用ポリマー溶液を、例2-1と同様の方法により調製した。
Figure JPOXMLDOC01-appb-I000003
<塗工液及び塗工膜の作製並びに塗工膜の評価>
参考例1
 本参考例で用いた導電性材料を含む塗工液を以下の方法により作製した。導電性材料としてのアセチレンブラック7部及び前記表3の例2-1の塗工液用ポリマー溶液93部の配合比で、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させてスラリー状の塗工液を得た。
 上記で得られた塗工液を用い、厚さ20μmのアルミニウム箔からなる集電体を基体として、該基体上の片面にコンマロールコーターにて塗工液を塗工後、110℃のオーブンで2分間乾燥処理し、更に180℃のオーブンで2分間乾燥して溶媒を除去するとともにポリマー成分を架橋させて、集電体上に乾燥膜厚が1μmの塗工膜を形成した。
 上記の塗工膜層にカッターを用いて直交する縦横11本ずつの平行線を1mmの間隔で引いて、1cm2の中に100個の升目を形成した。この面にメンディングテープを貼り付け、その後、テープ剥離を行い、剥離しなかった升目の個数を求め、集電体との密着性の尺度とした。10回の平均値は99.0個であった。又、上記升目を形成した塗工膜層をEC(エチレンカーボネート):PC(プロピレンカーボネート):DME(ジメトキシエタン)をそれぞれ体積比1:1:2で配合した混合溶媒に、支持塩として1モルのLiPF6を溶解した溶液に、70℃で72時間浸漬した後の塗工膜層の状態を観察し、変化のないものを溶解・膨潤「なし」とし、塗工膜層が剥離又は膨潤したものを溶解・膨潤「あり」として表示した。
 更に、上記の塗工膜層の導電性を評価するため、コンマロールコーターにて塗工液を硝子板上に塗工した後、200℃のオーブンで1分間乾燥処理し、導電性塗工膜(乾燥膜厚4μm)を形成した。
 得られた塗工膜の表面抵抗値をJIS K 7194に従って四探針法により求めた。測定は三菱化学アナリテック製ロレスターGP、MCP-T610を用い、25℃、相対湿度60%の条件下で測定した。
参考例2、3、比較例4、5
 参考例1における例2-1の塗工液用ポリマー溶液に代えて下記表4に記載の塗工液用ポリマー溶液を使用した以外は、参考例1と同様にして塗工膜を作製し、密着性、溶解・膨潤性、表面抵抗値を調べ、下記表4に記載の結果を得た。なお、比較例5ではスチレンブタジエン共重合体ラテックス(増粘剤としてカルボキシメチルセルロースナトリウムを使用)を用いた。
Figure JPOXMLDOC01-appb-I000004
実施例17(正極電極板、負極電極板、電池)
(正極電極板)
 正極活物質を含む正極液を以下の方法により作製した。正極液の材料としては、1~100μmの粒径を有するLiCoO2粉末を90部、導電助剤としてアセチレンブラックを5部、バインダーとしてポリビニリデンフルオライドの5%NMP溶液(PVDF溶液)50部の配合比で、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合することによりスラリー状の正極活物質を含む正極液を得た。
 上記で得られた正極液を用い、実施例1の塗工膜層の表面にコンマロールコーターにて塗布後、110℃のオーブンで2分間乾燥処理し、更に180℃のオーブンで2分間乾燥して溶媒を除去して塗工膜層上に乾燥膜厚が100μmの活物質層を形成した正極複合層を得た。以上の方法で得られた正極複合層を5,000kgf/cm2の条件でプレスを行って膜を均一にした。次に80℃の真空オーブン中で48時間エージングして揮発分(溶剤や未反応の多塩基酸など)を十分に除去して正極電極板を得た。
(負極電極板)
 実施例1の塗工液を用い、銅箔集電体を基体として、該基体上の片面にコンマロールコーターにて塗工液を塗工後、110℃のオーブンで2分間乾燥処理し、更に180℃のオーブンで2分間乾燥して溶媒を除去するとともに樹脂バインダーを架橋させて、集電体上に乾燥膜厚が1μmの塗工膜層を形成した。
 次に負極活物質を含む負極液を以下の方法により作製した。負極液の材料としては、石炭コークスを1,200℃で熱分解して得られるカーボン粉末を90部、導電助剤としてアセチレンブラックを5部、バインダーとしてポリビニリデンフルオライドの5%NMP溶液(PVDF溶液)50部の配合比で、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合することによりスラリー状の負極活物質を含む負極液を得た。
 上記で得られた負極液を用い、前記の塗工膜層の表面にコンマロールコーターにて塗布後、110℃のオーブンで2分間乾燥処理し、更に180℃のオーブンで2分間乾燥して溶媒を除去して塗工膜層上に乾燥膜厚が100μmの活物質層を形成した負極複合層を得た。以上の方法で得られた負極複合層を5,000kgf/cm2の条件でプレスを行って膜を均一にした。次に80℃の真空オーブン中で48時間エージングして揮発分(溶剤や未反応の多塩基酸など)を十分に除去して負極電極板を得た。
(電池)
 以上で得られた正極電極板及び負極電極板を用い、正極電極板より幅広の三次元空孔構造(海綿状)を有するポリオレフィン系(ポリプロピレン、ポリエチレン又はそれらの共重合体)の多孔性フィルムからなるセパレータを介して、渦巻き状に捲回して、先ず電極体を構成した。次にこの電極体を、負極端子を兼ねる有底円筒状のステンレス容器内に挿入し、AAサイズで定格容量500mAhの電池を組み立てた。この電池にEC(エチレンカーボネート):PC(プロピレンカーボネート):DME(ジメトキシエタン)をそれぞれ体積比1:1:2で全量1リットルになるように調製した混合溶媒に、支持塩として1モルのLiPF6を溶解したものを電解液として注液した。
 電池特性の測定には、充放電測定装置を用い、25℃の温度条件で各20セルずつ、充電電流0.2CAの電流値で、先ず充電方向から電池電圧4.1Vになるまで充電し、10分間の休止の後、同一電流で2.75Vになるまで放電し、10分間の休止の後、以下同一条件で100サイクルの充放電を繰り返し、充放電特性を測定した。1サイクル目の充放電容量値を100とした場合、100回目の充放電容量値(充放電容量維持率)は99%であった。
実施例18~22、参考例4、比較例6(正極電極板、負極電極板、電池)
 実施例17で用いた正極電極板及び負極電極板の作製に使用した実施例1の塗工液及び塗工膜に代えて、下記表5に記載の塗工液及び塗工膜を使用した以外は、実施例17と同様にして、電極板及び電池を作製し、充放電特性を測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-I000005
[キャパシタへの応用]
実施例23(キャパシタ)
 実施例1の塗工液を用い、厚さ20μmのアルミニウム箔からなる集電体を基体として、該基体上の片面にコンマロールコーターにて塗工液を塗工後、110℃のオーブンで2分間乾燥処理し、更に180℃のオーブンで2分間乾燥して溶媒を除去するとともに樹脂バインダーを架橋させて、集電体上に乾燥膜厚が0.5μmの塗工膜層を形成した。
 次に、活物質を含む電極液を以下の方法により作製した。電極液の材料としては、比表面積1,500m2/g、平均粒径10μmの高純度活性炭粉末を100部、導電性材料としてアセチレンブラック8部をプラネタリーミキサーに仕込み、全固形分の濃度が45%となるようにポリビニリデンフルオライドNMP溶液を加えて60分間混合した。その後、固形分濃度が42%になるようにNMPで希釈して更に10分間混合し、電極液を得た。この電極液を前記塗工膜層上にドクターブレードを用いて塗布し、80℃で30分送風乾燥機にて乾燥した。その後、ロールプレス機を用いてプレスを行い厚さ80μm、密度0.6g/cm3のキャパシタ用分極性電極板を得た。
 上記により製造したキャパシタ用分極性電極板を直径15mmの円形に切り抜いたものを2枚作成し、200℃で20時間乾燥させた。この2枚の電極板の電極層面を対向させ、直径18mm、厚さ40μmの円形セルロース製セパレータを挟んだ。これを、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、容器を封止して、直径20mm、厚さ約2mmのコイン型キャパシタを製造した。なお、電解液としては、テトラエチルアンモニウムテトラフルオロボレートをプロピレンカーボネートに1モル/リットルの濃度で溶解させた溶液を用いた。こうして得たキャパシタについて、静電容量及び内部抵抗を測定した結果を表6に示す。
実施例24~28(キャパシタ)
 実施例23で用いた実施例1の塗工液に代えて、下記表4に記載の塗工液を使用した以外は、実施例23と同様にして、電極板及びキャパシタを作成し、各特性を評価した。結果を表6に示す。
比較例7(キャパシタ)
 実施例23で用いた実施例1の塗工液に代えて、比較例3の塗工液を使用した以外は実施例23と同様にして、電極板及びキャパシタを作成し、各特性を評価した。結果を表6に示す。
 下記表6における内部抵抗及び静電容量は次のように測定及び評価した。得られたキャパシタについて電流密度20mA/cm2で静電容量及び内部抵抗を測定し、比較例7を基準として以下の評価基準で評価した。静電容量は大きいほど、又、内部抵抗は小さいほど、キャパシタとしての性能が良好であることを示す。
(静電容量の評価基準)
  A:比較例7よりも静電容量が20%以上大きい。
  B:比較例7よりも静電容量が10%以上20%未満大きい。
  C:比較例7と静電容量が同等以下である。
(内部抵抗の評価基準)
  A:比較例7よりも内部抵抗が20%以上小さい。
  B:比較例7よりも内部抵抗が10%以上20%未満小さい。
  C:比較例7と内部抵抗が同等以下である。
Figure JPOXMLDOC01-appb-I000006
 上記の実施例及び比較例より明らかなように、本発明の塗工液を塗工膜として用いて電極板を作成し、該電極板を用いてキャパシタを製造すると、静電容量が大きく、内部抵抗の小さいキャパシタを得ることができる。
 以上説明したように、本発明によれば、二次電池やキャパシタなどの蓄電装置用塗工液として、(1)環境に対する負荷の少ない樹脂バインダーであるPVA及び/又はEVOH、(2)フィラーである導電性材料(3)樹脂硬化機能を有する多塩基酸類の3成分を必須成分とし、これらの成分を特定の成分比率にて含有した水系スラリーを用いることにより、優れた環境性能や皮膜特性を具備した蓄電装置用塗工液が提供される。更に本発明によれば、集電体と電極層との間に、アルミニウム材料などの金属材料表面に対して密着性とともに耐溶剤性に優れたアンダーコート層である塗工膜(薄膜)が配置され、電極層がアルミニウム箔や銅泊などからなる集電体に対して密着性及び耐電解液性が優れており、かつ集電体との接触抵抗も改良されている電池用電極板やキャパシタ用分極性電極板などの蓄電装置用電極板、及びそれらを含む蓄電装置が提供される。

Claims (17)

  1.  蓄電装置の電極板に塗工膜層を形成するための水系の電極板用塗工液であって、
     少なくとも極性溶媒である水を含む水系媒体に、
    (1)樹脂バインダーとして、鹸化度が、40%以上であって、かつ、未変性ポリビニルアルコール、変性ポリビニルアルコール、未変性エチレンビニルアルコール共重合体及び変性エチレンビニルアルコール共重合体からなる群から選らばれる少なくとも1種と、
    (2)導電性材料と、
    (3)1,2,3,4-ブタンテトラカルボン酸、ピロメリット酸、クエン酸、エチレンジアミンテトラ酢酸、1,2,3-プロパントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、トリメリット酸、1,4,5,8-ナフタレンテトラカルボン酸及び1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸からなる群から選ばれる少なくとも1種の多塩基酸又はそれらの酸無水物と、を含み、
    上記(1)~(3)の成分比率が、(2)の導電性材料1質量部に対して、それぞれ、(1)の樹脂バインダーが0.1~3質量部、(3)の多塩基酸類が0.01~6質量部であり、かつ、塗工液の固形分が、0.02質量%~40質量%であることを特徴とする水系塗工液。
  2.  更に、ビニルピロリドンを構成モノマーとするホモポリマー(ポリビニルピロリドン)、ビニルピロリドンを必須構成モノマーとする共重合体、キトサン及びキトサンの誘導体からなる群から選ばれる少なくとも1種を含む請求項1に記載の水系塗工液。
  3.  前記多塩基酸が、1,2,3,4-ブタンテトラカルボン酸又はピロメリット酸又はそれらの酸無水物のいずれかである請求項1又は2に記載の水系塗工液。
  4.  硝子板の上に厚さ4μmの塗工膜を形成し、200℃で1分加熱した後、30℃まで冷却し、JIS K 7194で表面抵抗率を測定した場合、その値が3,000Ω/□以下である請求項1~3のいずれか1項に記載の水系塗工液。
  5.  塗工液の25℃における粘度をB型回転粘度計、回転数60rpm、ローターナンバー2~4で測定した時の粘度が100~10,000mPa・sであり、且つ、塗工液を同重量の蒸留水で希釈した後、25℃で測定したpHが6以下である請求項1~4のいずれか1項に記載の水系塗工液。
  6.  導電性材料がアセチレンブラック、ケッチェンブラック、カーボンナノファイバー、カーボンナノチューブ及びその他の炭素系導電助剤のいずれかを含む請求項1~5のいずれか1項に記載の水系塗工液。
  7.  前記水系媒体中の水以外の媒体が、メチルアルコール、エチルアルコール、イソプロピルアルコール、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、N,N-ジメチルホルムアミドからなる群から選ばれる1種以上である請求項1~6のいずれか1項に記載の水系塗工液。
  8.  60℃の空気で乾燥して得られる1μmの乾燥塗工膜が、沸騰水に可溶であり、かつ、上記乾燥塗工膜を更に150℃以上で30分以上加熱した後の塗工膜の質量をXとし、加熱した後、沸騰水で10分間煮沸した後の塗工膜の質量をYとした場合に、((X-Y)/X)×100≦5%の関係を満たす請求項1~7のいずれか1項に記載の水系塗工液。
  9.  集電体と電極活物質層との間に、請求項1~8のいずれか1項に記載の水系塗工液によって形成された塗工膜が配置されていることを特徴とする蓄電装置用電極板。
  10.  前記塗工膜が、100~250℃の熱処理によって形成されてなり、塗工膜の膜厚が、固形分換算にて0.1~10μmである請求項9に記載の蓄電装置用電極板。
  11.  前記集電体が、アルミニウム箔であり、電極活物質層が、正極活物質を含んでなる請求項9又は10に記載の蓄電装置用正極電極板。
  12.  前記集電体が、銅箔であり、電極活物質層が、負極活物質を含んでなる請求項9又は10に記載の蓄電装置用負極電極板。
  13.  前記集電体が、アルミニウム箔であり、電極活物質層が、分極性電極を含んでなる請求項9又は10に記載の蓄電装置用電極板。
  14.  集電体の表面に、請求項1~8のいずれか1項に記載の水系塗工液を塗布して塗工膜を形成後、該塗工膜上に電極活物質層を形成することを特徴とする蓄電装置用電極板の製造方法。
  15.  前記塗工膜を形成する際に、水系塗工液を塗布した後、前記水系媒体を加熱除去し、又は除去しながら、100℃以上250℃以下で、1秒以上60分間以下、加熱処理する請求項14に記載の蓄電装置用電極板の製造方法。
  16.  請求項9~13のいずれか1項に記載の電極板を有してなることを特徴とする蓄電装置。
  17.  二次電池又はキャパシタである請求項16に記載の蓄電装置。
PCT/JP2010/064264 2009-08-27 2010-08-24 電極板用の水系塗工液、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置 WO2011024799A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10811849.8A EP2472646B1 (en) 2009-08-27 2010-08-24 Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
US13/392,066 US8945767B2 (en) 2009-08-27 2010-08-24 Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
JP2011528795A JP5499041B2 (ja) 2009-08-27 2010-08-24 電極板用の水系塗工液、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置
KR1020127007790A KR101420029B1 (ko) 2009-08-27 2010-08-24 전극판용의 수계 도공액, 축전 장치용 전극판, 축전 장치용 전극판의 제조방법 및 축전 장치
CN201080038019.5A CN102576854B (zh) 2009-08-27 2010-08-24 电极板用水系涂装液、蓄电装置用电极板、蓄电装置用电极板的制造方法及蓄电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-197036 2009-08-27
JP2009197036 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024799A1 true WO2011024799A1 (ja) 2011-03-03

Family

ID=43627901

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2010/064264 WO2011024799A1 (ja) 2009-08-27 2010-08-24 電極板用の水系塗工液、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置
PCT/JP2010/064265 WO2011024800A1 (ja) 2009-08-27 2010-08-24 炭素フィラー用分散剤
PCT/JP2010/064262 WO2011024797A1 (ja) 2009-08-27 2010-08-24 水系スラリー組成物、蓄電装置用電極板及び蓄電装置
PCT/JP2010/064263 WO2011024798A1 (ja) 2009-08-27 2010-08-24 水系の炭素フィラー分散塗工液、導電性付与材料、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/JP2010/064265 WO2011024800A1 (ja) 2009-08-27 2010-08-24 炭素フィラー用分散剤
PCT/JP2010/064262 WO2011024797A1 (ja) 2009-08-27 2010-08-24 水系スラリー組成物、蓄電装置用電極板及び蓄電装置
PCT/JP2010/064263 WO2011024798A1 (ja) 2009-08-27 2010-08-24 水系の炭素フィラー分散塗工液、導電性付与材料、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置

Country Status (7)

Country Link
US (5) US8628610B2 (ja)
EP (4) EP2472646B1 (ja)
JP (5) JP5367826B2 (ja)
KR (4) KR101420029B1 (ja)
CN (4) CN102498175B (ja)
TW (4) TWI457170B (ja)
WO (4) WO2011024799A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120183843A1 (en) * 2009-09-29 2012-07-19 Nec Corporation Secondary battery
JP2013048043A (ja) * 2011-08-29 2013-03-07 Dainichiseika Color & Chem Mfg Co Ltd 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置
WO2013161749A1 (ja) 2012-04-27 2013-10-31 昭和電工株式会社 二次電池用負極およびその製造方法、ならびに二次電池
WO2013161748A1 (ja) 2012-04-27 2013-10-31 昭和電工株式会社 二次電池用負極活物質の製造方法および二次電池用負極活物質、二次電池用負極の製造方法および二次電池用負極、ならびに二次電池
US20140162122A1 (en) * 2011-07-29 2014-06-12 Uacj Foil Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
WO2014132679A1 (ja) * 2013-02-28 2014-09-04 日東電工株式会社 導電性積層シート、および、集電体
WO2014132809A1 (ja) * 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
JP2014193996A (ja) * 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd カーボンブラック分散液およびその利用
JP2015030777A (ja) * 2013-08-01 2015-02-16 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
JP2015101615A (ja) * 2013-11-22 2015-06-04 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
KR20150123826A (ko) 2013-02-27 2015-11-04 토요잉크Sc홀딩스주식회사 카본블랙 분산액 및 그의 이용
JP2016219197A (ja) * 2015-05-19 2016-12-22 協立化学産業株式会社 集電体用コート剤組成物、蓄電デバイス用電極板及び蓄電デバイス
KR20170078829A (ko) * 2014-11-03 2017-07-07 허친슨 전도성 전극 및 이의 제조 공정
JP2017123471A (ja) * 2011-07-01 2017-07-13 ユッチンソン 電流導電性電極及びそれを製造する方法
JP2017126530A (ja) * 2016-01-15 2017-07-20 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
JP2017224407A (ja) * 2016-06-13 2017-12-21 東洋インキScホールディングス株式会社 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
JP2021050106A (ja) * 2019-09-24 2021-04-01 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
WO2023095771A1 (ja) * 2021-11-26 2023-06-01 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成組成物
WO2023157331A1 (ja) 2022-02-17 2023-08-24 大日精化工業株式会社 水性塗工液、蓄電装置用電極、及び蓄電装置
JP2023550109A (ja) * 2020-12-23 2023-11-30 エルジー エナジー ソリューション リミテッド 電解液の再注液方法および電解液の再注液が可能な二次電池

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447497A (en) * 1987-08-12 1989-02-21 Ngk Insulators Ltd Device for detecting clogging degree of diffuser
CN1070316C (zh) * 1999-03-22 2001-08-29 沈阳市光明涤纶排管厂 机织排管生产工艺
US8628610B2 (en) 2009-08-27 2014-01-14 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Dispersant for use in a carbon filler
US20180287129A1 (en) * 2017-03-28 2018-10-04 Enevate Corporation Methods of forming carbon-silicon composite material on a current collector
US11101465B2 (en) 2017-03-28 2021-08-24 Enevate Corporation Reaction barrier between electrode active material and current collector
JP5508905B2 (ja) * 2010-03-09 2014-06-04 学校法人 関西大学 非水電解質及び該非水電解質を備えた電気化学デバイス
WO2011140150A1 (en) * 2010-05-03 2011-11-10 Georgia Tech Research Corporation Alginate-containing compositions for use in battery applications
US20110303881A1 (en) * 2010-06-11 2011-12-15 Samsung Electro-Mechanics Co., Ltd. Carboxy methyl cellulose and slurry composition with the same
JP2012074369A (ja) * 2010-09-02 2012-04-12 Showa Denko Kk 集電体および集電体の製造方法
US20130196230A1 (en) * 2010-09-02 2013-08-01 Showa Denko K.K. Coating solution, electric collector, and method for producing electric collector
JP2012094493A (ja) * 2010-09-27 2012-05-17 Sumitomo Chemical Co Ltd スラリー及び該スラリーを使用した非水電解液二次電池用セパレータの製造方法
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
WO2012114835A1 (ja) * 2011-02-23 2012-08-30 大日精化工業株式会社 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料
WO2012114834A1 (ja) 2011-02-23 2012-08-30 大日精化工業株式会社 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料
JP5825894B2 (ja) * 2011-07-15 2015-12-02 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 二次電池用電極、二次電池用電極の製造方法並びに二次電池
WO2013018688A1 (ja) * 2011-07-29 2013-02-07 古河スカイ株式会社 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6031223B2 (ja) * 2011-07-29 2016-11-24 株式会社Uacj 集電体、電極構造体、非水電解質電池及び蓄電部品
EP2738854B1 (en) * 2011-07-29 2017-08-30 UACJ Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
US20140255788A1 (en) * 2011-07-29 2014-09-11 Uacj Foil Corporation Collector, electrode structure, non-aqueous electrolyte battery, and electrical storage device
JP5660539B2 (ja) * 2011-08-12 2015-01-28 独立行政法人産業技術総合研究所 リチウムイオン二次電池用電極、リチウムイオン二次電池、および電気機器
JP4957932B1 (ja) * 2011-08-30 2012-06-20 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP5884376B2 (ja) * 2011-09-30 2016-03-15 三菱マテリアル株式会社 カーボンナノファイバー、およびカーボンナノファイバー分散液
JP2012148970A (ja) * 2012-03-09 2012-08-09 Asahi Kasei Chemicals Corp 分散剤組成物
US20150093649A1 (en) * 2012-04-09 2015-04-02 Showa Denko K.K. Method of producing current collector for electrochemical element, method of producing electrode for electrochemical element, current collector for electrochemical element, electrochemical element, and coating liquid for fabricating current collector for electrochemical element
JP6028390B2 (ja) * 2012-05-24 2016-11-16 住友化学株式会社 非水電解液二次電池セパレーターの製造方法
CN102760883B (zh) * 2012-07-13 2015-03-18 中国科学院广州能源研究所 锂离子电池用新型壳聚糖及其衍生物水系粘结剂
CN104583333B (zh) 2012-08-21 2017-06-16 大日精化工业株式会社 水性液态组合物、水性涂覆液、功能性涂覆膜、和复合材料
US20150255788A1 (en) * 2012-09-26 2015-09-10 Showa Denko K.K. Negative electrode for secondary battery and secondary battery
JP2014107191A (ja) * 2012-11-29 2014-06-09 Mikuni Color Ltd カーボンナノチューブを用いた分散スラリー及びリチウムイオン二次電池
KR101535199B1 (ko) * 2012-11-30 2015-07-09 주식회사 엘지화학 개선된 분산성을 갖는 슬러리 및 그의 용도
CN103088332A (zh) * 2012-12-13 2013-05-08 苏州新区化工节能设备厂 水电解极板表面涂覆液
CN103102512B (zh) * 2013-02-18 2015-04-22 深圳市通产丽星股份有限公司 一种壳聚糖-富勒烯复合物及其制备方法
CN104969390B (zh) * 2013-02-27 2018-04-27 日本瑞翁株式会社 电化学元件电极用复合粒子、电化学元件电极用复合粒子的制造方法、电化学元件电极以及电化学元件
JP6072595B2 (ja) * 2013-04-18 2017-02-01 日立マクセル株式会社 非水二次電池
KR102232543B1 (ko) * 2013-05-13 2021-03-25 제온 코포레이션 전기 화학 소자 전극용 복합 입자, 전기 화학 소자 전극용 복합 입자의 제조 방법, 전기 화학 소자 전극 및 전기 화학 소자
JP6122115B2 (ja) 2013-07-08 2017-04-26 三洋化成工業株式会社 樹脂集電体用材料及び樹脂集電体
CN103400991B (zh) * 2013-08-13 2015-09-23 天奈(镇江)材料科技有限公司 水性碳纳米管浆料及其制备方法
JP6350150B2 (ja) * 2013-09-30 2018-07-04 株式会社Gsユアサ 蓄電素子
US9394421B2 (en) * 2013-10-02 2016-07-19 Xerox Corporation Method of manufacture for graphene fluoropolymer dispersion
CN105794025B (zh) * 2013-12-26 2020-01-21 日本瑞翁株式会社 电化学元件电极用复合粒子
KR101709672B1 (ko) 2014-02-13 2017-03-08 주식회사 엘지화학 이차 전지 양극 슬러리용 카본 블랙 분산액 및 이의 제조방법
US10944101B2 (en) 2014-02-28 2021-03-09 University Of South Carolina Superior lithium ion battery electrode and methods for fabricating such
JP6217460B2 (ja) * 2014-03-04 2017-10-25 三菱ケミカル株式会社 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、および非水二次電池
KR102311705B1 (ko) * 2014-03-19 2021-10-08 제온 코포레이션 전기 화학 소자 전극용 복합 입자
KR101680466B1 (ko) * 2014-04-29 2016-11-28 주식회사 엘지화학 음극 활물질 슬러리, 이의 제조방법 및 이를 포함하는 음극
EP2962996B8 (en) * 2014-07-02 2020-12-30 Voltea Limited Method to prepare a coated current collector electrode for a flow through capacitor using two solvents with different boiling points
KR20170042281A (ko) * 2014-08-08 2017-04-18 스미토모덴키고교가부시키가이샤 나트륨 이온 2차 전지용 양극 및 나트륨 이온 2차 전지
JP6166235B2 (ja) * 2014-08-26 2017-07-19 大日精化工業株式会社 塗工液、塗工膜、及び複合材料
WO2016039009A1 (ja) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 空気入りタイヤ
CN106716694B (zh) * 2014-09-08 2020-03-27 日产化学工业株式会社 锂二次电池用电极形成材料和电极的制造方法
PL409373A1 (pl) * 2014-09-09 2016-03-14 Politechnika Poznańska Elektroda węglowa kondensatora elektrochemicznego stanowiąca element elektrochemicznego układu do magazynowania energii
CN104371041B (zh) * 2014-11-14 2017-06-09 东华大学 高效壳聚糖基碱性阴离子交换复合膜及其制备和应用
CN104538576B (zh) * 2014-12-17 2017-07-28 毛赢超 一种锂离子电池用改性陶瓷隔膜及制备方法
JP6428244B2 (ja) * 2014-12-19 2018-11-28 トヨタ自動車株式会社 非水電解質二次電池の製造方法および非水電解質二次電池
JP6851711B2 (ja) * 2015-03-26 2021-03-31 株式会社Gsユアサ 蓄電素子
DE102015212226A1 (de) * 2015-06-30 2017-01-05 Robert Bosch Gmbh Komponente für eine Batteriezelle und Batteriezelle
KR101762900B1 (ko) * 2015-09-25 2017-07-28 롯데케미칼 주식회사 레독스 흐름 전지의 전극 제조용 슬러리 조성물 및 이를 포함하는 레독스 흐름 전지의 전극
US10533287B2 (en) 2015-09-29 2020-01-14 Kuraray Co., Ltd. Dispersant for carbon fibers, carbon fiber dispersion composition, and method for manufacturing carbon fiber sheet
JP6613102B2 (ja) * 2015-10-28 2019-11-27 旭化成株式会社 ポリオキシメチレン樹脂組成物
CN105244507B (zh) * 2015-10-30 2017-12-08 山东理工职业学院 锂电池材料及其制备方法和锂电池
KR102482030B1 (ko) * 2015-11-20 2022-12-27 주식회사 동진쎄미켐 탄소 소재 분산용 잉크 조성물 및 그 제조방법
JP6716942B2 (ja) 2016-02-18 2020-07-01 住友ゴム工業株式会社 空気入りタイヤ及び空気入りタイヤの製造方法
JP6184552B2 (ja) * 2016-05-11 2017-08-23 株式会社Uacj 集電体、電極構造体、非水電解質電池及び蓄電部品
CN106025290A (zh) * 2016-05-29 2016-10-12 合肥国轩高科动力能源有限公司 一种碳-陶瓷涂覆铝箔集流体及制备方法
WO2018068267A1 (zh) * 2016-10-13 2018-04-19 宁德新能源科技有限公司 负极添加剂及含有该添加剂的极片和电化学储能装置
JP6972534B2 (ja) 2016-10-31 2021-11-24 住友ゴム工業株式会社 混練機投入用ポリマー
JP6862787B2 (ja) 2016-11-22 2021-04-21 住友ゴム工業株式会社 空気入りタイヤ
CN107785583B (zh) * 2016-11-28 2020-07-31 万向一二三股份公司 一种水系正极及其制备方法
CN108250647B (zh) * 2016-12-29 2020-06-26 深圳光启空间技术有限公司 阻隔材料、具有其的聚氨酯胶黏剂、蒙皮和飞行器
CN107331868A (zh) * 2017-07-04 2017-11-07 佛山市中技烯米新材料有限公司 一种涂布液、其使用方法及电池极片
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US12334542B2 (en) 2017-12-07 2025-06-17 Enevate Corporation Solid film as binder for battery electrodes
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11005101B2 (en) * 2018-01-19 2021-05-11 Ut-Battelle, Llc Block graft copolymer binders and their use in silicon-containing anodes of lithium-ion batteries
CN111621995B (zh) * 2018-03-02 2022-09-06 苏州棠华纳米科技有限公司 一种染料组合物的制备方法
CN108649228B (zh) * 2018-03-23 2021-10-01 合肥国轩高科动力能源有限公司 一种锂离子电池硅基负极用粘结剂、负极及制备方法
US20190372186A1 (en) * 2018-05-30 2019-12-05 GM Global Technology Operations LLC Sulfone electrolytes for capacitor-assisted batteries
JP7024640B2 (ja) 2018-07-17 2022-02-24 トヨタ自動車株式会社 粒子集合体の製造方法、電極板の製造方法及び粒子集合体
US11018344B2 (en) * 2018-09-10 2021-05-25 Showa Denko K.K. Current collector for electrical storage device, method for producing the same, and coating liquid used in said production method
WO2020088577A1 (en) * 2018-11-02 2020-05-07 Volt14 Solutions Binder for battery electrode
CN111200159B (zh) * 2018-11-16 2021-03-23 宁德时代新能源科技股份有限公司 一种电池
CN111200104B (zh) * 2018-11-16 2021-03-19 宁德时代新能源科技股份有限公司 一种电池
CN111200110A (zh) * 2018-11-16 2020-05-26 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN109768278A (zh) * 2018-12-15 2019-05-17 华南理工大学 一种锂离子电池
JP7145096B2 (ja) 2019-02-12 2022-09-30 信越化学工業株式会社 微小構造体移載装置、スタンプヘッドユニット、微小構造体移載用スタンプ部品及び微小構造体集積部品の移載方法
CN110003773A (zh) * 2019-04-09 2019-07-12 刘�东 一种用于化工泵的抗静电涂料及其制备方法
JP6941637B2 (ja) * 2019-04-22 2021-09-29 第一工業製薬株式会社 電極用結着剤組成物、電極用塗料組成物、蓄電デバイス用電極、および蓄電デバイス
CN110429278A (zh) * 2019-07-10 2019-11-08 中盐安徽红四方锂电有限公司 一种用于低温型锂离子电池的负极浆料及其制备方法
KR102317345B1 (ko) * 2020-01-03 2021-10-25 세종대학교산학협력단 전지용 전해질 및 그 제조방법.
CN111393929A (zh) * 2020-04-01 2020-07-10 郑州熙虎科技有限公司 一种古建筑用环保水性漆
CN111668490B (zh) * 2020-06-18 2021-11-23 江苏卓高新材料科技有限公司 一种水性粘结剂、其制备方法、及应用
US12237097B2 (en) 2020-07-09 2025-02-25 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Carbon material dispersion
KR20220096781A (ko) * 2020-12-31 2022-07-07 삼성전기주식회사 적층 세라믹 전자부품
CN113421699A (zh) * 2021-07-09 2021-09-21 江苏昌盛电缆科技集团有限公司 储能的电缆及其制备工艺
CN113409987B (zh) * 2021-08-19 2021-11-16 西安宏星电子浆料科技股份有限公司 结合剂、有机载体、正面导电银浆及其制备方法和太阳能电池
CN113793936B (zh) * 2021-08-24 2023-04-11 广州市乐基智能科技有限公司 一种用于固态锂电池的复合粘结剂及其制备方法和应用
KR102626081B1 (ko) 2021-09-17 2024-01-18 나노캡 주식회사 전기에너지 저장장치용 무용제 전극의 제조방법
JP7098077B1 (ja) * 2021-10-04 2022-07-08 大日精化工業株式会社 カーボン材料分散液の製造方法
KR102558449B1 (ko) * 2022-10-14 2023-07-24 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
CN115895356B (zh) * 2022-11-23 2023-12-26 昆山汉品电子有限公司 一种用于硅晶圆切割的保护材料及其制备方法
CN116333545B (zh) * 2023-03-22 2024-11-22 江苏铭丰电子材料科技有限公司 一种锂离子电池电解铜箔防氧化液及其制备方法
CN116396643A (zh) * 2023-04-03 2023-07-07 嘉兴纳科新材料有限公司 一种耐酸碱导电涂料复合金属电极板及制备方法
KR102744260B1 (ko) * 2023-09-06 2024-12-17 에스케이온 주식회사 음극 슬러리, 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
CN117304616A (zh) * 2023-11-09 2023-12-29 迁安益昌电子材料有限公司 一种耐高温电磁屏蔽密封材料及其制备方法
CN117954231B (zh) * 2024-03-25 2024-07-02 深圳新宙邦科技股份有限公司 一种电容器密封板及电容器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310456A (ja) 1986-07-02 1988-01-18 Mitsubishi Electric Corp メタルハライドランプ
JPH03285262A (ja) 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池の正極の製造法
JPH09227633A (ja) 1996-02-23 1997-09-02 Dai Ichi Kogyo Seiyaku Co Ltd エチレン−ビニルアルコール共重合体変性物、その製造方法、前記変性物を含有する水溶性フィルム、水溶性包装材料及び水溶性ホットメルト接着剤
JPH11297332A (ja) 1998-04-13 1999-10-29 Tdk Corp 集電体及びこれを用いたシート型電気化学素子
JP2004186221A (ja) * 2002-11-29 2004-07-02 Honda Motor Co Ltd 電気二重層コンデンサ用電極体
JP2005129437A (ja) * 2003-10-27 2005-05-19 Canon Inc 非水電解質二次電池用電極構造体及びその製造方法、前記電極構造体を備えた非水電解質二次電池及びその製造方法
JP2006310010A (ja) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2007095641A (ja) 2005-09-26 2007-04-12 Masaru Sugita 電池構成材料
JP2008060060A (ja) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk 電極板製造用塗工液、アンダーコート剤およびその使用
JP2009277783A (ja) * 2008-05-13 2009-11-26 Japan Gore Tex Inc 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05194912A (ja) * 1991-11-15 1993-08-03 Asahi Chem Ind Co Ltd 水性コーティング剤
DE4238453C2 (de) 1991-11-15 1996-02-29 Asahi Chemical Ind Bindemittelzusammensetzung bzw. Trägerzusammensetzung
JP3285262B2 (ja) 1993-10-14 2002-05-27 株式会社リコー 画像支持体の再生方法および該再生方法に使用する装置
JPH11323175A (ja) 1998-05-12 1999-11-26 Tokai Carbon Co Ltd 易水分散性カーボンブラックとその製造方法
JP4161472B2 (ja) 1999-06-25 2008-10-08 株式会社村田製作所 導電性厚膜ペーストおよびその製造方法ならびにこれを用いた積層セラミックコンデンサ
JP3692965B2 (ja) 2000-05-15 2005-09-07 株式会社デンソー リチウム二次電池およびその正極の製造方法
TW513472B (en) 2000-07-12 2002-12-11 Dainichiseika Color & Amp Chem Aqueous compositions and process for the surface modification of articles by use of the aqueous compositions
US6869710B2 (en) 2001-02-09 2005-03-22 Evionyx, Inc. Metal air cell system
US6790561B2 (en) * 2001-03-15 2004-09-14 Wilson Greatbatch Ltd. Process for fabricating continuously coated electrodes on a porous current collector and cell designs incorporating said electrodes
US6709788B2 (en) 2001-05-11 2004-03-23 Denso Corporation Lithium secondary cell and method of producing lithium nickel metal oxide positive electrode therefor
JP2003206409A (ja) * 2002-01-11 2003-07-22 Nippon Parkerizing Co Ltd 加熱架橋性組成物、水性溶液組成物および複合材
JP2003272619A (ja) * 2002-03-13 2003-09-26 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極塗膜形成用スラリーおよび該スラリーの調整方法
JP2004186218A (ja) * 2002-11-29 2004-07-02 Honda Motor Co Ltd 電気二重層コンデンサ用電極体
US6917094B2 (en) 2002-11-29 2005-07-12 Honda Motor Co., Ltd Electrode for electric double layer capacitor
JP2004210980A (ja) 2003-01-06 2004-07-29 Hitachi Chem Co Ltd バインダー樹脂組成物、合剤スラリー、電極及びこれらを用いて作製した非水電解液系二次電池
JP5010097B2 (ja) 2004-07-23 2012-08-29 昭和電工パッケージング株式会社 電子部品ケース用包材及び電子部品用ケース並びに電子部品
JP4819342B2 (ja) 2004-11-08 2011-11-24 エレクセル株式会社 リチウム電池用正極及びこれを用いたリチウム電池
CN101841041B (zh) * 2005-02-10 2012-06-06 昭和电工株式会社 二次电池集电器、二次电池阴极、二次电池阳极、二次电池及其制造方法
US8663845B2 (en) * 2005-02-10 2014-03-04 Showa Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
CN103730262A (zh) * 2005-03-30 2014-04-16 日本瑞翁株式会社 双电层电容器用电极、其材料及制造方法、双电层电容器
JP2006286344A (ja) * 2005-03-31 2006-10-19 Kyoritsu Kagaku Sangyo Kk リチウム非水電解質電池、およびその製造方法
KR101296183B1 (ko) * 2005-10-11 2013-08-13 쇼와 덴코 가부시키가이샤 전기 이중층 커패시터용 집전체, 전기 이중층 커패시터용 전극, 전기 이중층 커패시터, 및 그들의 제조 방법
JP4866173B2 (ja) 2006-01-25 2012-02-01 大日精化工業株式会社 ヒドロキシアルキル化キトサン溶液
US20100190063A1 (en) * 2006-07-06 2010-07-29 Yusuke Fukumoto Method and apparatus for manufacturing member for secondary battery and secondary battery using the same
TWI332284B (en) 2006-12-29 2010-10-21 Ind Tech Res Inst A battery electrode paste composition containing modified maleimides
JP2008184485A (ja) 2007-01-26 2008-08-14 Admatechs Co Ltd フィラー含有水スラリー組成物
JP5195749B2 (ja) * 2007-03-23 2013-05-15 日本ゼオン株式会社 リチウムイオン二次電池電極用スラリーの製造方法
JP4420123B2 (ja) 2007-06-18 2010-02-24 東洋インキ製造株式会社 電池用組成物
JP2009064564A (ja) 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
KR101422071B1 (ko) 2007-09-21 2014-08-13 주식회사 동진쎄미켐 플라즈마 디스플레이 패널 전극 형성용 슬러리 조성물
JP5601755B2 (ja) 2007-12-19 2014-10-08 太陽ホールディングス株式会社 スラリー組成物
JP2009238720A (ja) 2008-01-10 2009-10-15 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2009170287A (ja) * 2008-01-17 2009-07-30 Mitsubishi Chemicals Corp 非水系電解液二次電池用電極及びそれを用いた非水系電解液二次電池
JP5194912B2 (ja) 2008-03-17 2013-05-08 信越半導体株式会社 スーパージャンクション構造を有する半導体素子の製造方法
JP5320394B2 (ja) * 2008-06-02 2013-10-23 大日精化工業株式会社 塗工液、電極板製造用塗工液、アンダーコート剤およびその使用
DE102008034109B4 (de) 2008-07-21 2016-10-13 Dspace Digital Signal Processing And Control Engineering Gmbh Schaltung zur Nachbildung einer elektrischen Last
US8628610B2 (en) 2009-08-27 2014-01-14 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Dispersant for use in a carbon filler
CN101806766B (zh) 2010-04-09 2013-01-02 济南大学 一种羟丙基壳聚糖/碳纳米管修饰的电化学传感器及其制备方法和应用
US20110305970A1 (en) 2010-06-11 2011-12-15 Yogeshwar Sahai CHEMICALLY LINKED HYDROGEL MATERIALS AND USES THEREOF IN ELECTRODES and/or ELECTROLYTES IN ELECTROCHEMICAL ENERGY DEVICES

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310456A (ja) 1986-07-02 1988-01-18 Mitsubishi Electric Corp メタルハライドランプ
JPH03285262A (ja) 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池の正極の製造法
JPH09227633A (ja) 1996-02-23 1997-09-02 Dai Ichi Kogyo Seiyaku Co Ltd エチレン−ビニルアルコール共重合体変性物、その製造方法、前記変性物を含有する水溶性フィルム、水溶性包装材料及び水溶性ホットメルト接着剤
JPH11297332A (ja) 1998-04-13 1999-10-29 Tdk Corp 集電体及びこれを用いたシート型電気化学素子
JP2004186221A (ja) * 2002-11-29 2004-07-02 Honda Motor Co Ltd 電気二重層コンデンサ用電極体
JP2005129437A (ja) * 2003-10-27 2005-05-19 Canon Inc 非水電解質二次電池用電極構造体及びその製造方法、前記電極構造体を備えた非水電解質二次電池及びその製造方法
JP2006310010A (ja) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2007095641A (ja) 2005-09-26 2007-04-12 Masaru Sugita 電池構成材料
JP2008060060A (ja) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk 電極板製造用塗工液、アンダーコート剤およびその使用
JP2009277783A (ja) * 2008-05-13 2009-11-26 Japan Gore Tex Inc 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Interfacial Charge Transfer Reactions in Lithium Ion Cell", JAPANESE, JOURNAL OF THE SURFACE SCIENCE SOCIETY OF JAPAN, vol. 27, no. 10, 2006, pages 609 - 612
NISHINA, TATSUO; TACHIBANA, KAZUHIRO; ENDO, TAKASHI; OGATA, TATEAKI: "Effects of Passive Film Formed on Aluminum Collector in Lithium Ion Secondary Cell System on Charge-Discharge Characteristics", JAPANESE, BATTERY TECHNOLOGY, vol. 15, 2003, pages 28 - 40
See also references of EP2472646A4
TAKADA, KAZUNORI: "High Output Power All-Solid-State Lithium Ion Cell", JAPANESE, TECHNICAL RESEARCH REPORT, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 107, no. 493, 2008, pages 43 - 47
YOSHITAKE, HIDEYA; ISHIHARA, TATSUMI; YOSHIO, MASAKI: "Control of Interface with Graphite Negative Electrode in Lithium Ion Cell", JAPANESE, JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. 53, no. 12, 2002, pages 887 - 889

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627687B2 (en) * 2009-09-29 2017-04-18 Nec Energy Devices, Ltd. Secondary battery
US20120183843A1 (en) * 2009-09-29 2012-07-19 Nec Corporation Secondary battery
JP2017123471A (ja) * 2011-07-01 2017-07-13 ユッチンソン 電流導電性電極及びそれを製造する方法
US20140162122A1 (en) * 2011-07-29 2014-06-12 Uacj Foil Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
JP2013048043A (ja) * 2011-08-29 2013-03-07 Dainichiseika Color & Chem Mfg Co Ltd 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置
US9774029B2 (en) 2012-04-27 2017-09-26 Showa Denko K.K. Anode for secondary battery, method for producing same, and secondary battery
WO2013161749A1 (ja) 2012-04-27 2013-10-31 昭和電工株式会社 二次電池用負極およびその製造方法、ならびに二次電池
WO2013161748A1 (ja) 2012-04-27 2013-10-31 昭和電工株式会社 二次電池用負極活物質の製造方法および二次電池用負極活物質、二次電池用負極の製造方法および二次電池用負極、ならびに二次電池
US9515316B2 (en) 2012-04-27 2016-12-06 Showa Denko K.K. Method for producing anode active material for secondary battery, anode active material for secondary battery, method for producing anode for secondary battery, anode for secondary battery, and secondary battery
WO2014132809A1 (ja) * 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
JP2014193986A (ja) * 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd カーボンブラック分散液およびその利用
JP2014194001A (ja) * 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd カーボンブラック分散液およびその利用
JP2014193996A (ja) * 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd カーボンブラック分散液およびその利用
KR20150123826A (ko) 2013-02-27 2015-11-04 토요잉크Sc홀딩스주식회사 카본블랙 분산액 및 그의 이용
KR102217137B1 (ko) * 2013-02-27 2021-02-19 토요잉크Sc홀딩스주식회사 카본블랙 분산액 및 그의 이용
JP2014167849A (ja) * 2013-02-28 2014-09-11 Nitto Denko Corp 導電性積層シート、および、集電体
WO2014132679A1 (ja) * 2013-02-28 2014-09-04 日東電工株式会社 導電性積層シート、および、集電体
JP2015030777A (ja) * 2013-08-01 2015-02-16 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
JP2015101615A (ja) * 2013-11-22 2015-06-04 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
KR20170078829A (ko) * 2014-11-03 2017-07-07 허친슨 전도성 전극 및 이의 제조 공정
JP7038760B2 (ja) 2014-11-03 2022-03-18 ハッチンソン 導電性電極及びそれらの製造方法
JP2018501639A (ja) * 2014-11-03 2018-01-18 ハッチンソンHutchinson 導電性電極及びそれらの製造方法
JP2020170857A (ja) * 2014-11-03 2020-10-15 ハッチンソンHutchinson 導電性電極及びそれらの製造方法
JP2016219197A (ja) * 2015-05-19 2016-12-22 協立化学産業株式会社 集電体用コート剤組成物、蓄電デバイス用電極板及び蓄電デバイス
JP2017126530A (ja) * 2016-01-15 2017-07-20 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
JP2017224407A (ja) * 2016-06-13 2017-12-21 東洋インキScホールディングス株式会社 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
JP2021050106A (ja) * 2019-09-24 2021-04-01 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP7439428B2 (ja) 2019-09-24 2024-02-28 artience株式会社 カーボンナノチューブ分散液およびその利用
JP2023550109A (ja) * 2020-12-23 2023-11-30 エルジー エナジー ソリューション リミテッド 電解液の再注液方法および電解液の再注液が可能な二次電池
WO2023095771A1 (ja) * 2021-11-26 2023-06-01 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成組成物
WO2023157331A1 (ja) 2022-02-17 2023-08-24 大日精化工業株式会社 水性塗工液、蓄電装置用電極、及び蓄電装置

Also Published As

Publication number Publication date
KR101489042B1 (ko) 2015-02-02
TW201128838A (en) 2011-08-16
TWI451615B (zh) 2014-09-01
CN102483977A (zh) 2012-05-30
JPWO2011024797A1 (ja) 2013-01-31
WO2011024797A1 (ja) 2011-03-03
KR101420028B1 (ko) 2014-07-15
US20120156562A1 (en) 2012-06-21
JPWO2011024799A1 (ja) 2013-01-31
TW201126796A (en) 2011-08-01
US20120160128A1 (en) 2012-06-28
JP5318215B2 (ja) 2013-10-16
CN102576854B (zh) 2015-03-11
CN102498175A (zh) 2012-06-13
CN102498175B (zh) 2015-03-11
US20120148917A1 (en) 2012-06-14
US8628610B2 (en) 2014-01-14
JP5367826B2 (ja) 2013-12-11
EP2472646A4 (en) 2014-11-26
EP2472646B1 (en) 2022-07-06
US20160244620A1 (en) 2016-08-25
KR20120061929A (ko) 2012-06-13
KR101420029B1 (ko) 2014-08-01
EP2472527A4 (en) 2014-11-05
JPWO2011024800A1 (ja) 2013-01-31
EP2472528A4 (en) 2014-11-19
EP2472528A1 (en) 2012-07-04
KR20120061926A (ko) 2012-06-13
TWI457170B (zh) 2014-10-21
TW201128667A (en) 2011-08-16
US9359508B2 (en) 2016-06-07
EP2472528B1 (en) 2023-04-19
TW201113082A (en) 2011-04-16
JP5499041B2 (ja) 2014-05-21
KR101489043B1 (ko) 2015-02-02
WO2011024798A1 (ja) 2011-03-03
EP2472527A1 (en) 2012-07-04
TWI500058B (zh) 2015-09-11
EP2472646A1 (en) 2012-07-04
KR20120061925A (ko) 2012-06-13
EP2471869A1 (en) 2012-07-04
CN102483976B (zh) 2015-12-02
EP2471869A4 (en) 2016-11-09
JP5499040B2 (ja) 2014-05-21
KR20120061927A (ko) 2012-06-13
US9834688B2 (en) 2017-12-05
US20120156563A1 (en) 2012-06-21
EP2471869B1 (en) 2022-06-29
EP2472527B1 (en) 2022-07-27
CN102576854A (zh) 2012-07-11
JP5695170B2 (ja) 2015-04-01
US9359509B2 (en) 2016-06-07
CN102483976A (zh) 2012-05-30
JPWO2011024798A1 (ja) 2013-01-31
WO2011024800A1 (ja) 2011-03-03
CN102483977B (zh) 2013-09-11
TWI451616B (zh) 2014-09-01
US8945767B2 (en) 2015-02-03
JP2014095081A (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5499041B2 (ja) 電極板用の水系塗工液、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置
JP5596641B2 (ja) 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置
JP5320394B2 (ja) 塗工液、電極板製造用塗工液、アンダーコート剤およびその使用
JP5038751B2 (ja) 電極板製造用塗工液、アンダーコート剤およびその使用
KR20170044185A (ko) 도공액, 도공막, 및 복합 재료
US20150093649A1 (en) Method of producing current collector for electrochemical element, method of producing electrode for electrochemical element, current collector for electrochemical element, electrochemical element, and coating liquid for fabricating current collector for electrochemical element
TW201843870A (zh) 蓄電裝置用集電體、其製造方法,及用於其製造的塗覆液
JP7089127B1 (ja) 水性塗工液、蓄電装置用電極、及び蓄電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038019.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011528795

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010811849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 225/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13392066

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127007790

Country of ref document: KR

Kind code of ref document: A