[go: up one dir, main page]

WO2010010600A1 - 光触媒コーティング組成物 - Google Patents

光触媒コーティング組成物 Download PDF

Info

Publication number
WO2010010600A1
WO2010010600A1 PCT/JP2008/001978 JP2008001978W WO2010010600A1 WO 2010010600 A1 WO2010010600 A1 WO 2010010600A1 JP 2008001978 W JP2008001978 W JP 2008001978W WO 2010010600 A1 WO2010010600 A1 WO 2010010600A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
photocatalyst
fluororesin
coating composition
coating
Prior art date
Application number
PCT/JP2008/001978
Other languages
English (en)
French (fr)
Inventor
久田佳克
原田幸宣
京極彬
Original Assignee
株式会社ピアレックス・テクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピアレックス・テクノロジーズ filed Critical 株式会社ピアレックス・テクノロジーズ
Priority to JP2010521544A priority Critical patent/JPWO2010010600A1/ja
Priority to US13/054,919 priority patent/US20110143924A1/en
Priority to PCT/JP2008/001978 priority patent/WO2010010600A1/ja
Publication of WO2010010600A1 publication Critical patent/WO2010010600A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a photocatalyst coating composition, and a substrate with a coating film, in which a coating film formed from the photocatalyst coating composition is attached to a substrate.
  • photocatalyst paint photocatalyst coating composition
  • a photocatalyst material excellent in stain resistance and antibacterial property has been attracting attention.
  • the paint used on the exterior walls of the building, body steel plates, and tents should have a good appearance and be resistant to contaminants such as rain stains, that is, be resistant to environmental pollution. Is desired.
  • a method of effectively using a coating material or a surface treatment material that exhibits stain resistance and antibacterial properties, has excellent hydrophilicity, and has a photocatalytic function.
  • photocatalytic coating material a coating material or a surface treatment material that exhibits stain resistance and antibacterial properties, has excellent hydrophilicity, and has a photocatalytic function.
  • a photocatalytic material is blended as a component of a photocatalyst paint, in order to sufficiently exert a photocatalytic function against environmental pollution, a metal oxide is well dispersed in the paint and a coating layer is formed after coating and drying.
  • a binder component is blended.
  • the photocatalytic reaction In the photocatalytic reaction, a relatively intense redox reaction is generated, thereby decomposing the organic substances that are pollutants.
  • the photocatalytic reaction also acts on the organic resin binder, the organic resin binder is decomposed (so-called binder self-disintegration), and the paint deteriorates to deteriorate durability. There is.
  • Patent Document 1 a configuration is known in which a glassy inorganic binder called silica sol or silicate is exclusively used as the binder of the photocatalyst paint, and dispersion stability against the photocatalytic reaction can be ensured. ing.
  • Patent Document 2 a perhydrosulfonic acid graft polymer-PTFE copolymer (Perfluorosulfonic Acid / PTFE copolymer (H + )), which is a superhydrophilic polymer that is difficult to decompose by a photocatalytic reaction.
  • a photocatalytic coating using “Nafion” (registered trademark of DuPont Co., Ltd., hereinafter simply referred to as “Nafion”) as an organic resin binder is known (see, for example, Patent Document 2).
  • the present invention has been made in view of the above problems.
  • the present invention has a predetermined photocatalytic function, and the cured coating film is flexible without being decomposed by the photocatalytic action.
  • a photocatalytic coating composition capable of improving adhesiveness and improving the abrasion resistance of a coating film.
  • a photocatalyst coating composition capable of shortening the curing time after coating is provided.
  • the present invention provides a copolymer obtained by grafting perfluorosulfonic acid or perfluorocarboxylic acid to PTFE, a photocatalytic material, PVDF, PVF, PTFE, ETFE, PVDF-HFP. , PCTFE, trifluorochloroethylene-alkyl vinyl ether copolymer, tetrafluoroethylene-alkyl vinyl ether copolymer, trifluorochloroethylene-alkyl vinyl ether-alkyl vinyl ester copolymer, one or two of them It was set as the photocatalyst coating composition formed by mix
  • the said fluororesin when performing baking painting, can be included in a particulate form.
  • a uniform coating film can be formed by melting and mixing the composition by a baking coating method.
  • the fluororesin when the coating is performed by a coating method, can be mixed with the resin binder as an aqueous emulsion.
  • a photocatalyst coating composition capable of drying and curing the coated film at room temperature can be obtained.
  • the fluororesin can be mixed with the resin binder as a liquid fluororesin.
  • a FEVE resin can be used as the liquid fluororesin.
  • Examples of the photocatalytic material include at least one metal oxide selected from TiO 2 , ZnO, WO 3 , SnO 2 , SrTiO 3 , Bi 2 O 3 , and Fe 2 O 3 .
  • the photocatalytic material may be porous.
  • the catalyst function for removing contaminants can be effectively increased, while the uneven surface can be utilized to provide a deodorizing function due to adsorptivity.
  • the photocatalyst coating composition of the present invention contains at least one of volatile lower alcohols, such as methanol, ethanol, and propyl alcohol, the solvent can be volatilized quickly after coating, and the coating film can be made faster. Since it can form, it is suitable.
  • volatile lower alcohols such as methanol, ethanol, and propyl alcohol
  • At least one selected from an inorganic ultraviolet absorber, an organic ultraviolet absorber, and a light stabilizer can be added to the photocatalyst coating composition of the present invention.
  • the present invention also provides a substrate with a photocatalyst coating film having a substrate and a coating film obtained by applying the above-described photocatalyst coating composition of the present invention to the surface of the substrate.
  • the photocatalyst coating composition of the present invention contains a specific fluororesin in addition to the copolymer of perfluorosulfonic acid or perfluorocarboxylic acid and PTFE. All of these components have abundant C—F bonds having high binding energy in the composition, and by using such C—F bonds as a skeleton, the coating film self-disintegrates due to photocatalytic reaction. Can be effectively avoided, and a good coating film can be maintained over a long period of time.
  • the coating film after drying and curing can exhibit flexibility and wear resistance by taking advantage of the characteristics of these fluororesins, and sulfonic acid groups in perfluorosulfonic acid. By this, super hydrophilicity is exhibited on the surface of the coating film, and the effect of removing contaminants by forming a water film is exhibited.
  • the property of the fluororesin improves the adhesion with a base other than organic, such as metal or inorganic, and also improves the durability of the coating film after formation. Can be improved.
  • both adhesion and abrasion resistance of the coating film are improved by baking and coating on a predetermined surface. be able to.
  • FIG. 1 is a partial cross-sectional view of a substrate with a coating film in which a coating film 12 is formed by applying a photocatalyst coating composition (hereinafter simply referred to as “photocatalytic coating composition”) comprising the photocatalyst coating composition of the present invention to the substrate.
  • photocatalytic coating composition comprising the photocatalyst coating composition of the present invention to the substrate.
  • 10 is a substrate with a coating film
  • 11 is a substrate
  • 12 is a coating film.
  • the coating film 12 is obtained by drying and curing the photocatalyst paint according to the present embodiment.
  • the photocatalyst paint includes an organic resin binder as a main component, and a photocatalyst material, a predetermined fluororesin, and a lower alcohol (one or more of methanol, ethanol, 1-propyl alcohol, and isopropyl alcohol).
  • the aqueous solvent is blended at a weight ratio of 1 to 30 parts by weight, 0.1 to 20 parts by weight, 0.1 to 10 parts by weight, and 5 to 80 parts by weight, respectively.
  • the binder layer 14 (thickness of about 5 ⁇ m) having the organic resin binder and the fluororesin as a skeleton, It has a configuration in which photocatalyst particles (TiO 2) 13 are dispersed.
  • the organic resin binder is Nafion which is a perfluorosulfonic acid-PTFE copolymer in which sulfonic acid (SO 3 H) groups are graft-polymerized. Its chemical structure is represented by the following chemical formula (Formula 1).
  • Nafion is a graft polymer (polytetrafluoroethylene obtained by graft polymerization of a sulfonic acid machine) composed of a repeating unit of polymer tetrafluoroethylene having a sulfonic acid in the side chain. is there. It has no C—H bond and has a C—F bond exhibiting a high degree of stability. Therefore, it has excellent chemical stability that the C—F skeleton is hardly cleaved by unnecessary chemical reaction.
  • the bond energy of the C—F bond is sufficiently large (about 500 kJ / mol) with respect to any bond energy of the C—H bond (415 kJ / mol) and the C—C bond (347 kJ / mol). . Therefore, a chemically stable molecular chain can be formed. Due to this chemical stability, the present invention can stably exist in the coating film 12 without being subjected to a decomposition reaction by a photocatalyst over a long period of time. In addition, since it has a high degree of crystallinity, it can form a very dense crystal structure, and also exhibits excellent chemical resistance and weather resistance, and is highly stable against electrochemical reactions.
  • Nafion is generally used as a solid electrolyte in polymer electrolyte fuel cells (SPFC), and has a highly stable performance (proton conductivity and thermal stability) against the electrochemical reaction (water synthesis reaction) associated with power generation.
  • Organic polymer resin exhibiting properties and the like. It has become clear from experiments conducted by the inventors of the present application that such electrochemical characteristics exhibit extremely high stability against a photocatalytic reaction which is a kind of electrochemical reaction common to a power generation reaction. Yes.
  • PTFE polymerized with perfluorosulfonic acid is used.
  • the present invention is not limited to this, and PTFE polymerized with perfluorocarboxylic acid may be used. . It is also possible to use a mixture of these materials.
  • PVDF, PVF, PTFE, ETFE, PVDF-HFP, PCTFE trifluoroethylene chloride-alkyl vinyl ether copolymer, tetrafluoroethylene-alkyl vinyl ether copolymer,
  • trifluorochloroethylene-alkyl vinyl ester copolymers and trifluorinated ethylene-alkyl vinyl ether-alkyl vinyl ester copolymers may be mentioned.
  • a fine particle material can be used as the fluororesin, dispersed in the photocatalyst paint, and this can be baked and painted on the target surface.
  • the coating film 12 integrated with Nafion can be formed on the surface of the base 11 while heating and dissolving the particulate fluororesin.
  • this baking coating method allows the coating film 12 to contain the fluororesin component well, and improves the adhesion between the coating film 12 and the substrate 11 and the wear resistance to the outside by taking advantage of the excellent properties of the fluororesin. Can be made.
  • the baking temperature is preferably 220 to 240 ° C. when a Kynar type fluororesin is used, and 160 to 180 ° C. when a trifluoroethylene chloride-alkyl vinyl ether copolymer is used.
  • a fluororesin as an aqueous emulsion and mix it.
  • This photocatalyst coating using an aqueous emulsion can be dried and cured at room temperature at least, and does not require a separate heating process for drying and curing, so that the work efficiency for coating can be dramatically improved and the area can be increased. It can be expected that the coating can be performed at low cost.
  • a liquid fluororesin can be used separately from the above.
  • the liquid fluororesin include a fluoroethylene-vinyl ether alternating copolymer (hereinafter referred to as FEVE fluororesin) or a polyvinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter referred to as PVDF fluororesin).
  • FEVE fluororesin fluoroethylene-vinyl ether alternating copolymer
  • PVDF fluororesin polyvinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer
  • fluororesin “Lumiflon” (registered trademark of Asahi Glass Co., Ltd.), “Cefral Coat” (registered trademark of Central Glass Co., Ltd.), “Fluonate” (registered trademark of DIC Co., Ltd.), etc.
  • Examples include Kyner ADS (registered trademark of Arkema Corporation). Photocatalyst paints containing these liquid fluororesins can be dried and cured at room temperature. When they have crosslinking groups such as hydroxyl groups or carbonyl groups, they can be combined with a crosslinking agent such as blocked isocyanate, A coating film having strong adhesion can also be formed.
  • the photocatalyst particle 13 is an example of a photocatalyst material, and here, primary and secondary particles formed by agglomerating primary particles composed of a metal oxide having an average particle diameter of about 7 nm to an average particle diameter of about 200 to 300 nm. As dispersed in the coating film 12.
  • the photocatalyst particle 13 is typically illustrated in a primary particle state for the sake of explanation.
  • the metal oxide examples include titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), tin oxide (SnO 2 ), strontium titanate (SrTiO 3 ), and bismuth oxide (Bi 2 O 3 ). And at least one metal oxide of iron oxide (Fe 2 O 3 ).
  • titanium oxide is particularly preferable because it has a stable photocatalytic function and can be easily obtained.
  • fine particles exist, but it is easy to use as the photocatalyst particles 13 in the present invention.
  • the photocatalyst coating material of this invention can be manufactured by mix
  • the thickness of the coating film 12 can be exemplified by about 5 ⁇ m. Since this thickness is much thicker than that of a conventional coating film (thickness of about 0.1 ⁇ m) using an inorganic binder, a firm coating film 12 can be formed accordingly.
  • a liquid fluororesin that is compatible with alcohol is mixed with Nafion to produce a photocatalyst coating material in which a photocatalytic material is dispersed and applied to the application target surface.
  • the ratio of addition of water and alcohol is in the range of 5 to 80 parts by weight of water and 5 to 80 parts by weight of alcohol. Further, in the case of A baking coating, 5 to 20 parts by weight of water and 50 to 80 parts by weight of alcohol. In the case of the coating method of parts B, B, 60 to 80 parts by weight of water and 5 to 20 parts by weight of alcohol are preferred.
  • the fluororesin is melted by heating during baking, and a coating film having a composition highly integrated with Nafion can be produced. Therefore, there is an advantage that uniform film characteristics can be exhibited in the entire coating film 12 even in a wide application area. Further, since the paint melted at the time of baking conforms to the unevenness of the surface of the substrate 11, the adhesion of the coating film 12 to the substrate 11 can be obtained well.
  • a paint can be applied and dried and cured at room temperature (specifically, in the range of 5 to 35 ° C. in accordance with JIS Z8703) by using an aqueous emulsion.
  • the liquid fluororesin has a crosslinking group such as a hydroxyl group or a carbonyl group, is dried at room temperature by mixing with isocyanate, and has strong adhesion by baking coating by mixing with blocked isocyanate. It can be a membrane.
  • the drying and curing time after coating can be greatly shortened. Due to the shortening of the drying and curing time, application to a continuously produced member is preferable. For example, it can also be applied to a color steel plate production line that is continuously produced by forming a coating film by high-speed baking.
  • a predetermined lower alcohol such as ethanol or isopropyl alcohol
  • the drying time is less than 1 minute in an atmosphere of 80 ° C., which is very high speed.
  • the conventional photocatalyst paint using an inorganic binder has a defect that the drying time is affected by the environmental humidity, and the condensation reaction due to hydrolysis cannot be accelerated if the humidity is insufficient.
  • the environmental humidity is not the rate-determining factor for drying the coating film, and the coating film 12 can be stably dried at a high speed.
  • More photocatalytic coating with the composition in which the coated surface of the binder layer 14 of the coating 12 formed by drying and curing, a sulfonic acid group possessed by Nafion (SO 3 H group) is exposed to the outside.
  • the sulfonic acid group exhibits super hydrophilicity, and a flat water film is formed on the entire surface of the coating film 12.
  • Nafion which is an abundant proton conductive material, is present and the proton conductivity is improved. Therefore, the surface of the coating film 12 has excellent super hydrophilicity due to the sulfonic acid group. As a result, a thin water film is easily formed.
  • the photocatalyst particles 13 dispersed and present in the coating film 12 are irradiated with light from the outside, they are excited by receiving irradiation energy.
  • oxygen in the atmosphere receives energy from the photocatalyst and changes into active oxygen on the surface of the coating film 12 that comes into contact with the atmosphere.
  • Active oxygen acts on the surface of the coating film 12 or in the vicinity thereof to decompose lipophilic contaminants, weaken the adhesion to the coating film 12, and be easily removed. When rain or the like hits the coating film, the contaminants are easily washed away.
  • the coating film 12 is composed of a photocatalyst paint using an organic resin binder in its composition, it exhibits flexibility and extensibility.
  • a certain degree of flexibility is exhibited by using Nafion, for example, when the base 11 is a building material such as a soft PVC material, a polycarbonate plate, or a sealing material, even if the base 11 is deformed after coating, the base Since the coating film 12 bends flexibly following the deformation of the coating film 11, the coating film 12 does not peel from the substrate 11 side.
  • the coating film 12 can be satisfactorily formed on a thin steel plate that is bent after coating, or on a tent that is repeatedly folded and assembled. Therefore, according to the present invention, compared with the case where an inorganic binder that cannot be deformed is used, the type of substrate, the coating area, the application environment, and the like are widened. It can prevent being influenced.
  • the photocatalyst paint of the present invention can also be applied to an object (glass plate, exposed concrete, tile / stone, aluminum panel, etc.) that is not flexible or stretchable.
  • an object glass plate, exposed concrete, tile / stone, aluminum panel, etc.
  • the adhesion to a metal or an inorganic base is improved, and a strong coating film 12 can be formed.
  • a strong adhesive force can be exerted by performing bonding such as intermolecular bonding with the base by using a hydroxyl group in the molecule.
  • PVDF is used as the fluororesin, it is possible to form a dense coating film by applying physical bonding that firmly adheres to the irregularities on the surface of the substrate at the time of melting during application by heat melting.
  • the thickness of the coating film can be set somewhat freely as compared with the case of using an inorganic binder. Specifically, when an inorganic binder is used, it is difficult to form only a film thickness of about 0.1 ⁇ m. However, according to the present invention, the coating film can be adjusted from several ⁇ m to several tens of ⁇ m. For this reason, it is possible to satisfactorily take measures against thinning of the coating film by the thick film design.
  • the coating film 12 exhibits excellent durability together with the above effects. That is, as the organic resin binder that forms the main skeleton of the coating film 12, perfluorosulfonic acid having a large number of C—F bonds is used. For example, the photocatalyst in the coating film is excited by being irradiated with ultraviolet rays for a long time. Even when the photocatalytic reaction occurs on the surface of the coating film 12, the skeleton of the C—F bond in the binder layer 14 is not easily decomposed by the photocatalytic reaction.
  • the coating film 12 can be favorably maintained while avoiding self-disintegration due to the photocatalytic reaction over a long period of time. Further, the catalyst can be contained as much as possible as a photocatalyst paint, and the catalyst concentration can be freely set without worrying about the self-disintegration of the coating film 12.
  • the coating film 12 formed by applying the photocatalyst paint is imparted with good wear resistance due to these fluororesins. That is, by adding these fluororesins, the coefficient of friction of the coating film 12 becomes very small, and the surface friction when an object comes into contact with the coating film 12 or slides from the outside is suppressed to a very small level. it can. As a result, the coating film 12 is greatly improved in strength and the wear resistance is drastically improved. Even if there is some external contact, the coating film 12 is not greatly damaged or lost.
  • the photocatalyst paint contains abundant specific fluororesin in this way, the adhesiveness to the application target surface is improved by taking advantage of the characteristics of the fluororesin. For this reason, the coating film 12 is difficult to peel from the surface of the substrate 11 chemically.
  • the melted coating component enters the unevenness on the surface of the substrate and is brought into close contact therewith, so that excellent adhesion can be expected even if the base is a metal or an inorganic material.
  • the coating film 12 by adding the photocatalyst particles 13 to the coating film 12, it is possible to increase the surface area of the coating film 12 and to exert a deodorizing function and an antibacterial function. Accordingly, there is an advantage that the coating film 12 having excellent performance according to these required characteristics can be formed even in a use environment where hygienic performance is required, such as a hospital facility.
  • the coating film 12 itself needs to have a sufficient gas adsorption capability.
  • the adsorption surface area of the coating film 13 may be increased.
  • titanium oxide is supported on a porous titanium oxide such as “ST-01”, “ST-31”, and “AMT-100” manufactured by Ishihara Sangyo Co., Ltd. or a porous body such as silica and zeolite. A thing can be illustrated.
  • Example 1 Experiments were conducted on the adhesion and wear resistance of the coating film when stone was used as the substrate.
  • the fluororesin used in the present invention was in the form of an aqueous emulsion material.
  • Example A1 35 parts by weight of a 20% solution (prepared by Wako Pure Chemical Industries, Ltd.) of a product “Nafion DE2021” manufactured by DuPont Co., Ltd., and titanium oxide “ST-01” (produced by Ishihara Sangyo Co., Ltd .: adsorption) of porous photocatalyst particles 3 parts by weight of a surface area of 300 m 2 / g) and 42 parts by weight of isopropyl alcohol were blended.
  • Comparative Example B1 A composition in which only Lumiflon FE4400 (Asahi Glass Co., Ltd. product) was removed from the composition of Example A1. That is, a 20% solution of DuPont product “Nafion DE2021” (prepared by Wako Pure Chemical Industries, Ltd.), porous photocatalytic titanium oxide “ST-01” (manufactured by Ishihara Sangyo Co., Ltd .: adsorption surface area of 300 m 2 / g) and isopropyl Only the alcohol was blended to obtain a comparative photocatalyst coating material (Comparative Example B1).
  • the adhesion test was carried out by a cross-cut tape peeling test in accordance with JIS K5400.
  • the abrasion resistance test was a coin scratch test in which the coated surface was rubbed with a corner of a 10-yen coin.
  • Example A1 As is apparent from Table 1, in Example A1 according to the present invention, peeling was not confirmed at all, and it was found to have strong adhesiveness. In addition, it was revealed that Example 1 had excellent abrasion resistance without peeling at all to the extent that light scratches were observed in the coin scratch test.
  • Comparative Example B1 in which no fluororesin was blended other than Nafion, it was confirmed that all the coating films were peeled off in the adhesion test, and apparently poor adhesion occurred. Also, it was found that peeling of the coating film occurred in the abrasion resistance test.
  • Example A1 has significantly better adhesion and wear resistance than at least Comparative Example B1 with respect to at least a stone substrate.
  • Example 2 Next, an experiment was conducted on the adhesion and abrasion resistance of the coating film when a tent made of fluororesin (PVDF) was used for the substrate. Particles were used for the fluororesin used in the present invention.
  • Example A2 35 parts by weight of a 20% solution (manufactured by Wako Pure Chemical Industries, Ltd.) of DuPont's product “Nafion DE2021” and porous photocatalytic titanium oxide “ST-01” (Ishihara Sangyo Co., Ltd .: adsorption surface area of 300 m) 2 / g) 3 parts by weight and 42 parts by weight of isopropyl alcohol were blended. This was strongly dispersed with a paint shaker, and further 20 parts by weight of KF polymer C # 1000 (manufactured by Kureha Co., Ltd.) was added as PVDF powder and stirred well. This obtained the photocatalyst coating material (Example A2) which is an Example of this invention.
  • Comparative Example B2 A composition obtained by removing only KF polymer C # 1000 (manufactured by Kureha Co., Ltd.) from the composition of Example A2. That is, a 20% solution of DuPont product “Nafion DE2021” (prepared by Wako Pure Chemical Industries, Ltd.), porous photocatalytic titanium oxide “ST-01” (manufactured by Ishihara Sangyo Co., Ltd .: adsorption surface area of 300 m 2 / g) and isopropyl Only the alcohol was blended to obtain a comparative photocatalyst paint (Comparative Example B2).
  • Example A2 and Comparative Example B2 were applied to the surface of the PVDF tent ground as a substrate so as to have a dry coating amount of 1 g / m 2, and 30 ° C. at 30 ° C. It was dried for a minute to obtain a coating film.
  • This coating film was subjected to an adhesion test and an abrasion resistance test in the same manner as in Experiment 1.
  • Example 2 did not peel at all in the adhesion test. Further, in the abrasion resistance test, no conspicuous scratches were confirmed.
  • Comparative Example B2 in which no fluorine resin other than Nafion was blended, 60% stopped without peeling in the adhesion test. Thereby, although it can be said that adhesiveness is somewhat good, it seems that there is a need for further improvement. In Comparative Example B2, peeling occurred in the coin scratch test. For this reason, it is hard to say that the abrasion resistance of the coating film is excellent.
  • Example A2 according to the present invention in which a fluorine resin is further blended with Nafion, is remarkably improved as compared with Comparative Example B2 in terms of adhesion and wear resistance to tents.
  • Experiment 2 it was found that by using a photocatalyst coating material containing a known fluororesin in addition to Nafion and a photocatalyst, adhesion to metals and inorganic bases was improved, and the wear resistance of the coating film was improved. .
  • Example 3 Next, an experiment was conducted on the adhesion and wear resistance of the coating film in the case of a coated steel plate made of FEVE fluoropolymer on the substrate.
  • a liquid fluororesin was used as the fluororesin used in the present invention.
  • Example A3 25 parts by weight of a 20% solution (prepared by Wako Pure Chemical Industries, Ltd.) of DuPont's product “Nafion DE2021” and porous photocatalytic titanium oxide “ST-01” (Ishihara Sangyo Co., Ltd .: adsorption surface area of 300 m) 2 / g) 3 parts by weight, 26 parts by weight of isopropyl alcohol, and 26 parts by weight of methyl ethyl ketone were blended.
  • Example A2 which is an Example of this invention.
  • Comparative Example A3 A composition in which only Lumiflon LF600 (Asahi Glass Co., Ltd.) was removed from the composition of Example A3.
  • Example A3 and Comparative Example B3 Using each of the photocatalyst paints of Example A3 and Comparative Example B3 obtained in this way, the coating was applied to the surface of the FEVE-based fluororesin-coated steel sheet as the base so that the dry coating amount was 2 g / m 2. It was dried at 20 ° C. for 20 minutes to obtain a coating film. This coating film was subjected to an adhesion test and an abrasion resistance test in the same manner as in Experiment 1. The surface hardness was determined in accordance with a scratch hardness (pencil method) test specified in JIS K 5600.
  • Example A3 did not peel at all in the adhesion test. Further, in the abrasion resistance test, no conspicuous scratches were confirmed. Furthermore, the surface hardness is improved as compared with Comparative Example B3.
  • Comparative Example B3 where no fluororesin was blended other than Nafion, 50% peeled off in the adhesion test. Thereby, it can be said that the adhesiveness is somewhat poor, and there is a need for further improvement. In Comparative Example B3, peeling occurred in the coin scratch test. For this reason, it is hard to say that the abrasion resistance of the coating film is excellent.
  • Example A3 according to the present invention in which a liquid fluororesin is further blended with Nafion, is markedly improved in both adhesion and wear resistance to the tent place compared to Comparative Example B3.
  • the surface hardness of the coating film was improved by using a photocatalyst coating material containing a known liquid fluororesin in addition to Nafion and a photocatalyst.
  • Example A1 when Examples A1, A2 and A3 are compared, a coating film having good performance is obtained as a result regardless of whether the fluororesin is an aqueous emulsion or particles or a liquid fluororesin. Therefore, when carrying out the present invention, any form of fluororesin may be added.
  • a particulate fluororesin or a liquid fluororesin as in Example A1 and apply it by heating.
  • a coating film can be obtained in about 24 hours by using a paint to which an aqueous emulsion or a liquid fluororesin is added.
  • the resin binder of the photocatalyst coating material of the present invention a resin having a characteristic that the coating film is flexible without being deteriorated by the photocatalyst can be used.
  • the carbon-hydrogen bond C—H bond
  • an organic resin binder having a molecular skeleton such as a C—F bond having a C—H bond as much as possible and a large binding energy is desirable.
  • Nafion containing perfluorosulfonic acid and PTFE is preferred.
  • inorganic UV absorbers such as zinc oxide, titanium oxide, and cerium oxide
  • organic UV absorbers such as benzotriazole, salicylic acid, and benzophenone
  • light stabilizers such as hindered amines.
  • a compound to be prepared may be added.
  • the ultraviolet-ray prevention function is provided to a coating film.
  • the transparency of the coating film may decrease depending on the additive substance and the amount added.
  • an undercoat layer may be formed between the coating film and the substrate in order to increase the adhesion of the coating film.
  • An underlayer can also be formed on the substrate surface.
  • FEVE fluoroethylene vinyl ether copolymer
  • the photocatalyst coating composition of the present invention is, for example, a concrete, sealing part, tile / stone material, aluminum panel, glass, polycarbonate substrate used as a building material, as a coating material for protecting against environmental pollution and obtaining a cleaning effect. Wide use is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Catalysts (AREA)

Abstract

 光触媒機能を備え、塗膜が光触媒で分解されずに柔軟性を有し、下地との接着性を向上し、塗膜の耐摩耗性を向上できる光触媒コーティング組成物を提供する。また、さらに塗布した後の硬化時間を短縮できる光触媒コーティング組成物を提供する。  このため本発明は、有機樹脂バインダに対し、光触媒化合物、所定のフッ素樹脂、低級アルコール(メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコールの中の1種以上)を含む水性溶媒とを配合する。所定のフッ素樹脂は、PVDF、PVF、PTFE、ETFE、PVDF-HFP、PCTFE、3フッ化塩化エチレン-アルキルビニルエーテル共重合体、4フッ化エチレン-アルキルビニルエーテル共重合体、3フッ化塩化エチレン-アルキルビニルエーテル-アルキルビニルエステル共重合体、の中の1種または2種以上を添加する。

Description

光触媒コーティング組成物
 本発明は、光触媒コーティング組成物、および光触媒コーティング組成物で形成された塗膜が基材に被着されてなる塗膜付基体に関する。
 最近、耐汚染性や抗菌性に優れた光触媒材料を配合した光触媒塗料(光触媒コーティング組成物)が注目されている。
 また、建築物外壁や車体鋼板、テント地等の基体に使用される塗料には、外観が良好で、雨筋汚れ等の汚染物質が付着し難い性質、つまり環境汚染に対する耐汚染性を備えることが望まれている。
 このため、耐汚染性や抗菌性を発現するとともに、親水性に優れ、光触媒機能を有する塗料材や表面処理材(以後、これらをまとめて「光触媒塗料」と称する。)を有効に利用する方法が模索されている。一般に、光触媒材料を光触媒塗料の成分として配合する際には、環境汚染に対する光触媒機能を十分発揮するために、塗料中で金属酸化物を良好に分散させ、塗布乾燥後には塗膜層を形成するためのバインダ成分が配合される。
 なお、光触媒反応では、比較的激烈な酸化還元反応を発生させ、これにより汚染物質である有機物を分解する。前記バインダとして有機樹脂バインダを用いた場合、光触媒反応は有機樹脂バインダにも作用し、有機樹脂バインダが分解されてしまい(いわゆるバインダの自己崩壊)、当該塗料が劣化して耐久性が低下する問題がある。
 そこで、例えば特許文献1に示すように、光触媒塗料のバインダに、シリカゾルあるいはシリケートと称されるガラス質の無機バインダを専ら用い、光触媒反応に対する分散安定性を確保できるように工夫した構成が知られている。
 或いは、例えば特許文献2に示すように、光触媒反応で分解困難な性質を有する超親水性のポリマーであるパーフルオロスルホン酸グラフト重合体-PTFE共重合体(Perfluorosulfonic Acid/PTFE copolymer(H+)の「ナフィオン」(デュポン株式会社の登録商標、以下単に「ナフィオン」と称する。)を有機樹脂バインダとして用いた光触媒塗料が知られている(例えば特許文献2参照)。この有機樹脂バインダを用いる場合には、分子構造中のC-F結合部分において光触媒反応に対する化学安定性が確保され、これを分子骨格とすることで良好な特性を持つ塗膜を長期にわたり維持することができる。さらに有機樹脂バインダを用いると、無機バインダを用いた場合よりも塗布後の乾燥時間を短縮することができるため、例えばカラー鋼板等の高速の連続生産において好適である。また、無機バインダを用いた塗膜は柔軟性がないために、塗膜形成した基体を折り曲げると塗膜に亀裂が発生しうるが、有機樹脂バインダを用いてなる塗膜は柔軟性を発揮できるので、塗膜を基体とともに折り曲げることもできる。従って、幅広い種類の基体に塗膜を形成できるなどの大きな利点もある。
特開平11-343426号公報 特開2006-233073号公報
 しかしながら、特許文献2に記載した有機樹脂バインダを用いた光触媒塗料においても、塗膜の柔軟性や耐摩耗性、並びに塗膜と基体との接着性において、未だ十分な性能が得られているとは言い難い現状にある。このような塗膜の柔軟性や耐摩耗性は、基体の表面において光触媒反応を持つ塗膜の性能を長期間発揮する上で極めて重要な性質であり、これらの改善が強く望まれている。
 本発明は以上の課題に鑑みてなされたものであって、第一の目的として、所定の光触媒機能を備え、硬化した塗膜が光触媒作用により分解されずに柔軟性を有するとともに、下地との接着性を向上し、塗膜の耐摩耗性を向上することのできる光触媒コーティング組成物を提供する。
 また第二の目的として、上記目的に加え、塗布した後の硬化時間を短縮することのできる光触媒コーティング組成物を提供する。
 上記課題を解決するために、本発明は、PTFEに対し、パーフルオロスルホン酸又はパーフルオロカルボン酸がグラフト重合された共重合体と、光触媒材料と、PVDF、PVF、PTFE、ETFE、PVDF-HFP、PCTFE、3フッ化塩化エチレン-アルキルビニルエーテル共重合体、4フッ化エチレン-アルキルビニルエーテル共重合体、3フッ化塩化エチレン-アルキルビニルエーテル-アルキルビニルエステル共重合体、の中の1種または2種以上のフッ素樹脂とが配合されてなる光触媒コーティング組成物とした。
 なお、焼き付け塗装を行う場合において、前記フッ素樹脂を粒子状で含めることができる。この場合、焼き付け塗装法により組成を溶融混合させて、均一な塗膜を形成できる。
 或いは塗布方法による塗装を行う場合には、前記フッ素樹脂は、水性エマルジョンとして前記樹脂バインダと混合することもできる。この場合、塗装後の塗膜を常温で乾燥硬化可能な光触媒コーティング組成物を得ることができる。
 或いはフッ素樹脂は、液体フッ素樹脂として前記樹脂バインダと混合することもできる。この場合、前記液体フッ素樹脂としては、FEVE系樹脂を利用することができる。
 光触媒材料は、TiO2、ZnO、WO3、SnO2、SrTiO3、Bi23、Fe23から選択される少なくとも1種の金属酸化物を挙げることができる。
 ここで、光触媒材料は多孔質とすることもできる。このようにすると、触媒の表面積を拡大できることから、汚染物を除去するための触媒機能を効果的に増大させる一方で、凹凸表面を活かして吸着性により消臭機能を持たせることもできる。
 さらに本発明の光触媒コーティング組成物には、揮発性の低級アルコールであるメタノール、エタノール、プロピルアルコールの1種以上が含まれているようにすると、塗布後に迅速に溶媒を揮発でき、塗膜を早く形成できるので好適である。
 また、本発明の光触媒コーティング組成物には、無機系紫外線吸収剤、有機系紫外線吸収剤および光安定化剤から選択される少なくとも1種を添加することもできる。
 また本発明は、基体と、基体表面に上記した本発明の光触媒コーティング組成物を塗布してなる塗膜とを有する光触媒コーティング塗膜付基体とした。
 本発明の光触媒コーティング組成物は、パーフルオロスルホン酸又はパーフルオロカルボン酸とPTFEとの共重合体に加え、さらに特定のフッ素樹脂を組成中に配合している。これらの成分は、いずれも高い結合エネルギーを持つC-F結合を組成中に豊富に有しているので、このようなC-F結合を骨格とすることにより、光触媒反応による塗膜の自己崩壊を効果的に回避でき、長期にわたり良好な塗膜を維持できる。また、上記した特定のフッ素樹脂を利用することで、これらのフッ素樹脂の特性を活かして乾燥硬化後の塗膜が柔軟性及び耐摩耗性を発揮できるとともに、パーフルオロスルホン酸中のスルホン酸基によって、塗膜表面に超親水性が発揮され、水膜形成による汚染物質の除去効果が呈される。
 さらに、上記した所定のフッ素樹脂を用いれば、当該フッ素樹脂の有する特性により、金属や無機系等、有機系以外の下地との接着性が向上するとともに、形成後の塗膜の耐久性をも改善させることができる。
 さらに、粒子状のフッ素樹脂をナフィオン中に分散させた光触媒コーティング組成物とすれば、所定の下地上に焼き付け塗装することで、塗膜の接着性と耐摩耗性とをともに両立して向上させることができる。
実施の形態にかかる塗膜及び基体の断面を示す模式図である。
符号の説明
 10  塗膜付基体
 11  基体
 12  塗膜
 13  光触媒粒子
 14  バインダ層
 以下に、本発明の実施の形態及び実施例を説明するが、当然ながら本発明はこれらの形式に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲で適宜変更して実施することができる。
 図1は、本発明の光触媒コーティング組成物からなる光触媒塗料(以下、単に「光触媒塗料」と称する。)を基体に塗布して塗膜12を形成した、塗膜付基体の部分断面図である。図中、10は塗膜付基体、11は基体、12は塗膜をそれぞれ示す。
 塗膜12は、本実施の形態に係る光触媒塗料を乾燥硬化させたものである。当該光触媒塗料は、主成分である有機樹脂バインダと、これに対して光触媒材料、所定のフッ素樹脂、並びに低級アルコール(メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコールの中の1種以上)を含む水性溶媒とを、それぞれ1~30重量部、0.1~20重量部、0.1~10重量部、5~80重量部の重量比率で配合することで構成されている。図1に示す塗膜12には、光触媒塗料の溶媒を揮発除去して硬化させたものであり、有機樹脂バインダ及び前記フッ素樹脂を骨格としてなるバインダ層14(厚み約5μm程度)の中に、光触媒粒子(TiO2)13が分散された構成を有する。
 有機樹脂バインダは、スルホン酸(SO3H)基がグラフト重合されたパーフルオロスルホン酸-PTFE共重合体であるナフィオンである。その化学構造は以下の化学式(化1)で表される。
Figure JPOXMLDOC01-appb-C000001
 この化学式(化1)に示すように、ナフィオンは、スルホン酸を側鎖に有する高分子4フッ化エチレンの繰り返し単位からなるグラフトポリマー(スルホン酸機がグラフト重合されたポリ4フッ化エチレン)である。C-H結合は有さず、高度な安定性を呈するC-F結合を持つ。このため、不要な化学反応によってC-F骨格が切断されにくいという優れた化学安定性を有している。
 具体的には、C-F結合の結合エネルギーは、C-H結合(415kJ/mol)やC-C結合(347kJ/mol)のいずれの結合エネルギーに対しても十分大きい(約500kJ/mol)。従って、化学的に安定性の高い分子鎖を形成することができる。この化学安定性により、本発明では塗膜12中において、長期にわたり、光触媒による分解反応を受けずに安定に存在することができる。また、結晶化度が高いため、非常に緻密な結晶構造を形成できるほか、優れた耐薬品性、耐候性をも示し、電気化学反応に対して高度に安定である。これに加え、低表面張力、低摩擦係数という性質をも示すが、これはF原子が小さな原子半径と低い分極性を持つことから、分子間凝集力が低く、優れた柔軟性を有するためと考えられる(プラスチック・機能性高分子材料事典:産業調査会事典出版センター発行(2004年)の306頁参照)。
 ナフィオンは、一般的には固体高分子型燃料電池(SPFC)の固体電解質として使用され、発電に伴う電気化学反応(水合成反応)に対して高度に安定した性能(プロトン導電性や熱的安定性等)を呈する有機ポリマー樹脂である。このような電気化学的特性は、発電反応と共通する電気化学反応の一種である光触媒反応に対しても非常に高い安定性を示すことが、本願発明者らの行った実験により明らかになっている。
 なお、ここではPTFEに対してパーフルオロスルホン酸を重合させたものを用いているが、本発明はこれに限定されず、PTFEに対してパーフルオロカルボン酸を重合させたものを用いても良い。また、これらの材料を混合して用いることも可能である。
 塗膜12に含まれる所定のフッ素樹脂としては、PVDF、PVF、PTFE、ETFE、PVDF-HFP、PCTFE、3フッ化塩化エチレン-アルキルビニルエーテル共重合体、4フッ化エチレン-アルキルビニルエーテル共重合体、3フッ化塩化エチレン-アルキルビニルエステル共重合体、3フッ化塩化エチレン-アルキルビニルエーテル-アルキルビニルエステル共重合体、の中の1種または2種以上が挙げられる。この所定のフッ素樹脂を添加することで、塗膜12に優れた柔軟性と耐摩耗性が付与される。
 このようなフッ素樹脂も、ナフィオンと同様に豊富なC-F結合からなる分子骨格を有しているので、触媒反応によって容易に切断されない化学安定性を有している。これとナフィオンとを用いてバインダ層14を形成することで、塗膜12を構造的に安定化する効果も奏される。
 なお、フッ素樹脂としては微粒子状材料を用い、光触媒塗料中に分散させ、これを対象面に焼き付け塗装することができる。この焼き付け塗装法により、微粒子状のフッ素樹脂を加熱溶解しながらナフィオンと一体化した塗膜12を基体11の表面に形成できる。また、この焼き付け塗装法では塗膜12にフッ素樹脂成分を良好に含ませることができ、フッ素樹脂の優れた特性を活かして塗膜12と基体11の接着性や、外部に対する耐摩耗性を向上させることができる。焼き付け温度は、Kynar型フッ素樹脂を用いる場合は220~240℃、3フッ化塩化エチレン-アルキルビニルエーテル共重合体を用いる場合には160~180℃が好適である。
 また、上記とは別に、フッ素樹脂を水性エマルジョンとして調整し、これを配合することも可能である。この水性エマルジョンを利用した光触媒塗料は、少なくとも常温において乾燥硬化可能であり、乾燥硬化のために別途加熱工程を必要としないので、塗布にかかる作業効率を飛躍的に向上させられるほか、大面積への塗布を低コストで行えるなどの効果が期待できる。
 或いは、上記とは別に、液体のフッ素樹脂を利用することもできる。前記液体のフッ素樹脂として、フルオロエチレン-ビニルエーテル交互共重合体(以下FEVE系フッ素樹脂)またはポリフッ化ビニリデンーテトラフルオロエチレンーヘキサフルオロプロピレン共重合体(以下PVDF系フッ素樹脂)が挙げられ、FEVE系フッ素樹脂としては、「ルミフロン」(旭硝子株式会社の登録商標)や「セフラルコート」(セントラル硝子株式会社の登録商標)「フルオネート」(DIC株式会社の登録商標)等、PVDF系フッ素樹脂としては、「カイナーADS」(アルケマ株式会社の登録商標)等が例示される。これら液体のフッ素樹脂を配合した光触媒塗料は、常温において乾燥硬化が可能であり、水酸基やカルボニル基等の架橋基を有している場合、ブロックイソシアネート等の架橋剤との併用で、焼き付け塗装により強固な密着性を有する塗膜を形成することもできる。
 光触媒粒子13は、光触媒材料の例示であって、ここでは平均粒径が約7nmの金属酸化物で構成される一次粒子が、平均粒径200~300nm程度に凝集してなる二次及び三次粒子として、塗膜12中に分散されている。
 なお、図1では説明上、光触媒粒子13を一次粒子の状態で模式的に図示している。
 前記金属酸化物としては、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化タングステン(WO3)、酸化スズ(SnO2)、チタン酸ストロンチウム(SrTiO3)、酸化ビスマス(Bi23)、酸化鉄(Fe23)の少なくとも1種の金属酸化物を挙げることができる。このうち、酸化チタンは特に光触媒機能が安定しており、さらに簡単に入手可能なため好適である。酸化チタンの市販品としては微細な粒子状が存在するが、本発明でも光触媒粒子13として利用しやすい。これを適当な樹脂バインダと有機溶剤や水などに所定量配合し、攪拌混合することにより、本発明の光触媒塗料を製造することができる。
 塗膜12厚みは約5μmが例示できる。この厚みは、無機バインダを用いた従来の塗膜(0.1μm程度の厚み)光触媒塗料に比べて格段に厚いので、その分、強固な塗膜12を形成できるようになっている。
 上記光触媒塗料の塗布方法について述べると、ナフィオンを含め、PTFEに対し、パーフルオロスルホン酸またはパーフルオロカルボン酸を重合させてなる共重合体は、水と一部のアルコール(例えばエタノール)等にしか溶解しない。従って塗布方法としては、
 A. 光触媒材料と、粒子状のフッ素樹脂とをナフィオン中に分散させた光触媒塗料を作製し、これを基体に焼き付け塗装する方法
 B.フッ素樹脂を水性エマルジョンとして添加するとともに、光触媒材料とナフィオンを配合して光触媒塗料を作製し、塗布対象面に塗布する方法
 C.アルコールに相溶性のある液体のフッ素樹脂をナフィオンと配合して、光触媒材料を分散させた光触媒塗料を作製し、塗布対象面に塗布する方法
 のいずれかを挙げることができる。
 なお、水とアルコールを添加する添加比率は、水5~80重量部、アルコール5~80重量部の範囲であり、さらにAの焼き付け塗装の場合、水5~20重量部、アルコール50~80重量部、Bの塗布方法の場合、水60~80重量部、アルコール5~20重量部が好適である。
 Aの焼き付け塗装においては、焼き付け時の加熱によってフッ素樹脂を溶融させ、ナフィオンと高度に一体化した組成の塗膜を作製することができる。従って、広い塗布面積でも、塗膜12の全体で均一な膜特性を発揮できるメリットがある。また、焼き付け時に溶融した塗料が、基体11の表面の凹凸になじむため、基体11に対する塗膜12の接着性を良好に得ることができる。
 Bの塗布方法では、水性エマルジョンの利用により常温(具体的にはJIS Z8703に準拠した5~35℃の範囲)において、塗料を塗布することができ、且つ、乾燥硬化することができる。
 Cの塗布方法では、液体のフッ素樹脂が水酸基やカルボニル基等の架橋基を有しており、イソシアネートとの混合により常温乾燥で、ブロックイソシアネートとの混合により焼付け塗装により強固な密着性を有する塗膜とすることができる。
 また、光触媒塗料に対し、エタノール、イソプピルアルコール等の所定の低級アルコールを配合することにより、塗装後の乾燥硬化時間を非常に短縮化できる。このような乾燥硬化時間の短縮により、連続生産される部材への適用が好適である。例えば、高速焼き付けにより塗膜を形成して連続生産される、カラー鋼板の生産ラインにも適用することができる。
 乾燥時間を例示すると、例えば塗膜を1~2μmの厚みで形成する場合、80℃の雰囲下で1分未満であり、非常に高速である。
 なお、無機バインダを用いた従来の光触媒塗料では、乾燥時間は環境湿度に影響され、湿度が足らないと加水分解による縮合反応を促進できない欠点がある。しかしながら、本発明では環境湿度は塗膜乾燥の律速にはならず、塗膜12を安定して高速に乾燥させることができる。
 以上の組成を持つ光触媒塗料では、これを塗布し乾燥硬化してなる塗膜12のバインダ層14の表面において、ナフィオンが有するスルホン酸基(SO3H基)が外部に露出している。この表面に水が付着すると、スルホン酸基が超親水性を発揮し、塗膜12の表面全体に平坦な水膜が形成される。塗膜12のバインダ層14では豊富なプロトン導電性材料であるナフィオンが存在してプロトン導電性が向上されていることから、塗膜12の表面において、スルホン酸基による超親水性が良好に保たれ、薄い水膜が容易に形成されるようになっている。
 従って、このような状態で塗膜12に外部から親油性の汚染物質(雨に含まれる煤煙粒子など)が付着すると、付着した領域における界面に水膜が入り込み、汚染物質が浮き上がって排除される。また、汚染物質が付着した後に雨滴などの水分が付着しても、同様に水膜が形成され、汚染物質が排除される。このため塗膜12の表面には、良好な清浄効果が発揮される。
 一方、塗膜中12に分散して存在する光触媒粒子13は、外部から光が照射されると、照射エネルギーを受けて励起される。この励起により、大気に触れる塗膜12の表面では、大気中の酸素が光触媒からエネルギーを受けて活性酸素に変化する。活性酸素は、塗膜12表面またはその近傍において、親油性の汚染物質を分解し、塗膜12への付着力を弱め、容易に除去されるように作用する。雨等が塗膜に当たると、汚染物質は容易に洗い流されることとなる。
 また、塗膜12は組成に有機樹脂バインダを用いた光触媒塗料で構成されているため、柔軟性及び伸張性を呈する。特に、ナフィオンを用いることで一定の柔軟性が発揮されるので、例えば基体11が軟質塩ビ材や、ポリカーボネート板、シーリング材等の建材である場合において、塗布後に基体11が変形したとしても、基体11の変形に追従して塗膜12も柔軟に曲がるので、塗膜12が基体11側から剥離することがない。この他、塗装後に曲げ加工を行う薄板鋼板や、折りたたみと組立を繰り返すテント地にも良好に塗膜12を形成することができる。従って本発明によれば、変形が不可能な無機バインダを用いた場合に比べて、基体の種類や塗布面積、適用環境等が幅広くなり、従来に比べて塗膜12の特性が基体の特性に左右されるのを防止できる。
 なお、当然ながら本発明の光触媒塗料は、柔軟性や伸張性のない対象物(ガラス板、打ち放しコンクリート、タイル・石材、アルミパネル等)にも塗布することができる。光触媒塗料にフッ素樹脂を配合したことにより、金属や無機系下地に対する接着性が向上し、強固な塗膜12を形成することができる。特に前記フッ素樹脂としてFEVE系フッ素樹脂を利用する場合は、分子中の水酸基を利用することで、下地と分子間結合等の結合を行うことにより強固な接着力が発揮できる。また、前記フッ素樹脂としてPVDFを用いる場合には、熱溶融による塗布時において、溶融時に基体表面の凹凸と強固に密着する物理結合が可能であり、緻密な塗膜を形成できる。
 また、有機樹脂バインダを用いることで、無機バインダを用いる場合に比べて塗膜の厚みが或程度自由に設定できる。具体的には、無機バインダ使用時には0.1μm程度の膜厚程度しか形成するのが困難であったが、本発明によれば、数μmから数十μm程度まで塗膜を調節できる。このため、厚膜設計による塗膜の痩せ対策を良好に講じることができる。
 さらに塗膜12においては、上記各効果とともに、優れた耐久性が発揮される。すなわち、塗膜12の主たる骨格をなす有機樹脂バインダとして、C-F結合を多数持つパーフルオロスルホン酸が使用されていることから、たとえば長期間紫外線照射を受けることにより塗膜中の光触媒が励起され、塗膜12表面で光触媒反応が生じる状態になっても、バインダ層14におけるC-F結合の骨格が光触媒反応により容易に分解されることがない。
 このため本発明では、長期にわたり光触媒反応による自己崩壊を回避して、良好に塗膜12を維持することができるようになっている。また、光触媒塗料として可能な範囲まで触媒を多く含ませることができ、塗膜12の自己崩壊を心配することなく触媒濃度を自由に設定することが可能である。
 ここで、本発明の主たる特徴として、前記光触媒塗料にはナフィオンに加え、別途、所定のフッ素樹脂が配合されている。このため、当該光触媒塗料を塗布してなる塗膜12には、これらのフッ素樹脂に起因する良好な耐摩耗性が付与されている。すなわち、これらのフッ素樹脂を添加したことで塗膜12の摩擦係数が非常に小さくなり、外部より物体が塗膜12に接触したり、摺動した場合等における表面摩擦を極めて小さく抑制することができる。その結果、塗膜12では大幅な強度の向上が図られ、耐摩耗性が飛躍的に改善されることとなり、多少の外部接触があっても塗膜12が大きく傷ついたり欠損することはない。
 なお、柔軟性と耐摩耗性は、ナフィオンの分量を増量させることでも或程度付与できるが、製造コストやフッ素樹脂そのものの特性を十分に活かすべき点等を考慮すれば、上記した所定のフッ素樹脂を用いることが有利である。
 また、このように光触媒塗料中に特定のフッ素樹脂を豊富に含むことから、フッ素樹脂の特性を活かし、塗布対象面に対する接着性が向上されている。このため、化学的にも塗膜12が基体11の表面から剥離しにくくなっている。
 なお、塗膜の接着性をさらに向上させるためには、前述した塗布方法Aのように、焼き付け塗装を行うことが好適である。これにより、溶融した塗料成分を基体表面の凹凸に入り込んで密着させられるので、たとえ下地が金属や無機系材質であっても、優れた接着性が期待できる。
 また、塗膜12に光触媒粒子13を添加することにより、塗膜12の表面積を増大させ、消臭機能や抗菌機能を発揮させることも可能である。これにより、例えば病院施設等の衛生的な性能が求められる使用環境においても、これらの要求特性に応じた優れた性能を持つ塗膜12を形成できる利点がある。
 消臭機能や、抗菌機能を十分発現させるためには、塗膜12自体に十分なガス吸着能力を持たせる必要がある。そのためには塗膜13の吸着表面積を大きくしてやればよい。具体的には、例えば光触媒粒子13として比表面積が大きなものを採用すればよく、特に比表面積が100m/g以上である物が好ましい。例えば石原産業株式会社製「ST-01」、「ST-31」、テイカ株式会社「AMT-100」等の多孔質な酸化チタンまたは、シリカおよびゼオライト等の多孔質体に酸化チタンを担持させた物が例示できる。
 多孔質の光触媒粒子13を塗膜12中に豊富に存在させることにより、塗膜12の表面自体も多孔質状になり、表面積が飛躍的に増大し、塗膜12の表面の全体にわたって吸着性が発揮される。その結果、塗膜12周囲のガスや液体、並びに各種微生物に対し、優れた消臭機能や抗菌機能が発揮されることとなる。
 (性能確認実験)
 ここでは本発明の光触媒塗料の実施例について詳細を説明する。本発明は、当然ながら以下の各実施例の組成に限定されるものではない。
 (実験1)
 基体に石材を用いた場合における、塗膜の接着性と耐摩耗性について実験を行った。本発明に用いるフッ素樹脂は、水性エマルジョン材料の形態とした。
 実施例A1:デュポン株式会社製品「ナフィオンDE2021」の20%溶液(和光純薬工業株式会社調製)35重量部と、多孔質光触媒粒子の酸化チタン「ST-01」(石原産業株式会社製:吸着表面積300m2/g)3重量部と、イソプロピルアルコール42重量部とを配合した。これをペイントシェーカーで強分散し、さらに、3フッ化塩化エチレン-アルキルビニルエーテル共重合体の水性エマルジョンであるルミフロンFE4400(旭硝子株式会社製品)を20重量部加えて良く攪拌した。これにより本発明の実施例である光触媒塗料(実施例A1)を得た。
 比較例B1:実施例A1の組成から、ルミフロンFE4400(旭硝子株式会社製品)のみを外した組成とした。すなわち、デュポン株式会社製品「ナフィオンDE2021」の20%溶液(和光純薬工業株式会社調製)と多孔質光触媒酸化チタン「ST-01」(石原産業株式会社製:吸着表面積300m2/g)とイソプロピルアルコールのみを配合し、比較例の光触媒塗料(比較例B1)を得た。
 次に、石材(花崗岩)を基体とし、その表面に作製した実施例A1と比較例B1の各光触媒塗料をそれぞれ乾燥塗布量1g/m2となるように塗布した。その後、常温で24時間乾燥させて塗膜を得た。この塗膜について、接着性と耐摩耗性の試験を行った。
 接着性試験は、JIS K5400に準拠した碁盤目テープ剥離試験で行った。
 耐摩耗性試験は簡易試験として、10円硬貨の角で塗面を擦るコインスクラッチ試験を行った。
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実験結果は表1から明らかなように、本発明に係わる実施例A1では、剥がれが全く確認されず、強固な接着性を有することが分かった。また、実施例1はコインスクラッチ試験でも軽い傷が見られた程度で剥離は全く発生せず、優れた耐摩耗性を有することが明らかになった。
 一方、ナフィオン以外にフッ素樹脂を配合しなかった比較例B1では、接着性試験において塗膜がすべて剥離し、明らかに接着不良を生じているのが確認された。また、耐摩耗性試験においても、塗膜の剥離が発生することが分かった。
 この結果から、実施例A1の塗面は、少なくとも石材の基体に対し、比較例B1よりも飛躍的に優れた接着性と耐摩耗性を有していることが明らかになった。
 (実験2)
 次に、基体にフッ素樹脂(PVDF)からなるテント地を用いた場合における、塗膜の接着性と耐摩耗性について実験を行った。本発明に用いるフッ素樹脂は粒子を用いた。
 実施例A2:デュポン株式会社製品「ナフィオンDE2021」の20%溶液(和光純薬工業株式会社調製)35重量部と、多孔質光触媒酸化チタン「ST-01」(石原産業株式会社製:吸着表面積300m2/g)3重量部と、イソプロピルアルコール42重量部とを配合した。これをペイントシェーカーで強分散し、さらに、PVDFの粉末としてKFポリマーC#1000(株式会社クレハ製)を20重量部加えて良く攪拌した。これにより、本発明の実施例である光触媒塗料(実施例A2)を得た。
 比較例B2:実施例A2の組成から、KFポリマーC#1000(株式会社クレハ製)のみを外した組成とした。すなわち、デュポン株式会社製品「ナフィオンDE2021」の20%溶液(和光純薬工業株式会社調製)と多孔質光触媒酸化チタン「ST-01」(石原産業株式会社製:吸着表面積300m2/g)とイソプロピルアルコールのみを配合し、比較例の光触媒塗料(比較例B2)を得た。
 このように得られた実施例A2と比較例B2の各光触媒塗料を用いて、基体であるPVDFテント地の表面に、それぞれ乾燥塗布量1g/m2となるように塗布し、230℃で30分間乾燥させ、塗膜を得た。この塗膜について、実験1と同様に接着性試験と耐摩耗性試験を行った。
 その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実験結果は表2から明らかなように、実施例2の塗膜では接着性試験において剥離が全く生じなかった。さらに耐摩耗性試験においては、目立った傷は確認されなかった。
 一方、ナフィオン以外にフッ素樹脂を配合していない比較例B2では、接着性試験において60%が剥離せず止まった。これにより、接着性についてはやや良好であると言えるが、さらなる改善の必要性があると思われる。また、比較例B2は、コインスクラッチ試験において剥離が生じている。このため、塗膜の耐摩耗性については優れているとは言い難い。
 以上の結果から、ナフィオンにさらにフッ素樹脂を配合した本発明に係わる実施例A2は、テント地に対する接着性と耐摩耗性について、いずれも比較例B2に比べると格段に向上していることが分かる。特に実験2では、ナフィオンと光触媒に加えて公知のフッ素樹脂を配合した光触媒塗料とすることで、金属や無機系下地に対する接着性が向上し、塗膜の耐摩耗性が向上することがわかった。
 (実験3)
 次に、基体にFEVE系フッ素樹脂からなる塗装鋼板の場合における塗膜の接着性と耐摩耗性について実験を行った。本発明に用いるフッ素樹脂は、液体のフッ素樹脂を用いた。
実施例A3:デュポン株式会社製品「ナフィオンDE2021」の20%溶液(和光純薬工業株式会社調製)25重量部と、多孔質光触媒酸化チタン「ST-01」(石原産業株式会社製:吸着表面積300m2/g)3重量部と、イソプロピルアルコール26重量部、メチルエチルケトン26重量部とを配合した。これをペイントシェーカーで強分散し、さらに、液体のフッ素樹脂としてルミフロンLF600(旭硝子株式会社製)を20重量部加えて良く攪拌した。これにより、本発明の実施例である光触媒塗料(実施例A2)を得た。
比較例A3:実施例A3の組成から、ルミフロンLF600(旭硝子株式会社製)のみを外した組成とした。すなわち、デュポン株式会社製品「ナフィオンDE2021」の20%溶液(和光純薬工業株式会社調製)と多孔質光触媒酸化チタン「ST-01」(石原産業株式会社製:吸着表面積300m2/g)とイソプロピルアルコールとメチルエチルケトンのみを配合し、比較例の光触媒塗料(比較例B3)を得た。
このように得られた実施例A3と比較例B3の各光触媒塗料を用いて、基体であるFEVE系フッ素樹脂塗装鋼板の表面に、それぞれ乾燥塗布量2g/m2となるように塗布し、170℃で20分間乾燥させ、塗膜を得た。この塗膜について、実験1と同様に接着性試験と耐摩耗性試験を行った。
また、表面硬度をJIS K 5600に規定される引っかき硬度(鉛筆法)試験に準拠して行った。
 その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実験結果は表3から明らかなように、実施例A3の塗膜では接着性試験において剥離が全く生じなかった。さらに耐摩耗性試験においては、目立った傷は確認されなかった。さらに、表面硬度が比較例B3よりも向上している。
 一方、ナフィオン以外にフッ素樹脂を配合していない比較例B3では、接着性試験において50%が剥離した。これにより、接着性についてやや不良であると言え、さらなる改善の必要性があると思われる。また、比較例B3は、コインスクラッチ試験において剥離が生じている。このため、塗膜の耐摩耗性については優れているとは言い難い。
 以上の結果から、ナフィオンにさらに液体のフッ素樹脂を配合した本発明に係わる実施例A3は、テント地に対する接着性と耐摩耗性について、いずれも比較例B3に比べると格段に向上していることが分かる。特に実験3では、ナフィオンと光触媒に加えて公知の液体のフッ素樹脂を配合した光触媒塗料とすることで、塗膜の表面硬度が向上することがわかった。
 また、実施例A1とA2とA3とを比較すると、フッ素樹脂が水性エマルジョン又は粒子又は液体のフッ素樹脂のいずれの状態でも、結果的に良好な性能を有する塗膜が得られている。従って、本発明を実施する際には、いずれの形態のフッ素樹脂を添加してもよい。塗膜を早期に得るためには、実施例A1のように、粒子状のフッ素樹脂または液体のフッ素樹脂を用い、加熱して塗布することが好適である。一方、塗布面積や基材の特性等の事情により、加熱処理が行えない場合であっても、水性エマルジョンまたは液体のフッ素樹脂を添加した塗料を用いれば、24時間程度で塗膜が得られる。
 以上の各実験により、従来技術に対する本発明の優位性が明らかになった。
 (その他の事項)
 本発明の光触媒塗料の樹脂バインダは、光触媒により劣化せず、塗膜が柔軟性を有する特性を有する樹脂が利用できる。しかし、光触媒反応では、前述したように反応エネルギーによって炭素-水素結合(C-H結合)が切断されるおそれがある。このため、できるだけC-H結合を有さす、結合エネルギーの大きいC-F結合等の分子骨格を有する有機樹脂バインダが望ましい。この点において、パーフルオロスルホン酸及びPTFEを含むナフィオンは好適である。
 光触媒塗料には、さらに別途、酸化亜鉛、酸化チタン、酸化セリウム等の無機系紫外線吸収剤、ベンゾトリアゾール系、サリチル酸系、ベンゾフェノン系等の有機紫外線吸収剤、ヒンダードアミン系等の光安定化剤から選択される化合物を添加してもよい。これにより、塗膜に紫外線防止機能が付与される。但し、添加物質や添加量によっては、塗膜の透明性が低下する場合があるので留意する。
 また、塗膜と基体の間には、塗膜の接着性を上げるために下塗層を形成してもよい。また、基体表面にも下地層を形成することもできる。下塗層は、例えばFEVE(フルオロエチレンビニルエーテル共重合体)樹脂を利用できる。このように、下塗層にもフッ素樹脂を使用することで、塗布対象面に下地をコーティングする場合の下地寿命が延長できるので好適である。
 本発明の光触媒コーティング組成物は、例えば建築材として利用されるコンクリート、シーリング部、タイル・石材、アルミパネル、ガラス、ポリカーボネート基材において、環境汚染に対する保護と清浄効果を得るためのコーティング材料として、幅広い利用が可能である。

Claims (10)

  1.  PTFEに対し、パーフルオロスルホン酸又はパーフルオロカルボン酸がグラフト重合された共重合体と、
     光触媒材料と、
     PVDF、PVF、PTFE、ETFE、PVDF-HFP、PCTFE、3フッ化塩化エチレン-アルキルビニルエーテル共重合体、4フッ化エチレン-アルキルビニルエーテル共重合体、3フッ化塩化エチレン-アルキルビニルエーテル-アルキルビニルエステル共重合体、の中の1種または2種以上のフッ素樹脂とが配合されてなる
     ことを特徴とする光触媒コーティング組成物。
  2.  フッ素樹脂は粒子状で配合されている
     ことを特徴とする請求項1に記載の光触媒コーティング組成物。
  3.  フッ素樹脂は、水性エマルジョンとして前記樹脂バインダと混合されている
     ことを特徴とする請求項1に記載の光触媒コーティング組成物。
  4.  フッ素樹脂は、液体フッ素樹脂として前記樹脂バインダと混合されている
     ことを特徴とする請求項1に記載の光触媒コーティング組成物。
  5.  前記液体フッ素樹脂は、FEVE系フッ素樹脂またはPVDF系樹脂である
     ことを特徴とする請求項4に記載の光触媒コーティング組成物。
  6.  光触媒材料は、
     TiO2、ZnO、WO3、SnO2、SrTiO3、Bi23、Fe23から選択される少なくとも1種の金属酸化物であることを特徴とする請求項1記載の光触媒コーティング組成物。
  7.  光触媒材料は多孔質である
     ことを特徴とする請求項1に記載の光触媒コーティング組成物。
  8.  さらに、メタノール、エタノール、プロピルアルコールの1種以上が配合されている
     請求項1に記載の光触媒コーティング組成物。
  9.  無機系紫外線吸収剤、有機系紫外線吸収剤および光安定化剤から選択される少なくとも1種が添加されている
     ことを特徴とする請求項1に記載の光触媒コーティング組成物。
  10.  基体と、基体表面に請求項1に記載の光触媒コーティング組成物を塗布してなる塗膜とを有する
     ことを特徴とする光触媒コーティング塗膜付基体。
PCT/JP2008/001978 2008-07-24 2008-07-24 光触媒コーティング組成物 WO2010010600A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010521544A JPWO2010010600A1 (ja) 2008-07-24 2008-07-24 光触媒コーティング組成物
US13/054,919 US20110143924A1 (en) 2008-07-24 2008-07-24 Photocatalyst coating composition
PCT/JP2008/001978 WO2010010600A1 (ja) 2008-07-24 2008-07-24 光触媒コーティング組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001978 WO2010010600A1 (ja) 2008-07-24 2008-07-24 光触媒コーティング組成物

Publications (1)

Publication Number Publication Date
WO2010010600A1 true WO2010010600A1 (ja) 2010-01-28

Family

ID=41570079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001978 WO2010010600A1 (ja) 2008-07-24 2008-07-24 光触媒コーティング組成物

Country Status (3)

Country Link
US (1) US20110143924A1 (ja)
JP (1) JPWO2010010600A1 (ja)
WO (1) WO2010010600A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010636A (zh) * 2010-12-15 2011-04-13 广东电网公司电力科学研究院 一种防污闪常温固化氟碳树脂涂料及其制备方法
WO2011093495A1 (ja) * 2010-02-01 2011-08-04 旭化成イーマテリアルズ株式会社 塗料及び積層体
WO2012122067A3 (en) * 2011-03-04 2012-11-29 Saint-Gobain Performance Plastics Corporation Composite article for use as self-cleaning material
CN103709855A (zh) * 2013-12-25 2014-04-09 连云港冠钰精密工业有限公司 一种耐腐蚀、耐磨型水性汽车涂料
US8961682B2 (en) 2012-07-26 2015-02-24 Empire Technology Development Llc Hydrophilic paints using pigments coated with anti-oxidants
JP2016533280A (ja) * 2013-10-04 2016-10-27 アルケマ フランス Pvdf繊維製品
JP2018070764A (ja) * 2016-10-28 2018-05-10 北村 透 鉄筋コンクリート電気防食用の外装塗料及び陽極被膜
JP6456569B1 (ja) * 2018-04-18 2019-01-23 三菱電機株式会社 コーティング膜、物品、コーティング組成物及び遠心送風機
JP2020142432A (ja) * 2019-03-06 2020-09-10 株式会社村上開明堂 積層体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3016742A4 (en) * 2013-07-05 2017-09-06 Nitto Denko Corporation Photocatalyst sheet
CN103447016B (zh) * 2013-07-07 2015-01-14 林志苹 一种人工多孔二氧化钛复合结构及其制备方法
KR101515030B1 (ko) * 2013-12-31 2015-04-24 연세대학교 산학협력단 압전 구조체 및 그 제조방법
US10827747B2 (en) * 2016-08-08 2020-11-10 Universiti Brunei Darussalam Anti-bacterial and anti-fungal photocatalytic coating film and method for producing thereof
CN112295421B (zh) * 2020-10-20 2022-11-15 天津理工大学 一种表面粘接式用于光催化的TiO2/PVDF超滤膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299805A (ja) * 1995-05-02 1996-11-19 Dkk Corp 光触媒、及びこの光触媒の製造方法
JPH11221471A (ja) * 1998-02-06 1999-08-17 Nikon Corp 光触媒
WO2000030747A1 (fr) * 1998-11-20 2000-06-02 Asahi Kasei Kabushiki Kaisha Sol photocatalyseur modifie
JP2001170493A (ja) * 1999-12-13 2001-06-26 Natl Inst Of Advanced Industrial Science & Technology Meti 高機能性光触媒の製造
JP2006045370A (ja) * 2004-08-05 2006-02-16 Pialex Technologies Corp 超親水性塗料組成物、同塗料および超親水性カラー鋼板
JP2006233073A (ja) * 2005-02-25 2006-09-07 Pialex Technologies Corp 光触媒塗料、該塗料を塗布した鋼板およびテント地
JP2008222853A (ja) * 2007-03-13 2008-09-25 Pialex Technologies Corp 光触媒コーティング組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952238B2 (ja) * 1998-07-07 2007-08-01 石原産業株式会社 光触媒による有害物質等の除去方法
US6740375B1 (en) * 1999-09-08 2004-05-25 Daikin Industries, Ltd. Fluorochemical adhesive material and laminate comprising the same
JP2006299210A (ja) * 2005-04-25 2006-11-02 Showa Denko Kk コーティング材、光触媒膜及びその用途
JP2007146041A (ja) * 2005-11-29 2007-06-14 Sanyo Electric Co Ltd 可視光反応型光触媒を含む溶剤型塗料およびそれを用いた積層構造体および冷凍装置
US7575801B2 (en) * 2006-11-16 2009-08-18 Pialex Technologies Corp. Photocatalytic coating and steel plate and canvas coated with the same
JP2009007401A (ja) * 2007-06-26 2009-01-15 Pialex Technologies Corp 光触媒コーティング組成物
WO2009022579A1 (ja) * 2007-08-10 2009-02-19 Daikin Industries, Ltd. コーティング用組成物
JP5164542B2 (ja) * 2007-12-04 2013-03-21 ニチハ株式会社 建材の塗装方法
JP2009208470A (ja) * 2008-02-04 2009-09-17 Metal Tech:Kk 塗装鋼板
JP2009185107A (ja) * 2008-02-04 2009-08-20 Pialex Technologies Corp 親水性塗料と親水性塗布体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299805A (ja) * 1995-05-02 1996-11-19 Dkk Corp 光触媒、及びこの光触媒の製造方法
JPH11221471A (ja) * 1998-02-06 1999-08-17 Nikon Corp 光触媒
WO2000030747A1 (fr) * 1998-11-20 2000-06-02 Asahi Kasei Kabushiki Kaisha Sol photocatalyseur modifie
JP2001170493A (ja) * 1999-12-13 2001-06-26 Natl Inst Of Advanced Industrial Science & Technology Meti 高機能性光触媒の製造
JP2006045370A (ja) * 2004-08-05 2006-02-16 Pialex Technologies Corp 超親水性塗料組成物、同塗料および超親水性カラー鋼板
JP2006233073A (ja) * 2005-02-25 2006-09-07 Pialex Technologies Corp 光触媒塗料、該塗料を塗布した鋼板およびテント地
JP2008222853A (ja) * 2007-03-13 2008-09-25 Pialex Technologies Corp 光触媒コーティング組成物

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093495A1 (ja) * 2010-02-01 2011-08-04 旭化成イーマテリアルズ株式会社 塗料及び積層体
CN102725363A (zh) * 2010-02-01 2012-10-10 旭化成电子材料株式会社 涂料和层积体
JP5461588B2 (ja) * 2010-02-01 2014-04-02 旭化成イーマテリアルズ株式会社 塗料及び積層体
US9340648B2 (en) 2010-02-01 2016-05-17 Asahi Kasei E-Materials Corporation Coating material and layered body
CN102725363B (zh) * 2010-02-01 2015-05-06 旭化成电子材料株式会社 涂料和层积体
CN102010636B (zh) * 2010-12-15 2013-01-09 广东电网公司电力科学研究院 一种防污闪常温固化氟碳树脂涂料及其制备方法
CN102010636A (zh) * 2010-12-15 2011-04-13 广东电网公司电力科学研究院 一种防污闪常温固化氟碳树脂涂料及其制备方法
JP2015221567A (ja) * 2011-03-04 2015-12-10 サン−ゴバン パフォーマンス プラスティックス コーポレイション 自己清浄性材料として使用するための複合物品
WO2012122067A3 (en) * 2011-03-04 2012-11-29 Saint-Gobain Performance Plastics Corporation Composite article for use as self-cleaning material
AU2012225702B2 (en) * 2011-03-04 2014-07-17 Saint-Gobain Performance Plastics Corporation Composite article for use as self-cleaning material
US8961682B2 (en) 2012-07-26 2015-02-24 Empire Technology Development Llc Hydrophilic paints using pigments coated with anti-oxidants
JP2016533280A (ja) * 2013-10-04 2016-10-27 アルケマ フランス Pvdf繊維製品
CN103709855A (zh) * 2013-12-25 2014-04-09 连云港冠钰精密工业有限公司 一种耐腐蚀、耐磨型水性汽车涂料
JP2018070764A (ja) * 2016-10-28 2018-05-10 北村 透 鉄筋コンクリート電気防食用の外装塗料及び陽極被膜
JP6456569B1 (ja) * 2018-04-18 2019-01-23 三菱電機株式会社 コーティング膜、物品、コーティング組成物及び遠心送風機
JP2020142432A (ja) * 2019-03-06 2020-09-10 株式会社村上開明堂 積層体
JP7224209B2 (ja) 2019-03-06 2023-02-17 株式会社村上開明堂 積層体

Also Published As

Publication number Publication date
JPWO2010010600A1 (ja) 2012-01-05
US20110143924A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2010010600A1 (ja) 光触媒コーティング組成物
JP2008222853A (ja) 光触媒コーティング組成物
WO2003102091A1 (fr) Materiau de revetement photocatalytique, materiau composite catalytique et procede de production correspondant. compositions de revetement aqueuses autonettoyantes et element autonettoyant
WO2008013136A1 (fr) Compositions de revêtement durcissables à base d'eau contenant un photocatalyseur et leur procédé de production
JP4522886B2 (ja) 光触媒塗料、該塗料を塗布した鋼板およびテント地
JP4812902B1 (ja) 防汚塗料組成物及び防汚塗膜の形成方法
WO2011118780A1 (ja) 光触媒塗装体および光触媒コーティング液
CN100343044C (zh) 高耐久性光催化剂薄膜以及使用该薄膜的表面具有光催化功能的构造物
WO2010029596A1 (ja) コーティング組成物、コーティング膜付シーラント層の形成方法
JP6046436B2 (ja) 防汚塗膜の形成方法及び防汚塗装物
JP2009119341A (ja) 光触媒含有粉体塗料の粉体塗装方法
JP5502300B2 (ja) 塗料組成物
JP2010053202A (ja) シーリング用光触媒コーティング組成物
JP4223138B2 (ja) 加工性,耐候性及び光触媒活性に優れたプレコート鋼板及びその製造方法
JP2006045370A (ja) 超親水性塗料組成物、同塗料および超親水性カラー鋼板
JP6112975B2 (ja) 耐汚染性に優れるプレコート金属板
JP2010077357A (ja) 塗料組成物
JP2009067819A (ja) 帯電防止塗料およびその塗装品
TWI523874B (zh) 防止光觸媒親水性降低之方法
JP2002361807A (ja) 防汚性ポリカーボネート板
JP2009208470A (ja) 塗装鋼板
JP2009007401A (ja) 光触媒コーティング組成物
JP2000063733A (ja) 光触媒機能を有するプレコート鋼板
WO2009133591A1 (ja) 光触媒コーティング組成物および被膜付基体
JP2020076017A (ja) 光触媒コーティング剤用バインダー水溶液、光触媒コーティング剤、硬化物、及び物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08776875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13054919

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010521544

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08776875

Country of ref document: EP

Kind code of ref document: A1