WO2009099044A1 - 連続発酵による乳酸の製造方法 - Google Patents
連続発酵による乳酸の製造方法 Download PDFInfo
- Publication number
- WO2009099044A1 WO2009099044A1 PCT/JP2009/051750 JP2009051750W WO2009099044A1 WO 2009099044 A1 WO2009099044 A1 WO 2009099044A1 JP 2009051750 W JP2009051750 W JP 2009051750W WO 2009099044 A1 WO2009099044 A1 WO 2009099044A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lactic acid
- fermentation
- yeast
- continuous fermentation
- membrane
- Prior art date
Links
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 title claims abstract description 524
- 238000000855 fermentation Methods 0.000 title claims abstract description 319
- 230000004151 fermentation Effects 0.000 title claims abstract description 319
- 239000004310 lactic acid Substances 0.000 title claims abstract description 263
- 235000014655 lactic acid Nutrition 0.000 title claims abstract description 262
- 238000000034 method Methods 0.000 title abstract description 58
- 239000012528 membrane Substances 0.000 claims abstract description 213
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 204
- 238000004519 manufacturing process Methods 0.000 claims abstract description 132
- 239000011148 porous material Substances 0.000 claims abstract description 38
- 238000001914 filtration Methods 0.000 claims abstract description 34
- 239000000047 product Substances 0.000 claims abstract description 26
- 239000000706 filtrate Substances 0.000 claims abstract description 5
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 203
- 208000020584 Polyploidy Diseases 0.000 claims description 91
- 235000000346 sugar Nutrition 0.000 claims description 20
- 239000002994 raw material Substances 0.000 claims description 9
- 241000235070 Saccharomyces Species 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 11
- 239000001963 growth medium Substances 0.000 abstract description 10
- 238000010992 reflux Methods 0.000 abstract description 2
- 238000009630 liquid culture Methods 0.000 abstract 3
- 238000003306 harvesting Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 description 119
- 229920005989 resin Polymers 0.000 description 62
- 239000011347 resin Substances 0.000 description 62
- 239000002609 medium Substances 0.000 description 58
- 238000012360 testing method Methods 0.000 description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 47
- 239000012634 fragment Substances 0.000 description 43
- 238000006243 chemical reaction Methods 0.000 description 41
- 239000000243 solution Substances 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 30
- 210000004027 cell Anatomy 0.000 description 27
- 108020004414 DNA Proteins 0.000 description 23
- 239000010410 layer Substances 0.000 description 22
- 210000003783 haploid cell Anatomy 0.000 description 21
- 235000015097 nutrients Nutrition 0.000 description 21
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 20
- 239000012510 hollow fiber Substances 0.000 description 20
- 230000035772 mutation Effects 0.000 description 20
- 239000002904 solvent Substances 0.000 description 20
- 210000000349 chromosome Anatomy 0.000 description 19
- 108091034117 Oligonucleotide Proteins 0.000 description 17
- 239000013612 plasmid Substances 0.000 description 17
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 16
- 239000011550 stock solution Substances 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- 235000016709 nutrition Nutrition 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- 230000001174 ascending effect Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 12
- 238000000246 agarose gel electrophoresis Methods 0.000 description 12
- 230000035699 permeability Effects 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 230000003321 amplification Effects 0.000 description 11
- 238000007796 conventional method Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000003199 nucleic acid amplification method Methods 0.000 description 11
- -1 polypropylene Polymers 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 10
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 10
- 239000008103 glucose Substances 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- 229940035893 uracil Drugs 0.000 description 10
- 101100480861 Caldanaerobacter subterraneus subsp. tengcongensis (strain DSM 15242 / JCM 11007 / NBRC 100824 / MB4) tdh gene Proteins 0.000 description 9
- 101100447466 Candida albicans (strain WO-1) TDH1 gene Proteins 0.000 description 9
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 9
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 9
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 9
- 244000005700 microbiome Species 0.000 description 9
- 101150088047 tdh3 gene Proteins 0.000 description 9
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 8
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 8
- 229930024421 Adenine Natural products 0.000 description 8
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 8
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 8
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 8
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 8
- 239000004472 Lysine Substances 0.000 description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 8
- 101150050575 URA3 gene Proteins 0.000 description 8
- 229960000643 adenine Drugs 0.000 description 8
- 210000001840 diploid cell Anatomy 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 230000003746 surface roughness Effects 0.000 description 8
- 101150050255 PDC1 gene Proteins 0.000 description 7
- 238000009825 accumulation Methods 0.000 description 7
- 238000012258 culturing Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 235000021095 non-nutrients Nutrition 0.000 description 7
- 238000010979 pH adjustment Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 230000001954 sterilising effect Effects 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 6
- 101150007280 LEU2 gene Proteins 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000005273 aeration Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000005345 coagulation Methods 0.000 description 6
- 230000015271 coagulation Effects 0.000 description 6
- 101150109301 lys2 gene Proteins 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000012466 permeate Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 229920002492 poly(sulfone) Polymers 0.000 description 5
- 101150006457 sed1 gene Proteins 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 150000008163 sugars Chemical class 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000007400 DNA extraction Methods 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 101100174613 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) TDH3 gene Proteins 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 241000269370 Xenopus <genus> Species 0.000 description 4
- 241000269368 Xenopus laevis Species 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 235000021048 nutrient requirements Nutrition 0.000 description 4
- 229920000620 organic polymer Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 101150096273 ADE2 gene Proteins 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 3
- 101150009006 HIS3 gene Proteins 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- 101710191666 Lactadherin Proteins 0.000 description 3
- 102100039648 Lactadherin Human genes 0.000 description 3
- 101001004672 Schizosaccharomyces pombe (strain 972 / ATCC 24843) Probable L-lactate dehydrogenase Proteins 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 101150006914 TRP1 gene Proteins 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 101150104734 ldh gene Proteins 0.000 description 3
- 235000013379 molasses Nutrition 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 3
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- FFWSICBKRCICMR-UHFFFAOYSA-N 5-methyl-2-hexanone Chemical compound CC(C)CCC(C)=O FFWSICBKRCICMR-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 241000269350 Anura Species 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 101100351264 Candida albicans (strain SC5314 / ATCC MYA-2876) PDC11 gene Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- 239000004709 Chlorinated polyethylene Substances 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 206010064571 Gene mutation Diseases 0.000 description 2
- 206010071602 Genetic polymorphism Diseases 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 2
- 101100395023 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) his-7 gene Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 101150031367 PDC5 gene Proteins 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 2
- 101100085270 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ade5 gene Proteins 0.000 description 2
- 101100022918 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sua1 gene Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 125000000468 ketone group Chemical group 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- KVZLHPXEUGJPAH-UHFFFAOYSA-N 2-oxidanylpropanoic acid Chemical compound CC(O)C(O)=O.CC(O)C(O)=O KVZLHPXEUGJPAH-UHFFFAOYSA-N 0.000 description 1
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 101150026006 ASP1 gene Proteins 0.000 description 1
- 101100451087 Acetobacter pasteurianus hisC gene Proteins 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 101100455762 Aspergillus niger (strain CBS 513.88 / FGSC A1513) lysA gene Proteins 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 102100021277 Beta-secretase 2 Human genes 0.000 description 1
- 101100070731 Bradyrhizobium diazoefficiens (strain JCM 10833 / BCRC 13528 / IAM 13628 / NBRC 14792 / USDA 110) hisE2 gene Proteins 0.000 description 1
- YPSIXSGKHOISQD-UHFFFAOYSA-N C=C.F.Cl.Cl.Cl Chemical compound C=C.F.Cl.Cl.Cl YPSIXSGKHOISQD-UHFFFAOYSA-N 0.000 description 1
- 101100289888 Caenorhabditis elegans lys-5 gene Proteins 0.000 description 1
- 101100533230 Caenorhabditis elegans ser-2 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 229930182843 D-Lactic acid Natural products 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 101100031802 Drosophila melanogaster Paics gene Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 101100246753 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) pyrF gene Proteins 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 101150069639 LEU1 gene Proteins 0.000 description 1
- 101150044775 LYS1 gene Proteins 0.000 description 1
- 101150118523 LYS4 gene Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 101150068888 MET3 gene Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 101000931108 Mus musculus DNA (cytosine-5)-methyltransferase 1 Proteins 0.000 description 1
- 101100109397 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) arg-8 gene Proteins 0.000 description 1
- 101100022915 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cys-11 gene Proteins 0.000 description 1
- 101100396751 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ilv-2 gene Proteins 0.000 description 1
- 101100205189 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) leu-5 gene Proteins 0.000 description 1
- 101100281510 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) met-6 gene Proteins 0.000 description 1
- 101100401106 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) met-7 gene Proteins 0.000 description 1
- 101100338174 Oryza sativa subsp. japonica GLU3 gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000269369 Pipidae Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 101100439769 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CIT1 gene Proteins 0.000 description 1
- 101100219213 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ade9 gene Proteins 0.000 description 1
- 101100166068 Schizosaccharomyces pombe (strain 972 / ATCC 24843) arg5 gene Proteins 0.000 description 1
- 101100289883 Schizosaccharomyces pombe (strain 972 / ATCC 24843) lys2 gene Proteins 0.000 description 1
- 101100289891 Schizosaccharomyces pombe (strain 972 / ATCC 24843) lys7 gene Proteins 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- 101100181629 Thermus thermophilus leuA gene Proteins 0.000 description 1
- 101100071077 Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961) hisC gene Proteins 0.000 description 1
- 101100379633 Xenopus laevis arg2-a gene Proteins 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 101150090370 ade4 gene Proteins 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001323 aldoses Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 101150088826 arg1 gene Proteins 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 229940022769 d- lactic acid Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000012262 fermentative production Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 101150118121 hisC1 gene Proteins 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 150000002584 ketoses Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 101150043924 metXA gene Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229950006238 nadide Drugs 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006350 polyacrylonitrile resin Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 101150063973 tdh1 gene Proteins 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 101150026818 trp3 gene Proteins 0.000 description 1
- 101150042775 tyr1 gene Proteins 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/56—Lactic acid
Definitions
- the present invention stabilizes yeast culture and fermentation by making yeast capable of producing lactic acid into a higher-order polyploid, and enables production of lactic acid efficiently for a long period of time. Production of lactic acid by continuous fermentation Regarding the method.
- Fermentation methods can be broadly classified into batch fermentation methods (Batch fermentation methods), fed-batch fermentation methods (Fed-Batch fermentation methods), and continuous fermentation methods.
- the batch fermentation method and fed-batch fermentation method are simple in terms of equipment and have an advantage of less damage due to contamination by various bacteria because the culture is completed in a short time.
- productivity and yield decrease due to the influence of osmotic pressure or product inhibition. Therefore, it is difficult to stably maintain a high yield and high productivity over a long period of time.
- the continuous fermentation method has the advantage of maintaining a high yield and high productivity over a long period of time by avoiding accumulation of the target substance at a high concentration in the fermenter. It is very difficult to continue the culture by the method for a long period of time, and research has been repeated.
- Proposals for continuous fermentation methods include filtration of microorganisms and cultured cells through a separation membrane, collecting the product from the filtrate, and simultaneously holding or refluxing the filtered microorganisms and cultured cells in the culture solution. There are ways to keep the cell concentration high.
- Patent Documents 1 to 3 For example, techniques for continuous fermentation in a continuous fermentation apparatus using a ceramic membrane are disclosed (Patent Documents 1 to 3).
- the disclosed technology has a problem in reduction of filtration flow rate and filtration efficiency due to clogging of the ceramic film, and back cleaning or the like is performed to prevent clogging.
- Patent Document 5 a production method by continuous fermentation of succinic acid (Patent Document 5) is disclosed.
- a high filtration pressure (about 200 kPa) is employed in membrane separation.
- the high filtration pressure is not only disadvantageous in terms of cost, but also the microorganisms and cells are physically damaged by the pressure during the filtration process. Not appropriate.
- techniques such as a separation membrane and filtration pressure are disclosed as proposals for continuing continuous fermentation for a long period of time.
- continuous fermentation time is about 300 hours, and continuous culture is performed for a longer period of time. The proposal of the method of continuing is desired.
- Non-Patent Documents 1 and 2 In yeast, in addition to haploid yeast in which only one set of chromosomes exists, there is a higher-order polyploid having a plurality of sets of chromosomes. High-order polyploid yeast is mainly used as baker's yeast or brewing yeast (Patent Documents 6 to 8). These are used for the production of food and beverages, and are used for the purpose of improving the flavor and manufacturing process, and there is no description used for continuous culture.
- Patent Documents 9 to 12 a method for producing lactic acid using a higher order polyploid is disclosed. These use higher-order polyploids to increase the number of lactic acid synthesis genes, but they are all cultured by the Fed-Batch fermentation method, and the culture time is as short as 100 hours or less. There is no description of continuous fermentation using a membrane.
- Patent Document 13 lactic acid production using non-nutrient-requiring yeast that does not have auxotrophy has been reported.
- the culture time is less than 100 hours, and the fermentation method is Fed-Batch. Only the fermentation method is disclosed.
- An object of the present invention is to provide a method for producing lactic acid by a continuous fermentation method that can stably maintain high productivity of lactic acid over a long period of time.
- the present inventors have determined that in order to maintain high productivity of lactic acid while lactic acid-producing yeast stably repeats growth for a long period of time in continuous fermentation, yeast having lactic acid-producing ability is a higher order multiple. As a result, it was found that high productivity of lactic acid can be maintained for a long period of time, and the present invention has been completed. That is, the present invention has the following configuration.
- the culture solution of higher polyploid yeast having the ability to produce lactic acid is filtered with a porous membrane having an average pore size of 0.01 ⁇ m or more and less than 1 ⁇ m, and the product is recovered from the filtrate and the unfiltered solution is removed.
- a method for producing lactic acid by continuous fermentation wherein the fermentation broth is retained or refluxed and a fermentation raw material is added to the culture broth.
- lactic acid by using a higher-order polyploid yeast, continuous fermentation that stably maintains high productivity of lactic acid that is a desired fermentation product over a long period of time is possible, and lactic acid can be stably produced at low cost. Production is also possible.
- FIG. 1 is a schematic side view for explaining one embodiment of a membrane separation type continuous fermentation apparatus used in the present invention.
- FIG. 2 is a schematic side view for explaining one embodiment of another membrane separation type continuous fermentation apparatus used in the present invention.
- FIG. 3 is a schematic perspective view for explaining one embodiment of the separation membrane element used in the present invention.
- FIG. 4 is a schematic perspective view for explaining an example of another separation membrane element used in the present invention.
- FIG. 5 is a vector for expressing lactate dehydrogenase gene.
- FIG. 6 shows changes in lactic acid accumulation concentration in Examples 13 and 14, and Comparative Examples 16 and 17.
- FIG. 7 shows changes in the yield of lactic acid versus sugar in Examples 13 and 14, and Comparative Examples 16 and 17.
- FIG. 1 is a schematic side view for explaining one embodiment of a membrane separation type continuous fermentation apparatus used in the present invention.
- FIG. 2 is a schematic side view for explaining one embodiment of another membrane separation type continuous fermentation apparatus used in the present invention.
- FIG. 3 is a schematic perspective
- FIG. 8 shows changes in the lactic acid production rate in Examples 13 and 14, and Comparative Examples 16 and 17.
- FIG. 9 shows changes in the lactic acid accumulation concentration in Examples 15 and 16, and Comparative Examples 18 and 19.
- FIG. 10 shows changes in the yield of lactic acid versus sugar in Examples 15 and 16 and Comparative Examples 18 and 19.
- FIG. 11 shows changes in the production rate of lactic acid in Examples 15 and 16 and Comparative Examples 18 and 19.
- the present invention is a method for producing lactic acid by continuous fermentation while maintaining high lactic acid productivity for a long period of time by using a higher order polyploid yeast in fermentation for culturing yeast having the ability to produce lactic acid.
- a culture solution of higher-order polyploid yeast having the ability to produce lactic acid is filtered through a separation membrane, the product is recovered from the filtrate, and the unfiltered solution is retained or refluxed in the culture solution, and
- a method for producing lactic acid which uses a porous membrane having an average pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m as a separation membrane.
- the porous membrane in the present invention preferably has separation performance and water permeability according to the quality of water to be treated and the application.
- the porous membrane is preferably a porous membrane including a porous resin layer from the viewpoint of blocking performance, water permeability performance and separation performance, for example, stain resistance.
- the porous membrane including the porous resin layer preferably has a porous resin layer that acts as a separation functional layer on the surface of the porous substrate.
- the material of the porous substrate is made of an organic material and / or an inorganic material, and preferably an organic material, more preferably an organic fiber.
- a preferable porous substrate is a woven or non-woven fabric using organic fibers such as cellulose fiber, cellulose triacetate fiber, polyester fiber, polypropylene fiber and polyethylene fiber, and more preferably, the density control is relatively easy.
- organic fibers such as cellulose fiber, cellulose triacetate fiber, polyester fiber, polypropylene fiber and polyethylene fiber
- the thickness of the porous substrate is preferably 50 ⁇ m or more and 3000 ⁇ m or less in order to support the porous resin layer and give strength to the separation membrane.
- the porous resin layer may be permeated into the porous base material or the porous resin layer may not be permeated into the porous base material.
- An organic polymer film can be suitably used for the porous resin layer.
- the material of the organic polymer film include polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene fluoride resin, polysulfone resin, polyethersulfone resin, polyacrylonitrile resin, polyolefin resin, A cellulose resin, a cellulose triacetate resin, etc. are mentioned,
- the mixture of resin which has these resins as a main component may be sufficient.
- the main component means that the component is contained in an amount of 50% by weight or more, preferably 60% by weight or more.
- the organic polymer film is made of a polyvinyl chloride resin, a polyvinylidene fluoride resin, a polysulfone resin, or a polyether sulfone resin that is easy to form into a film and has excellent physical durability and chemical resistance.
- a resin, a polyacrylonitrile-based resin, a polyolefin-based resin, or a mixture of these resins as a main component is preferable, and a polyvinylidene fluoride-based resin or a mixture of resins having a main component thereof is more preferably used.
- the polyvinylidene fluoride resin a homopolymer of vinylidene fluoride or a copolymer of a vinyl monomer copolymerizable with vinylidene fluoride is preferably used.
- vinyl monomers copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene, and ethylene trichloride fluoride.
- examples of the polyolefin resin include polyethylene, polypropylene, chlorinated polyethylene, and chlorinated polypropylene, and chlorinated polyethylene is preferably used.
- the porous membrane used in the present invention has a surface average pore diameter of 0.01 ⁇ m or more.
- the average pore diameter on the surface of the porous membrane is 0.01 ⁇ m or more, clogging due to bacterial cells used for fermentation is unlikely to occur, and the filtration performance is stable for a long period of time.
- the average pore diameter of the porous membrane is 0.01 ⁇ m or more, it is possible to achieve both a high exclusion rate at which the higher order polyploid yeast does not leak and a high water permeability, and the water permeability can be maintained for a long time. Holding can be performed with higher accuracy and reproducibility.
- the average pore diameter on the surface of the porous membrane in the present invention is less than 0.01 ⁇ m, the water permeability of the porous membrane is lowered, and efficient operation may not be possible even if the membrane is not dirty.
- the average pore diameter of the porous membrane is 0.01 ⁇ m or more, preferably 0.02 ⁇ m or more, more preferably 0.04 ⁇ m or more, efficient operation is possible.
- the average pore diameter of the porous membrane in the present invention is to prevent leakage of high-order polyploid yeast, that is, the occurrence of a problem that the rejection rate decreases, and also prevent high-order polyploid yeast from directly blocking the pores. Therefore, it is important that the thickness is less than 1 ⁇ m, and it is preferably 0.4 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
- substances other than the target lactic acid such as proteins and polysaccharides may be produced by the higher-order polyploid yeast, and some of the higher-order polyploid yeasts in the culture medium are killed.
- the average pore diameter of the surface of the porous membrane used in the present invention is preferably 0.4 ⁇ m or less, more preferably 0.2 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less. .
- the average pore diameter of the surface in the present invention is the diameter of all pores that can be observed within the range of 9.2 ⁇ m ⁇ 10.4 ⁇ m in the observation of the scanning electron microscope porous membrane surface at a magnification of 10,000 times. It can be determined by measuring and averaging.
- the average pore diameter is obtained by taking a photograph of the membrane surface at a magnification of 10,000 using a scanning electron microscope, and randomly selecting 10 or more, preferably 20 or more pores. It can also be obtained by measuring and number average.
- a circle having an area equal to the area of the pores (equivalent circle) is obtained by an image processing device or the like, and the equivalent circle diameter is obtained by the method of setting the diameter of the pores.
- the average pore diameter of the surface of the porous membrane used in the present invention has a smaller standard deviation of the pore diameter, that is, a uniform permeate can be obtained when the pore diameter is uniform, and the standard deviation ⁇ is It is preferably 0.1 ⁇ m or less. Moreover, since the fermentation operation management becomes easy, the smaller the standard deviation of the average pore diameter, the better.
- the standard deviation ⁇ of the average pore diameter was measured using N as the number of pores that can be observed within the range of 9.2 ⁇ m ⁇ 10.4 ⁇ m in the observation of the scanning electron microscope porous film surface at the magnification of 10,000. It is calculated by the following (Formula 1) where each diameter is Xk and the average pore diameter is X (ave).
- the permeability of the culture solution is one of the important performances.
- the pure water permeability coefficient of the porous membrane before use can be used.
- the pure water permeation coefficient of the porous membrane is obtained by filtering drinking water with a dialysis membrane (Filtizer B2-1.5H manufactured by Toray Industries, Inc.) as raw water, at 25 ° C. and a head height of 1 m.
- the water permeability is measured and calculated, it is preferably 2 ⁇ 10 ⁇ 9 m 3 / m 2 / s / pa or more, and the pure water permeability coefficient is 2 ⁇ 10 ⁇ 9 m 3 / m 2 / s / pa. If it is 6 ⁇ 10 ⁇ 7 m 3 / m 2 / s / pa or less, a practically sufficient amount of permeated water can be obtained. More preferably, it is 2 ⁇ 10 ⁇ 9 m 3 / m 2 / s / pa or more and 1 ⁇ 10 ⁇ 7 m 3 / m 2 / s / pa or less.
- the film surface roughness in the porous film used in the present invention is an average value of heights in the direction perpendicular to the surface.
- Membrane surface roughness is one of the factors that make it easier for exfoliated yeast adhering to the surface of the separation membrane to peel off due to the membrane surface cleaning effect by liquid flow using agitation and circulation pump.
- the surface roughness of the porous membrane is preferably 0.1 ⁇ m or less. When the membrane surface roughness is 0.1 ⁇ m or less, the higher-order polyploid yeast attached to the membrane is easy to peel off, and in the filtration of the higher-order polyploid yeast, the shear force generated on the membrane surface can be reduced.
- the film surface roughness is measured using the following atomic force microscope (AFM) under the following conditions.
- Apparatus Atomic force microscope (Digital Instruments Co., Nanoscope IIIa) Condition Probe: SiN cantilever (manufactured by Digital Instruments) Scan mode Contact mode (in-air measurement) Underwater tapping mode (underwater measurement) Scanning range: 10 ⁇ m, 25 ⁇ m square (measurement in air) 5 ⁇ m, 10 ⁇ m square (underwater measurement) Scanning resolution: 512 ⁇ 512 Sample preparation: For measurement, the membrane sample is immersed in ethanol at room temperature for 15 minutes, then immersed in RO water for 24 hours, washed, and then air-dried.
- the film surface roughness (dough) is calculated from the height of each point in the Z-axis direction by the above-described atomic force microscope (AFM) according to the following (formula 2).
- the shape of the porous membrane used in the present invention may be a flat membrane or a hollow fiber membrane.
- the average thickness is selected according to the application, but is preferably 20 ⁇ m or more and 5000 ⁇ m or less, more preferably 50 ⁇ m or more and 2000 ⁇ m or less.
- the inner diameter of the hollow fiber is preferably 200 ⁇ m or more and 5000 ⁇ m or less, and the film thickness is preferably 20 ⁇ m or more and 2000 ⁇ m or less.
- a woven fabric or a knitted fabric in which organic fibers or inorganic fibers are formed in a cylindrical shape may be included in the hollow fiber.
- a method for producing a flat membrane which is one of the preferred embodiments of the porous membrane will be described.
- a film of a stock solution containing a resin and a solvent is formed on the surface of the porous base material, and the porous base material is impregnated with the stock solution.
- the coating-side surface of the porous substrate having a coating is brought into contact with a coagulation bath containing a non-solvent to solidify the resin and form a porous resin layer on the surface of the porous substrate.
- the stock solution is prepared by dissolving the resin in a solvent.
- the temperature of the stock solution is usually preferably selected within the range of 5 to 120 ° C. from the viewpoint of film forming properties.
- the solvent dissolves the resin and acts on the resin to encourage them to form a porous resin layer.
- solvent examples include N-methylpyrrolidinone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl- 2-pyrrolidone, methyl ethyl ketone, tetrahydrofuran, Tetramethylurea, trimethyl phosphate, cyclohexanone, isophorone, ⁇ -butyrolactone, methyl isoamyl ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, glycerol triacetate, acetone and methyl ethyl ketone can be used.
- NMP N-methylpyrrolidinone
- DMAc N, N-dimethylacetamide
- DMF N-dimethylformamide
- DMSO dimethyl sulfoxide
- N-methyl- 2-pyrrolidone methyl ethyl
- NMP N-methylpyrrolidinone
- DMAc N, N-dimethylacetamide
- DMF N-dimethylformamide
- DMSO dimethyl sulfoxide
- Non-solvents can also be added to the solvent.
- the non-solvent is a liquid that does not dissolve the resin.
- the non-solvent acts to control the pore size by controlling the rate of solidification of the resin.
- water and alcohols such as methanol and ethanol can be used. Of these, water and methanol are preferable as the non-solvent from the viewpoint of cost.
- Components other than the solvent and the non-solvent may be a mixture.
- a pore-opening agent can be added to the stock solution.
- the pore-opening agent is extracted when immersed in the coagulation bath, and has a function of making the resin layer porous.
- the pore-opening agent is preferably one having high solubility in the coagulation bath.
- an inorganic salt such as calcium chloride or calcium carbonate can be used.
- polyoxyalkylenes such as polyethylene glycol and polypropylene glycol, water-soluble polymer compounds such as polyvinyl alcohol, polyvinyl butyral and polyacrylic acid, and glycerin can be used.
- the hollow fiber membrane discharges a stock solution composed of a resin and a solvent from the outer tube of the double-tube base, and discharges a hollow portion forming fluid from the inner tube of the double-tube base in a cooling bath. It can be produced by cooling and solidifying.
- the stock solution can be prepared by dissolving the resin described in the above-described method for producing a flat membrane at a concentration of 20% by weight or more and 60% by weight or less in the solvent described in the above-described method for producing a flat membrane.
- a gas or a liquid can be normally used for the hollow portion forming fluid.
- a new porous resin layer can be coated (laminated) on the outer surface of the obtained hollow fiber membrane. Lamination can be performed in order to change the properties of the hollow fiber membrane, for example, hydrophilicity / hydrophobicity, pore diameter and the like into desired properties.
- a new porous resin layer to be laminated can be produced by bringing a stock solution obtained by dissolving a resin in a solvent into contact with a coagulation bath containing a non-solvent to coagulate the resin.
- the material of the resin for example, the same material as that of the organic polymer film can be preferably used.
- the method of lamination is not particularly limited, and the hollow fiber membrane may be immersed in the stock solution, or the stock solution may be applied to the surface of the hollow fiber membrane, and after lamination, a part of the deposited stock solution is scraped off. Or the amount of stacking can be adjusted by blowing off with an air knife.
- the porous membrane used in the present invention can be made into a separation membrane element by adhering and sealing the hollow portion of the hollow fiber membrane using a member such as a resin and setting it on a support.
- the porous membrane used in the present invention can be made into a separation membrane element by combining with a support.
- a separation membrane element in which a support plate is used as a support and the porous membrane used in the present invention is disposed on at least one surface of the support plate is a preferred embodiment of the separation membrane element having a porous membrane used in the present invention.
- a preferred embodiment of the separation membrane element is to dispose a porous membrane on both sides of the support plate.
- the intermembrane differential pressure of the porous membrane is 0.1 kPa or more and less than 20 kPa.
- the intermembrane differential pressure of the porous membrane is 0.1 kPa or more and less than 20 kPa.
- the transmembrane pressure is less than 0.1 kPa, it takes time for filtration and the production rate is lowered.
- the transmembrane differential pressure which is the filtration pressure
- the transmembrane differential pressure can be obtained by the water head difference. The ability to produce will not decline.
- the aspect which installs a porous membrane inside a fermenter is also attained, and the advantage that a fermenter can be made compact is also mentioned.
- the transmembrane pressure difference refers to the pressure difference between the treated water side and the permeated water side in the porous membrane.
- the membrane is contaminated due to being adsorbed by the pores and deposited on the surface. Then, membrane clogging occurs, the transmembrane pressure difference is improved, the treatment flow rate is remarkably lowered, and it is difficult to continue stable operation. Therefore, it is preferable to perform filtration while measuring the transmembrane pressure difference.
- the method for measuring the transmembrane pressure can be measured by installing pressure gauges on the treated water side and the permeate side in the porous membrane, measuring the pressure, and determining the pressure difference.
- a high-order polyploid yeast having the ability to produce lactic acid used in the present invention will be described.
- the method for producing lactic acid according to the present invention by using a high-order polyploid yeast having an ability to produce lactic acid, high productivity of lactic acid which is a desired fermentation product stably over a long period of time under simple operation conditions. Thus, it becomes possible to continuously produce lactic acid at a low cost.
- Higher polyploid yeast is yeast having two or more pairs of chromosomes in a cell.
- Higher polyploid yeasts are larger than haploid yeasts generally used for genetic analysis, so that the porous membrane is less likely to block and is suitable for long-term culture.
- the shear force generated on the membrane surface can be reduced, the destruction of the yeast is suppressed, and clogging of the porous membrane is also suppressed.
- the membrane can be reused, and the cost can be reduced. Further, even when the membrane is clogged, the washing recovery property is better than that of haploid yeast.
- There is no particular restriction on the number of chromosomes of higher order polyploid yeast but diploid yeast having two sets of chromosomes is preferred.
- Examples of the higher polyploid yeast include yeast such as baker's yeast, sake yeast, wine yeast and beer yeast often used in the fermentation industry.
- yeast such as baker's yeast, sake yeast, wine yeast and beer yeast often used in the fermentation industry.
- the higher-order multiple versus yeast used may be isolated from the natural environment, or may be partially modified in nature by mutation or genetic recombination.
- the higher order polyploid yeast having the ability to produce lactic acid is a higher order polyploid yeast into which a lactate dehydrogenase gene (hereinafter sometimes referred to as LDH) has been introduced.
- LDH lactate dehydrogenase gene
- a higher-order polyploid yeast having the ability to produce lactic acid is not nutrient-neutral, a medium with fewer nutrients than before, that is, a low-cost medium can be used, and simple operation is possible. Under the conditions, continuous fermentation that stably maintains high productivity of lactic acid over a long period of time is possible, and lactic acid can also be produced stably at low cost, so it is preferably used in the present invention.
- auxotrophy possessed by yeast means that the nutrient synthesis gene of wild-type yeast is mutated for some reason, and as a result, lacks the ability to synthesize the nutrient.
- restoration of auxotrophy means that the auxotrophy mutation is restored to the wild type or very close to the wild type. Since auxotrophy is mainly used as a marker during genetic manipulation or the like, auxotrophic yeast is preferably used during genetic manipulation.
- yeast has auxotrophy
- necessary nutrients include methionine, tyrosine, isoleucine, phenylalanine, glutamic acid, threonine, aspartic acid, valine, serine, arginine, uracil, adenine, lysine, tryptophan, leucine, Histidine and the like are known.
- Examples of the genotype of yeast exhibiting auxotrophy include the following.
- the non-nutrient requirement yeast preferably used in the present invention is a yeast that does not have a genotype exhibiting the above auxotrophy or is complemented.
- a method for determining whether or not a yeast is a non-nutrient requirement yeast it can be used as a criterion for judgment based on whether or not the yeast can grow on an SD medium (Table 1), which is a minimum yeast culture medium.
- auxotrophy of auxotrophic yeast and produce non-nutrient auxotrophic yeast
- LDH introduced in higher polyploid yeast having the ability to produce lactic acid reduced nicotinamide adenine dinucleotide (NADH) and pyruvate are converted to oxidized nicotinamide adenine dinucleotide (NAD +) and lactic acid.
- NADH reduced nicotinamide adenine dinucleotide
- NAD + oxidized nicotinamide adenine dinucleotide
- LDH derived from lactic acid bacteria having a high yield of lactic acid against saccharide, LDH derived from mammals, or LDH derived from amphibians can be used. Of these, LDH derived from Homo sapiens and frog is preferably used.
- LDH derived from a frog belonging to the family Pipidae among frogs and LDH derived from Xenopus laevis can be preferably used from the frogs belonging to the family Frogidae.
- LDH includes genetic polymorphisms and mutated genes caused by mutagenesis.
- genetic polymorphism means that the base sequence of a gene is partly changed due to natural mutation on the gene
- mutagenesis means that a mutation is artificially introduced into the gene.
- Mutagenesis is, for example, a method using a site-directed mutagenesis kit (Mutan-K (manufactured by Takara Bio Inc.)) or a random mutagenesis kit (BD ⁇ ⁇ ⁇ Diversify PCR RandomCLMutagenesis (manufactured by CLONTECH)).
- the LDH used in the present invention may have a deletion or insertion in a part of the base sequence as long as it encodes a protein having an activity of converting NADH and pyruvate into NAD + and lactic acid. Absent.
- Higher polyploid yeast having the ability to produce lactic acid may retain the LDH in a plasmid or YAC maintained outside the yeast chromosome, but as described above, it may be incorporated and retained in the yeast chromosome. preferable.
- the method for introducing LDH into the yeast chromosome is not particularly limited, but for example, it can be introduced by the method disclosed in JP-A-2008-29329. Further, in the higher polyploid yeast having the ability to produce lactic acid, LDH is retained at least 1, preferably 2 or more, more preferably 3 or more, and further preferably 4 or more.
- the fermentation raw material used in the present invention is not limited as long as it promotes the growth of yeast to be cultured and can produce lactic acid as a target fermentation product satisfactorily.
- a carbon source, a nitrogen source, inorganic salts, A liquid medium or the like suitably containing organic micronutrients such as amino acids and vitamins as needed is preferably used.
- Examples of the carbon source include sugars such as glucose, sucrose, fructose, galactose, lactose and maltose, starch saccharified solution containing these sugars, sweet potato molasses, sugar beet molasses, high test molasses, cane juice, and cane juice extraction Product or concentrate, raw sugar purified or crystallized from cane juice, purified sugar crystallized or crystallized from cane juice, organic acids such as acetic acid and fumaric acid, alcohols such as ethanol, and glycerin Etc. are preferably used.
- Sugars are the first oxidation products of polyhydric alcohols, and are carbohydrates that have one aldehyde group or ketone group, sugars with aldehyde groups are classified as aldoses, and sugars with ketone groups are classified as ketoses. It is preferably glucose, sucrose, fructose, galactose, lactose or maltose.
- the above carbon source may be added all at once at the start of the culture, or may be added in portions during the culture or continuously.
- nitrogen source examples include ammonia gas, aqueous ammonia, ammonium salts, urea, nitrates, and other auxiliary organic nitrogen sources such as oil cakes, soybean hydrolysates, casein decomposition products, Other amino acids, vitamins, corn steep liquor, yeast or yeast extract, meat extract, peptides such as peptone, various fermented cells and hydrolysates thereof are used.
- inorganic salts for example, phosphates, magnesium salts, calcium salts, iron salts, manganese salts and the like can be appropriately added and used.
- the nutrient when a higher-order polyploid yeast having the ability to produce lactic acid is auxotrophic, the nutrient can be added as a preparation or a natural product containing it.
- An antifoaming agent can be added and used as necessary.
- Fermentation culture conditions for high-order polyploid yeast having the ability to produce lactic acid are not particularly limited as long as they can be cultivated.
- the pH is 4 to 8 and the temperature is 20 to 40 ° C.
- the pH of the fermentation broth is adjusted to a predetermined value within the above range with an inorganic or organic acid, an alkaline substance, urea, calcium carbonate, ammonia gas, and the like.
- oxygen is added to the air to keep the oxygen concentration at 21% or higher, the culture solution is pressurized, and stirring Means such as increasing the speed or increasing the air flow rate can be used.
- stirring Means such as increasing the speed or increasing the air flow rate.
- a gas containing no oxygen such as carbon dioxide, nitrogen and argon mixed with air.
- batch culture or fed-batch culture may be performed at the initial stage of culture to increase the cell concentration, and then continuous culture (pullout) may be started.
- Continuous culture may be performed. It is possible to supply the fermentation raw material liquid and extract the culture from an appropriate time. The start time of the fermentation raw material supply and the withdrawal of the culture are not necessarily the same. Further, the supply of the fermentation raw material liquid and the withdrawal of the culture may be continuous or intermittent. What is necessary is just to add a nutrient required for microbial cell growth as shown above to a fermentation raw material liquid so that microbial cell growth may be performed continuously.
- the cell concentration in the fermentation broth In order to obtain efficient productivity, it is necessary to maintain the cell concentration in the fermentation broth at a high level so long as the ratio of the environment of the fermentation broth is inappropriate for the growth of the cell and the rate of death does not increase. As an example, good production efficiency can be obtained by maintaining the dry weight at 5 g / L or more. Moreover, the upper limit of the density
- concentration of a microbial cell is not specifically limited unless the malfunction on the operation of a continuous fermentation apparatus or the fall of production efficiency is caused.
- the continuous culture operation performed while growing fresh cells capable of fermentation production is usually preferably performed in a single fermentation reaction tank in terms of culture management.
- the number of fermentation reaction tanks is not limited as long as it is a continuous culture method for producing a product while growing cells.
- a plurality of fermentation reaction tanks may be used because the capacity of the fermentation reaction tank is small. In this case, high productivity of the fermentation product can be obtained even if continuous fermentation is performed by connecting a plurality of fermentation reaction tanks in parallel or in series by piping.
- continuous continuous fermentation means a state where the supply of the fermentation raw material liquid and the withdrawal of the culture are continuously or indirectly performed.
- lactic acid is efficiently produced during the continuous fermentation. Lactic acid is efficiently produced as evaluated by lactic acid accumulation concentration, lactic acid production rate, lactic acid vs. sugar yield, and any one, preferably two, and more preferably all are in a high state. That is.
- the lactic acid accumulation concentration is the concentration of lactic acid contained in the culture solution, and the state where the lactic acid accumulation concentration is high is that the lactic acid accumulation concentration is 40 g / L or more, preferably 42 g / L, more preferably 44 g / L.
- the lactic acid production rate is the amount of lactic acid produced per unit time, and the state where the lactic acid production rate is high means that the lactic acid production rate represented by Formula 3 is 7.5 g / L / h or more, preferably 8 or more. More preferably, it is 9 g / L / h or more.
- Lactic acid-to-sugar yield is the ratio of the amount of lactic acid produced from the carbon source consumed per unit time, and the high lactic acid-to-sugar yield is the lactic acid-to-sugar yield expressed by Equation 4.
- the rate is 70% or more, preferably 75% or more, more preferably 80% or more.
- Separation / purification of lactic acid contained in the filtered / separated fermentation broth produced according to the present invention can be performed by combining conventionally known methods such as concentration, distillation and crystallization.
- concentration concentration, distillation and crystallization.
- filtration / separated fermented broth Extraction with diethyl ether or ethyl acetate after reducing the pH of the solution to 1 or less a method of elution after adsorbing and washing with an ion exchange resin, a method of reacting with alcohol in the presence of an acid catalyst and distilling as an ester, and calcium
- filtration / separated fermented broth Extraction with diethyl ether or ethyl acetate after reducing the pH of the solution to 1 or less a method of elution after adsorbing and washing with an ion exchange resin, a method of reacting with alcohol in the presence of an acid catalyst and distilling as an ester, and calcium
- crystallizing as a salt or a lithium salt
- FIG. 1 is a schematic side view for explaining a preferred example of a membrane separation type continuous fermentation apparatus used in the method for producing lactic acid by continuous fermentation of the present invention.
- FIG. 1 is a typical example in which the separation membrane element is installed outside the fermentation reaction tank.
- a membrane separation type continuous fermentation apparatus basically includes a fermentation reaction tank 1, a membrane separation layer 12, and a differential pressure control device 3.
- the separation membrane element 2 incorporates a porous separation membrane.
- a separation membrane and a separation membrane element disclosed in International Publication No. 2002/064240 are suitably used.
- the membrane separation tank 12 is connected to the fermentation reaction tank 1 via a fermentation culture medium circulation pump 11.
- a culture medium is put into the fermentation reaction tank 1 by a medium supply pump 7, the fermentation culture solution in the fermentation reaction tank 1 is stirred with a stirrer 5 as necessary, and a gas supply device 4 is used as necessary. Can supply the required gas. At this time, the supplied gas can be recovered and recycled and supplied again by the gas supply device 4.
- the pH of the fermentation broth is adjusted by the pH sensor / control device 9 and the pH adjusting solution supply pump 8, and the temperature of the fermentation broth is adjusted by the temperature controller 10 as necessary. Fermentative production with high productivity can be performed.
- the fermentation liquid in the apparatus is circulated between the fermentation reaction tank 1 and the membrane separation tank 12 by the fermentation liquid circulation pump 11. The fermentation broth containing the fermentation product is filtered and separated into microorganisms and fermentation product by the separation membrane element 2 and can be taken out from the apparatus system.
- the filtered and separated microorganisms remain in the apparatus system, so that the microorganism concentration in the apparatus system can be maintained high, and fermentation production with high productivity is possible.
- the filtration / separation by the separation membrane element 2 can be performed without using any special power due to the water head differential pressure with respect to the water surface of the membrane separation tank 12.
- the pressure control device 3 can appropriately adjust the filtration / separation speed of the separation membrane element 2 and the amount of the fermentation broth in the device system. If necessary, the required gas can be supplied into the membrane separation tank 12 by the gas supply device 4. At this time, the supplied gas can be recovered and recycled and supplied again by the gas supply device 4.
- the filtration / separation by the separation membrane element 2 can be performed by suction filtration using a pump or the like, or by pressurizing the inside of the apparatus system as necessary.
- a high-order polyploid yeast can be cultured for continuous fermentation in a culture tank, and can be supplied into the fermentation tank as necessary. By culturing higher-order polyploid yeast in a culture tank and supplying it to the fermenter as needed, continuous fermentation with fresh and high-order polyploid yeast with a high production capacity for lactic acid becomes possible, and high production performance is achieved. Continuous fermentation maintained for a long time is possible.
- FIG. 2 is a schematic side view for explaining an example of another membrane separation type continuous fermentation apparatus used in the present invention.
- the continuous fermentation apparatus used in the method for producing lactic acid of the present invention a typical example in which a separation membrane element is installed inside a fermentation reaction tank is shown in the schematic diagram of FIG.
- the membrane separation type continuous fermentation apparatus basically includes a fermentation reaction tank 1 and a differential pressure control apparatus 3.
- a porous membrane is incorporated in the separation membrane element 2 in the fermentation reaction tank 1.
- this porous separation membrane for example, a separation membrane and a separation membrane element disclosed in WO2002 / 064240 can be used. The separation membrane element will be described in detail later.
- the culture medium is pumped continuously or intermittently into the fermentation reaction tank 1 by the culture medium supply pump 7.
- the medium can be sterilized by heat sterilization, heat sterilization, or sterilization using a filter as necessary before charging.
- the fermentation culture solution in the fermentation reaction tank 1 is agitated by the agitator 5 in the fermentation reaction tank 1 as necessary.
- the gas required by the gas supply device 4 can be supplied into the fermentation reaction tank 1 as necessary.
- the pH of the fermentation broth in the fermentation reaction tank 1 is adjusted by the pH sensor / control device 9 and the pH adjustment solution supply pump 8, and the fermentation is performed by the temperature controller 10 as necessary.
- the pH and temperature are exemplified for the adjustment of the physicochemical conditions of the fermentation broth by the instrumentation / control device.
- the dissolved oxygen and ORP are controlled by an analyzer such as an online chemical sensor,
- the concentration of lactic acid in the fermentation broth can be measured, and the physicochemical conditions can be controlled using the concentration of lactic acid in the fermentation broth as an index.
- the continuous or intermittent input of the medium is preferably performed by appropriately adjusting the amount and speed of the medium input using the measured value of the physicochemical environment of the fermentation broth by the instrumentation apparatus as an index.
- the fermentation broth is filtered and separated from the bacterial cells and the fermentation product by the separation membrane element 2 installed in the fermentation reaction tank 1, and the fermentation product is taken out from the apparatus system.
- the concentration of the cells in the apparatus system can be maintained high, and fermentation production with high productivity is possible.
- the filtration / separation by the separation membrane element 2 is performed by the water head differential pressure with respect to the water surface of the fermentation reaction tank 1 and can be performed without using any special power.
- the pressure control device 3 can appropriately adjust the filtration / separation speed of the separation membrane element 2 and the amount of the fermentation broth in the fermentation reaction tank 1.
- filtration / separation can be performed by suction filtration using a pump or the like, or pressurizing the inside of the apparatus system, if necessary.
- a microbial cell can be cultured with the culture tank prepared separately, and can be supplied in a fermenter as needed. By culturing the microbial cells in a culture tank and supplying them into the fermenter as necessary, continuous fermentation with fresh microbial cells is always possible, and continuous fermentation with high lactic acid production performance maintained for a long period of time becomes possible.
- the separation membrane element preferably used in the continuous fermentation apparatus used in the method for producing lactic acid according to the present invention will be described with reference to the drawings.
- the separation membrane and the separation membrane element disclosed in International Publication No. 2002/064240 can be preferably used.
- FIG. 3 is a schematic perspective view for explaining one embodiment of the separation membrane element used in the present invention.
- the separation membrane element is configured by arranging the flow path material 14 and the separation membrane 15 in this order on both surfaces of a support plate 13 having rigidity.
- the support plate 13 has recesses 16 on both sides.
- the separation membrane 15 filters the fermentation broth.
- the flow path member 14 is for efficiently flowing the permeated water filtered by the separation membrane 15 to the support plate 13.
- the permeated water that has flowed to the support plate 13 passes through the recess 16 of the support plate 13 and is taken out of the continuous fermentation apparatus via a water collecting pipe 17 that is a discharge means.
- FIG. 4 is a cross-sectional explanatory diagram for explaining an example of another separation membrane element used in the present invention.
- a separation membrane bundle 18 composed of a hollow fiber membrane is bonded and fixed in a bundle by a partial resin sealing layer 19 and a lower resin sealing layer 20. Adhesion / fixation by the lower resin sealing layer 20 seals the hollow portion of the hollow fiber membrane and has a structure that prevents leakage of the fermentation broth.
- the upper resin sealing layer 19 does not seal the inner hole of the hollow fiber membrane, and has a structure in which permeate flows through the water collecting pipe 22.
- This separation membrane element can be installed in the continuous fermentation apparatus via the support frame 21.
- the permeated water filtered by the separation membrane bundle 18 passes through the hollow portion of the hollow fiber membrane and is taken out of the fermentation culture tank via the water collecting pipe 22.
- a method such as a water head differential pressure, a pump, suction filtration with a liquid or gas, or pressurization in the apparatus system can be used.
- the member constituting the separation membrane element of the continuous fermentation apparatus used in the method for producing lactic acid by continuous fermentation of the present invention is preferably a member resistant to high-pressure steam sterilization operation. If the inside of the fermentation apparatus can be sterilized, it is possible to avoid the risk of contamination with undesirable cells during continuous fermentation, and more stable continuous fermentation is possible.
- the member constituting the separation membrane element is preferably resistant to the treatment for 15 minutes at a temperature of 121 ° C., which is the condition of the high-pressure steam sterilization operation.
- separation membrane element members include metals such as stainless steel and aluminum, polyamide resins, fluorine resins, polycarbonate resins, polyacetal resins, polybutylene terephthalate resins, PVDF, modified polyphenylene ether resins, and polysulfone resins. These resins can be preferably selected.
- the separation membrane element may be installed outside the fermentation tank or may be installed inside the fermentation reaction tank.
- a separate membrane separation tank can be provided and the separation membrane element can be installed inside it, and the fermentation broth is circulated between the fermentation reaction tank and the membrane separation tank.
- the fermentation broth can be continuously filtered by the separation membrane element.
- the membrane separation tank is preferably capable of high-pressure steam sterilization.
- the membrane separation tank capable of high-pressure steam sterilization, it is easy to avoid contamination by various bacteria.
- Part 1 Construction of Xenopus L-LDH (XLDH) Expression Vector Cloning of XLDH (SEQ ID NO: 1) was performed by PCR.
- XLDH Xenopus L-LDH
- SEQ ID NO: 1 phagemid DNA prepared from Xenopus kidney cDNA library (manufactured by STRATAGENE) according to the attached protocol was used as a template.
- KOD-Plus polymerase (manufactured by Toyobo Co., Ltd.) was used, and the attached reaction buffer, dNTPmix, etc. were used.
- a 50 ⁇ l reaction system was prepared so that the phagemid DNA prepared as described above was 50 ng / sample, the primer was 50 pmol / sample, and the KOD-Plus / polymerase was 1 unit / sample.
- the reaction solution was thermally denatured at 94 ° C. for 5 minutes with a PCR amplification device iCycler (manufactured by BIO-RAD), then 94 ° C. (thermal denature): 30 seconds, 55 ° C.
- the gene amplification primer (SEQ ID NO: 2 and 3) was prepared such that a SalI recognition sequence was added to the 5 terminal side and a NotI recognition sequence was added to the 3 terminal side.
- the PCR-amplified fragment was purified, and the end was phosphorylated with T4 nucleotide Kinase (manufactured by Takara Bio Inc.) and then ligated to pUC118 vector (cut with restriction enzyme HincII and the cut surface was dephosphorylated). Ligation was performed using DNA Ligation Kit Ver.2 (Takara Bio Inc.). The ligation solution was transformed into competent cells of Escherichia coli DH5 ⁇ (manufactured by Takara Bio Inc.) and plated on an LB plate containing 50 ⁇ g / mL of the antibiotic ampicillin and cultured overnight.
- plasmid DNA was collected with a miniprep, cut with restriction enzymes SalI and NotI, and a plasmid in which the Xenopus laevis LDH gene was inserted was selected. All of these series of operations were performed according to the attached protocol.
- the pUC118 vector inserted with XLDH was cleaved with restriction enzymes SalI and NotI, the DNA fragments were separated by 1% agarose gel electrophoresis, and the fragments containing XLDH were purified according to a conventional method.
- the obtained fragment was ligated to the XhoI / NotI cleavage site of the expression vector pTRS11 shown in FIG. 5, and plasmid DNA was recovered in the same manner as described above, and cut with the restriction enzymes XhoI and NotI to insert XLDH.
- the expression vector pTRS102 was selected.
- a 1.2 kb PCR fragment containing the TRP1 gene as a yeast selection marker was amplified by PCR using the plasmid pTRS424 as an amplification template and oligonucleotides (SEQ ID NOs: 6 and 7) as primer sets.
- SEQ ID NO: 7 was designed such that a sequence corresponding to 60 bp downstream from the stop codon of the PDC1 gene was added.
- Each DNA fragment was separated by 1% agarose gel electrophoresis and purified according to a conventional method.
- a mixture of each 1.3 kb fragment and 1.2 kb fragment obtained as described above was used as an amplification template, and PCR was performed using oligonucleotides (SEQ ID NOs: 4 and 7) as primer sets.
- SEQ ID NOs: 4 and 7 oligonucleotides
- the above PCR fragment was separated by 1% agarose gel electrophoresis, purified according to a conventional method, transformed, and cultured in a medium without tryptophan, so that XLDH was introduced downstream of the PDC1 gene promoter on the chromosome. Transformants were selected.
- the transformed strain obtained as described above was a yeast in which Xenopus L-LDH was introduced downstream of the PDC1 gene promoter on the chromosome.
- the genomic DNA of the transformant was prepared using a genomic DNA extraction kit Gen Toru-kun (manufactured by Takara Bio Inc.), and this was used as an amplification template, and by PCR using oligonucleotides (SEQ ID NOs: 7 and 8) as primer sets, This was confirmed by obtaining an amplified DNA fragment of 2.8 kb. For non-transformed strains, an amplified DNA fragment of about 2.1 kb can be obtained by the PCR.
- SEQ ID NO: 10 was designed so that a sequence corresponding to 60 bp downstream from the stop codon of the SED1 gene was added.
- Each DNA fragment was separated by 1% agarose gel electrophoresis and purified according to a conventional method.
- a mixture of the two kinds of about 1.3 kb fragments obtained here was used as an amplification template, and PCR was performed using oligonucleotides (SEQ ID NOs: 9 and 10) as primer sets.
- SEQ ID NOs: 9 and 10 oligonucleotides
- the above PCR fragment was separated by 1% agarose gel electrophoresis, purified according to a conventional method, transformed, and cultured in a medium without histidine, so that XLDH was introduced downstream of the SED1 gene promoter on the chromosome. Transformants were selected.
- genomic DNA of the transformed strain was prepared by a genomic DNA extraction kit Gen Toru-kun (manufactured by Takara Bio Inc.), and this was used as an amplification template, and by PCR using oligonucleotides (SEQ ID NOs: 11 and 12) as primer sets, This was confirmed by obtaining an amplified DNA fragment of 2.9 kb. For non-transformed strains, an amplified DNA fragment of about 1.4 kb can be obtained by the PCR.
- genomic DNA was extracted from the NBRC10505 strain using a genomic DNA extraction kit “Gen Tor-kun” (manufactured by Takara Bio Inc.), PCR using the extracted genomic DNA as a template and oligonucleotides (SEQ ID NOs: 13 and 14) as primer sets
- the PCR fragment containing the ADH1 promoter was amplified.
- SEQ ID NO: 13 was prepared such that a NotI recognition sequence was added to the 5 terminal side, and a HindIII recognition sequence was added to SEQ ID NO: 14 on the 3 terminal side.
- the PCR-amplified fragment was purified, and the end was phosphorylated with T4 nucleotide Kinase (manufactured by Takara Bio Inc.) and then ligated to pUC118 vector (cut with restriction enzyme HincII and the cut surface was dephosphorylated).
- the ligation solution was transformed into competent cells of Escherichia coli DH5 ⁇ (manufactured by Takara Bio Inc.) and plated on an LB plate containing 50 ⁇ g / mL of the antibiotic ampicillin and cultured overnight. For the grown colonies, plasmid DNA was collected with a miniprep, cut with restriction enzymes NotI and HindIII, and a plasmid in which the ADH1 terminator was inserted was selected. The prepared plasmid is designated as pUC118-ADH1t.
- pUC118-ADH1t was cleaved with restriction enzymes NotI and HindIII, DNA fragments were separated by 1% agarose gel electrophoresis, and a fragment containing ADH1 terminator was purified according to a routine method.
- the obtained fragment containing the ADH1 terminator was ligated to the NotI / HindIII cleavage site of pTRS102, and plasmid DNA was recovered by the same method as described above.
- the TDH3 terminator became the ADH1 terminator.
- Modified plasmids were selected.
- the plasmid thus prepared is designated as pTRS150.
- a 1.3 kb PCR fragment containing the frog-derived L-LDH gene and the ADH1 terminator sequence was amplified by PCR using this pTRS150 as a template and oligonucleotides (SEQ ID NOs: 15 and 16) as primer sets.
- the primer of SEQ ID NO: 16 was designed such that a sequence corresponding to 60 bp upstream from the start codon of the TDH3 gene was added.
- a 1.2-kb PCR fragment containing the URA3 gene which is a yeast selection marker, was amplified by PCR using plasmid pRS426 as an amplification template and oligonucleotides (SEQ ID NOs: 17 and 18) as primer sets.
- the primer of SEQ ID NO: 18 was designed such that a sequence corresponding to 60 bp downstream from the stop codon of the TDH3 gene was added.
- Each PCR fragment was separated by 1% agarose gel electrophoresis and purified according to a conventional method.
- a PCR method using the mixture of each 1.3 kb fragment and 1.2 kb fragment obtained here as an amplification template and oligonucleotides (SEQ ID NOs: 16 and 18) as primer sets was used to detect XLDH, ADH1 terminator and URA3 gene.
- the ligated PCR fragment of about 2.5 kb was amplified.
- the above PCR fragment was separated by 1% agarose gel electrophoresis, purified according to a conventional method, transformed, and cultured in a medium without uracil, so that XLDH was introduced downstream of the TDH3 gene promoter on the chromosome. Transformants were selected.
- genomic DNA of the transformed strain was prepared by a genomic DNA extraction kit “Gen Tor-kun” (manufactured by Takara Bio Inc.), which was used as an amplification template and by PCR using oligonucleotides (SEQ ID NOs: 19 and 20) as primer sets. It was confirmed that an amplified DNA fragment of about 2.8 kb was obtained. For non-transformed strains, an amplified DNA fragment of about 2.1 kb can be obtained by the PCR.
- the diploid yeast is ascended with an ascending medium, dissected with a micromanipulator, each haploid cell is obtained, and the auxotrophy of each haploid cell is examined, From the obtained haploid cells, a strain having XLDH inserted into any of the PDC1 gene, SED1 gene, and TDH1 locus and having a temperature-sensitive mutation in the PDC5 gene (incapable of growing at 34 ° C.) was selected. Next, we will explain how to restore nutritional requirements.
- PCR fragment of about 2 kb in the first half of the LYS2 gene was amplified by PCR using BY4741 genomic DNA manufactured by Funakoshi as a template and oligonucleotides (SEQ ID NOS: 21 and 22) as primer sets.
- the PCR fragment was separated by 1% agarose gel electrophoresis, purified according to a conventional method, and then subjected to a transformation operation to release the amber mutation of the LYS2 gene.
- a transformant having restored lysine synthesis ability was selected.
- the transformant obtained as described above was a yeast in which the amber mutation of the LYS2 gene was released.
- the obtained transformant and 20GY77 strain having a wild-type LYS2 gene were joined to obtain diploid cells.
- the diploid cells were allowed to form ascending with an ascending medium.
- the ascending sac was dissected with a micromanipulator to obtain each haploid cell, and the auxotrophy of each haploid cell was examined. All of the obtained haploid cells were confirmed to have lysine synthesis ability.
- the lysine synthesis ability is restored without releasing the mutation of the LYS2 gene, cells having no lysine synthesis ability are obtained from the haploid cells obtained above.
- Part 7 Acquisition of leucine auxotrophic return strain To restore leucine auxotrophy, the following method was used. About 2 kb of the PCR fragment of the LEU2 gene was amplified by PCR using the plasmid PRS425 as a template and oligonucleotides (SEQ ID NOs: 23, 24) as primer sets. The above PCR fragment was separated by 1% agarose gel electrophoresis, purified according to a conventional method, and then subjected to a transformation operation to release the mutation of the LEU2 gene. By culturing in a leucine-free medium, a transformant in which the ability to synthesize leucine was restored was selected.
- the transformed strain obtained as described above was a yeast from which the mutation of the LEU2 gene was released.
- the obtained transformant was joined to Saccharomyces cerevisiae 20GY7 strain having a wild type LEU2 gene to obtain diploid cells.
- the diploid cells were allowed to form ascending with an ascending medium.
- the ascending sac was dissected with a micromanipulator to obtain each haploid cell, and the auxotrophy of each haploid cell was examined. All of the obtained haploid cells were confirmed to have the ability to synthesize leucine.
- the leucine synthesis ability is restored without canceling the mutation of the LEU2 gene, cells having no leucine synthesis ability are obtained among the haploid cells obtained above.
- the transformant obtained as described above was a yeast in which the mutation of the AED2 gene was released.
- diploid cells were obtained by joining the obtained transformant to Saccharomyces cerevisiae 20GY7 strain having a wild-type ADE2 gene. The diploid cells were allowed to form ascending with an ascending medium. The ascending sac was dissected with a micromanipulator to obtain each haploid cell, and the auxotrophy of each haploid cell was examined. It was confirmed that all of the obtained haploid cells had the ability to synthesize adenine. When the ADE2 gene mutation is not released and adenine synthesis ability is restored, cells having no adenine synthesis ability are obtained from the haploid cells obtained above.
- the transformed strain obtained as described above was a yeast in which the mutation of the URA3 gene was released.
- the obtained transformant and Saccharomyces cerevisiae 20GY7 strain having a wild-type URA3 gene were joined to obtain diploid cells.
- the diploid cells were allowed to form ascending with an ascending medium.
- the ascending sac was dissected with a micromanipulator to obtain each haploid cell, and the auxotrophy of each haploid cell was examined. All of the obtained haploid cells were confirmed to have uracil synthesis ability.
- the URA3 gene mutation is not released and uracil synthesis ability is restored, cells having no uracil synthesis ability are obtained from the haploid cells obtained above.
- a diploid prototrophic strain having no auxotrophy is obtained. It was. Furthermore, the diploid prototrophic strain was made to form ascosm in an ascending medium, and the ascend was dissected with a micromanipulator to obtain each haploid cell. The obtained haploid cells were examined for auxotrophy, and the strains grown on the SD medium (Table 1) were judged to have returned to auxotrophy, and designated as haploid prototrophs.
- the optical purity of L-lactic acid was measured by the HPLC method under the following conditions.
- optical purity of L-lactic acid was calculated by the following formula.
- Optical purity (%) 100 ⁇ (LD) / (L + D)
- L represents the concentration of L-lactic acid
- D represents the concentration of D-lactic acid.
- this porous membrane After peeling this porous membrane from the glass plate, it was immersed in hot water at a temperature of 80 ° C. three times to wash out DMAc to obtain a separation membrane.
- the surface of the porous resin layer was observed with a scanning electron microscope at a magnification of 10,000 within the range of 9.2 ⁇ m ⁇ 10.4 ⁇ m, the average diameter of all observable pores was 0.1 ⁇ m.
- the pure water permeability coefficient was evaluated about the said separation membrane, it was 50 * 10 ⁇ -9 > m ⁇ 3 > / m ⁇ 2 > / s / Pa.
- the standard deviation of the average pore diameter was 0.035 ⁇ m, and the membrane surface roughness was 0.06 ⁇ m.
- This undiluted solution was uniformly applied to the surface of the hollow fiber membrane obtained above, and a hollow fiber membrane (porous membrane) used in the present invention was immediately solidified in a water bath.
- the average pore diameter of the treated water side surface of the obtained hollow fiber membrane (separation membrane) was 0.05 ⁇ m.
- the pure water permeability coefficient of the hollow fiber membrane as the separation membrane was evaluated, it was 5.5 ⁇ 10 ⁇ 9 m 3 / m 2 ⁇ s ⁇ Pa.
- the standard deviation of the average pore diameter was 0.006 ⁇ m.
- Example 1 Production of lactic acid by continuous fermentation using a high-order polyploid (nutrient non-requirement) yeast having the ability to produce lactic acid
- Part 1 Using the yeast HI003 strain prepared in Reference Example 1, lactic acid was produced using the continuous fermentation apparatus of FIG. 1 and the SC4 medium having the composition shown in Table 3. The medium was used after autoclaving at 121 ° C. for 15 minutes.
- the separation membrane element member a molded product of stainless steel and polysulfone resin was used.
- the separation membrane the porous membrane prepared in Reference Example 3 was used.
- Example 1 The operating conditions in Example 1 are as follows. ⁇ Fermentation reactor capacity: 2 (L) ⁇ Membrane separation tank capacity: 0.5 (L) -Separation membrane used: Polyvinylidene fluoride filtration membrane (Reference Example 3) ⁇ Membrane separation element effective filtration area: 60 cm 2 ⁇ Temperature adjustment: 32 (°C) -Aeration volume of fermentation reaction tank: 0.05 (L / min) -Aeration rate of membrane separation tank: 0.3 (L / min) ⁇ Fermentation reactor stirring speed: 100 (rpm) -PH adjustment: adjusted to pH 5 with 8N Ca (OH) 2 -Lactic acid fermentation medium supply rate: 50-300 ml / hr.
- Membrane permeate flow control Flow rate control by transmembrane differential pressure (transmembrane differential pressure: controlled at 0.1 kPa to less than 20 kPa) -The culture layer containing the separation membrane element is autoclaved at 121 ° C for 20 min and autoclaved.
- the HPLC shown in Reference Example 2 was used for evaluation of the concentration of lactic acid as a product, and “glucose test Wako C” (registered trademark) (manufactured by Wako Pure Chemical Industries, Ltd.) was used for the measurement of glucose concentration. It was.
- the HI003 strain was shaken overnight in 5 ml of SC4 medium in a test tube to obtain a culture solution (pre-culture).
- the obtained culture solution was inoculated into 100 ml of fresh SC4 medium and cultured with shaking at a temperature of 30 ° C. for 24 hours in a 500 ml Sakaguchi flask (pre-culture).
- the incubating medium is inoculated in a 1.5 L SC4 medium of the continuous fermentation apparatus shown in FIG. 1, the fermentation reaction tank 1 is stirred by the attached stirrer 5, the aeration amount of the fermentation reaction tank 1 is adjusted, and the temperature is adjusted. Adjustment and pH adjustment were carried out for 24 hours without operating the fermentation broth circulation pump 11 (pre-culture).
- the fermentation broth circulation pump 11 is operated, in addition to the operating conditions during pre-culture, the membrane separation tank 12 is vented, the SC4 medium is continuously supplied, and the fermentation of the membrane separation type continuous fermentation apparatus is performed.
- Continuous culture was performed while controlling the amount of membrane permeate so that the amount of the culture solution was 2 L, and lactic acid was produced by continuous fermentation.
- Control of the amount of permeated water when performing the continuous fermentation test was performed by appropriately changing the transmembrane differential pressure to be 0.1 kPa or more and less than 20 kPa by the differential pressure control device 3. The produced lactic acid concentration and residual glucose concentration in the membrane permeation fermentation broth were measured appropriately.
- Example 2 Production of lactic acid by continuous fermentation using a higher-order polyploid (nutrient non-requirement) yeast having the ability to produce lactic acid (part 2) Using the yeast HI003 strain prepared in Reference Example 1, lactic acid was produced using the continuous fermentation apparatus shown in FIG. 2 and the SC4 medium having the composition shown in Table 3. The medium was used after autoclaving at 121 ° C. for 15 minutes.
- the separation membrane element member a molded product of stainless steel and polysulfone resin was used.
- the separation membrane the porous separation membrane prepared in Reference Example 3 was used.
- Example 2 The operating conditions in Example 2 are as follows. ⁇ Fermentation reactor capacity: 2 (L) -Separation membrane used: Polyvinylidene fluoride filtration membrane (Reference Example 3) ⁇ Membrane separation element effective filtration area: 120 cm 2 ⁇ Temperature adjustment: 32 (°C) -Aeration volume of fermentation reaction tank: 0.05 (L / min) Lactic acid fermentation medium supply rate: 50 to 300 ml / hr.
- the HPLC shown in Reference Example 2 was used for evaluation of the concentration of lactic acid as a product, and “glucose test Wako C” (registered trademark) (manufactured by Wako Pure Chemical Industries, Ltd.) was used for measurement of the glucose concentration.
- the HI003 strain was shaken overnight in 5 ml of SC4 medium in a test tube to obtain a culture solution (pre-culture).
- the obtained culture solution was inoculated into 100 ml of fresh SC4 medium, and cultured with shaking at a temperature of 30 ° C. for 24 hours in a 500 ml Sakaguchi flask (pre-culture).
- the culture solution is inoculated in a 1.5 L SC4 medium of the membrane separation type continuous fermentation apparatus shown in FIG. 2, and the fermentation reaction tank 1 is stirred at 400 rpm by the attached stirrer 5. Aeration was adjusted, temperature was adjusted, pH was adjusted, and culture was performed for 24 hours (pre-culture).
- the SC4 medium is continuously supplied, and the continuous culture is performed while controlling the amount of the permeated water in the membrane separation type continuous fermentation apparatus so that the amount of the fermentation liquid becomes 1.5 L. Manufactured. Control of the amount of permeated water when performing the continuous fermentation test was performed by appropriately changing the transmembrane differential pressure to be 0.1 kPa or more and less than 20 kPa by the differential pressure control device 3. The produced lactic acid concentration and residual glucose concentration in the membrane permeation fermentation broth were measured appropriately. In addition, the yield of lactic acid versus sugar and the rate of lactic acid production calculated from the input glucose calculated from the lactic acid and glucose concentrations were measured.
- Table 6 shows the results of an 800-hour fermentation test. According to the method for producing lactic acid of the present invention using the continuous fermentation apparatus shown in FIG. 2, stable production of lactic acid by continuous fermentation was possible.
- Example 3 Production of lactic acid by continuous fermentation using a high-order polyploid (nutrient-unnecessary) yeast having the ability to produce lactic acid (Part 3) It implemented and evaluated on the same conditions as Example 1 except having used the porous membrane created in said Reference Example 4 for the separation membrane. Table 6 shows the results of a 750 hour continuous fermentation test. According to the method for producing lactic acid of the present invention, stable production of lactic acid by continuous fermentation was possible.
- Example 4 Production of lactic acid by continuous fermentation using a high-order polyploid (nutrient non-requirement) yeast having the ability to produce lactic acid (Part 4) The evaluation was performed under the same conditions as in Example 2 except that the porous separation membrane prepared in Reference Example 4 was used as the separation membrane. Table 6 shows the results of a 770 hour fermentation test. Stable production of lactic acid by continuous fermentation was possible by the lactic acid production method of the invention.
- Comparative Example 1 The operating conditions of Comparative Example 1 are shown below. ⁇ Fermentation reactor capacity: 2 (L) ⁇ Temperature adjustment: 30 (°C) -Aeration volume of fermentation reaction tank: 0.05 (L / min) ⁇ Fermentation reactor stirring speed: 100 (rpm) ⁇ PH adjustment: pH 5 adjusted with 8N Ca (OH) 2 ⁇ Culture tank is autoclaved at 121 ° C. for 20 minutes and autoclaved in high pressure steam.
- HI003 strain was cultured in a test tube with shaking overnight in 5 ml of lactic acid fermentation medium (pre-culture).
- the culture solution was inoculated into 100 ml of fresh lactic acid fermentation medium and cultured with shaking in a 500 ml Sakaguchi flask for 24 hours (pre-culture).
- the preculture liquid was inoculated into 1 L of a lactic acid fermentation medium of a membrane separation type continuous fermentation apparatus, the fermentation reaction tank 1 was stirred at 100 rpm by the attached stirrer 5, and the fermentation reaction tank 1 was aerated. Temperature adjustment and pH adjustment were performed, and batch fermentation culture was performed without operating the fermentation culture medium circulation pump 11.
- the amount of bacterial cell growth at this time was 14 in terms of absorbance at 600 nm.
- the results of batch fermentation are shown in Table 6. Fermentation time was short, and lactic acid to sugar yield and lactic acid production rate were inferior to the examples of the present invention.
- Example 5 Production of lactic acid by continuous fermentation using a high-order polyploid (nutrient non-requirement) yeast having the ability to produce lactic acid (part 5) The evaluation was performed under the same conditions as in Example 1 except that the lactic acid fermentation medium shown in Table 4 was used. Table 7 shows the results of an 800-hour fermentation test. A lactic acid fermentation medium having fewer nutrient sources than the SC4 medium could also be produced by continuous fermentation of stable lactic acid by the lactic acid production method of the present invention.
- Example 6 Production of lactic acid by continuous fermentation using a higher polyploidy (nutrient non-requirement) yeast having the ability to produce lactic acid (Part 6) The evaluation was carried out under the same conditions as in Example 2 except that the lactic acid fermentation medium shown in Table 4 was used. Table 7 shows the results of an 800-hour fermentation test. A lactic acid fermentation medium having fewer nutrient sources than the SC4 medium could also be produced by continuous fermentation of stable lactic acid by the lactic acid production method of the present invention.
- Example 7 Production of lactic acid by continuous fermentation using a high-order polyploid (nutrient-unnecessary) yeast having the ability to produce lactic acid (Part 7) The evaluation was performed under the same conditions as in Example 3 except that the lactic acid fermentation medium shown in Table 4 was used. Table 7 shows the results of an 800-hour fermentation test. A lactic acid fermentation medium having fewer nutrient sources than the SC4 medium could also be produced by continuous fermentation of stable lactic acid by the lactic acid production method of the present invention.
- Example 8 Production of lactic acid by continuous fermentation using high-order polyploid (nutrient non-requirement) yeast having the ability to produce lactic acid (No. 8) The evaluation was performed under the same conditions as in Example 4 except that the lactic acid fermentation medium shown in Table 4 was used. Table 7 shows the results of an 800-hour fermentation test. A lactic acid fermentation medium having fewer nutrient sources than the SC4 medium could also be produced by continuous fermentation of stable lactic acid by the lactic acid production method of the present invention.
- Example 9 Production of lactic acid by continuous fermentation using high-order polyploid yeast (nutritional requirement) having the ability to produce lactic acid (Part 1)
- the test was carried out and evaluated under the same conditions as in Example 5 except that the yeast SU014 strain prepared in Reference Example 1 was used.
- Table 7 shows the results of a 700-hour continuous fermentation test. Although it was slightly inferior in lactic acid to sugar yield and lactic acid production rate compared to the non-nutrient demanding high-order polyploid yeast, it was possible to produce lactic acid stably for a long period by continuous fermentation.
- Example 10 Production of lactic acid by continuous fermentation using high-order polyploid yeast (nutritional requirement) having the ability to produce lactic acid (Part 2)
- the test was carried out and evaluated under the same conditions as in Example 6 except that the yeast SU014 strain prepared in Reference Example 1 was used.
- the results of a 700 hour fermentation test are shown in Table 7. Although it was slightly inferior in lactic acid to sugar yield and lactic acid production rate compared to the non-nutrient demanding high-order polyploid yeast, it was possible to produce lactic acid stably for a long period by continuous fermentation.
- Example 11 Production of L-lactic acid by continuous fermentation using a higher-order polyploid yeast (nutrient requirement) having the ability to produce lactic acid (Part 3)
- the test was carried out and evaluated under the same conditions as in Example 7 except that the yeast SU014 strain prepared in Reference Example 1 was used.
- Table 7 shows the results of a 650 hour continuous fermentation test. Although it was slightly inferior in lactic acid to sugar yield and lactic acid production rate compared to the non-nutrient demanding high-order polyploid yeast, it was possible to produce lactic acid stably for a long period by continuous fermentation.
- Example 12 Production of lactic acid by continuous fermentation using high-order polyploid yeast (nutrient requirement) having the ability to produce lactic acid (Part 4)
- the test was carried out and evaluated under the same conditions as in Example 8 except that the yeast SU014 strain prepared in Reference Example 1 was used.
- Table 7 shows the results of a 670 hour fermentation test. Although it was slightly inferior in lactic acid to sugar yield and lactic acid production rate compared to the non-nutrient demanding high-order polyploid yeast, it was possible to produce lactic acid stably for a long period by continuous fermentation.
- Comparative Example 10 Production of lactic acid by batch fermentation using lactic acid-producing higher-order polyploid (nutrient-unnecessary) yeast Same as Comparative Example 1 except that the lactic acid fermentation medium shown in Table 4 was used. Conducted and evaluated under conditions. The results of batch fermentation are shown in Table 7. Fermentation time was short, and lactic acid to sugar yield and lactic acid production rate were inferior to the examples of the present invention.
- Comparative Example 11 Production of lactic acid by batch fermentation using a high-order polyploid yeast (nutritional requirement) having the ability to produce lactic acid Same as Comparative Example 2 except that the SU014 strain prepared in Reference Example 1 was used. Conducted and evaluated under conditions. The results of batch fermentation are shown in Table 7. Fermentation time was short, and lactic acid to sugar yield and lactic acid production rate were inferior to the examples of the present invention.
- Example 13 Production of lactic acid by continuous fermentation using high-order polyploidy (nutrient non-requirement) yeast having the ability to produce lactic acid (No. 9)
- Membrane separation element effective filtration area was expanded to 240 cm 2 , and the same conditions as in Example 1 were used and evaluated except that the lactic acid fermentation medium 2 shown in Table 5 was used.
- the results of a 1400 hour fermentation test are shown in FIGS. According to the method for producing lactic acid of the present invention, it was possible to produce lactic acid stably for a long time by continuous fermentation.
- Example 14 Production of lactic acid by continuous fermentation using a high-order polyploid (nutrient-unnecessary) yeast having the ability to produce lactic acid (No. 10) Membrane separation element effective filtration area was expanded to 240 cm 2 , and the same conditions as in Example 3 were used and evaluated except that the lactic acid fermentation medium 2 shown in Table 5 was used. The results of a 1350 hour fermentation test are shown in FIGS. According to the method for producing lactic acid of the present invention, it was possible to produce lactic acid stably for a long time by continuous fermentation.
- Example 15 Production of lactic acid by continuous fermentation using a higher-order polyploid (nutrient-unnecessary) yeast having the ability to produce lactic acid (Part 11)
- the tests were performed and evaluated under the same conditions as in Example 13 except that the yeast SE001 strain prepared in Reference Example 1 was used.
- the results of a 1350 hour fermentation test are shown in FIGS. According to the method for producing lactic acid of the present invention, it was possible to produce lactic acid stably for a long time by continuous fermentation.
- Example 16 Production of lactic acid by continuous fermentation using a high-order polyploid (nutrient-unnecessary) yeast having the ability to produce lactic acid (No. 12) The test was carried out and evaluated under the same conditions as in Example 14 except that the yeast SE001 strain prepared in Reference Example 1 was used. The results of a 1350 hour fermentation test are shown in FIGS. According to the method for producing lactic acid of the present invention, it was possible to produce lactic acid stably for a long time by continuous fermentation.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
2 分離膜エレメント
3 水頭差制御装置
4 気体供給装置
5 攪拌機
6 レベルセンサ
7 培地供給ポンプ
8 pH調整溶液供給ポンプ
9 pHセンサ・制御装置
10 温度調節器
11 発酵液循環ポンプ
12 膜分離槽
13 支持板
14 流路材
15 分離膜
16 凹部
17 集水パイプ
18 分離膜束
19 上部樹脂封止層
20 下部樹脂封止層
21 支持フレーム
22 集水パイプ
条件
探針:SiNカンチレバー(Digital Instruments(株)製)
走査モード コンタクトモード(気中測定)
水中タッピングモード(水中測定)
走査範囲:10μm、25μm 四方(気中測定)
5μm、10μm 四方(水中測定)
走査解像度:512×512
試料調製:測定に際し膜サンプルは、常温でエタノールに15分浸漬後、RO水中に24時間浸漬し洗浄した後、風乾する。
・チロシン要求性:tyr1
・イソロイシン、バリン要求性:ilv1、ilv2、ilv3、ilv5
・フェニルアラニン要求性:pha2
・グルタミン酸要求性:GLU3
・トレオニン要求性thr1、thr4
・アスパラギン酸要求性:asp1、asp5
・セリン要求性:ser1、ser2
・アルギニン要求性:arg1、arg3、arg4、arg5、arg8、arg9、arg80、arg81、arg82、arg84
・ウラシル要求性:ura1、ura2、ura3、ura4、ura6
・アデニン要求性:ade1、ade2、ade3、ade4、ade5、ade6、ade8、ade9、ade12、ADE15
・リシン要求性:lys1、lys2、lys4、lys5、lys7、lys9、lys11、lys13、lys14
・トリプトファン要求性:trp1、trp2、trp3、trp4、trp5
・ロイシン要求性:leu1、leu2、leu3、leu4、leu5
・ヒスチジン要求性:his1、his2、his3、his4、his5、his6、his7、his8。
サッカロマイセス・セレビセNBRC10505株にアフリカツメガエル由来のL-乳酸脱水素酵素遺伝子(以下、XLDHとも言う。)を導入して得られた乳酸を生産する能力を有する酵母を高次倍数体化することで、乳酸を生産する能力を有する高次倍数体酵母を作成した。さらに、以下で詳しく説明するように、栄養要求性の復帰や、温度感受性変異の性質を付与した。高次倍数体酵母を作成するために用いた酵母と、以下に説明する方法で作成した酵母を表2に示す。以下に、LDHの挿入、温度感受性変異の付与、栄養要求性の復帰方法について詳細な手順を説明する。
XLDH(配列番号1)のクローニングはPCR法により行った。PCRには、アフリカツメガエルの腎臓由来cDNAライブラリー(STRATAGENE社製)より付属のプロトコールに従い調製したファージミドDNAを鋳型とした。
pTRS102を増幅鋳型とし、オリゴヌクレオチド(配列番号4,5)をプライマーセットとしたPCRにより、XLDH及びTDH3ターミネーター配列を含む1.3kbのPCR断片を増幅した。ここで配列番号4は、PDC1遺伝子の開始コドンから上流60bpに相当する配列が付加されるようデザインした。
SED1遺伝子座への導入は、参考例1で作製したpTRS102を増幅鋳型とし、オリゴヌクレオチド(配列番号5,9)をプライマーセットとしたPCRにより、アフリカツメガエル由来のLDH遺伝子及びTDH3ターミネーター配列を含む1.3kbのPCR断片を増幅した。ここで配列番号9は、SED1遺伝子の開始コドンから上流60bpに相当する配列が付加されるようデザインした。
TDH3遺伝子座への導入は、pTRS102のTDH3ターミネーターをADH1ターミネーターに変更したプラスミドを作製した。
温度感受性変異の付与は、特開2008-048726号公報に記載されている、pdc5遺伝子に温度感受性変異を有する酵母SW015株と、温度感受性変異を付与したい酵母とを接合させることによって得た。該2倍体酵母を子嚢形成培地で子嚢形成させ、マイクロマニピュレーターで子嚢を解剖し、それぞれの一倍体細胞を取得し、それぞれ一倍体細胞についての栄養要求性を調べることで、取得した一倍体細胞の中から、PDC1遺伝子、SED1遺伝子、TDH1遺伝子座のいずれかにXLDHが挿入され、かつ、PDC5遺伝子に温度感受性変異を有する(34℃で生育不能)株を選択した。
つづいて、栄養要求性の復帰方法を説明する。
リジン要求性を復帰させる場合には以下の方法を用いた。フナコシ社製のBY4741のゲノムDNA を鋳型とし、オリゴヌクレオチド(配列番号21,22)をプライマーセットとしたPCRにより、LYS2遺伝子の前半約2kbのPCR断片を増幅させた。上記のPCR断片を1%アガロースゲル電気泳動により分離、常法に従い精製後、形質転換操作を行い、LYS2遺伝子のアンバー変異を解除した。リジン非添加培地で培養することにより、リジン合成能が復帰した形質転換株を選択した。
ロイシン要求性を復帰させる場合には、以下の方法を用いた。プラスミドPRS425 を鋳型とし、オリゴヌクレオチド(配列番号23,24)をプライマーセットとしたPCRにより、LEU2遺伝子のPCR断片約2kbを増幅させた。上記のPCR断片を1%アガロースゲル電気泳動により分離、常法に従い精製後、形質転換操作を行い、LEU2遺伝子の変異を解除した。ロイシン非添加培地で培養することにより、ロイシン合成能が復帰した形質転換株を選択した。
アデニン要求性を復帰させる場合には、以下の方法を用いた。プラスミドPRS422 を鋳型とし、オリゴヌクレオチド(配列番号25,26)をプライマーセットとしたPCRにより、ADE2遺伝子のPCR断片約2kbを増幅させた。上記のPCR断片を1%アガロースゲル電気泳動により分離、常法に従い精製後、形質転換操作を行い、LEU2遺伝子の変異を解除した。アデニン非添加培地で培養することにより、アデニンロイシン合成能が復帰した形質転換株を選択した。
ウラシル要求性を復帰させる場合には、以下の方法を用いた。プラスミドpRS426を鋳型とし、オリゴヌクレオチド(配列番号27,28)をプライマーセットとしたPCRにより、URA3遺伝子のPCR断片約2kbを増幅させた。上記のPCR断片を1%アガロースゲル電気泳動により分離、常法に従い精製後、形質転換操作を行い、URA3遺伝子の変異を解除した。ウラシル非添加培地で培養することにより、ウラシル合成能が復帰した形質転換株を選択した。
その1~9の方法を組み合わせて得られた形質転換体を接合させ、栄養要求性のない2倍体原栄養株を得た。さらに2倍体原栄養株を子嚢形成培地で子嚢形成させ、マイクロマニピュレーターで子嚢を解剖し、それぞれの一倍体細胞を取得した。取得した一倍体細胞の栄養要求性を調べ、SD培地(表1)で生育した株について、栄養要求性が復帰したと判断し、1倍体原栄養株とした。
乳酸は、培養液の遠心上清について、以下の条件でHPLC法により乳酸量を測定することで確認した。
移動相:5mM p-トルエンスルホン酸(流速0.8mL/min)
反応液:5mM p-トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
検出方法:電気伝導度
温度:45℃。
移動相 :1mM 硫酸銅水溶液
流速:1.0ml/min
検出方法 :UV254nm
温度:30℃。
光学純度(%)=100×(L-D)/(L+D)
ここで、LはL-乳酸の濃度、DはD-乳酸の濃度を表す。
樹脂としてポリフッ化ビニリデン(PVDF)樹脂を、また溶媒としてN,N-ジメチルアセトアミド(DMAc)をそれぞれ用い、これらを90℃の温度下に十分に攪拌し、下記組成を有する原液を得た。
[原液]
・PVDF:13.0重量%
・DMAc:87.0重量%。
[凝固浴]
・水 :30.0重量%
・DMAc:70.0重量%。
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解し、原液を作製した。この原液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中で固化して中空糸膜を作製した。
参考例1で作製した酵母HI003株を用いて、図1の連続発酵装置と表3に示す組成のSC4培地によって乳酸の製造を行った。培地は、121℃の温度で15分間高圧蒸気滅菌して用いた。分離膜エレメント部材には、ステンレスおよびポリサルホン樹脂の成型品を用いた。分離膜には、上記の参考例3で作製した多孔性膜を用いた。
・発酵反応槽容量:2(L)
・膜分離槽容量:0.5(L)
・使用分離膜:ポリフッ化ビニリデン濾過膜(参考例3)
・膜分離エレメント有効濾過面積:60cm2
・温度調整:32(℃)
・発酵反応槽通気量:0.05(L/min)
・膜分離槽通気量:0.3(L/min)
・発酵反応槽攪拌速度:100(rpm)
・pH調整:8N Ca(OH)2によりpH5に調整
・乳酸発酵培地供給速度:50~300ml/hr.の範囲で可変制御
・発酵液循環装置による循環液量:0.1(L/min)
・膜透過水量制御:膜間差圧による流量制御
(膜間差圧:0.1kPa~20kPa未満で制御)
・分離膜エレメントを含む培養層は121℃、20minのオートクレープにより高圧蒸気滅菌。
参考例1で作製した酵母HI003株を用いて、図2に示す連続発酵装置と表3に示す組成のSC4培地を用い、乳酸の製造を行った。培地は、121℃の温度で15分間高圧蒸気滅菌して用いた。分離膜エレメント部材には、ステンレスおよびポリサルホン樹脂の成型品を用いた。分離膜には上記の参考例3で作製した多孔性分離膜を用いた。
・発酵反応槽容量:2(L)
・使用分離膜:ポリフッ化ビニリデン濾過膜(参考例3)
・膜分離エレメント有効濾過面積:120cm2
・温度調整:32(℃)
・発酵反応槽通気量:0.05(L/min)
・乳酸発酵培地供給速度:50~300ml/hr.の範囲で可変制御
・発酵反応槽攪拌速度:800(rpm)
・pH調整:8N Ca(OH)2によりpH5に調整
・膜透過水量制御:膜間差圧による流量制御
(膜間差圧:0.1kPa~20kPa未満で制御)
・分離膜エレメントを含む培養槽は121℃、20minのオートクレーブにより高圧蒸気滅菌。
分離膜に上記の参考例4で作成した多孔性膜を用いた以外は実施例1と同条件で実施、評価した。750時間の連続発酵試験を行った結果を表6に示す。本発明の乳酸の製造方法により、安定した乳酸の連続発酵による製造が可能であった。
分離膜に上記の参考例4で作成した多孔性分離膜を用いた以外は実施例2と同条件で実施評価した。770時間の発酵試験を行った結果を表6に示す。発明の乳酸の製造方法により安定した、乳酸の連続発酵による製造が可能であった。
菌体を用いた発酵形態として最も典型的な回分発酵を行い、そのL-乳酸生産性を評価した。表3に示すSC4培地を用い、図1の膜分離型の連続発酵装置の発酵反応槽1のみを用いた回分発酵試験を行った。培地は、121℃の温度で15分間高圧蒸気滅菌して用いた。この比較例1でも、菌体として上記の参考例1で作成した酵母HI003株を用い、生産物である乳酸の濃度および培養液中の糖類の定量には、上記の参考例2に示したHPLCを用いた。
・発酵反応槽容量:2(L)
・温度調整:30(℃)
・発酵反応槽通気量:0.05(L/min)
・発酵反応槽攪拌速度:100(rpm)
・pH調整:8N Ca(OH)2によりpH5に調整
・培養槽は121℃、20minのオートクレーブにより高圧蒸気滅菌。
参考例1で作製した酵母HI003-1B株を用いた以外は、実施例1と同条件により評価した。その結果、600時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表6に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母HI003-1B株を用いた以外は、実施例2と同条件で実施評価した。その結果、600時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表6に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母HI003-1B株を用いた以外は、実施例3と同条件で実施評価した。その結果、500時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表6に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母HI003-1B株を用いた以外は、実施例4と同条件で実施評価した。その結果、500時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表6に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例1と同条件で、実施、評価した。その結果、300時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表6に示す。この結果、栄養非要求性酵母もしくは高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例2と同条件で、実施、評価した。その結果、280時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表6に示す。この結果、栄養非要求性酵母もしくは高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例3と同条件で、実施、評価した。その結果、350時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表6に示す。この結果、栄養非要求性酵母もしくは高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例4と同条件で、実施、評価した。その結果、270時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表6に示す。この結果、栄養非要求性酵母もしくは性高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
表4に記載の乳酸発酵培地を用いた以外は実施例1と同条件で実施評価した。800時間の発酵試験を行った結果を表7に示す。SC4培地よりも栄養源の少ない乳酸発酵培地も、本発明の乳酸の製造方法により、安定した乳酸の連続発酵による製造が可能であった。
表4に記載の乳酸発酵培地を用いた以外は実施例2と同条件で実施評価した。800時間の発酵試験を行った結果を表7に示す。SC4培地よりも栄養源の少ない乳酸発酵培地も、本発明の乳酸の製造方法により、安定した乳酸の連続発酵による製造が可能であった。
表4に記載の乳酸発酵培地を用いた以外は実施例3と同条件で実施評価した。800時間の発酵試験を行った結果を表7に示す。SC4培地よりも栄養源の少ない乳酸発酵培地も、本発明の乳酸の製造方法により、安定した乳酸の連続発酵による製造が可能であった。
表4に記載の乳酸発酵培地を用いた以外は実施例4と同条件で実施評価した。800時間の発酵試験を行った結果を表7に示す。SC4培地よりも栄養源の少ない乳酸発酵培地も、本発明の乳酸の製造方法により、安定した乳酸の連続発酵による製造が可能であった。
参考例1で作製した酵母SU014株を用いた以外は実施例5と同条件で実施、評価した。700時間の連続発酵試験を行った結果を表7に示す。栄養非要求性の高次倍数体酵母よりも乳酸対糖収率および乳酸生産速度においてやや劣るものの、長期間安定した乳酸の連続発酵による製造が可能であった。
参考例1で作製した酵母SU014株を用いた以外は実施例6と同条件で実施、評価した。700時間の発酵試験を行った結果を表7に示す。栄養非要求性の高次倍数体酵母よりも乳酸対糖収率および乳酸生産速度においてやや劣るものの、長期間安定した乳酸の連続発酵による製造が可能であった。
参考例1で作製した酵母SU014株を用いた以外は実施例7と同条件で実施、評価した。650時間の連続発酵試験を行った結果を表7に示す。栄養非要求性の高次倍数体酵母よりも乳酸対糖収率および乳酸生産速度においてやや劣るものの、長期間安定した乳酸の連続発酵による製造が可能であった。
参考例1で作製した酵母SU014株を用いた以外は実施例8と同条件で実施、評価した。670時間の発酵試験を行った結果を表7に示す。栄養非要求性の高次倍数体酵母よりも乳酸対糖収率および乳酸生産速度においてやや劣るものの、長期間安定した乳酸の連続発酵による製造が可能であった。
表4に示す乳酸発酵培地を用いた以外は、比較例1と同条件で実施、評価した。回分発酵の結果を表7に示す。発酵時間が短く、乳酸対糖収率、乳酸生産速度が本発明の実施例より劣っていた。
参考例1で作成したSU014株を用いた以外は、比較例2と同条件で実施、評価した。回分発酵の結果を表7に示す。発酵時間が短く、乳酸対糖収率、乳酸生産速度が本発明の実施例より劣っていた。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例5と同条件で、実施、評価した。その結果、300時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表7に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例6と同様に実施、評価した。その結果、280時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表7に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例7と同様に実施、評価した。その結果、1倍体酵母の場合、350時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表7に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例8と同様に実施、評価した。その結果、270時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を表7に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
膜分離エレメント有効濾過面積を240cm2に拡大し、表5に記載の乳酸発酵培地2を用いた以外は、実施例1と同条件で実施、評価した。1400時間の発酵試験を行った結果を図6~8に示す。本発明の乳酸の製造方法により、長期間安定した乳酸の連続発酵による製造が可能であった。
膜分離エレメント有効濾過面積を240cm2に拡大し、表5に記載の乳酸発酵培地2を用いた以外は、実施例3と同条件で実施、評価した。1350時間の発酵試験を行った結果を図6~8に示す。本発明の乳酸の製造方法により、長期間安定した乳酸の連続発酵による製造が可能であった。
参考例1で作製した酵母SE001株を用いた以外は、実施例13と同条件で実施、評価した。1350時間の発酵試験を行った結果を図9~11に示す。本発明の乳酸の製造方法により、長期間安定した乳酸の連続発酵による製造が可能であった。
参考例1で作製した酵母SE001株を用いた以外は、実施例14と同条件で実施、評価した。1350時間の発酵試験を行った結果を図9~11に示す。本発明の乳酸の製造方法により、長期間安定した乳酸の連続発酵による製造が可能であった。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例13と同条件で、実施、評価した。その結果、300時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を図9~11に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SU014-3B株を用いた以外は実施例14と同条件で、実施、評価した。その結果、280時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を図9~11に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SE001-1A株を用いた以外は実施例15と同条件で、実施、評価した。その結果、300時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を図9~11に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
参考例1で作製した酵母SE001-1A株を用いた以外は実施例16と同条件で、実施、評価した。その結果、270時間で膜間差圧が20kPa以上になり培養を終了した。その連続発酵試験結果を図9~11に示す。この結果、高次倍数体酵母を用いた方が長期間安定して乳酸を製造できることが明らかになった。
Claims (10)
- 乳酸を生産する能力を有する高次倍数体酵母の培養液を平均細孔径が0.01μm以上1μm未満の多孔性膜で濾過処理し、濾液から生産物を回収するとともに未濾過液を該培養液に保持または還流し、かつ、発酵原料を該培養液に追加することを特徴とする連続発酵による乳酸の製造方法。
- 多孔性膜の膜間差圧を0.1kPa以上20kPa未満の範囲にして濾過処理することを特徴とする請求項1に記載の乳酸の製造方法。
- 高次倍数体酵母が2倍体であることを特徴とする請求項1または2に記載の乳酸の製造方法。
- 高次倍数体酵母が栄養非要求性であることを特徴とする請求項1~3のいずれかに記載の乳酸の製造方法。
- 連続発酵の乳酸対糖収率が70%以上であることを特徴とする請求項1~4のいずれかに記載の乳酸の製造方法。
- 連続発酵の培養液中の乳酸蓄積濃度が40g/L以上であることを特徴とする請求項1~5のいずれかに記載の乳酸の製造方法。
- 連続発酵の乳酸生産速度が7.5g/L以上であることを特徴とする請求項1~6のいずれかに記載の乳酸の製造方法。
- 連続発酵を400時間以上継続させることを特徴とする請求項5~7のいずれかに記載の乳酸の製造方法。
- 高次倍数体酵母がサッカロミセス(Saccharomyces)属に属することを特徴とする、請求項1~8のいずれかに記載の乳酸の製造方法。
- 高次倍数体酵母がサッカロミセス・セレビセ(Saccharomyces cerevisiae)であることを特徴とする請求項1~9のいずれかに記載の乳酸の製造方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09708832.2A EP2311969B1 (en) | 2008-02-04 | 2009-02-03 | Method of producing lactic acid by continuous fermentation |
ES09708832T ES2407639T3 (es) | 2008-02-04 | 2009-02-03 | Procedimiento de producción de ácido láctico por fermentación continua |
US12/865,934 US8551745B2 (en) | 2008-02-04 | 2009-02-03 | Method of producing lactic acid by continuous fermentation |
KR1020107016812A KR101483470B1 (ko) | 2008-02-04 | 2009-02-03 | 연속 발효에 의한 유산의 제조방법 |
CA2713564A CA2713564A1 (en) | 2008-02-04 | 2009-02-03 | Method of producing lactic acid by continuous fermentation |
AU2009211772A AU2009211772A1 (en) | 2008-02-04 | 2009-02-03 | Method of producing lactic acid by continuous fermentation |
JP2009508037A JP5992135B2 (ja) | 2008-02-04 | 2009-02-03 | 連続発酵による乳酸の製造方法 |
CN200980104086.XA CN101939439B (zh) | 2008-02-04 | 2009-02-03 | 通过连续发酵实施的乳酸的制造方法 |
BRPI0905928-8A BRPI0905928A2 (pt) | 2008-02-04 | 2009-02-03 | "método de produção de ácido lático" |
US14/027,754 US20140017746A1 (en) | 2008-02-04 | 2013-09-16 | Method of producing lactic acid by continuous fermentation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-023917 | 2008-02-04 | ||
JP2008023917 | 2008-02-04 | ||
JP2008034462 | 2008-02-15 | ||
JP2008-034462 | 2008-02-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/027,754 Continuation US20140017746A1 (en) | 2008-02-04 | 2013-09-16 | Method of producing lactic acid by continuous fermentation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009099044A1 true WO2009099044A1 (ja) | 2009-08-13 |
Family
ID=40952119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/051750 WO2009099044A1 (ja) | 2008-02-04 | 2009-02-03 | 連続発酵による乳酸の製造方法 |
Country Status (10)
Country | Link |
---|---|
US (2) | US8551745B2 (ja) |
EP (1) | EP2311969B1 (ja) |
JP (1) | JP5992135B2 (ja) |
KR (1) | KR101483470B1 (ja) |
CN (1) | CN101939439B (ja) |
AU (1) | AU2009211772A1 (ja) |
BR (1) | BRPI0905928A2 (ja) |
CA (1) | CA2713564A1 (ja) |
ES (1) | ES2407639T3 (ja) |
WO (1) | WO2009099044A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011093241A1 (ja) * | 2010-01-28 | 2011-08-04 | 東レ株式会社 | 連続発酵による化学品の製造方法 |
WO2012081533A1 (ja) | 2010-12-13 | 2012-06-21 | 東レ株式会社 | 乳酸塩の製造方法 |
WO2013015212A1 (ja) | 2011-07-22 | 2013-01-31 | 東レ株式会社 | 有機酸の製造方法 |
US8673600B2 (en) | 2012-04-05 | 2014-03-18 | Hyundai Motor Company | Method and apparatus for producing lactic acid |
US9217165B2 (en) | 2011-04-28 | 2015-12-22 | Toray Industries, Inc. | Mutant strain of lactic acid producing yeast and process for producing lactic acid |
JP2019536445A (ja) * | 2016-11-01 | 2019-12-19 | ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド | D−乳酸またはその塩を生産するための発酵プロセス |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011131674A1 (en) | 2010-04-21 | 2011-10-27 | Dsm Ip Assets B.V. | Process for the production of cells which are capable of converting arabinose |
EP2627765B1 (en) | 2010-10-13 | 2017-05-10 | DSM IP Assets B.V. | Pentose and glucose fermenting yeast cell |
US20140141473A1 (en) | 2011-04-22 | 2014-05-22 | Dsm Ip Assets B.V. | Yeast cell capable of converting sugars including arabinose and xlose |
CN112195145A (zh) | 2012-10-16 | 2021-01-08 | 帝斯曼知识产权资产管理有限公司 | 具有改善的戊糖转化的细胞 |
IN2015DN03292A (ja) | 2012-11-07 | 2015-10-09 | Dsm Ip Assets Bv | |
CN103834696B (zh) * | 2013-10-23 | 2016-05-11 | 中国科学院过程工程研究所 | 一种发酵与膜分离耦合实现连续批次发酵木质纤维素水解液生产乳酸的方法 |
CN103923823A (zh) * | 2013-11-06 | 2014-07-16 | 领绿生物镇江有限公司 | 一种高密度发酵嗜酸乳杆菌的发酵装置 |
KR102277898B1 (ko) | 2014-07-03 | 2021-07-15 | 삼성전자주식회사 | 산물 생산능이 향상된 효모 및 그를 이용한 산물을 생산하는 방법 |
WO2016012429A1 (en) | 2014-07-24 | 2016-01-28 | Dsm Ip Assets B.V. | Yeast cell with improved pentose transport |
KR20160046615A (ko) | 2014-10-21 | 2016-04-29 | 삼성전자주식회사 | 폴리우레탄 엘라스토머, 이를 포함하는 열가소성 수지 조성물, 열가소성 수지조성물로 이루어진 성형품 및 폴리우레탄 엘라스토머 제조방법 |
KR101943622B1 (ko) * | 2016-12-02 | 2019-01-30 | 주식회사 락토메이슨 | 막 필터를 이용한 유산균 크기의 조절방법 |
CN108887438A (zh) * | 2018-07-17 | 2018-11-27 | 江西韩金实业有限公司 | 益生菌柚子百香果茶及其制备方法 |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62138184A (ja) | 1985-12-12 | 1987-06-20 | Takeshi Kobayashi | 連続型微生物培養装置 |
JPH0595778A (ja) | 1991-10-07 | 1993-04-20 | Agency Of Ind Science & Technol | 撹拌機を装備した多孔質分離膜一体型培養器 |
JPH10174594A (ja) | 1996-12-17 | 1998-06-30 | Ngk Insulators Ltd | 微生物によるグリコール酸の生産方法 |
JP2000139326A (ja) | 1994-03-16 | 2000-05-23 | Soc Prod Nestle Sa | パン生地の製造方法 |
JP2001204464A (ja) | 2000-01-27 | 2001-07-31 | Toyota Motor Corp | 乳酸の製造方法 |
JP2002027974A (ja) | 2000-07-13 | 2002-01-29 | Ajinomoto Co Inc | パン酵母及びこれを用いたパンの製造法 |
WO2002064240A1 (fr) | 2001-02-16 | 2002-08-22 | Toray Industries, Inc. | Film de separation, element de film de separation, module de film de separation, dispositif de traitement d'eaux usees et residuaires, et procede de fabrication de film de separation |
JP2002253212A (ja) | 2001-03-02 | 2002-09-10 | Yamaguchi Technology Licensing Organization Ltd | 有用酵母の栄養要求性変異株とその育種方法 |
JP2003259878A (ja) * | 2002-03-11 | 2003-09-16 | Toyota Central Res & Dev Lab Inc | 乳酸脱水素酵素をコードするdnaおよびその利用 |
US20050112737A1 (en) | 2003-11-20 | 2005-05-26 | A. E. Staley Manufacturing Co. | Lactic acid producing yeast |
JP2005333886A (ja) | 2004-05-27 | 2005-12-08 | Showa Denko Kk | 微生物によるコハク酸の製造方法 |
JP2006006271A (ja) | 2004-06-29 | 2006-01-12 | Toyota Central Res & Dev Lab Inc | 乳酸生産酵母および乳酸生産方法 |
JP2006020602A (ja) | 2004-07-09 | 2006-01-26 | Toyota Central Res & Dev Lab Inc | 乳酸生産方法 |
JP2006075133A (ja) * | 2004-09-13 | 2006-03-23 | Toyota Motor Corp | 乳酸の製造方法 |
JP2007089466A (ja) | 2005-09-28 | 2007-04-12 | Toyota Motor Corp | 乳酸の製造方法 |
WO2007043253A1 (ja) * | 2005-10-14 | 2007-04-19 | Toray Industries, Inc. | 酵母及びl-乳酸の製造方法 |
WO2007097260A1 (ja) * | 2006-02-24 | 2007-08-30 | Toray Industries, Inc. | 化学品の製造方法、および、連続発酵装置 |
JP2007252367A (ja) | 2006-02-24 | 2007-10-04 | Toray Ind Inc | 連続発酵による化学品の製造方法および連続発酵装置 |
JP2008029329A (ja) | 2006-06-28 | 2008-02-14 | Toray Ind Inc | 酵母及びl−乳酸の製造方法 |
JP2008035727A (ja) * | 2006-08-02 | 2008-02-21 | Toyota Motor Corp | 出芽酵母の乳酸耐性又は生産性を向上させる多重遺伝子破壊の組み合わせ |
JP2008048726A (ja) | 2006-07-24 | 2008-03-06 | Toray Ind Inc | 変異型ピルビン酸脱炭酸酵素5遺伝子を有する酵母及び乳酸の製造方法 |
WO2009004922A1 (ja) | 2007-06-29 | 2009-01-08 | Toray Industries, Inc. | 乳酸の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58155083A (ja) * | 1982-03-09 | 1983-09-14 | Oriental Yeast Co Ltd | 酵母融合株 |
US5503750A (en) * | 1993-10-04 | 1996-04-02 | Russo, Jr.; Lawrence J. | Membrane-based process for the recovery of lactic acid by fermentation of carbohydrate substrates containing sugars |
JPH07246087A (ja) * | 1994-03-09 | 1995-09-26 | Kanegafuchi Chem Ind Co Ltd | 低温感受性酵母および該酵母を用いるパン生地 |
JP3821507B2 (ja) * | 1996-02-16 | 2006-09-13 | 協和発酵フーズ株式会社 | パン酵母 |
IT1294728B1 (it) * | 1997-09-12 | 1999-04-12 | Biopolo S C A R L | Ceppi di lievito per la riproduzione di acido lattico |
US6268189B1 (en) * | 2000-03-24 | 2001-07-31 | The United States Of America As Represented By The Secretary Of Agriculture | Fungal lactate dehydrogenase gene and constructs for the expression thereof |
BR0311453A (pt) * | 2002-05-30 | 2005-03-29 | Cargill Dow Llc | Métodos e materiais para produção de ácido d-láctico em levedura |
JP2008017837A (ja) * | 2006-06-12 | 2008-01-31 | Toray Ind Inc | ピルビン酸の製造方法 |
JP5092487B2 (ja) * | 2007-03-27 | 2012-12-05 | 東レ株式会社 | 連続発酵による化学品の製造法 |
AU2008332348B2 (en) * | 2007-12-07 | 2014-06-26 | Toray Industries, Inc. | Expression cassette for lactase dehydrogenase, transformed yeast and method of producing lactic acid |
EP3147275B1 (en) * | 2008-12-26 | 2019-10-23 | Toray Industries, Inc. | Method for producing lactic acid and method for producing polylactic acid |
-
2009
- 2009-02-03 EP EP09708832.2A patent/EP2311969B1/en not_active Not-in-force
- 2009-02-03 WO PCT/JP2009/051750 patent/WO2009099044A1/ja active Application Filing
- 2009-02-03 CN CN200980104086.XA patent/CN101939439B/zh not_active Expired - Fee Related
- 2009-02-03 AU AU2009211772A patent/AU2009211772A1/en not_active Abandoned
- 2009-02-03 US US12/865,934 patent/US8551745B2/en not_active Expired - Fee Related
- 2009-02-03 KR KR1020107016812A patent/KR101483470B1/ko not_active Expired - Fee Related
- 2009-02-03 JP JP2009508037A patent/JP5992135B2/ja not_active Expired - Fee Related
- 2009-02-03 CA CA2713564A patent/CA2713564A1/en not_active Abandoned
- 2009-02-03 ES ES09708832T patent/ES2407639T3/es active Active
- 2009-02-03 BR BRPI0905928-8A patent/BRPI0905928A2/pt not_active IP Right Cessation
-
2013
- 2013-09-16 US US14/027,754 patent/US20140017746A1/en not_active Abandoned
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62138184A (ja) | 1985-12-12 | 1987-06-20 | Takeshi Kobayashi | 連続型微生物培養装置 |
JPH0595778A (ja) | 1991-10-07 | 1993-04-20 | Agency Of Ind Science & Technol | 撹拌機を装備した多孔質分離膜一体型培養器 |
JP2000139326A (ja) | 1994-03-16 | 2000-05-23 | Soc Prod Nestle Sa | パン生地の製造方法 |
JPH10174594A (ja) | 1996-12-17 | 1998-06-30 | Ngk Insulators Ltd | 微生物によるグリコール酸の生産方法 |
JP2001204464A (ja) | 2000-01-27 | 2001-07-31 | Toyota Motor Corp | 乳酸の製造方法 |
JP2002027974A (ja) | 2000-07-13 | 2002-01-29 | Ajinomoto Co Inc | パン酵母及びこれを用いたパンの製造法 |
WO2002064240A1 (fr) | 2001-02-16 | 2002-08-22 | Toray Industries, Inc. | Film de separation, element de film de separation, module de film de separation, dispositif de traitement d'eaux usees et residuaires, et procede de fabrication de film de separation |
JP2002253212A (ja) | 2001-03-02 | 2002-09-10 | Yamaguchi Technology Licensing Organization Ltd | 有用酵母の栄養要求性変異株とその育種方法 |
JP2003259878A (ja) * | 2002-03-11 | 2003-09-16 | Toyota Central Res & Dev Lab Inc | 乳酸脱水素酵素をコードするdnaおよびその利用 |
US20050112737A1 (en) | 2003-11-20 | 2005-05-26 | A. E. Staley Manufacturing Co. | Lactic acid producing yeast |
JP2005333886A (ja) | 2004-05-27 | 2005-12-08 | Showa Denko Kk | 微生物によるコハク酸の製造方法 |
JP2006006271A (ja) | 2004-06-29 | 2006-01-12 | Toyota Central Res & Dev Lab Inc | 乳酸生産酵母および乳酸生産方法 |
JP2006020602A (ja) | 2004-07-09 | 2006-01-26 | Toyota Central Res & Dev Lab Inc | 乳酸生産方法 |
JP2006075133A (ja) * | 2004-09-13 | 2006-03-23 | Toyota Motor Corp | 乳酸の製造方法 |
JP2007089466A (ja) | 2005-09-28 | 2007-04-12 | Toyota Motor Corp | 乳酸の製造方法 |
WO2007043253A1 (ja) * | 2005-10-14 | 2007-04-19 | Toray Industries, Inc. | 酵母及びl-乳酸の製造方法 |
WO2007097260A1 (ja) * | 2006-02-24 | 2007-08-30 | Toray Industries, Inc. | 化学品の製造方法、および、連続発酵装置 |
JP2007252367A (ja) | 2006-02-24 | 2007-10-04 | Toray Ind Inc | 連続発酵による化学品の製造方法および連続発酵装置 |
JP2008029329A (ja) | 2006-06-28 | 2008-02-14 | Toray Ind Inc | 酵母及びl−乳酸の製造方法 |
JP2008048726A (ja) | 2006-07-24 | 2008-03-06 | Toray Ind Inc | 変異型ピルビン酸脱炭酸酵素5遺伝子を有する酵母及び乳酸の製造方法 |
JP2008035727A (ja) * | 2006-08-02 | 2008-02-21 | Toyota Motor Corp | 出芽酵母の乳酸耐性又は生産性を向上させる多重遺伝子破壊の組み合わせ |
WO2009004922A1 (ja) | 2007-06-29 | 2009-01-08 | Toray Industries, Inc. | 乳酸の製造方法 |
Non-Patent Citations (6)
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011093241A1 (ja) * | 2010-01-28 | 2011-08-04 | 東レ株式会社 | 連続発酵による化学品の製造方法 |
WO2012081533A1 (ja) | 2010-12-13 | 2012-06-21 | 東レ株式会社 | 乳酸塩の製造方法 |
US9217165B2 (en) | 2011-04-28 | 2015-12-22 | Toray Industries, Inc. | Mutant strain of lactic acid producing yeast and process for producing lactic acid |
WO2013015212A1 (ja) | 2011-07-22 | 2013-01-31 | 東レ株式会社 | 有機酸の製造方法 |
US8673600B2 (en) | 2012-04-05 | 2014-03-18 | Hyundai Motor Company | Method and apparatus for producing lactic acid |
JP2019536445A (ja) * | 2016-11-01 | 2019-12-19 | ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド | D−乳酸またはその塩を生産するための発酵プロセス |
Also Published As
Publication number | Publication date |
---|---|
EP2311969A4 (en) | 2012-03-14 |
US20110053231A1 (en) | 2011-03-03 |
BRPI0905928A2 (pt) | 2015-08-04 |
CN101939439A (zh) | 2011-01-05 |
CN101939439B (zh) | 2014-08-06 |
KR101483470B1 (ko) | 2015-01-16 |
JPWO2009099044A1 (ja) | 2011-05-26 |
AU2009211772A1 (en) | 2009-08-13 |
CA2713564A1 (en) | 2009-08-13 |
US20140017746A1 (en) | 2014-01-16 |
EP2311969A1 (en) | 2011-04-20 |
US8551745B2 (en) | 2013-10-08 |
KR20100110345A (ko) | 2010-10-12 |
JP5992135B2 (ja) | 2016-09-14 |
ES2407639T3 (es) | 2013-06-13 |
EP2311969B1 (en) | 2013-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5992135B2 (ja) | 連続発酵による乳酸の製造方法 | |
JP5082496B2 (ja) | 連続発酵による化学品の製造方法および連続発酵装置 | |
JP5532919B2 (ja) | 乳酸脱水素酵素発現カセット、形質転換酵母および乳酸の製造方法 | |
JP5092487B2 (ja) | 連続発酵による化学品の製造法 | |
JP2008237213A (ja) | 連続発酵装置 | |
JP5141126B2 (ja) | 連続発酵によるd−乳酸の製造方法 | |
JP5329055B2 (ja) | 変異型ピルビン酸脱炭酸酵素5遺伝子を有する酵母及び乳酸の製造方法 | |
JP5358911B2 (ja) | 連続発酵による化学品の製造方法 | |
JP5659466B2 (ja) | 連続培養による化学品の製造方法および製造装置 | |
JP5287029B2 (ja) | 連続発酵による化学品の製造方法 | |
JP5223520B2 (ja) | 連続発酵による化学品の製造方法 | |
JP2008245537A (ja) | 連続発酵による化学品の製造方法 | |
JP2008048721A (ja) | 連続発酵装置 | |
JP2009142210A (ja) | 連続発酵による乳酸の製造方法 | |
JP5130826B2 (ja) | 連続発酵による乳酸の製造方法 | |
JP2008131931A (ja) | 連続発酵による乳酸の製造方法 | |
JP5593594B2 (ja) | 連続培養による化学品の製造方法 | |
JP2009171879A (ja) | 乳酸の製造方法 | |
JP5660167B2 (ja) | 変異型ピルビン酸脱炭酸酵素5遺伝子を有する酵母及び乳酸の製造方法 | |
JP2009296921A (ja) | 連続培養装置および化学品の製造方法 | |
JP2008278884A (ja) | 化学品の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980104086.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009508037 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09708832 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009211772 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 20107016812 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2713564 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12865934 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2009211772 Country of ref document: AU Date of ref document: 20090203 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009708832 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0905928 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100804 |