[go: up one dir, main page]

WO2008062650A1 - Feuillet d'acier inoxydable traité en surface présentant une excellente résistance aux dommages dus au sel / à la corrosion et une excellente fiabilité de soudure destinée à un réservoir de carburant d'automobile et à une conduite de carburant d'automobile, et conduite soudée - Google Patents

Feuillet d'acier inoxydable traité en surface présentant une excellente résistance aux dommages dus au sel / à la corrosion et une excellente fiabilité de soudure destinée à un réservoir de carburant d'automobile et à une conduite de carburant d'automobile, et conduite soudée Download PDF

Info

Publication number
WO2008062650A1
WO2008062650A1 PCT/JP2007/071359 JP2007071359W WO2008062650A1 WO 2008062650 A1 WO2008062650 A1 WO 2008062650A1 JP 2007071359 W JP2007071359 W JP 2007071359W WO 2008062650 A1 WO2008062650 A1 WO 2008062650A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
pipe
corrosion resistance
less
steel plate
Prior art date
Application number
PCT/JP2007/071359
Other languages
English (en)
French (fr)
Inventor
Shunji Sakamoto
Yasuto Gotoh
Masao Kurosaki
Toshinori Mizuguchi
Naoto Ono
Original Assignee
Nippon Steel & Sumikin Stainless Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39429588&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008062650(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel & Sumikin Stainless Steel Corporation filed Critical Nippon Steel & Sumikin Stainless Steel Corporation
Priority to BRPI0708438A priority Critical patent/BRPI0708438B1/pt
Priority to CN2007800073710A priority patent/CN101395293B/zh
Priority to US12/224,455 priority patent/US20090053551A1/en
Priority to CA2636327A priority patent/CA2636327C/en
Priority to KR1020087021326A priority patent/KR101165792B1/ko
Publication of WO2008062650A1 publication Critical patent/WO2008062650A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1241Nonplanar uniform thickness or nonlinear uniform diameter [e.g., L-shape]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a surface-treated stainless steel plate for automobile fuel tanks excellent in corrosion resistance and welded part reliability in a salt damage environment, and a surface-treated stainless steel welded pipe for automobile oil supply pipes excellent in tube expansion workability.
  • fuel permeation is also possible in fuel system parts such as fuel tanks and fuel pipes (referred to as fuel pipes called fuel inlet pipes and fuel pipes called fuel lines). Preventive properties, longer service life and characteristics are required.
  • stainless steel has the advantage of being easily recycled as an iron-based material and having sufficient corrosion resistance against biofuel, and has already been put into practical use as a material for fuel pipes.
  • stainless steel alone is not a fuel tank or fuel. It is evaluated that the corrosion resistance in a salt damage environment is not necessarily sufficient for application to pipes.
  • ferrite stainless steel such as SUS 4 3 6 L causes crevice corrosion in the gap structure or welded structure, and SUS 3 0 Austenitic stainless steels such as 4 L have the problem that stress corrosion cracking occurs in welds.
  • Cathode electrodeposition coating was applied to the surface of a fuel tank made of stainless steel plate, or zinc coating was applied only to the weld.
  • cationic electrodeposition coating is a method of electrodeposition by immersing an object to be coated in a coating solution, and is a technique that is actually applied to the oil supply pipe, but apart from small items such as the oil supply pipe.
  • a sufficient anticorrosive effect cannot always be obtained for a gap having a shape with a small gap opening and a large depth.
  • this type of Zn-containing coating contains a large amount of Zn and relatively few resin components. I hate being inferior in film adhesion compared to general paints.
  • blisters may be generated in the coating film, and in extreme cases, the coating film may peel off.
  • the coating film In order to improve the adhesion of the coating film, it becomes a means to reduce the Zn content, but if this is done, there is a problem that the originally intended power sword anticorrosion effect is greatly impaired. .
  • the stainless steel plate with aluminum has no problem with the stainless steel itself as a base material, but there is a problem that the aluminum of the plating layer is easily corroded by the alcohol-containing fuel which is now widely used.
  • the corrosion products of aluminum cause fatal troubles such as clogging of fuel supply system parts such as filters and spraying devices.
  • aluminum plating is usually formed by the fusion bonding method, and since it is processed at a relatively high temperature, a fragile alloy layer is formed at the time of fusion bonding and is molded into a fuel tank or fuel pipe. At this stage, there is also a problem that tack layer delamination and press cracking occur starting from the fracture of the alloy layer. Such techniques that do not depend on A 1 or Zn are also disclosed.
  • Ni is added to a steel sheet containing Cr: more than 3% to 20%, acid-soluble A 1: 0, 0 0,05 to 0.10%.
  • Corrosion resistance to alcohol is improved by forming a Sn or Sn—Zn alloy plating layer through a diffusion coating layer of Co, Ni—Co alloy.
  • a Sn or Sn-Zn alloy is used as the adhesive layer on a steel plate with a high Cr content, cracks may occur in the weld.
  • SUS 4 3 6 L (17% C r-1.2% M O) is applied, and it is mounted on the actual vehicle with cation electrodeposition coating applied, but the increase in material cost due to the recent rise in Mo has been pointed out, and it does not contain expensive Mo or There is a demand for a material that can suppress the Mo content to a low level and that can provide corrosion resistance equivalent to that of SUS 4 3 6 L. Disclosure of the invention
  • An object of the present invention is to provide a stainless steel plate material for automobile fuel tanks and automobile fuel pipes having excellent corrosion resistance in a salt damage environment and a surface-treated stainless steel welded pipe for automobile fuel pipes.
  • the present inventors have conducted extensive salt damage corrosion tests on various stainless steel materials.
  • a sacrificial anode can be used to overcome the problems of crevice corrosion, stress corrosion cracking, and local corrosion in gap structures formed by fastening or welding of accessory parts or heat-affected zones by welding or welding. It came to the conclusion that power sword anticorrosion using was indispensable.
  • Zn, A 1, and Mg are known as sacrificial anode materials that have a cathodic protection effect in a salt damage environment.
  • the mass of the sacrificial anode material should be increased. Finding the consumption rate of the sacrificial anode material in a test that assumes the most severe salt damage environment 1 If a sufficient amount of the sacrificial anode is attached to the fuel tank or fuel pipe so that it cannot be consumed for 5 years Good. However, if Zn, which is already known from this concept, is used, it is necessary to secure a thick film of more than 100 m if zinc rich coating is taken as an example. In the case of sticking, it is necessary to have a thickness exceeding 50 m. Such a condition cannot be the basis for selecting Zn as a practical sacrificial anode material.
  • Mg needs to be at least as much as Zn and cannot be applied in forms such as plating or painting, making it more difficult to use than Zn.
  • A1 the consumption rate is lower than that of Zn and Mg.
  • a 1 plating can be expected to have a sufficient salt damage corrosion prevention effect even when the plating thickness is 10 m or less.
  • the problems of processability and corrosion caused by alcohol fuel as described above it is unsuitable for practical use, and the latter problem is particularly fatal.
  • a sacrificial anode material other than the conventionally known Zn, Mg, and A1.
  • the material must have a sufficiently long wear life and be more electrochemically active than the stainless steel substrate in a salt damage environment.
  • the most suitable sacrificial anode material that can satisfy these conditions is Sn or a metal mainly containing Sn and containing a small amount and an appropriate amount of Zn. It was.
  • Sn the main component of the sacrificial anode
  • a melting squeeze method capable of sufficiently securing the amount of adhesion required for long-term prevention was industrially established, and it was evaluated as a great advantage for improving practicality.
  • Ni plating or F e — Ni plating which is preferably used as a pretreatment when melting staking to stainless steel, is also more effective than stainless steel substrate in salt damage environments. It was found that it is electrochemically active and has sufficient corrosion resistance even in the environment of degraded gasoline or biofuel containing organic acids. This was evaluated as being able to guarantee that the corrosion resistance does not deteriorate suddenly due to the exposure of Ni or Fe-Ni after the consumption of Sn. These will be explained more specifically.
  • the present inventors have conducted a combined cycle corrosion test that simulates an actual salt damage environment (salt spray: 5% NaC1 spray 35 ° CX 2Hr, dry: relative humidity 20%, 60 ° CX 4 Hr, wetting: 90% relative humidity, 50 ° CX2Hr repeated), it was clarified that the most corroded stage of metallic materials is the drying process or the drying process after drying.
  • the environmental conditions to which the metal material surface is exposed in such a process are that the chloride concentration reaches saturation and the temperature is also high. Based on this, the corrosion potential of various metal materials in a saturated NaC1 solution at 50 ° C was measured.
  • Figure 1 shows an example of the results.
  • the corrosion potential of 17% Cr stainless steel is 0 to +0. IVV s. SCE.
  • S n is about 0.55 V vs. SCE, which is lower than stainless steel. This means that when stainless steel and Sn are brought into contact, Sn acts as a sacrificial anode and the stainless steel is protected from corrosion.
  • Z n has a corrosion potential of about 1.0 V vs. SCE. The potential is sufficiently lower than that of stainless steel.
  • the Sn-8Zn alloy containing 8% of 2] in 311 shows a potential equivalent to that of Zn of about 1, 0 V vs. SCE at the beginning of the test, but ⁇ ⁇ is consumed. Along with this, it approaches the corrosion potential of S ⁇ .
  • a 1 also has a corrosion potential of about 0.8 V vs. SCE, which is sufficiently lower than stainless steel.
  • N i also shows a value of about 0.2 V vs. SCE, which is lower than the potential of stainless steel. From these, it can be said that all of Sn, Zn, Sn-8Zn, A1, and Ni are chemically active from 17 Cr stainless steel, and can exhibit sacrificial anticorrosive action. it is obvious.
  • the corrosion potential is about 0.7 V vs. SCE.
  • the present inventors measured the corrosion rate of various metal materials in a state where a stainless steel and a battery were formed in a saturated Na C 1 solution at 50 ° C. An example of the results is shown in Figure 2.
  • the corrosion rate of Sn is very low and similar to A 1.
  • Zn is severely corroded in a salt damage environment.
  • the present inventors have taken combined cycle test data of various metal plates and obtained the corrosion wear life and the corrosion rate data by the combined cycle test. 1 Using the correlation, it is judged that 15-year protection is achievable. 1 Tolerance in the test required to not be exhausted in the 80-day combined cycle corrosion test The corrosion rate was set as 0.1 2 / hr. The corrosion rate of Sn was about one-third of this value, and sufficiently satisfactory corrosion resistance was obtained.
  • a 1 has almost the same corrosion rate as Sn, and it can be said that it is useful as a sacrificial anode material if it is limited to the salt damage corrosion problem, but the corrosion resistance against alcohol fuel on the inner surface of the fuel tank or fuel pipe This is not practical because of insufficient.
  • a 1 is severely corroded in ethanol, and Zn has a problem of corrosion in an organic acid-containing environment.
  • Sn has a low corrosion rate not only in the ethanol environment but also in the deteriorated gasoline environment, and satisfactory corrosion resistance can be obtained.
  • the content of ⁇ ⁇ increases in the Sn-Zn alloy, corrosion of ⁇ ⁇ in the alloy becomes a problem.
  • the content is less than 10%, the corrosion resistance of almost the same level as Sn can be obtained. It is done.
  • the corrosion rate to avoid clogging problems in the fuel supply system such as filters and injection parts must be as low as possible, but the allowable value is the conventionally used turn metal (P b — Degraded gasoline (non-alcohol) environment of S n alloy) 50 ° C aqueous solution containing 0.0 1% formic acid and 0.0 1% acetic acid 0.01% NaCl
  • the upper limit was set as 1 O mg Zn ⁇ / ti r based on the corrosion rate in the medium.
  • Stainless steel itself does not corrode in this environment.
  • this crack is caused by the grain boundary of the base material in which Sn or Sn—Zn alloy liquefied by heat input during welding or brazing is coarsened due to thermal effects.
  • This is a so-called liquid metal embrittlement that breaks open from the surface of the base heat-affected zone under the condition of tensile residual stress applied as the temperature drops while entering the surface and lowering the grain boundary strength. I understood it.
  • Sn and Sn-Zn alloys are low melting point metals, but liquid metal embrittlement has been considered to have different sensitivities depending on the combination of materials and liquid metal species.
  • the Y value calculated from the main alloy elements is a predetermined value, if the contents of P and S, which are impurity elements, are high, the susceptibility to liquid metal embrittlement cracking has not been eliminated. Absent. That is, as shown in FIG. 6, cracking was observed when the P content exceeded 0.050% or when the S content exceeded 0.010%. These elements are presumed to have the effect of reducing the grain boundary strength. Therefore, welding starts without causing liquid metal embrittlement even when Sn-based plating is applied, starting with the Y value satisfying the prescribed conditions and specifying the P and S contents below the allowable limit level. It can be a material for fuel tanks or fuel pipes that satisfy the reliability of parts.
  • press workability is a characteristic that should be emphasized in the processing process for fuel tanks. Including these press formability
  • the cold workability is governed by the material properties of the material itself and the sliding resistance of the material surface. Since Sn is a soft metal, the sliding resistance on the surface of the Sn-based plating layer is sufficiently small. For this reason, there is an advantage that the cold workability that the stainless steel base material should have is relaxed compared to the stainless steel plate that is not plated. Based on this, we set the material properties necessary for the base material on the premise of the presence of an Sn-based plating layer.
  • the present invention is configured based on the above findings, and the gist thereof is as follows.
  • C ⁇ 0. 0 30%
  • S i ⁇ 2. 0 0%
  • M n ⁇ 2. 0 0%
  • S ⁇ 0 0 1 0 0%
  • N ⁇ 0.0 3 0%
  • a 1 0. 0 1 0 to 0. 1 0 0%
  • C r 1 0. 0 0 to 2 5.
  • N i 0, 1 0 to 4.0 0%
  • Cu 0. 1 0 to 2.0 0%
  • Mo 0. 1 0 to 2.0 0%
  • V 0, 1 0-1.
  • a surface-treated stainless steel plate for automobile fuel tanks and automobile fuel pipes which has an anticorrosive slag layer of 0 0 g / m 2 or less and has excellent corrosion resistance in a salt damage environment and welded part reliability.
  • An automobile fuel tank with excellent corrosion resistance and salt weld reliability in a salt damage environment characterized in that the adhesion layer is formed by the melt adhesion method with an adhesion amount of 10 gZm 2 or more and 200 g Zm 2 or less.
  • Surface treated stainless steel plate for automotive fuel pipes (5) In mass%, C: ⁇ 0. 0 1 0 0%, S i: ⁇ 0.6. 60%, M n: ⁇ 0.6. 60%, P ⁇ 0. 0 4 0%, S: ⁇ 0. 0 0 5 0%, N
  • a surface-treated stainless steel plate for automobile fuel tanks and automobile fuel pipes which has an anticorrosive layer with a corrosion resistance of 0 g Zm 2 or less and is excellent in corrosion resistance in salt damage environments and reliability of welds.
  • B 0.000 2 to 0.0 0 20% by mass% Furthermore, it is a surface-treated stainless steel plate for automobile fuel tanks and automobile fuel pipes that has excellent corrosion resistance and welded part reliability in a salt damage environment.
  • the Y value defined by the above equation (1) is less than 10.4, it has a single-phase metallic structure, the average r value is 1.4 or more, and the total elongation
  • the surfaces of the stainless steel substrate having more than 3 0% consist S n and unavoidable impurities, the amount of adhesion have a 1 0 g / m 2 or more 2 0 0 gZm anticorrosion plated layer of 2 or less
  • Z n 0. 8 ⁇ 1 0.
  • Figure 1 shows the results in a 50 ° C NaC1 saturated aqueous solution that simulates a salt damage environment. It shows the results of measuring the corrosion potential of various metal materials.
  • Figure 2 shows the results of conversion of the galvanic coupling current flowing between various metallic materials and stainless steel in a saturated aqueous solution of NaC1 at 50 ° C simulating a salt damage environment into a corrosion rate. .
  • Fig. 3 shows the result of the corrosion amount of Sn or Sn-Zn alloy specimens obtained by the combined cycle corrosion test, showing the effect of the Zn content in the plated metal on the corrosion resistance. .
  • Figure 4 (a) shows the results of the corrosion rates of various metallic materials in the deteriorated gasoline environment inside the fuel tank or fuel pipe.
  • Figure 4 (b) shows the results of the corrosion rates of various metal materials in an ethanol environment.
  • Figure 5 shows the results of evaluating the presence or absence of liquid metal embrittlement cracks in the weld heat-affected zone after seam welding was performed on a stainless steel plate with Sn-based plating. This shows the influence of the Y value calculated from the quantity.
  • Figure 6 shows the results of evaluating the presence or absence of liquid metal embrittlement cracks in the weld heat-affected zone after joint welding to a stainless steel plate with Sn-based plating. It shows the effect of S content.
  • Figure 8 shows the relationship between the circumferential extension of the welded pipe and the necking and cracking in the eccentric pipe expansion process.
  • Figure 9 shows the shape of the tank used in the press molding test. After the upper shell and lower shell were pressed separately, both This shows the situation where seam welding was performed on the broken line with the user's flange. The actual tank is then finished by joining parts such as the pump retainer, valve retainer, and fuel inlet pipe by welding or brazing. Figure 9 shows the situation just before this final shape. It is a thing.
  • Fig. 10 shows the shape of the oil supply pipe used in the salt corrosion resistance test. A force sample was taken from the brazed part and the bracket contact part and used for the corrosion test. BEST MODE FOR CARRYING OUT THE INVENTION
  • the material for the fuel system parts in the present invention is a stainless steel plate containing Cr: 10.000 to 25.00%.
  • Cr is the main element that governs the corrosion resistance of the material, and if it is less than 100%, sufficient salt corrosion resistance cannot be obtained even if Sn-based plating is applied.
  • the Cr content Is required to be at least 1 0. 0 0%.
  • the upper limit of the Cr content should be restricted from the viewpoint of cold workability reduction such as press forming and material cost increase, and 25.0% is the practical limit.
  • the content of the main alloy elements other than Cr must be adjusted so that the Y value defined by the formula (1) is not more than 10.4. This is the most important material requirement in the present invention on the premise of Sn-based plating. In other words, this condition is a steel component requirement that is necessary to avoid cracking due to liquid metal embrittlement in the welding or brazing process that is indispensable for fuel tank formation and fuel pipe formation. If the Y value exceeds -10.4, cracking due to liquid metal embrittlement occurs in the weld heat affected zone because Sn or Zn has a low melting point. For this reason, it is necessary to limit the Y value to 10.4 or less.
  • C and N are elements that reduce the ductility of the steel sheet and deteriorate the cold workability such as press forming and cause intergranular corrosion in the welded part or brazed part.
  • it is an austenite stabilization element and has the effect of increasing the Y value. Therefore, the content of these elements must be limited to the lowest possible level, and the upper limit of C and N is set to 0.0 30%.
  • the upper limit of C is preferably 0.0 1 0 0%
  • the upper limit of N is 0.0 2 0 0%, More desirable is 0.0 1 5 0%.
  • S i is a ferrite stabilizing element and has the effect of reducing the Y value to suppress liquid metal embrittlement. However, it should not be contained in large amounts to degrade the ductility of the steel sheet, and the upper limit is set. 2. 0 0%, preferably 1 Limited to 0 0%. More desirably, the upper limit should be limited to 0.60%.
  • M n is also an element that deteriorates the ductility of the steel sheet. It is an austenite ⁇ stabilizing element, and the Y value is increased, so the upper limit of content is limited to 2.0%, preferably 1.0%. To do. More desirably, the upper limit should be limited to 0.60%.
  • Ni is an austenite stabilizing element like Mn and increases the Y value, but its effect is greater than M n. For this reason, the upper limit of the content is limited to 4.0%. On the other hand, Ni is an element useful for enhancing the corrosion resistance of the steel sheet base material, and therefore, it may be included in pursuit of higher corrosion resistance. In that case, the lower limit content is 0.10%.
  • Cu like Ni, is an austenite stabilizing element and increases the Y value, so the upper limit of content is limited to 2.0%. Also, Cu is less effective than N i as N i is. Since it is a useful element for enhancing the corrosion resistance of steel sheet base materials, it may be included in pursuit of a higher degree of corrosion resistance. In that case, the lower limit content is 0.10%.
  • M o is a ferrite stabilizing element like S i and reduces the Y value.
  • the upper limit of the content is limited to 2.0%.
  • the upper limit of the content is preferably set to 0.60% from the viewpoint of cost restrictions compared with SUS 4 36 L.
  • M 0 is also an extremely useful element for improving the corrosion resistance of the base material, so it may be contained in pursuit of higher corrosion resistance. In this case, the lower limit content is 0.1%.
  • V Like Mo, V is a ferrite stabilizing element and reduces the Y value. However, if incorporated in a large amount, the ductility of the substrate deteriorates. For this reason, the upper limit of the content is limited to 1.0%. On the other hand, V is the same as Mo Since it is also an element useful for improving the corrosion resistance of the material, it may be contained in pursuit of a higher degree of corrosion resistance. In that case, the lower limit content is 0.10%.
  • a 1 is useful as a deoxidizing element, and it is a ferrite stabilizing element that reduces the Y value. As a range of the content, 0.0 0 to 0.1 0 0% was appropriate.
  • T i and N b are ferrite stabilizing elements that reduce the Y value.
  • C and N are fixed as carbonitrides to suppress intergranular corrosion.
  • at least one of T i and N b is contained with a lower limit of 0.0 1%.
  • the upper limit of the content is set to 0.3% because it is harmful to the ductility of the steel sheet substrate.
  • the appropriate content of Ti and Nb is preferably 5 times or more and 30 or less times the total content of C and N.
  • P An element that prays to the grain boundary to lower the grain boundary strength and increases the susceptibility to liquid metal embrittlement cracking, and is one of the extremely important elements in the present invention. It is also an element that degrades the ductility of the steel sheet substrate. For this reason, the P content should be as low as possible.
  • the upper limit of the allowable content is set to 0.05%. Desirable upper limit of P is 0.0 40%, and more desirably 0.0 30%.
  • S Like P, it is an element that increases the susceptibility to liquid metal embrittlement cracking, and is one of the most important elements in the present invention. It is also an element that degrades the corrosion resistance of steel sheet base materials. For this reason, the s content should be as low as possible.
  • the upper limit of the allowable content is 0.0 0 10%.
  • a desirable upper limit of the S content is 0.0 0 50%, more desirably 0.0 0 30%.
  • the stainless steel sheet has a ferrite single-phase metal structure in addition to satisfying the condition of the formula (1). This is because, as described above, the ferritic structure is more resistant to the liquid metal embrittlement of Sn. In addition, when a mixed structure of a martensite phase transformed from an austenite phase or austenite and ferrite is used, it is difficult to adjust mechanical properties, and cold-heating properties such as press forming deteriorate. An additional reason is that the austenitic phase is susceptible to stress corrosion cracking in the chloride environment, and it is desirable to avoid the austenitic phase for this reason.
  • the material properties of the ferritic stainless steel sheet satisfy both the two requirements of an average r value of 1.4 or more and a total elongation of 30% or more from the viewpoint of press formability.
  • Steel plates that do not satisfy even one of these requirements require measures such as changing the shape of the parts or devising lubrication so that the degree of processing becomes mild because press forming tends to cause cracks during tube expansion. Because.
  • the material properties are obtained by a tensile test using a No. 13 B test piece specified in JISZ 2 20 1.
  • the total elongation is obtained from the amount of change in the distance between the gauge points before and after the tensile test.
  • Average r value (defined in r L + rc + Z r ⁇ / A, r have r have r D, respectively, the rolling direction and the direction perpendicular to the rolling direction, the direction of 4 5 degrees with respect to rolling direction
  • the work hardening rate is obtained by measuring the stress when tensile strains of 30% and 40% are applied, and calculating the slope between the two points.
  • the metal used for corrosion protection must be electrochemically base on the stainless steel and exhibit a sacrificial protection effect.
  • the fuel bundle or fuel pipe is seam welded, projection welded, spot welded or brazed, but the heat affected parts lose their stickiness. The reason for ensuring corrosion resistance under the salt damage environment at the plating loss site depends on the sacrificial anticorrosive effect of the plating layer around the site.
  • Sn and Sn are set.
  • Select Sn-Zn alloy containing Zn as a living body As shown in FIGS. 1 to 4, these Sn and Sn—Zn alloys exhibit satisfactory performance in the corrosive environment of the outer and inner surfaces of the fuel tank or fuel pipe.
  • the Zn content exceeds 10.0%, elution of Zn becomes obvious and corrosion problems appear on the outer and inner surfaces of the fuel tank or fuel pipe.
  • the Zn content in the Sn—Zn alloy is limited to 10% or less.
  • the lower limit of the Zn content in the Sn-Zn alloy is set to 0.8%, which results in good corrosion resistance as a result of the potential of the plated metal being sufficiently low and maintained for a long time.
  • a preferable range of the Zn content in the Sn—Zn alloy is 3.0 to 10.0%, more preferably 7.0 to 9.0%.
  • Inevitable impurities in the Sn or Sn-Zn alloy include plating such as Fe, Ni, Cr, etc. that are dissolved in the plating bath from the steel plate or pre-plated steel plate to be coated
  • the fineness of ingots Sn and Zn ⁇ Impurities P b, C d, B i, S b, C u, A 1, Mg, T i, S ⁇ etc. are included, but the content is Fe, P b, S i force S Less than 0.1%, Ni, Cr, Cd, Bi, Sb, Cu, A1, Mg, Ti, Si are typically less than 0.01%, plated metal It does not affect the anti-corrosion properties of the product.
  • the content mentioned here is a value in the target layer.
  • Sn-based anticorrosion metals are formed on the surface of the stainless steel substrate, and the amount of adhesion is 10 g Zm 2 or more and SOO gZm 2 or less.
  • the amount of adhesion is 10 g Zm 2 or more and SOO gZm 2 or less.
  • an unpainted fuel tank or a fuel pipe is assumed.
  • salt corrosion resistance is ensured as long as at least the anticorrosion layer is not lost.
  • Required corrosion protection period is 1.5 years, duration of the combined cycle test corresponding thereto is 1 8 0 day, as a deposition amount of anti-deleted us perfect is not necessary minimum in this period 1 0 g Zm 2 Set.
  • melting adhesion is desirable.
  • the adhesion amount specified here is the adhesion amount on one side
  • the plating plate sample whose surface to be measured is masked with seal tape is immersed in a 10% NaOH solution and the plating on the opposite side of the surface to be measured is plated. After dissolving only the layer, peel off the seal tape and weigh it, then immerse it again in 10% NaOH solution to dissolve the plating layer on the surface to be measured, and then weigh again. It is defined as what is obtained from these weight changes.
  • Ni, Co, Cu, or an alloy with Fe can be applied as the pre-plated metal species.
  • Ni or Fe-Ni is selected.
  • Ni and Fe are metals that have a lower corrosion potential than stainless steel and are not easily corroded, so they not only improve the adhesion of the anticorrosion layer, but also consume Sn.
  • the Sn-plated stainless steel sheet that satisfies the above requirements is subjected to normal forming and assembly processes such as welding, brazing, or mounting of metal fittings, such as pressing, seam welding, spot welding, and projection welding, and fuel tanks.
  • the lubrication pipe is made of ERW welded pipe made from Sn-based steel plate, TIG welded pipe or laser welded pipe as material, cold working such as pipe expanding and bending, and projection. It is formed through normal forming and assembly processes such as welding, brazing, and mounting of metal fittings.
  • fuel pipes are usually formed and assembled by cold-working such as bending using ERW welded pipes, TIG welded pipes or laser welded pipes made of Sn-based plated steel sheets. After being molded.
  • the molded fuel tank or fuel pipe can be mounted on the car body without painting.
  • the fuel tank may be visible from the outside when mounted on the vehicle body, so black paint may be applied from the viewpoint of design.
  • the adhesion layer is damaged by welding and brazing in the manufacturing process of the fuel tank or fuel pipe, so even if repair coating is applied partially in order to make the corrosion resistance of the area more reliable Good.
  • Existing methods such as spraying are sufficient for painting the fuel tank.
  • the spray method is used to paint the fuel pipe.
  • the electrodeposition coating method can be applied.
  • the adhesion amount is desirably 2 g / m 2 or less, which does not impede resistance weldability.
  • an organic lubricating film may be formed on the anticorrosion sessile layer or on the chemical conversion film in order to further ensure workability during cold working such as press molding.
  • the lubricating film preferably has a friction coefficient of 0.15 or less.
  • the Sn-based plating surface is excellent in slidability, and a low friction coefficient of about 0.15 can be obtained by simply applying press oil to the plating plate. That is, even if a lubricating film having a friction coefficient larger than this value is formed, the workability is not improved compared to the case where press oil is applied to the plate, so the upper limit of the friction coefficient is 0, '1 Specify as 5.
  • the resin component of the lubricating film is dissolved in warm water or alkaline water so that it can be easily applied after cold forming such as pressing and before welding or brazing. It should be something that can be removed.
  • the lubricating film which is an organic substance, is decomposed by the heat-up due to welding or brazing and carburization occurs in the heat-affected zone, increasing the intergranular corrosion sensitivity and deteriorating long-term corrosion resistance.
  • the decomposition products of the film due to heat rise become fumes and generate a strange odor, which necessitates a clean management of the welding or brazing work environment.
  • the lubricant film should be removed prior to welding or brazing, and the lubricant film can be removed by a simple means such as washing with warm water or alkaline water after pressing. Is desirable.
  • a water-soluble lubricating film is composed of a lubricating function imparting agent and a binder component.
  • the binder component polyethylene glycol, polypropylene glycol, polyvinyl alcohol, acrylic, polyester, polyurethane, and other resin water dispersions or water-soluble resins are selected.
  • the thickness of the lubricating film if it is too thin, the lubricating effect will be insufficient, so a certain thickness is required, and it is desirable to manage 0.5 in as the necessary lower limit film thickness.
  • the upper limit if it is too thick, it takes time to remove the film and the deterioration of the alkaline solution used is adversely affected, so it is desirable to set the upper limit to 5 m.
  • the means for forming the lubricating film is not particularly specified, but a single coat is desirable from the viewpoint of uniformly controlling the film thickness.
  • the oil supply pipe is usually formed by pipe expansion in a multi-stage process using a punch, and in each process, it is compressed and deformed in the pipe axis direction and subjected to tensile deformation in the pipe circumferential direction due to deformation resistance and frictional force caused by the punch.
  • the pipe has been expanded.
  • the strength balance between the welded part of the welded pipe and the base metal part is not appropriate, it will crack. That is, as shown in FIG. 7, when the strength of the welded part is relatively low with respect to the base metal part, such as the difference in hardness between the base metal and the welded part is small, the weld bead part is thin, etc.
  • the eccentric portion is projected and locally subjected to tensile deformation in the tube axis direction and the circumferential direction. Therefore, as shown in FIG.
  • the lower limit of the circumferential elongation of the part is specified as 15%.
  • the hardness difference ⁇ ⁇ ⁇ of the welded pipe is measured by measuring the Picker's hardness of the welded part with a micro Vickers hardness tester at a load of 500 g at 0.2 mm intervals, and the Vickers hardness of the base metal part is Except for the welded part, the entire circumference was measured at 45 ° intervals at a load of 500 g, 7 points were averaged, and the difference was evaluated as the hardness difference.
  • the thickness ratio of the welded part was evaluated as the thickness of the welded part, and the base metal part was evaluated as an average of 7 points measured for the picker hardness.
  • the circumferential extension of the welded pipe base material is cut and expanded in the circumferential direction, then a tensile test piece according to JIS 13 B is cut out, the gripping parts are welded to both ends, a tensile test is performed, Total elongation was evaluated.
  • Fuel pipes are mildly machined to the extent that they are bent, compared to refueling pipes. Therefore, the above-mentioned weld rod for a fuel supply pipe can be applied to a fuel pipe as it is.
  • regulate the said pipe making method of a welded pipe Well-known techniques, such as electric welding, laser welding, TIG welding, MIG welding, and high frequency welding, can be used.
  • Stainless steel having the composition shown in Table 1 was melted in a 150 kg vacuum melting furnace and formed into a 50 kg steel ingot, and then hot-rolled, hot-rolled sheet annealed, pickled and cold-rolled, intermediate-annealed and cooled.
  • a steel plate having a thickness of 0.8 mm was produced through a process of roll-finish annealing and finishing pickling.
  • a cut sample was taken from this steel plate, and after Ni pre-plating, the Sn alloy was melted. The amount of plating was 30 to 40 gZm 2 on one side.
  • a 70 XI 50 size strip sample was taken from the melted sample, and two sheets were stacked and seam welded. Then, the cross section of the weld was observed under a microscope to evaluate the presence or absence of cracks.
  • Table 1 shows the evaluation results.
  • the Y value exceeded the range of the present invention, so cracking due to liquid metal embrittlement occurred in the weld heat affected zone.
  • cracks of No. 2 3 (SUS 3 04 L) and No. 24 (S US 3 16 L) which have a high Ni content and a high Y value, were recognized on a scale that can be clearly identified by visual inspection. It was.
  • Comparative Examples No, 28 to 33 the Y value satisfies the scope of the present invention, and either one or both of the P content and the S content are out of the scope of the present invention. Cracking was observed.
  • Nos. 1 to 10 since the Y value was optimized, no cracks were observed even by microscopic observation. table 1
  • an Sn-based anticorrosion layer having the composition shown in Table 3 was formed by the fusion plating method. I let you. When melting, the amount of deposit was changed by changing the gas wipe. Tensile specimens were collected from this steel plate and subjected to a tensile test to ascertain the material properties shown in Table 3.
  • FIG. 9 shows the shape of the molded tank.
  • a dent to increase the rigidity of the tank a dent to the part where the tank suspension band is hung, and a protrusion at the part in contact with the vehicle body were formed everywhere.
  • the molding height was about 150 mm for both shells.
  • the upper side is more complex than the lower side and the processing conditions are more severe.
  • press was applied to the Sn-based steel sheet with press oil applied, but some tests were performed after forming a water-soluble lubricant film. .
  • the method for forming the lubricating film is as follows.
  • This polyurethane aqueous composition has a softening point of 110 ° C average particle diameter of 2.5 m low density polyethylene wax, an average particle diameter of 3.5 m polytetrafluoroethylene wax, a melting point of 10 5 5 average particle diameter 3.5 a Synthetic paraffin wax of D1, average particle size of calcium stearate with 5.0 m, primary average particle size of 20 nm, 1 residue or 2 of 20% heated silica Seeds were blended into a paint. It was decided to change the friction coefficient of the lubricating film formed by changing the mixing ratio of the wax component to the aqueous polyurethane composition.
  • This paint The material was coated on the Sn-based anticorrosion steel plate by a roll coating method and baked at a plate temperature of 80 ° C. to form a soluble lubricating film.
  • the film thickness was 1.0 ⁇ m.
  • chromate treatment was applied to the steel plate.
  • the adhesion amount was 20 mg / m 2 .
  • Table 3 shows the test results.
  • Comparative Examples No. 20 2 to 20 5 at least one of the r value and the total elongation is outside the range of the present invention.
  • Nos. 1 0 1 to 1 1 6 the r value and the total elongation as well as the friction coefficient of the lubricating film are appropriate, and therefore press molding can be performed without causing cracks.
  • PTFE wax t ° : Tylene wax X: Substrate cracked or peeled off. Content is a percentage of resin solids.
  • Example 2 Using the Sn-based anticorrosive steel plate manufactured in Example 2 as a raw material, spot welding was continuously performed, and the number of continuous striking points until the electrode could not be welded due to melting was obtained. A case where the corrosion resistance was decreased to 1 Z 2 or less of the life without M was evaluated as a failure.
  • Table 3 shows the details of the specimens and the test results.
  • Comparative Example No. 2 0 the amount of adhesion of corrosion prevention exceeds the range of the present invention, so that the contact area between the electrode and corrosion prevention increases and the electrode wear life is shortened.
  • No. 100-1: L16 and the comparative example No. 20.02-205 the significant amount of electrode wear is avoided because the amount of plating is appropriate.
  • Example 4 Salt corrosion resistance of welded part and weld gap structure part
  • Sn-based anticorrosive steel plate manufactured in Example 2 As a raw material, a strip sample of 70 x 150 size was collected, Two sheets were overlapped and subjected to salt damage corrosion test.
  • the contents of the corrosion test include 5% NaCl solution spray, 35 ° CX 2 Hr ⁇ ⁇ forced drying (relative humidity 20%) 60 ° CX 4Hr—wet (relative humidity 90%)
  • the combined cycle test at 50 ° CX 2 H r was repeated over 5 40 cycles, and then the corrosion depth was measured by removing the seam weld heat-affected zone, and the seam weld gap structure was disassembled and removed The corrosion depth inside the gap was measured.
  • the corrosion depth was determined by the microscope depth of focus method.
  • the presence of intergranular corrosion was evaluated by observing the form of corrosion at the weld cross section with a microscope.
  • Comparative Example No. 205 the Ti content did not satisfy the requirements of the present invention, and therefore, a grain boundary corrosion form was observed in the welded portion, and the resistance to local corrosion corrosion was insufficient. Further, Comparative Example No. 3 04 does not have sufficient corrosion resistance because the Cr content is outside the scope of the present invention. Comparative Example No.
  • 3 0 1, 3 0 2, 3 0 3 shows that the steel components satisfy the requirements of the present invention, but the amount of adhesion of corrosion protection is out of the range of the present invention. Eating habits are not obtained.
  • Comparative Example No. 3 0 5 does not have satisfactory corrosion resistance because the composition with anticorrosion has a deposition amount outside the range of the present invention.
  • the present invention No. 100-: L 16 satisfies the requirements of the present invention in terms of both steel composition and plating coverage, and satisfactory corrosion resistance is obtained regardless of the presence or absence of chromate treatment and black coating. It has been.
  • Example 2 Using a Sn-based anticorrosive steel plate manufactured in Example 2, a 1700 x 170-sized sample was taken and formed into a cup with an inner diameter of 75 mm and a height of 45 mm using an Erichsen tester. An internal corrosion test was performed in which the inside was filled with a corrosive solution and maintained at 50 ° C for 10 OH r. As corrosive liquids, an aqueous solution at 50 containing 0.1% formic acid, 0.01% acetic acid and 0.01% NaC1 simulating a deteriorated gasoline environment, and an alcohol fuel environment were simulated. Contains 3% water A 60 ° C ethanol solution was obtained.
  • the corrosive liquid was collected, the amount of metal in the liquid was quantified by chemical analysis, and this analysis value was converted to the corrosion rate.
  • Corrosion resistance was evaluated as a ratio to the corrosion rate of turn metal (Pb—Zn alloy) alone, and a case where the corrosion rate was 1 or more times that of turn metal was evaluated as rejected. Some specimens were chromed. The adhesion amount was 20 mg Zm 2 .
  • Table 5 shows the test results.
  • Comparative Examples Nos. 30 6 to 3 10 the composition of corrosion protection is out of the range of the present invention, and the Zn content is large, so that the amount of dissolved Zn is large and the internal corrosion resistance is insufficient.
  • Comparative Example No. 3 1 1 the Cr content of the material is 9%, so the potential is lower than that of Sn and the sacrificial anti-corrosion effect due to Sn plating cannot be obtained, which causes elution of the steel. Fatal.
  • the present invention Nos. 1 0 1 to 1 1 6 satisfy the requirements of the present invention in terms of steel composition, composition, and adhesion amount, regardless of the presence or absence of chromate treatment and black coating. Satisfactory corrosion resistance is obtained.
  • an electro-welded pipe with a diameter of 25.4 mm was manufactured, and the kinematic viscosity was about 100 M 2 / S (40 ° C).
  • coaxial pipe expansion with outer diameters of 30 ⁇ , 38 ⁇ , 45 ⁇ , 51 ⁇ , and eccentric expansion tube with offset amount of 6mm 5 1 ⁇ was performed, and the base metal in the processed part, the presence or absence of cracks around the welded part, and the presence or absence of tack peeling were evaluated.
  • Comparative example No. 2 0 2-2 1 2 is made of steel Difference in hardness between plate r value or total elongation, circumferential elongation of welded pipe, picker's hardness H v ff of welded part and Vickers hardness H v M of base metal part ⁇ HV, bead thickness of welded part Since at least one of the ratio between the thickness 1 and the thickness T M of the base material part is outside the scope of the present invention, cracking and peeling are caused by the pipe expansion process. On the other hand, according to the present invention No.
  • a strip sample of size 70 x 15 50 was taken from a part of the fused steel sheets prepared in Example 1, and silver was spread over the center of the strip 3 to 8 min in width and 100 mm in length. After brazing the brazing, the cross section of the brazing part was observed with a microscope to evaluate the presence or absence of cracks.
  • a silver brazing material having an Ag of 40.4% corresponding to JI S Z 3 2 6 1 B A g 4 was used.
  • Table 7 shows the test results.
  • Comparative Examples No. 2 3, 2 4 and 2 7 since the Y value exceeded the range of the present invention, cracks due to liquid metal embrittlement occurred in the heat affected zone.
  • Comparative Examples No. 30 to 32 the Y value satisfies the scope of the present invention, but either or both of the P content and the S content are outside the scope of the present invention. Therefore, cracks were observed.
  • Nos. 1 to 10 cracks were not recognized because the Y value was optimized.
  • a fuel pipe having the shape shown in FIG. 10 was prototyped using a 25.4 mm electrode welded tube manufactured from the Sn-based anticorrosive steel plate manufactured in Example 2. Force samples were prepared for the brazed part of the fuel pipe and the stay contact gap part and subjected to a salt damage corrosion test. The contents of the corrosion test include 5% NaCl solution spray, 35 ° CX 2Hr ⁇ forced drying (relative humidity 20%) 60 ° CX4Hr—wet (relative humidity 90%) After a combined cycle test at 50 ° CX 2 H r was repeated for 5 40 cycles, removal treatment was performed to determine the corrosion depth inside the brazed part and the stay bracket contact gap using the microscope focal depth method. Asked.
  • the plated steel plate was chromated.
  • the amount of adhesion was 2 O mg / m 2 .
  • some cut samples were subjected to force thione electrodeposition coating.
  • Nippon Paint PN-1110 was used as the paint, and the film thickness was 25 m.
  • Table 8 shows the details of the test materials and the test results.
  • Comparative Example No. 205 the Ti content did not satisfy the requirements of the present invention, so the corrosion resistance of the brazed heat affected zone was insufficient.
  • Comparative Example No. 3 04 does not have sufficient corrosion resistance because the Cr content is outside the scope of the present invention.
  • Comparative example No. 3 0 1, 3 0 2, 3 0 3 shows that the steel components satisfy the requirements of the present invention, but the amount of adhesion of corrosion protection is out of the scope of the present invention. Corrosion resistance is not obtained.
  • Comparative Example No. 3 0 5 does not provide satisfactory corrosion resistance because the composition of the anticorrosion adhesive is outside the range of the present invention.
  • the present invention Nos. 1 0 1 to 1 1 6 satisfy the requirements of the present invention for both the steel composition and the amount of plating, and satisfactory corrosion resistance is obtained regardless of the presence or absence of cationic electrodeposition coating. Yes. Table 8

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Coating With Molten Metal (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書 塩害耐食性および溶接部信頼性に優れた自動車用燃料タンク用およ び自動車燃料パイプ用表面処理ステンレス鋼板および拡管加工性に 優れた自動車給油管用表面処理ステンレス鋼溶接管 技術分野
本発明は、 塩害環境における耐食性および溶接部信頼性に優れた 自動車燃料タンク用の表面処理ステンレス鋼板および拡管加工性に 優れた自動車給油管用表面処理ステンレス鋼溶接管に関する。 背景技術
昨今の環境保護やライフサイクルコス ト低減のニーズから、 燃料 タンクや燃料パイプ (フューエルインレッ トパイプと称される給油 管およびフューエルラインと称される燃料配管を称す) などの燃料 系部品でも燃料透過防止性、 長寿命化といつた特性が要求される。
自動車用の燃料タンクあるいは燃料パイプには、 米国の法規制で
1 5年間もしくは 1 5万マイル走行の間の長期寿命保証が義務付け られ、 これ.を満たすための燃料系部品が、 めっき普通鋼材、 樹脂、 ステンレス鋼の 3素材について開発されてきている。
めっき普通鋼材、 樹脂、 ステンレス鋼の 3素材のうち、 樹脂につ いてはリサイクル性が問題であり、 めっき普通鋼材については将来 普及されるバイォ燃料に対する耐久性が懸念される嫌いがある。 一 方、 ステンレス鋼に関しては、 鉄系素材としてのリサイクル容易性 やバイォ燃料に対する十分な耐食性を有する利点があり、 既に燃料 パイプ用の素材として実用化されてきている。
しかしながら、 ステンレス鋼は、 単独では、 燃料タンクや燃料 パイプに適用するには塩害環境における耐食性が必ずしも十分とは 言えないと評価されている。 すなわち、 融雪塩に曝される塲合を模 凝した実験室促進試験において、 S U S 4 3 6 Lなどのフェライ ト 系ステンレス鋼では隙間構造部あるいは溶接構造部において隙間腐 食が生じ、 S U S 3 0 4 Lなどのオーステナイ ト系ステンレス鋼で は溶接部などで応力腐食割れが生じるとの問題がある。 この問題を 克服するため、 いくつかの防食技術が開発されてきた。
例 7 ば、 特開 2 0 0 3 - 2 7 7 9 9 2号公報では、 フェライ 卜系
ステノレス鋼板を素材として成形した燃料タンクの表面にカチォン 電着塗装を施したり、 溶接部に限定してジンクリ ッチ塗装を施した
Ό、 あるいは鋼板素材として A 1 めっき層、 Z nめつさ層あるいは
Z nと F e , N i , C o , M g C r , S nおよび A 1 の内の 1種 以上との合金からなるめつ さ雇を形成させた鋼板を適用するとい た防食方法が開示されている。
また 、 特開 2 0 0 4— 1 1 5 9 1 1号公報では、 ステンレス鋼板 を素材として成形した燃料タンクに Z n含有量 7 0 %以下の Z n含 有塗料を塗布した燃料タンクが提示されている。
また、 特開 2 0 0 3 — 2 2 1 6 6 0号公報では、 溶融アルミめつ きを施した特定材質を有するフェライ ト系あるいはオーステナイ ト 系のステンレス鋼板を素材として成形加工された燃料夕ンクが提示 されている。
しかしながら、 カチオン電着塗装は被塗物を塗料溶液に浸漬して 電着させる方法であり、 給油管には実際に適用されている技術であ るが、 給油管のような小物は別にしても燃料タンクのように大きな 浮力が生じるものに対しては適用困難であるとの問題がある。 また 、 隙間開口量が小さく奥行きが大きい形状の隙間に対しては必ずし も十分な防食効果が得られないとの問題もある。 また、 ジンクリ ッチペイントに関しては力ソード防食効果によつ て隙間内部の腐食を抑制することができるが、 この種の Z n含有塗 料は Z nを多量に含有し樹脂成分が相対的に少ないため、 一般塗料 に比べて塗膜密着性に劣る嫌いがある。 特に過酷な塩害腐食試験に おいて塗膜にブリスターが生成されたり、 極端な場合には塗膜が剥 離するという問題が生じる場合がある。 塗膜密着性を改善しようと すれば、 Z n含有量を低減するのがー手段となるが、 これを行えば 本来目的とする力ソード防食効果が大きく毀損されてしまうとの問 題がある。
一方、 アルミめつきステンレス鋼板に関しては、 基材としてのス テンレス鋼自体は問題ないものの、 めっき層のアルミが現在普及し つつあるアルコール含有燃料に対して腐食され易いとの問題がある 。 アルミの腐食生成物は、 フィルターや噴霧装置などの燃料供給系 統部品に目詰まりを生じさせるなどの致命的トラブルの原因となる 。 また、 アルミめつきは溶融めつき法で形成させるのが常套で、 比 較的高温で処理されるために溶融めつき時に脆弱な合金層が形成さ れ、 燃料タンクや燃料パイプに成形加工する段階で、 合金層の破壊 を起点としためつき層剥離やプレス割れが生じるとの問題もある。 このような A 1や Z nに依存しない技術も開示されている。 特開 昭 6 1 — 9 1 3 9 0号公報では、 C r : 3 %超〜 2 0 %、 酸可溶 A 1 : 0 , 0 0 5〜 0. 1 0 %を含む鋼板に N i, C o, N i — C o 合金の拡散被覆層を介して S nあるいは S n— Z n合金のめっき層 を形成させることによってアルコールに対する耐食性が向上すると されている。 しかしながら、 高 C r含有量の鋼板に S nあるいは S n— Z n合金をめつき層とする場合、 溶接部に割れが生じる場合が ある。
また、 既に給油管には S U S 4 3 6 L ( 1 7 % C r - 1. 2 % M O ) が適用され、 カチオン電着塗装が施されて実車に搭載されてい るが、 近年の M o高騰による素材コス ト増が間題視されてきており 、 高価な M oを含まないかあるいは M o含有量を低レベルに抑制し 尚且つ S U S 4 3 6 Lと同等の耐食性が得られる素材が要求されて いる。 発明の開示
本発明は、 塩害環境下での耐食性に優れた自動車燃料タンク用お よび自動車燃料パイプ用のステンレス鋼板素材おょぴ自動車燃料パ イブ用表面処理ステンレス鋼溶接管の提供を目的とするものである 本発明者らは、 種々のステンレス鋼材について膨大な塩害腐食試 験を行ってきた。 その結果、 付属部品の締結や溶接によって構成さ れる隙間構造部あるいは溶接や口ゥ付けによる熱影響部における隙 間腐食や応力腐食割れといつた局部腐食の問題を克服するには、 犠 牲陽極を用いた力ソード防食が不可欠であるとの結論に至った。 塩害環境においてカソード防食効果を奏する犠牲陽極材料として 、 Z n、 A 1 、 Mgが知られている。 前述の従来技術においてもアル ミめっき (A 1 ) やジンクリッチ塗装 (Z n ) という形態で提案さ れている。 これら金属が優先的に腐食されるが故に基材が保護され るという力ソード防食の原理に照らせば、 これら金属は基材に比べ て化学的に活性であると換言できる。 このため、 カゾード防食効果 は犠牲陽極材料が消耗され尽くすまでは維持される。 しかし、 消耗 され尽く した後は、 もはや防食効果は発現されない。 すなわち、 犠 牲陽極材料を使って基材をカソード防食する場合、 犠牲陽極材料の 消耗寿命が燃料夕ンクあるいは燃料パイプの防食寿命を支配するこ ととなる。 消耗寿命を延長するには、 犠牲陽極材料の質量を増大させれば良 い。 最も過酷な塩害環境を想定した試験で犠牲陽極材料の消耗速度 を求めて 1 5年間に渡って消耗され尽ぐせないだけの十分な量の犠 牲陽極を燃料タンクあるいは燃料パイプに付けておけばよい。 しか しながら、 このような考え方で既に公知とされる Z nを使うとすれ ば、 ジンクリッチ塗装を例に挙げれば 1 0 0 mを超える厚膜を確 保する必要があり、 Z nをめつきする場合においても 5 0 mを超 える厚めつきが必要となる。 このような条件は Z nを実用的犠牲陽 極材料として選択する根拠にはなり得ない。 M gは、 Z nと同程度 以上の所要量が必要である上、 めっきや塗装などの形態で適用する ことができず Z nより利用し難い。 A 1 に関しては、 Z nや M gに 比べれば消耗速度が小さい。 A 1 めっきは、 めっき厚み 1 0 m以 下でも充分な塩害腐食防止効果が期待できる。 しかし、 前述のよう な加工性やアルコール燃料による腐食の問題があつて実用化には不 向きであり、 特に後者の問題は致命的である。
したがって、 従来公知の Z n, M g、 A 1 以外の犠牲陽極材料を 見出す必要がある。 その材料は、 消耗寿命が充分に長く、 かつ塩害 環境においてステンレス鋼基材より電気化学的に活性でなければな らない。 加えて、 燃料タンクあるいは燃料パイブの内面の燃料環境 においても殆ど腐食しないことが必要である。
本発明者らが種々検討した結果、 これら条件を満たせる最も好適 な犠牲陽極材料として S nあるいは S nを主体として少量かつ適量 の Z nを含有させた金属が最も有用であるとの知見を得た。
犠牲陽極の主成分となる S nは、 基材が普通鋼の場合とは異なつ て、 ステンレス鋼に対しては塩害環境でカソード防食効果を奏する ことを知見した。 同じく力ソー ド防食が可能な Z nなどに比べて消 耗寿命が長いという利点があり、 長期防鯖という本願の目的に最も 有用な金属種として評価できた。 また、 燃料タンクあるいは燃料パ イブ内面のバイォ燃料環境においても十分な耐食性を発現し得る金 属種であると評価できた。 さらに、 実施形態としても、 長期防鯖に 必要とされる付着量を十分に確保できる溶融めつき法が工業的に確 立されているという点も実用性を高める大きな利点として評価でき た。 加えて、 ステンレス鋼に対して溶融めつきを施す場合に行う前 処理として用いるのが望ましい N i めっきあるいは F e — N i めつ きも、 S nと同様に、 塩害環境においてステンレス鋼基材より電気 化学的に活性であり有機酸を含有する劣化ガソリ ンあるいはバイオ 燃料の環境でも十分な耐食性を有することを知見した。 このことは 、 S nが消耗された後も N iや F e — N i の露出によって耐食性が 急に劣化することがないことを保証し得るものとして評価できた。 これらのことを、 より具体的に説明する。
本発明者らは、 先ず、 実際の塩害環境を模擬する複合サイクル腐 食試験 (塩水噴霧 : 5 % N a C 1 噴霧 3 5 °C X 2 H r、 乾燥 : 相対 湿度 2 0 %、 6 0 °C X 4 H r、 湿潤 : 相対湿度 9 0 %、 5 0 °C X 2 H r の繰り返し) において、 金属材料が最も腐食される段階が乾燥 過程もしくは乾燥後の湿潤過程であることを解明した。 このような 過程において金属材料表面が曝されている環境条件としては、 塩化 物濃度が飽和に達し、 かつ温度も高温となっている。 このことを踏 まえて、 5 0 °Cの飽和 N a C 1 溶液中での各種金属材料の腐食電位 を計測した。 結果の一例を図 1 に示す。
1 7 % C r系ステンレス鋼の腐食電位は、 0〜+ 0. I V V s . S C Eである。 S nは一 0. 5 5 V v s . S C E程度とステン レス鋼より低い値を示す。 このことは、 ステンレス鋼と S nを接触 させた場合、 S nが犠牲陽極として作用しステンレス鋼が防食され ることを意味する。 Z nは腐食電位が一 1 . 0 V v s . S C E程 度であり、 ステンレス鋼より十分に低電位である。 3 11に 2 ] を 8 %含有させた S n— 8 Z n合金は、 試験初期において一 1 , 0 V v s . S C E程度の Z nと同等レベルの電位を示すが τ ηが消耗さ れるに伴って S ηの腐食電位に近付いていく。 A 1 も腐食電位は一 0. 8 V v s . S C E程度でありステンレス鋼より十分に低電位 である。 N i についても一 0. 2 V v s . S C E程度の値を示し ステンレス鋼の電位よりも低い。 これらより、 1 7 C r系ステンレ ス鋼より、 S n, Z n、 S n - 8 Z n , A 1 , N i の全てが化学的 に活性であると言え、 犠牲防食作用を奏することが明らかである。 一方、 普通鋼については、 腐食電位が一 0. 7 V v s . S C E 程度である。 この値を Z n, A 1 , N i , S nの電位と比較すると 、 電位序列は N i > S n >普通鋼 > A 1 , Z nとなり、 普通鋼に対 しては、 S n、 N i は犠牲陽極として作用しないのみならず、 かえ つて普通鋼の腐食を促進するものであることが明らかである。
このように、 普通鋼に対する作用とは異なり S nあるいは S n— Z n合金ひいては N i さえもステンレス鋼に対して犠牲防食効果を 及ぼす。 したがって、 これら金属をステンレス鋼基材に配すること によって基材の腐食を防止できるのである。 しかしながら、 これら 犠牲陽極材料が短期間に消耗され尽くすのであれば、 その効果は十 分とは言えない。
そこで、 本発明者らは、 腐食電位測定に加えて、 5 0 °Cの飽和 N a C 1 溶液中においてステンレス鋼と電池が形成された状態での各 種金属材料の腐食速度を測定した。 結果の一例を図 2に示す。
S nの腐食速度は極めて低レベルで、 A 1 と同程度である。 一方 、 Z nについては塩害環境において激しく腐食されることが明らか である。 本発明者らは、 各種金属板の複合サイクル試験デ一タを採 取し複合サイクル試験による腐食損耗寿命と前記腐食速度データと の相関性を見出し、 その相関関係を用いて.、 1 5年防鳍が達成可能 と判断される 1 8 0 日間の複合サイクル腐食試験において消耗され 尽くさないために必要とされる当該試験における許容腐食速度を、 0. 1 2 / h r として設定した。 S nの腐食速度は、 この約 3 分の 1 の値を呈しており、 十分に満足すべき耐食性が得られた。 一 方、 Z nはこの許容値を遥かに超えており、 半年間の複合サイクル 腐食試験において Z nが消耗され尽くさないためには、 少なく とも 5 0 x mを超える厚みが必要となり実用的でない。 A 1 は S nとほ ぼ同程度の腐食速度を呈しており、 塩害腐食問題に限って首えば犠 牲陽極材料として有用であると言えるが、 燃料タンクあるいは燃料 パイプの内面におけるアルコール燃料に対する耐食性が不十分であ るため実用的とは言えない。
Z nは腐食速度が大き過ぎる難点はあるが、 単に電位を低下させ る効果のみならず乾湿繰り返し条件においては Z nの腐食生成物が 腐食液の p Hを上昇させて腐食を抑制する効果も有する。 このこと から、 S nをべ一スとして適量の Z nを含有させた S n 一 Z n系合 金も有用と想定され、 1 7 C r系ステンレス鋼板に S n — Z n合金 をめつきしたサンプルにシーム溶接を施し複合サイクル腐食試験に 供して防鲭性を評価した。 結果を図 3に示す。 Z n含有量が 1 0 % を超えると Z nの腐食が支配的になってめっき層が早期に消耗する ため防鑌性が不十分であるが、 Z n含有量;!〜 1 0 %の S n— Z n 合金は S nと同等レベル以上の防鐯性が発現された。
S nあるいは S n — Z n合金をステンレス鋼基材に対してめっき 法で配する場合、 前記した半年間の複合サイクル腐食試験で耐食性 を確保するためには付着量として 1 0 g Zm2以上が必要であり、 このめつき付着量を工業的に確保するには溶融めつきが好適である と結論した。 次に、 本発明者らは、 塩害環境のみならず劣化ガソリンあるいは アルコール燃料に対する S n系めつき金属の腐食特性についても検 討を加えた。 0. 0 1 %ギ酸と 0. 0 1 %酢酸ぉょび 0. 0 1 % N a C 1 を含有する 5 0 °Cの溶液中、 および 3 %水を含有する 6 0 °C のエタノール溶液における腐食速度を測定した。 結果の一例を図 4 に示す。
A 1 はエタノール中での腐食が激しく、 Z nは有機酸含有環境で の腐食が問題である。 一方、 S nはエタノール環境はもとより劣化 ガソリン環境でも腐食速度が小さく、 満足すべき耐食性が得られる 。 S n— Z n系合金は Ζ ηの含有量が多くなると合金中 Ζ ηの腐食 が問題となるが、 含有量が 1 0 %以下であれば殆ど S nと同等レべ ルの耐食性が得られる。 フィルターや噴射部品などの燃料供給系統 における目詰まり問題を回避するための腐食速度は可及的に低レべ ルでなければならないが、 その許容値としては従来使用されてきた ターンメタル (P b— S n合金) の劣化ガソリン (非アルコール) 環境を模擬した 0. 0 1 %ギ酸と 0. 0 1 %酢酸ぉょび0. 0 1 % N a C l を含有する 5 0 °Cの水溶液中での腐食速度を基準として、 上限値を 1 O m g Zn^/ ti r として設定した。 なお、 ステンレス 鋼自体は当該環境において腐食は生じない。
このように、 S nあるいは S n— Ζ η合金の溶融めつきによって 、 ステンレス鋼の塩害腐食問題が解消されることが明らかになつた しかしながら、 ステンレス鋼基材にめつきされた S nあるいは S n— Z n合金は、 別の問題を引き起こす。 その問題は、 溶接割れで ある。 すなわち、 S nあるいは S n— Z n合金をめつきした状態で シーム溶接、 プロジヱクシヨン溶接、 スポッ ト溶接、 T I G溶接や M I G溶接や高周波溶接、 あるいはロウ付けを行うと溶接部あるい はロウ付け部に割れが生じる。 シーム溶接、 プロジェクシヨン溶接
、 スポッ ト溶接 T I G溶接や M I G溶接や高周波溶接、 あるいは口 ゥ付けは燃料タンクや燃料パイプの生産の必須工程であり、 この際 に割れが生じるのであれば、 いかに塩害腐食が防止できる素材であ つても、 また、 いかにアルコール耐食性が優れていても、 燃料タン クゃ燃料パイプ用素材としては成立し得ない。
本発明者らが鋭意研究した結果、 この割れは、 溶接あるいはロウ 付け時の入熱で液体化した S nあるいは S n— Z n合金が熱影響に よつて粗粒化した基材の粒界に進入して粒界強度を低下させつつ、 温度降下にともなって付加される引張残留応力の条件下で基材熱影 響部の表面から開口して割れていく、 いわゆる液体金属脆化である ことがわかった。 そもそも S nや S n— Z n合金が低融点金属であ ることが致命的であるが、 液体金属脆化は素材と液体金属種の組み 合わせによって感受性が異なるとされてきている。 ステンレス鋼に 関して、 S nによる液体金属脆化は全く知られていないため、 本発 明者らはステンレス鋼基材の合金組成の視点から割れ感受性との関 係について探索した。 すなわち、 数種の合金組成のステンレス鋼基 材に S nを溶融めつきした板材を用いてシーム溶接を施し割れ有無 を評価した。 その結果、 単純に C rだけを含有した鋼では割れが生 じず N i の含有量が多いと割れが生じ易いことが明らかとなり、 割 れ感受性が鋼組成に依存することを知見した。 これを踏まえて、 さ らに主要な合金の組成を変化させたステンレス鋼材を用いてシーム 溶接試験を追加し、 割れが生じないための必要な鋼組成条件を合金 元素含有量の回帰式として決定したのである。 すなわち、 図 5に示 すように、 ステンレス鋼基材の鋼組成が ( 1 ) 式で定義される Y値 がー 1 0 . 4以下の条件を満たす必要がある。
( 1 ) 式 : Y = 3 . 0 [ N i ] + 3 0 [ C ] + 3 0 [ N ] + 0. 5 [M n ] + 0. 3 [ C u ] - 1. 1 [C r ] 一 2. 6 [S i ] - 1. 1 [M o] - 0. 6 ( [N b ] + [T i ] ) - 0. 3 ( [ A 1 ] + [V] )
S nによる液体金属脆化の機構については必ずしも明らかではな いが、 ( 1 ) 式において Y値を増大させる元素が全てオーステナィ 卜安定化元素であり Y値を低減する元素が全てフェライ ト安定化元 素であること、 また、 ( 1 ) 式における各元素の係数が相安定化能 の序列とほぼ一致することから、 脆化感受性はフェライ トとオース テナイ 卜の相バランスによって支配されると推察される。 すなわち 、 フェライ ト Zフェライ ト粒界、 フェライ ト Zオーステナイ ト粒界 、 オーステナイ ト/オーステナイ ト粒界の 3者で液体 S nの侵入し 易さが異なるために相バランスの違いによって割れ感受性が影響さ れるものと推察され、 オーステナイ ト相が少なく フェライ ト相が多 いほど S nの液体金属脆化に対して抵抗性を有する素材であるとみ なされる。
しかしながら、 主要な合金元素から算出される Y値が所定の値で あっても、 不純物元素である P, Sの含有量が高い場合には液体金 属脆化割れ感受性を皆無にするには至らない。 すなわち、 図 6に示 すように、 P含有量が 0. 0 5 0 %を超える場合、 あるいは S含有 量が 0. 0 1 0 %を超える場合に、 割れが認められた。 これら元素 は粒界強度を低下させる作用を奏するためと推察される。 したがつ て、 Y値が所定の条件を満たすと共に P, Sの含有量を許容限界レ ベル以下に規定することによって始めて、 S n系めつきを施しても 液体金属脆化を起こさず溶接部信頼性を満足する燃料タンクあるい は燃料パイプ用途の素材となり得るのである。
さらに、 燃料タンクへの加工工程で重視しておくべき特性とし て、 プレス加工性が挙げられる。 これらプレス成形性をはじめとし た冷間加工性は素材自体の材質特性と素材表面の摺動抵抗が支配.因 子となる。 S nは軟質金属であるため S n系めつき層表面の摺動抵 抗は十分に小さい。 このため、 ステンレス鋼基材が具備すべき冷間 加工性は、 めっきを施さないステンレス鋼板に比べて緩和されると いう利点がある。 これを踏まえて、 S n系めつき層の存在を前提と した基材に必要な材質特性を設定したものである。
また、 給油管への加工においては、 拡管加工、 曲げ加工が施され 、 拡管加工性については、 基材の材質特性に加え、 裸のフェライ ト 系ステンレス鋼溶接管と同様に、 母材と溶接部の硬度や溶接ビ一ド 厚による強度バランスを適正な範囲にすることや、 溶接管母材部の 円周方向伸びを確保することが重要である。 すなわち、 S nめっき や S n— Z nめっきした 0. 8mm tの各種ステンレス鋼帯を口一 ル成形により 2 5. 4 Γηιηφの電鏠溶接管を種々の造管条件、 造管 後矯正条件、 溶接ビード切削条件で製造し、 動粘度 100mm2/s (40°C ) 程度の潤滑油を用い、 テーパー角度 2 0 ° のパンチで、 外径が 3 0 φ , 3 8 φ、 4 5 φ , 5 1 φの同軸拡管とオフセッ ト量 6 mmの 偏芯拡管 5 1 φの 5工程で拡管加工し、 全工程での割れ有無により 拡管加工性を評価した結果、 図 7や図 8に示すように、 溶接部のビ ッカース硬さ ΗνΉと母材部のビッカース硬さ HvMとの硬度差 ΔΗ V ( = Η ν,-Η v M ) が 1 0〜40の範囲で、 溶接部のビ一ド厚さ Tff と母材部の肉厚 TMとの比 RT (=TffZTM) が 1. 0 5〜 1. 3の範囲に規定することや、 成形、 溶接、 矯正後の溶接管母材部の 円周方向伸びが 1 5 %以上に規定することによって、 素管の 2倍以 上の拡管ゃ偏芯拡管が可能な表面処理ステンレス鋼溶接管となり得 るのである。
本発明は前記知見に基づいて構成したものであり、 その要旨は以 下の通りである。 ( 1 ) 質量%で、 C : ≤ 0. 0 3 0 %、 S i : ≤ 2. 0 0 %、 M n : ≤ 2. 0 0 %、 P≤ 0. 0 5 0 %、 S : ≤ 0 . 0 1 0 0 %、 N : ≤ 0 . 0 3 0 %、 A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : 1 0. 0 0〜 2 5. 0 0 %を含有し、 加えて N i : 0 , 1 0〜 4. 0 0 % 、 C u : 0. 1 0〜 2. 0 0 %, M o : 0. 1 0〜 2. 0 0 %、 V : 0 , 1 0 - 1. 0 0 %の 1種または 2種以上と T i : 0. 0 1〜 0. 3 0 %, N b : 0. 0 1 〜 0. 3 0 %の 1種または 2種を含有 し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義される Y値が— 1 0 , 4以下であるステンレス鋼板基材の表面に、 S nお よび不可避的不純物からなり付着量が 1 0 gZm2以上 2 0 0 g / m2以下である防食めつき層を有することを特徴とする塩害環境で の耐食性および溶接部信頼性に優れた自動車燃料タンク用および自 動車燃料パイプ用表面処理ステンレス鋼板。
( 1 ) 式 : Y = 3. 0 [N i ] + 3 0 C] + 3 0 [N] + 0. 5 [M n ] + 0 , 3 [C u] - 1 . 1 [ C r ] 一 2. 6 [ S i ] - 1 . 1 [M o ] 〜 0. 6 ( [N b ] + [T i ] ) - 0. 3 ( [ A 1 ] + [V] )
( 2 ) 質量%で、 C : ≤ 0. 0 3 0 %、 S i : ≤ 2. 0 0 %、 M n : ≤ 2. 0 0 %, P≤ 0. 0 5 0 %、 S : ≤ 0 . 0 1 0 0 %、 N :
≤ 0. 0 3 0 %, A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : 1 0. 0 0〜 2 5. 0 0 %を含有し、 加えて N i : 0. 1 0〜 4. 0 0 % 、 C u : 0. 1 0〜 2. 0 0 %, M o : 0. 1 0〜 2. 0 0 %、 V : 0. 1 0〜: L . 0 0 %の 1種または 2種以上と丁 1 : 0. 0 1 〜 0. 3 0 %, N b : 0. 0 1〜 0 . 3 0 %の 1種または 2種を含有 し、 残部が不可避的不純物と F eより成り、 上記 ( 1 ) 式で定義さ れる Y値が一 1 0. 4以下であるステンレス鋼板基材の表面に、 Z n : 0. 8〜 1 0. 0 %と残部が S nおよび不可避的不純物からな り付着量が 1 0 g _ m2以上 2 0 O gZm2以下である防食めつき層 を有することを特徴とする塩害環境での耐食性および溶接部信頼性 に優れた自動車燃料タンク用および自動車燃料パイプ用表面処理ス テンレス鋼板。
( 3 ) 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 1. 0 0 %、 M n : ≤ l . 0 0 %, P≤ 0. 0 5 0 %、 S ≤ 0. 0 1 0 0 %、 N : ≤ 0. 0 2 0 0 %, A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : l 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i +N b) Z (C + N) : 5. 0〜 3 0. 0を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 上記 ( 1 ) 式で定義 される Y値が— 1 0. 4以下であるステンレス鋼板基材の表面に、 S nおよび不可避的不純物からななり付着量が 1 0 g Zm2以上 2
0 0 g/m2以下である防食めつき層を有することを特徴とする塩 害環境での耐食性および溶接部信頼性に優れた自動車燃料夕ンク用 および自動車燃料パイプ用表面処理ステンレス鋼板。
(4 ) 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 1. 0 0 %, M n : ≤ 1.. 0 0 % , P≤ 0. 0 5 0 %、 S : ≤ 0. 0 1 0 0 %、 N
: ≤ 0. 0 2 0 0 %、 A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : l 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i + N b ) / (C + N) : 5. 0〜 3 0. 0を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 上記 ( 1 ) 式で定義 される Y値が一 1 0. 4以下であるステンレス鋼板基材の表面に、 Z n : 0. 8〜 1 0. 0 %と残部が S nおよび不可避的不純物から なる防食めつき層を、 溶融めつき法によって付着量 1 0 gZm2以 上 2 0 0 g Zm2以下で形成させたことを特徴とする塩害環境での 耐食性および溶接部信頼性に優れた自動車燃料タンク用および自動 車燃料パイプ用表面処理ステンレス鋼板。 ( 5 ) 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 0. 6 0 %、 M n : ≤ 0. 6 0 %、 P≤ 0. 0 4 0 %, S : ≤ 0. 0 0 5 0 %、 N
: ≤ 0. 0 1 5 0 %, A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : 1 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i + N b) / ( C + N) : 5. 0〜 3 0. 0 を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 上記 ( 1 ) 式で定義 される Y値が一 1 0. 4以下であるステンレス鋼板基材の表面に、 S nおよび不可避的不純物からなり付着量が 1 O gZm2以上 2 0
0 g Zm2以下である防食めつき層を有することを特徴とする塩害 環境での耐食性および溶接部信頼性に優れた自動車燃料タンク用お よび自動車燃料パイプ用表面処理ステンレス鋼板。
( 6 ) 質量%で、 C : ≤ 0. 0 1 0 0 %, S i : ≤ 0. 6 0 %、 M n : ≤ 0. 6 0 %, P≤ 0. 0 4 0 %、 S : ≤ 0. 0 0 5 0 %, N
: ≤ 0. 0 1 5 0 % A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : l
0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i + N b) / ( C + N) : 5. 0〜 3 0 , 0 を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義され る Y値が一 1 0. 4以下であるステンレス鋼板基材の表面に、 Z n
: 0. 8〜 1 0. 0 %と残部が S nおよび不可避的不純物からなり 付着量が 1 O g Zm2以上 2 0 0 g /m2以下である防食めつき層を 有することを特徴とする塩害環境での耐食性および溶接部信頼性に 優れた自動車燃料タンク用および自動車燃料パイプ用表面処理ステ ンレス鋼板。
( 7 ) 上記 ( 1 ) , ( 3 ) , ( 5 ) のいずれかに記載のステンレス 鋼板基材に、 さ らに、 質量%で、 B : 0. 0 0 0 2〜 0. 0 0 2 0 %をさらに含有することを特徴とする塩害環境での耐食性および溶 接部信頼性に優れた自動車燃料タンク用および自動車燃料パイプ用 表面処理ステンレス鋼板。
( 8 ) 上記 ( 2 ) , ( 4) , ( 6 ) のいずれかに記載のステンレス 鋼板基材に、 さらに、 質量%で、 B : 0. 0 0 0 2〜 0. 0 0 2 0 %をさらに含有することを特徴とする塩害環境での耐食性および溶 接部信頼性に優れた自動車燃料タンク用および自動車燃料パイプ用 表面処理ステンレス鋼板。
( 9 ) 質量%で、 C : ≤ 0. 0 1 0 0 %, S i : ≤ 0. 6 0 %、 M n : ≤ 0. 6 0 %、 P≤ 0. 0 4 0 %, S : ≤ 0. 0 0 5 0 %, N ≤ 0. 0 1 5 0 % , A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : l 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i +N b ) / (C + N) : 5. 0〜 3 0. 0を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F e.より成り、 上記 ( 1 ) 式で定義 される Y値が一 1 0. 4以下であり、 フェライ ト単相の金属組織を 有し、 平均 r値が 1. 4以上、 全伸びが 3 0 %以上を有するステン レス鋼板基材の表面に、 S nおよび不可避的不純物からなり、 付着 量が 1 0 g /m2以上 2 0 0 gZm2以下である防食めつき層を有す ることを特徴とする塩害環境での耐食性および溶接部信頼性に優れ た自動車燃料タンク用および自動車燃料パイプ用表面処理ステンレ ス鋼板。
( 1 0 ) 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 0. 6 0 %、 M n : ≤ 0. 6 0 %、 P≤ 0. 0 4 0 %、 S : ≤ 0. 0 0 5 0 %、 N : ≤ 0. 0 1 5 0 %, A 1 : 0. 0 1 0〜 0. 1 0 0 %, C r : 1 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i +N b) / ( C + N) : 5. 0〜 3 0. 0 を満たす T i, N bの 1種または 2種を 含有し、 残部が不可避的不純物と F eより成り、 上記 ( 1 ) 式で定 義される Y値が— 1 0. 4以下であり、 フェライ ト単相の金属組織 を有し、 平均 r値が 1. 4以上、 全伸びが 3 0 %以上を有するステ ンレス鋼板基材の表面に、 Z n : 0. 8〜 1 0. 0 %と残部が S n および不可避的不純物からなり付着量が 1 0 g Z m 2以上 2 0 0 g m2以下である防食めつき層を有することを特徴とする塩害環境 での耐食性および溶接部信頼性に ¾れた自動車燃料夕ンク用および 自動車燃料パイプ用表面処理ステンレス鋼板。
( 1 1 ) 防食めつき層の上に化成処理皮膜を形成させた前記 ( 1 ) から ( 1 0) のいずれかに記載の塩害環境での耐食性および溶接部 信頼性に優れた自動車燃料タンク用および自動車燃料パイプ用表面 処理ステンレス鋼板。
( 1 2 ) 防食めつき層あるいは化成処理皮膜の上に摩擦係数が 0.
1 5以下となる可水溶性潤滑皮膜を形成させたことを特徴とする前 記 ( 1 ) から ( 1 1 ) のいずれかに記載の塩害環境での耐食性およ び溶接部信頼性に優れた自動車燃料タンク用および自動車燃料パイ プ用表面処理ステンレス鋼板。
( 1 3 ) 前記 ( 9) 、 ( 1 0) のいずれかに記載の表面処理ステン レス鋼板を素材とする溶接管であって、 溶接部のビッカース硬さ H vwと母材部のビッカース硬さ HvMとの硬度差 ΔΗν ( = Hvw— H vM) が 1 0〜 4 0の範囲で、 溶接部のビード厚さ Twと母材部の 肉厚 TMとの比 RT (= T,/TM) が 1. 0 5〜 1. 3であること を特徴とする拡管加工性に優れた自動車給油管用表面処理ステンレ ス鋼溶接管。
( 1 4) 成形、 溶接、 矯正後の溶接管母材部の円周方向伸びが 1 5 %以上であることを特徴とする前記 ( 1 3) に記載の拡管加工性に 優れた自動車給油管用表面処理ステンレス鋼溶接管。 図面の簡単な説明
図 1 は、 塩害環境を模擬した 5 0 °Cの N a C 1 飽和水溶液中にお ける各種金属材料の腐食電位を測定した結果を示すものである。 図 2は、 塩害環境を模擬した 5 0 °Cの N a C 1飽和水溶液中にお ける各種金属材料とステンレス鋼の間に流れるガルバニックカップ ル電流を腐食速度に換算した結果を示すものである。
図 3は、 複合サイクル腐食試験によって S nあるいは S n— Z n 合金めつき試験片の腐食量を求めた結果であり、 めっき金属中の Z n含有量による耐食性への影響を示すものである。
図 4 ( a ) は、 燃料タンクあるいは燃料パイプの内面の劣化ガソ リン環境における各種金属材料の腐食速度を求めた結果を示す図。 図 4 ( b ) はエタノール環境における各種金属材料の腐食速度を 求めた結果を示す図である。
図 5は、 S n系めつきを施したステンレス鋼板にシーム溶接を施 した後、 溶接熱影響部における液体金属脆化割れの有無を評価した 結果を示すものであり、 鋼板の主要合金元素含有量から算出される Y値の影響を示したものである。
図 6は、 S n系めつきを施したステンレス鋼板にシ一ム溶接を施 した後、 溶接熱影響部における液体金属脆化割れの有無を評価した 結果を示すものであり、 鋼板の P , S含有量による影響を示したも のである。
図 7は、 溶接管の拡管加工状況と溶接部のビッカース硬さ HVff と母材部のビッカース硬さ HVMとの 硬度差 Δ ΗΥ ( = HVff — Η VM) 、 溶接部のビード厚さ 1 と母材部の肉厚 TMとの比 R T (= T,/ TM) の関係を示したものである。
図 8は、 溶接管の円周方向伸びと偏芯拡管加工での括れ、 割れ発 生の関係を示したものである。
図 9は、 プレス成形試験に用いた夕ンクの形状を示したものであ り、 アッパーシェルおよびロアーシェルを別々にプレスした後、 両 者のフランジ部分を合わせて破線部分にシーム溶接を施した状況を 示したものである。 実際のタンクは、 この後、 ポンプリテ一ナー、 バルブリテーナ一、 燃料入口パイプなどの部品が溶接やロウ付けで 接合されて仕上げられるが、 図 9は、 この最終形状の一歩手前の状 況を示したものである。
図 1 0は、 塩害耐食性試験に用いた給油管の形状を示した図であ る。 ロウ付け部分及びステ一金具接触部分から力ッ トサンプルを採 取して腐食試験に供した。 発明を実施するための最良の形態
先ず、 本発明における燃料夕ンクおよび燃料パイプ用表面処理ス テンレス鋼板について説明する。
ステンレス鋼板基材の成分に関し、 本発明における燃料系部品用 の素材としては、 C r : 1 0. 0 0〜 2 5. 0 0 %を含有するステ ンレス鋼板とする。 C rは素材の耐食性を支配する主要元素であり 、 1 0. 0 0 %を下回ると S n系めつきを施しても十分な塩害腐食 抵抗性が得られない。 S n系めつきを施してもシーム溶接、 プロジ ェクシヨ ン溶接やスポッ ト溶接、 丁 1 溶接ゃ¾11 0溶接ゃ高周波 溶接あるいはロウ付けによって熱影響を受けた部位はめつきが損傷 しており、 これらの部位における塩害環境下での耐食性は当該部位 周辺のめっき層の犠牲溶解によって担保されなければならないが、 基材の C r量が 1 0. 0 0 %を下回ってしまうと基材の腐食電位が S nの腐食電位に近付いて S nと基材の電位差が小さくなつたり、 S nの電位より基材の電位が低くなつてしまうため、 犠牲防食効果 が発現されなくなるためである。 また、 有機酸などを含有する内面 腐食環境においても同様の現象が生じてくる。 したがって、 ステン レス鋼基材として具備すべき鋼成分要件の 1つとして、 C r含有量 が 1 0. 0 0 %以上であることを必要とする。 一方、 C r含有量の 上限に関しては、 プレス成形などの冷間加工性低下や素材コス ト上 昇の観点から制限すべきであり 2 5. 0 0 %が実用上の限界である 加えて、 C r以外の主要合金元素の含有量が ( 1 ) 式で定義され る Y値が一 1 0. 4以下となるように調整されていなければならな い。 これは、 S n系めつきを前提とする本発明において最も重要な 素材要件となる。 すなわち、 この条件は、 燃料タンク形成や燃料パ ィプ形成に不可欠の溶接あるいはロウ付け工程において液体金属脆 化による割れを回避するために必要となる鋼成分要件である。 Y値 がー 1 0. 4を上回ると、 S nあるいは Z nが低融点であるが故に 溶接熱影響部に液体金属脆化による割れが生じてしまう。 このため 、 Y値は一 1 0. 4以下に制限する必要がある。
( 1 ) 式に含まれる合金元素の含有量の規定理由は以下 の通りである。
C、 N : Cおよび Nは鋼板の延性を低下させプレス成形などの冷 間加工性を劣化させると共に溶接部あるいはロウ付け部における粒 界腐食の原因となる元素である。 加えて、 オーステナイ ト安定化元 素であり Y値を増大させる作用を有する。 したがって、 これら元素 の含有量は可及的低レベルに制限する必要があり、 C、 Nの上限を 0. 0 3 0 %とする。 Y値に影響する他元素とのバランスも考慮す ると、 Cの上限は 0. 0 1 0 0 %とするのが望ましく、 Nの望まし い上限は 0. 0 2 0 0 %であり、 より望ましは 0. 0 1 5 0 %であ る。
S i : S i はフェライ ト安定化元素であり Y値を低減して液体金 属脆化を抑制する作用を有するが、 鋼板の延性を劣化させるため多 量に含有させるべきではなく、 上限を 2. 0 0 %に、 望ましくは 1 . 0 0 %に制限する。 より望ましくは、 上限を 0. 6 0 %に制限す るのがよい。
M n : M nも鋼板の延性を劣化させる元素であり、 オーステナイ 卜安定化元素で Y値を増大させるため、 含有量の上限を 2. 0 0 % に、 望ましくは 1 . 0 0 %に制限する。 より望ましくは、 上限を 0 . 6 0 %に制限するのがよい。
N i : N i は、 Mnと同様オーステナイ ト安定化元素であり Y値 を増大させるが、 その効果は M nよりも大きい。 このため、 含有量 の上限を 4. 0 0 %に制限する。 一方、 N i は鋼板基材の耐食性を 高めるのに有用な元素であるため、 より高度の耐食性を追求して含 有させても良い。 その場合の下限含有量は 0. 1 0 %とする。
C u : C uも N i と同様オーステナイ ト安定化元素であり Y値を 増大させるので、 含有量の上限を 2. 0 0 %に制限する。 また、 C uは N i と同様にその効果は N i より小さい。 鋼板基材の耐食性を 高めるのに有用な元素であるため、 より高度の耐食性を追求して含 有させても良い。 その場合の下限含有量は 0. 1 0 %とする。
M o : M oは、 S i と同様にフェライ ト安定化元素であり Y値を 低減させるが、 多量に含有させると基材の延性が劣化する。 このた め、 含有量の上限を 2. 0 0 %に制限する。 なお、 燃料パイプ用途 の場合は、 S U S 4 3 6 Lと比較されるコス ト制約の観点から含有 量の上限を 0. 6 0 %とすることが好ましい。 一方、 M 0は基材の 耐食性を向上させるのに極めて有用な元素でもあるため、 より高度 の耐食性を追求して含有させても良い。 その場合の下限含有量は 0 . 1 0 %とする。
V : Vは、 M o と同様にフェライ ト安定化元素であり Y値を低減 させるが、 多量に含有させると基材の延性が劣化する。 このため、 含有量の上限を 1 . 0 0 %に制限する。 一方、 Vは M oと同様に基 材の耐食性を向上させるのに有用な元素でもあるため、 より高度の 耐食性を追求して含有させても良い。 その場合の下限含有量は 0. 1 0 %とする。
A 1 : A 1 は脱酸元素として有用であり、 フェライ ト安定化元素 で Y値を低減するので、 適量を含有させる。 含有量の範囲としては 0. 0 1 0〜0. 1 0 0 %を適正とした。
T し N b : T i , N bはフェライ ト安定化元素であり Y値を低 減する。 C , Nを炭窒化物として固定して粒界腐食を抑制する作用 も有する。 このため T i , N bの 1種以上を 0. 0 1 %を下限とし て含有させる。 一方、 鋼板基材の延性には有害であるため、 含有量 の上限を 0. 3 0 %とする。 T i , N bの適正含有量として C, N 合計含有量の 5倍量以上かつ 3 0倍量以下が望ましい。
これら主要元素ほか、 P, S , Bについては以下の理由で含有量 を規定する。
P : 粒界に偏祈して粒界強度を低下させ液体金属脆化割れ感受性 を高める元素であり、 本発明において取り扱いが極めて重要な元素 の 1つである。 また、 鋼板基材の延性を劣化させる元素でもある。 このため、 Pの含有量は可及的低レベルが望ましい。 許容可能な含 有量の上限を 0. 0 5 0 %とする。 望ましい Pの上限値は 0. 0 4 0 %であり、 さらに望ましくは 0. 0 3 0 %である。
S : Pと同様に、 液体金属脆化割れ感受性を高める元素であり、 本発明において取り扱いが極めて重要な元素の 1つでる。 また、 鋼 板基材の耐食性を劣化させる元素でもある。 このため、 sの含有量 は可及的低レベルが望ましい。 許容可能な含有量の上限を 0. 0 1 0 %とする。 望ましい S含有量の上限値は 0. 0 0 5 0 %であり、 さらに望ましくは 0. 0 0 3 0 %である。
B : 低温脆化あるいは 2次加工脆化に対する抵抗性を高める元素 として有用である。 しかしながら、 多量に含有させると硼化物が析 出して耐食性が劣化する。 このため、 含有させる場合の適正量は 0 . 0 0 0 2〜 0. 0 0 2 0 %の範囲とする。
さらに、 前記ステンレス鋼板は ( 1 ) 式の条件を満たすことに加 えてフェライ ト単相の金属組織を有するのが望ましい。 この理由は 、 前述のように、 フェライ ト組織の方が S nの液体金属脆化に対し て抵抗性を有するためである。 また、 オーステナイ ト相あるいはォ ーステナイ トから変態したマルテンサイ ト相とフェライ 卜の混合組 織になると機械的特性の調整が困難となりプレス成形などの冷間加 ェ性が劣化するためである。 また、 付随的理由として、 オーステナ ィ 卜相は塩化物環境で応力腐食割れ感受性を示す点が挙げられ、 こ の点からもオーステナィ ト相は避けるのが望ましい。
さらに、 前記フェライ ト系ステンレス鋼板の材質特性は、 プレス 成形性の点から、 平均 r値が 1 . 4以上、 全伸びが 3 0 %以上の 2 要件を共に満たすことが望ましい。 これらのうち 1要件でも満足さ れない鋼板は、 プレス成形ゃ拡管加工の時に割れが生じ易くなつて 加工度がマイルドになるよう部品形状を変更したり潤滑を工夫する 等の処置が必要になるためである。
なお、 前記材質特性は J I S Z 2 2 0 1 に規定される 1 3 B号試 験片を用いた引張試験によって求められる。 全伸びは、 引張試験前 後の標点間距離の変化量から求めるものとする。 平均 r値は、 ( r L + r c + Z r ^ / Aで定義し、 rい rい r Dは、 それぞれ、 圧延 方向、 圧延方向と直交する方向、 圧延方向に対して 4 5度の方向の ランクフォード値である。 加工硬化率は、 3 0 %および 4 0 %の引 張歪を付与したときの応力をそれぞれ測定して 2点間の勾配を算出 することによって求める。
次に、 前記の条件を満たすステンレス鋼板に対して施す防食めつ きについて説明する。
防食めつきに用いる金属は、 前記ステンレス鋼に対して電気化学 的に卑であって犠牲防食効果を発現できなければならない。 燃料夕 ンクあるいは燃料パイプは、 シーム溶接、 プロジェクシヨ ン溶接や スポッ ト溶接あるいはロウ付けが施されるが、 これらによって熱影 響を受けた部位はめつきが消失する。 めっき消失部位における塩害 環境下での耐食性を確保するのは当該部位周辺のめっき層の犠牲防 食効果に依る以外にないからである。
本発明では、 燃料夕ンクあるいは燃料パイプの外面の塩害環境に おける犠牲防食機能と消耗寿命、 および燃料タンクあるいは燃料パ ィプの内面の燃料環境における耐食性を考慮して、 S nおよび S n を生体として Z nを含む S n— Z n合金を選定する。 前記の図 1か ら図 4に示すように、 これら S nおよび S n— Z n合金は燃料タン クあるいは燃料パイプの外面および内面の腐食環境において満足す べき性能を示す。 ただし、 S n— Z n合金において、 Z n含有量が 1 0. 0 %を超えると、 Z nの溶出が顕在化し、 燃料タンクあるい は燃料パイプの外面および内面における腐食問題が現れるため、 S n— Z n合金における Z n含有量は 1 0. 0 %以下に制限する。 ま た、 S n— Z n合金における Z n含有量の下限は、 めっき金属の電 位が十分に低位となり且つ長期間維持される結果として良好な耐食 性が得られる 0. 8 %とし、 適正範囲を 0. 8〜 1 0. 0 %として 設定する。 耐食性の点から S n— Z n合金における Z n含有量の好 ましい範囲は、 3. 0〜 1 0. 0 %であり、 より望ましくは 7. 0 〜 9. 0 %である。
S nあるいは S n— Z n合金の不可避的不純物としては、 被めつ き材である鋼板もしくはプレめっきされた鋼板からめっき浴中に溶 解される F e , N i , C rなど、 めっき地金である S nや Z nの精 鍊不純物である P b , C d , B i , S b , C u , A 1 , M g , T i , S ί などが挙げられるが、 含有量としては F e、 P b、 S i 力 S 0 . 1 0 %未満、 N i , C r , C d , B i , S b , C u , A 1 , M g , T i , S i は 0. 0 1 %未満が通例であり、 めっき金属の防食性 に影響を与えるものではない。 なお、 ここで言う含有量とは、 めつ き層中の値である。
これら S n系防食金属は、 前記ステンレス鋼基材表面に形成され るものとし、 その付着量は 1 0 g Zm2以上、 S O O gZm2以下と する。 本発明では、 無塗装の燃料タンクあるいは燃料パイプを想定 しており、 この場合、 少なくとも防食めつき層が消失されない限り 塩害耐食性が確保される。 要求される防食期間は 1 5年で、 これに 相当する複合サイクル試験の期間は 1 8 0 日であり、 この期間で消 失され尽く さない必要最小限度の付着量として 1 0 g Zm2を設定 する。 めっき付着量が大きければ、 それに応じて防食寿命は延長さ れるが、 2 0 0 gZm2を超えると抵抗溶接に使用される電極の寿 命が著しく短縮されて生産性が阻害される。 このため、 上限を 2 0 O gZm2に設定する。 この付着量を確保する方法としては、 溶融 めつきが望ましい。
なお、 ここで規定するめつき付着量は片面に対する付着量であり 、 測定対象面をシールテープでマスキングしためっき板試料を 1 0 %N a OH溶液に浸潰して、 測定対象面の反対面のめっき層のみを 溶解した後に、 シ一ルテ一プを剥離して重量測定し、 その後再度 1 0 % N a O H溶液に浸漬して測定対象面のめっき層を溶解した後、 再度重量測定を行い、 これら重量変化から求めるものとして定義す る。
前記の防食金属の溶融めつきに先立って前記ステンレス鋼基材表 面にプレめっき層を設けると、 防食めつき層の密着性が向上してよ り望ましい形態となる。 プレめっき金属種としては N i, C o , C uの単体あるいは F e との合金などが適用できるが、 本発明では、 N i もしくは F e — N i を選定する。 図 1 に示すように、 N i、 F eはステンレス鋼より腐食電位が低く、 かつ腐食され難い金属であ るため、 単に防食めつき層の密着性を向上させるだけでなく、 S n が消耗された後も N i あるいは F e — N i の露出によって防食が可 能であるとの耐食性からみた利点がある。 プレめつきの付着量とし ては、 0 . 0 1〜 2 . 0 g Z m 2程度で十分である。
前記要件を満たした S n系めつきステンレス鋼板は、 プレス加工 やシーム溶接、 スポッ ト溶接、 プロジェクシヨ ン溶接といった溶接 やロウ付け、 あるいは金具の取り付けなどの通常の成形、 組立工程 を経て燃料タンクに成形される。 また、 給油管は、 S n系めつき鋼 板を素材として造管された電縫溶接管、 T I G溶接管あるいはレー ザ一溶接管を素材として拡管加工や曲げ加工などの冷間加工、 プロ ジェクシヨン溶接やロウ付けあるいは金具の取り付けなどの通常の 成形、 組立工程を経て成形される。 また、 燃料配管は、 S n系めつ き鋼板を素材として造管された電縫溶接管、 T I G溶接管あるいは レーザー溶接管を素材として曲げ加工などの冷間加工などの通常の 成形、 組立工程を経て成形される。
成形された燃料タンクあるいは燃料パイブは、 無塗装で車体に搭 載できる。 ただし、 車種によっては車体に搭載した状態で燃料タン クが外部から見える場合があるため、 意匠性の点から黒色塗装を施 してもよい。 また、 燃料タンクあるいは燃料パイプの製造過程にお ける溶接やロウ付けによってめつき層が損傷を受けるので、 当該部 位の耐食性をより確実なものにする目的で部分的に補修塗装を施し てもよい。 燃料タンクの塗装方法としては、 スプレー法などの既存 の方法で十分である。 燃料パイプの塗装方法としては、 スプレー法 のほか電着塗装法も適用できる。
黒色塗装を前提とする場合には、 防食めつきを施した後、 化成処 理皮膜を形成させて塗膜密着性を向上させるのが望ましい。 化成処 理方法としては、 6価クロムを含まない 3価クロム型のクロメート 処理など公知の技術を用いることができる。 付着量としては、 抵抗 溶接性を阻害しない 2 g / m 2以下が望ましい。
また、 プレス成形などの冷間加工時の加工性をより確かなものと するために、 防食めつき層の上あるいは化成処理皮膜の上に有機系 潤滑皮膜を形成してもよい。 この場合の潤滑皮膜は、 摩擦係数が 0 . 1 5以下であることが望ましい。 S n系めつき表面は摺動性に優 れ、 めっき板にプレス油を塗布するだけで 0 . 1 5程度の低摩擦係 数が得られる。 すなわち、 この値より摩擦係数が大きくなる潤滑皮 膜を形成させても、 前記めつき板にプレス油を塗布する場合に比べ て加工性が向上することはないので、 摩擦係数の上限を 0 , ' 1 5 と して規定する。
潤滑皮膜の組成としては、 潤滑膜の樹脂成分が温水やアル力リ水 に溶解されることで、 プレス加工などの冷間成形の後でかつ溶接や ロウ付け施工の前の段階で、 容易に除去できるものであることが望 ましい。 有機物である潤滑皮膜は、 溶接やロウ付けによる昇熱によ つて分解されて熱影響部に浸炭が起こり粒界腐食感受性が高まって 長期耐食性を劣化させる懸念がある。 また、 昇熱による皮膜の分解 生成物はヒュームとなり異臭を発生させるため、 溶接あるいはロウ 付けの作業環境を清浄に管理する必要が生じる。 このような問題を 解消するには、 溶接やロウ付けに先立って潤滑皮膜を除去すればよ く、 プレス加工後に温水やアルカリ水を用いて洗浄する程度の簡便 な手段で潤滑皮膜が除去できるのが望ましい。 このような可水溶性 潤滑皮膜は、 潤滑機能付与剤とバインダー成分から構成される。 そ のバインダー成分としてポリエチレングリコール系、 ポリプロピレ ングリコ一ル系、 ポリビニルアルコール系、 アクリル系、 ポリエス テル系、 ポリウレタン系などの樹脂水分散体あるいは水溶性樹脂の 中から選定し、 また、 潤滑機能付与剤としては、 ポリオレフイ ン系 ワックス、 フッ素樹脂系ワックス、 パラフィ ン系ワックス、 ステア リン酸系ヮックスの中から選定して適用すればよい。
潤滑皮膜の厚みについては、 薄過ぎれば潤滑効果が不十分となる ので、 ある程度の厚みが必要であり、 0 . 5 inが必要下限膜厚と して管理するのが望ましい。 上限については、 厚過ぎると皮膜除去 に時間がかかったり使用するアルカリ液の劣化を早めるなど、 皮膜 除去工程に悪影響を与えるので、 5 mを上限としておくのが望ま しい。
潤滑皮膜の形成手段としては、 特に規定するものではないが、 膜 厚を均一に制御する観点から口一ルコートが望ましい。
次に、 給油管用表面処理ステンレス鋼溶接管について述べる。 給油管は、 通常、 パンチによる多段工程での拡管加工により成形 され、 各工程でパンチによる変形抵抗や摩擦力により、 管軸方向に は圧縮変形し、 管円周方向には引張変形を受けながら拡管加工され ている。 このような加工において、 溶接管の溶接部と母材部の強度 バランスが適正でない場合、 割れにいたる。 すなわち、 前記図 7に 示すように、 母材と溶接部の硬度差が小さい、 溶接ビード部が薄い 等、 母材部に対して溶接部の強度が相対的に低い場合には、 溶接部 で軸方向 (縦方向) に割れが発生する。 一方、 母材と溶接部の硬度 差が大きい、 溶接ビード部が厚い等、 母材部に対して溶接部の強度 が高すぎる場合は、 溶接部の管軸方向の変位が、 母材部に比し小さ く、 拡管部管端で溶接部が突き出た形状になり、 溶接部と母材部の 管軸方向変位量の差により、 両者の間にせん断的な変形が大きくな り、 溶接部近傍の母材部から斜め方向に割れが発生する。 このため
、 溶接部のピッカース硬さ H vwと母材部のピツカ一ス硬さ H vMと の硬度差 Δ Ην ( = H vff -Η νΜ) が 1 0〜 4 0の範囲で、 溶接部 のビード厚さ 1\と母材部の肉厚 TMとの比 R T ( = Tノ T M ) が 1 . 0 5〜 1. 3の範囲に規定する。 また、 偏芯拡管加工を伴う場合 には、 偏芯部が張り出され、 局部的に管軸方向および円周方向に引 張変形を受けるため、 前記図 8に示すように、 溶接管母材部の円周 方向伸びの下限を 1 5 %として規定する。
前記、 拡管加工性を得るための手段としては、 ロール成形ゃゲー ジ成形でオープンパイプ状に成形さされる時、 できるだけ低歪で成 形する方法や条件により円周方向の延性を確保することや、 溶接部 については、 全体の成形ゃスクイーズロールによるアップセッ ト量 の適正化、 矯正量の適正化や溶接ビ一ド切削基準を設け、 溶接部と 母材部の強度バランスを適正な範囲に管理することが必要である。
なお、 溶接管の硬度差 ΔΗ νは、 溶接部のピッカース硬さを、 マ イクロビッカース硬さ計、 荷重 5 0 0 gで、 0. 2 mm間隔で測定 し、 母材部のビッカース硬さは、 溶接部を除き、 全周を 4 5 ° 間隔 で、 荷重 5 0 0 gで 7点測定し、 その平均とし、 硬度差として評価 した。 肉厚の比は、 溶接部の最も厚い部位を溶接部肉厚とし、 母材 部はピツカ一ス硬さを測定した 7点の平均を母材肉厚として評価し た。 また、 溶接管母材部の円周方向伸びは、 円周方向に切断、 展開 後、 J I S 1 3号 Bに準拠した引張試験片を切り出し、 両端に掴み 部を溶接後、 引張試験を行い、 全伸びを評価した。
さらに、 燃料配管について述べる。
燃料配管は、 曲げ加工を施す程度で給油管に比べると加工がマイ ルドである。 したがって、 前記の給油管用溶接曾は、 そのまま燃料 配管用にも適用可能である。 なお、 前記の溶接管の造管溶接法は、 特に規定する必要はなく、 電鏠溶接、 レーザ一溶接、 TIG溶接、 MIG溶接、 高周波溶接などの公 知の技術を用いることができる。 実施例
実施例に基づいて、 本発明をより詳細に説明する。
(実施例 1 : 溶接割れ感受性)
表 1に示す組成のステンレス鋼を 1 5 0 k g真空溶解炉で溶製し 、 5 0 k g鋼塊に铸造した後、 熱延一熱延板焼鈍一酸洗—冷延一中 間焼鈍一冷延—仕上焼鈍一仕上酸洗の工程を通して板厚 0. 8mm の鋼板を作製した。
この鋼板よりカツ トサンプルを採取して、 N iプレめっきを施し た後、 S n系合金の溶融めつきを施した。 めっき付着量は、 片面 3 0〜40 gZm2とした。 この溶融めつきサンプルより 7 0 X I 5 0サイズの短冊試料を採取し、 2枚重ねてシーム溶接を行った後、 溶接部の断面を顕微鏡観察して割れの有無を評価した。
評価結果を表 1に示す。 比較例 N o. 2 1〜 2 7は、 Y値が本発 明の範囲を超えているため、 溶接熱影響部において液体金属脆化に よる割れが発生した。 特に Ni含有量が多く Y値が高い No. 2 3 ( S U S 3 04 L) 、 No . 24 (S US 3 1 6 L) の割れは外観目視観 察で明瞭に識別できる規模の割れが認められた。 また、 比較例 N o , 2 8〜 3 3は、 Y値は本発明の範囲を満たしている力 P含有量 , S含有量のいずれか一方あるいは両方が本発明の範囲を外れてい るため、 割れが認められた。 一方、 本発明 N o. 1〜 1 0では、 Y 値が適正化されていたので、 顕微鏡観察によっても割れは認められ なかった。 表 1
Figure imgf000033_0001
Y = 3.0Ni+30C+30N+0.5 n+0.3Cu-l. lCr-2.6Si-l. lMo-0.6 (Nb+Ti) -0.3 (Al+V) 下線部: 本発明の範囲外
(実施例 2 : プレス性)
表 2に示す組成のフェライ ト系ステンレス鋼 A, B, C , Εおよ び 9 % C r鋼 Dのスラブを、 熱延——酸洗— 1回目冷延一中間焼鈍 一 2回目冷延—仕上焼鈍—仕上酸洗の工程を通して板厚 0. 8 mm の鋼板を製造した。 冷延圧下率は累積で 7 3〜 7 5 %とし、 中間焼 鈍は 8 5 0 °Cまたは 9 0 0 °C、 仕上焼鈍は 8 3 0〜 9 5 0 °Cとした 。 中間焼鈍と 2回目冷延の有無で材質特性を変化させた。 この鋼板 に対して、 付着量 1. 0 g /m2の N i プレめっきを電気めつき法 で施した後、 表 3 に示す組成の S n系防食めつき層を溶融めつき法 で形成させた。 溶融めつきに際しては、 ガスワイプを変化させて付 着量を変えた。 この鋼板より引張試験片を採取して引張試験を行い 表 3 に示す材質特性を把握した。
この鋼板より、 Φ 1 0 0 mmのサンプルを打ち抜いて、 測定対象 面をシールテープでマスキングしためっき板試料を 1 0 %N a O H 溶液に浸潰して、 測定対象面の反対面のめつき層のみを溶解した後 に、 シールテープを剥離して再度 7 0 m mに打ち抜いた試料板の 重量を測定した後、 1 0 % N a OH溶液に浸漬して測定対象面のめ つき層を溶解した後、 再度重量測定を行い、 これら重量変化から片 面のめっき付着量を求めた。
このようにして製造しためっき鋼板をプレス試験に供した。 成形 したタンクの形状を図 9 に示す。 アッパー、 ロア一の両シェルには 、 タンクの剛性を高める凹み、 タンク吊り下げバンドを架ける部位 への凹み、 車体に接する部位における突起などが随所に形成させた 。 成形高さは両シェルともに約 1 5 0 mmとした。 アッパー側の方 がロアー側より形状が複雑で加工条件が厳しい。 殆どの試験は、 S n系めつきままの鋼板に対してプレス油を塗布した状態でプレスし たが、 一部の試験では可水溶型潤滑皮膜を形成させた後に供試した 。 潤滑皮膜の形成方法は以下の通りである。
攪拌機、 ジムロート冷却器、 窒素導入管、 シリカゲル乾燥管、 温 度計を備えた 4つ口フラスコに、 3—イソシァネートメチルー 3, 5 , 5 — トリメチルシクロへキシルイソシァネート 8 7. l l g、 1 , 3 —ビス ( 1 —イソシァネー ト— 1 ーメチルェチル) ベンゼン 3 1. 8 8 g、 ジメチロールプロピオン酸 4 1 . 6 6 g、 トリェチ レンダリコール 4. 6 7 g、 アジピン酸、 ネオペンチルダリコール 、 1 , 6—へキサンジオールからなる分子量 2 0 0 0のボリエステ ルポリオール 6 2. 1 7 g、 溶剤としてァセトニトリル 1 2 2. 5 0 gを加え、 窒素雰囲気下で 7 0 °Cに昇温し 4時間攪拌してポリゥ レタンプレボリマーのァセトニトリル溶液を得た。 このポリウレタ ンプレポリマー液 3 4 6. 7 1 gを、 水酸化ナトリウム 1 2. 3 2 gを 6 3 9. 1 2 gの水に溶解した水溶液にホモディスパーを用い て分散、 エマルシヨ ン化し、 これに 2— [ ( 2—アミノエチル) ァ ミノ]エタノール 1 2. 3 2 gを水 1 1 0. 8 8 gで希釈した溶液 を添加して鎖伸長反応させ、 さらに 5 0 °C、 1 5 0 mmH gの減圧 下でポリウレタンプレボリマー合成時に使用したァセトニトリルを 留去することによって、 溶剤を実質的に含まない、 酸値 6 9、 固形 分濃度 2 5 %、 粘度 3 0 mP a * sのポリウレタン水性組成物を得 た。 このポリウレタン水性組成物に、 軟化点 1 1 0 °C平均粒径 2. 5 mの低密度ポリエチレンワックス、 平均粒径 3. 5 mのポリ テトラフルォロエチレンワックス、 融点 1 0 5 平均粒径 3. 5 a D1の合成パラフィ ンワックス、 平均粒径 5. 0 mのステアリ ン酸 カルシウムヮックス、 1次平均粒径 2 0 nm加熱残分 2 0 %のコロ ィダルシリカの中から 1種または 2種を配合して塗料とした。 ポリ ウレタン水性組成物に対するヮックス成分の配合比率を変化させて 、 形成される潤滑皮膜の摩擦係数を変化させることにした。 この塗 料を、 前記 S n系防食めつき鋼板にロールコート法で塗装して板温 8 0 °Cで焼付けて可溶型潤滑皮膜を形成させた。 膜厚は 1 . 0 ^ m とした。 なお、 一部の供試材については、 前記めつき鋼板にクロメ ート処理を施した。 付着量は 2 0 m g / m2とした。
このプレス成形試験後のアッパー、 ロアーの両プレス品で、 基材 割れおよびめつき剥離の有無を評価した。
試験結果を表 3に示す。 比較例 N o . 2 0 2〜 2 0 5は、 r値も しくは全伸びの少なくともいずれかが本発明の範囲を外れているた め、 プレスによって割れやめつき剥離が生じる。 一方、 本発明 N o . 1 0 1〜 1 1 6では、 r値、 全伸びはもとより、 潤滑皮膜の摩擦 係数も適正であるため、 割れを起こさずにプレス成形できる。
表 2
Figure imgf000037_0001
下線部 : 本発明の範囲外
Y = 3.0Ni + 30C+30N+0.5Mn+0.3Cu - 1. lCr-2.6Si-l. lMo-0.6 (Nb+Ti) -0.3 (Al+V)
表 3
Figure imgf000038_0001
下線部:本発明の範囲外 *1) PEワックス:低密度ホ'リエチレンワックス *2)〇:基材割れなし、 めっき剥離なし
PTFEワックス: t°リテトラフルれ;!:チレンワックス X:基材割れ有りまたはめつき剥離あり 含有量は樹脂固形分に対する割合。
(実施例 3 : スポッ ト溶接電極寿命)
実施例 2において製造された S n系防食めつき鋼板を素材とし て、 スポッ ト溶接を連続的に行い、 電極が溶損して溶接できなくな るまでの連続打点数を求めた。 防食めつきを Mさない場合の寿命の 1 Z 2以下まで低下する場合を不合格として評価した。
供試材の明細と試験結果を表 3に示す。 比較例 N o . 2 0 1 は、 防食めつき付着量が本発明の範囲を超えて多過ぎるため、 電極と防 食めつきの接触面積が増大して電極消耗寿命が短くなる。 一方、 本 発明 N o . 1 0 1〜: L 1 6および比較例 N o . 2 0 2〜 2 0 5は、 めっき付着量が適正であるため著しい電極損耗は回避される。
(実施例 4 : 溶接部および溶接隙間構造部の塩害耐食性) 実施例 2において製造された S n系防食めつき鋼板を素材として 、 7 0 X 1 5 0サイズの短冊サンプルを採取し、 これを 2枚重ねて シ一ム溶接を施して塩害腐食試験に供した。 腐食試験の内容として は、 5 % N a C l溶液噴霧、 3 5 °C X 2 H r ·→強制乾燥 (相対湿度 2 0 %) 6 0 °C X 4 H r—湿潤 (相対湿度 9 0 % ) 5 0 °C X 2 H r の複合サイクル試験を 5 4 0サイクルにわたって繰り返し、 その後 シーム溶接熱影響部について除鯖処理を施して腐食深さを測定し、 シ一ム溶接隙間構造部を解体、 除鲭して隙間内部における腐食深さ を測定した。 腐食深さは顕微鏡焦点深度法で求めた。 また、 溶接部 位断面における腐食形態を顕微鏡で観察して粒界腐食の有無を評価 した。
なお、 一部の供試材については、 前記めつき鋼板にクロメート処 理を施した。 付着量は 2 0 m g /m2とした。 また、 一部の供試材 については、 シーム溶接を施した後のサンプルに黒色塗料をスプレ 一塗装した。 塗料としてアイシン化成製ェマル夕 5 6 0 0 を用い、 膜厚を 2 5 とした。 供試材の明細および試験結果を表 4に示す。 比較例 No. 2 0 5は 、 T i含有量が本発明の要件を満たしていないため、 溶接部で粒界 腐食形態が認められ、 局部腐食腐食に対する抵抗性も不十分であつ た。 また、 比較例 N o . 3 0 4は、 C r含有量が本発明の範囲を外 れているため、 十分な耐食性が得られていない。 比較例 N o . 3 0 1 , 3 0 2 , 3 0 3は、 鋼成分は本発明の要件を満たしているが、 防食めつきの付着量が本発明の範囲を外れているため満足すべき耐 食性が得られていない。 比較例 N o . 3 0 5は防食めつきの組成が 付着量が本発明の範囲を外れているため満足すべき耐食性が得られ ていない。 一方、 本発明 N o . 1 0 1〜: L 1 6は、 鋼成分、 めっき 付着量ともに本発明の要件を満たしており、 クロメート処理および 黒色塗装の有無にかかわらず、 満足すべき耐食性が得られている。
表 4
Figure imgf000041_0001
下線部:本発明の範囲外 *3) Ο:元厚に対する最大腐食深さの割合が 50%以下
X :元厚に対する最大腐食深さの割合が 50%超
(実施例 5 : 内面耐食性)
実施例 2において製造された S n系防食めつき鋼板を素材として 1 7 0 X 1 7 0サイズのサンプルを採取し、 エリクセン試験機で 内径 7 5 mm、 高さ 4 5 mmのカップに成形し、 この内部に腐食液 を充填して 1 0 0 O H r にわたつて 5 0 °Cに保持する内面腐食試験 を行った。 腐食液としては、 劣化ガソリン環境を模擬した 0 . 0 1 %ギ酸と 0 . 0 1 %酢酸および 0 . 0 1 % N a C 1 を含有する 5 0 での水溶液、 およびアルコール燃料環境を模擬した 3 %水を含有す る 6 0 °Cのエタノール溶液とした。 試験終了後、 腐食液を回収し、 液中金属量を化学分析によって定量し、 この分析値を腐食速度に換 算した。 耐食性は、 ターンメタル (P b— Z n合金) 単体の腐食速 度に対する比として評価し、 ターンメタルの 1倍以上の腐食速度と なる場合を不合格と評価した。 なお、 一部の供試材にはクロメー ト 処理を施した。 付着量は 2 0 m gZm2とした。
試験結果を表 5 に示す。 比較例 No. 3 0 6〜 3 1 0では、 防食め つき組成が本発明の範囲を外れて Z n含有量が多いために Z n溶出 量が多く、 内面耐食性が不十分である。 また、 比較例 N o . 3 1 1 は素材の C r量が 9 %であるため S nよりも電位が卑となって S n めっきによる犠牲防食効果が得られず、 地鉄溶出が引き起こされ致 命的である。 一方、 本発明 N o . 1 0 1〜 1 1 6は、 鋼成分、 めつ き組成、 付着量ともに本発明の要件を満たしており、 クロメ一ト処 理および黒色塗装の有無にかかわらず、 満足すべき耐食性が得られ ている。
表 5
Figure imgf000043_0001
下線部:本発明の範囲外 *4)〇:ターンメタルの腐食量に対する比が 1以下
X :ターンメタルの腐食量に対する比が 1以上
(実施例 6 : 拡管加工性)
実施例 2 において製造した S n系防食めつき鋼板の一部を素材と して Φ 2 5. 4 mmの電縫溶接管を製造し、 動粘度 100M2/S (40°C ) 程度の潤滑油を用い、 テーパー角度 2 0 ° のパンチで、 外径が 3 0 φ、 3 8 φ、 4 5 φ、 5 1 ψの同軸拡管とオフセッ ト量 6 mmの 偏芯拡管 5 1 φの 5工程で多段拡管加工を施し、 加工部における母 材、 溶接部周囲の割れ有無およびめつき剥離有無を評価した。
試験結果を表 6に示す。 比較例 N o . 2 0 2〜 2 1 2は、 素材鋼 板の r値もしくは全伸びあるいは溶接管の円周方向伸びや溶接部の ピツカ一ス硬さ H vff と母材部のビッカース硬さ H vMとの硬度差 Δ H V、 溶接部のビード厚さ 1 と母材部の肉厚 TMとの比の少なくと もいずれかが本発明の範囲を外れているため、 拡管加工によつて割 れやめつき剥離が生じる。 一方、 本発明 N o . 1 0 1〜 1 0 5、 1 1 1〜 1 1 6では、 素材鋼板の r値、 全伸び、 溶接管の円周方向伸 びや溶接部のピツカ一ス硬さ H V ff と母材部のビッカース硬さ H V M との硬度差 Δ Η ν、 溶接部のピ一ド厚さ Tff と母材部の肉厚 ΤΜとの 比、 が共に適正であるため、 割れを起こさずに加工できる。 また、 変形が局部に集中することないため、 めっき剥離も生じない。
表 6
Figure imgf000045_0001
〇:基材割れなし、 めっき剥離なし
X:基材割れ有りまたはめつき剥離あり
(実施例 7 : ロウ付けによる割れ感受性)
実施例 1 において作製した一部の溶融めつき鋼板より、 7 0 X 1 5 0サイズの短冊サンプルを採取し、 これの中央部に幅 3〜 8 min、 長さ 1 0 0 mmにわたつて銀ロウをなめ付けした後、 ロウ付け部の断 面を顕微鏡観察して割れの有無を評価した。 ロウ材としては、 J I S Z 3 2 6 1 B A g 4に相当する A g : 4 0. 4 %の銀ロウを 用いた。
試験結果を表 7に示す。 比較例 N o . 2 3 , 2 4 , 2 7は、 Y値 が本発明の範囲を超えているため、 熱影響部において液体金属脆化 による割れが発生した。 また、 比較例 N o . 3 0〜 3 2は、 Y値は 本発明の範囲を満たしているが、 P含有量, S含有量のいずれか一 方あるいは両方が本発明の範囲を外れているため、 割れが認められ た。 一方、 本発明 N o . 1 〜 1 0では、 Y値が適正化されていたの で、 割れは認められなかった。
表 7
Figure imgf000047_0001
(実施例 8 : ロウ付け部、 隙間部の塩害耐食性)
実施例 2において製造した S n系防食めつき鋼板から製造された 2 5. 4 mmの電鏠溶接管を素材として、 図 1 0に示す形状の燃 料パイプを試作した。 この燃料パイプのロウ付け部とステー接触隙 間部について力ッ 卜サンプルを作製して塩害腐食試験に供した。 腐 食試験の内容としては、 5 %N a C l溶液噴霧、 3 5 °C X 2 H r→ 強制乾燥 (相対湿度 2 0 %) 6 0 °C X 4 H r—湿潤 (相対湿度 9 0 %) 5 0 °C X 2 H r の複合サイクル試験を 5 4 0サイクルにわたつ て繰り返した後、 除鲭処理を施してロウ付け部およびステー金具接 触隙間内部の腐食深さを顕微鏡焦点深度法で求めた。
なお、 前記めつき鋼板にはクロメート処理を施した。 付着量は 2 O m g /m2とした。 また、 一部のカッ トサンプルについては、 力 チオン電着塗装を施した。 塗料として日本ペイ ント製 P N— 1 1 0 を用い、 膜厚を 2 5 mとした。
供試材の明細および試験結果を表 8に示す。 比較例 No. 2 0 5は 、 T i含有量が本発明の要件を満たしていないため、 ロウ付け熱影 響部の耐食性が不十分であった。 また、 比較例 N o . 3 0 4は、 C r含有量が本発明の範囲を外れているため、 十分な耐食性が得られ ていない。 比較例 N o . 3 0 1, 3 0 2, 3 0 3は、 鋼成分は本発 明の要件を満たしているが、 防食めつきの付着量が本発明の範囲を 外れているため満足すべき耐食性が得られていない。 比較例 N o . 3 0 5は防食めつきの組成が付着量が本発明の範囲を外れているた め満足すべき耐食性が得られていない。 一方、 本発明 N o . 1 0 1 〜 1 1 6は、 鋼成分、 めっき付着量ともに本発明の要件を満たして おり、 カチオン電着塗装の有無にかかわらず、 満足すべき耐食性が 得られている。 表 8
Figure imgf000049_0001
下線部:本発明の範囲外 *)〇:元厚に対する最大腐食深さの割合が 50 %以下
X:元厚に対する最大腐食深さの割合が 50 %超 産業上の利用可能性
以上述べたように、 本発明によって、 塩害環境下での耐食性およ び溶接部信頼性に優れた燃料タンクおよび燃料パイプ用の表面処理 ステンレス鋼板および塩害耐食性、 溶接部信頼性、 拡管加工性に優 れた自動車給油管用表面処理ステンレス鋼溶接管が得られるので、 産業上の効果は大きい。

Claims

質量%で、 C : ≤ 0 . 0 3 0 %、 S i : ≤ 2. 0 0 %、 M n: ≤ 2 . 0 0 %、 P≤ 0. 0 5 0 %、 S : ≤ 0. 0 1 0 0 %、 N : ≤ 0. 0 3 0 %, A 1 : 0 . 0 1 0〜 0. 1 0 0 %、 C r : 1 0. 0 0〜 2 5. 0 0 %を含有し、 加えて N i : 0. 1 0 〜 4. 0 0 % 請 、 C u : 0. 1 0〜 2. 0 0 %, M o : 0. 1 0〜 2 . 0 0 %、 V : 0. 1 0〜 ; L . 0 0 %の 1種または 2種以上と T i : 0. 0 1 〜 0. 3 0 %、 N b : 0. 0 1〜 0. 3 0 %の 1種または 2種を含有 し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義される Y値が一 1 0. 4以下であるステンレス鋼囲板基材の表面に、 S nお よび不可避的不純物からなり付着量が 1 0 g /m2以上 2 0 0 g Z m2以下である防食めつき層を有することを特徴とする塩害環境で の耐食性および溶接部信頼性に優れた自動車燃料タンク用および自 動車燃料パイプ用表面処理ステンレス鋼板。
( 1 ) 式 : Y 3 . 0 [N i ] + 3 0 [C] + 3 0 [N] +
0. 5 [M n ] + 0 • 3 [C u ] — 1 . 1 [C r ] 一 2 • 6 [ S i
] 一 1 . 1 [M o ] ― 0 . 6 ( [N b ] + [T i ] ) ― 0 . 3 ( [
A 1 ] + [V] )
2. 質量%で 、 C • ≤ 0. 0 3 0 %、 S i : ≤ 2 - 0 0 %、 M n
: ≤ 2 . 0 0 、 P 0 . 0 5 0 %、 S : ≤ 0. 0 1 0 0 %、 N :
≤ 0 . 0 3 0 % 、 A 1 : 0. 0 1 0〜 0 . 1 0 0 % 、 C r : 1 0.
0 0〜 2 5. 0 0 %を含有し 、 加えて N 1 : 0. 1 0 4 . 0 0 %
、 C u : 0. 1 0 2 . 0 0 %、 M o : 0 . 1 0〜 2 • 0 0 %、 V
: 0. 1 0〜 1 0 0 %の 1種または 2種以上と T i • 0 . 0 1〜
0. 3 0 % , N b : 0. 0 1〜 0. 3 0 %の 1種または 2種を含有 し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義される Y値が— 1 0. 4以下であるステンレス鋼板基材の表面に、 Ζ η : 0. 8〜 1 0. 0 %と残部が S ηおよび不可避的不純物からなり付 着量が 1 0 g Zm2以上 2 0 0 g/m2以下である防食めつき層を有 することを特徴とする塩害環境での耐食性および溶接部信頼性に優 れた自動車燃料タンク用および自動車燃料パイプ用表面処理ステン レス鋼板。
( 1 ) 式 : Y= 3. 0 [N i〕 + 3 0 [C ] + 3 0 [N] + 0. 5 [M n ] + 0. 3 [C u ] - 1. 1 [ C r ] - 2. 6 [S i ] — 1. 1 [M o] - 0. 6 ( [N b ] + [T i ] ) — 0. 3 ( [ A 1 ] + [V] )
3. 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 1. 0 0 %、 M n : ≤ 1. 0 0 %、 P≤ 0. 0 5 0 %、 S : ≤ 0. 0 1 0 0 %、 N : ≤ 0. 0 2 0 0 %, A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : l 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i + N b ) / (C + N) : 5. 0〜 3 0. 0 を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義され る Y値が一 1 0. 4以下であるステンレス鋼板基材の表面に、 S n および不可避的不純物からななり付着量が 1 0 g/m2以上 2 0 0 g /m2以下である防食めつき層を有することを特徴とする塩害環 境での耐食性および溶接部信頼性に優れた自動車燃料夕ンク用およ び自動車燃料パイプ用表面処理ステンレス鋼板。
( 1 ) 式 : Y= 3. 0 [N i ] + 3 0 [C ] + 3 0 [N] + 0. 5 [M n ] + 0. 3 [ C u ] — 1. 1 [ C r ] 一 2. 6 [S i ] — 1. 1 [M o ] - 0. 6 ( [N b ] + [T i ] ) - 0. 3 ( [ A 1 ] + [V] )
4. 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 1. 0 0 %、 M n : ≤ 1. 0 0 %、 P≤ 0. 0 5 0 %、 S : ≤ 0. 0 1 0 0 %、 N : ≤ 0. 0 2 0 0 %, A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : l 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i +N b ) / (C + N) : 5. 0〜 3 0. 0 を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義され る Y値が一 1 0. 4以下であるステンレス鋼板基材の表面に、 Z n : 0. 8〜 1 0. 0 %と残部が S nおよび不可避的不純物からなる 防食めつき層を、 溶融めつき法によって付着量 1 0 gZm2以上 2 0 0 gZm2以下で形成させたことを特徴とする塩害環境での耐食 性および溶接部信頼性に優れた自動車燃料夕ンク用および自動車燃 料パイプ用表面処理ステンレス鋼板。
( 1 ) 式 : Y= 3. 0 [Ν i ] + 3 0 [C ] + 3 0 [N] + 0. 5 [ n ] + 0. 3 [C u ] - 1. 1 [ C r ] 一 2. 6 [S i ] - 1. 1 [M o ] - 0. 6 ( [ b ] + [T i ] ) - 0. 3 ( [ A 1 ] + [V] )
5. 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 0. 6 0 %、 M n : ≤ 0. 6 0 %、 P≤ 0. 0 4 0 %、 S : ≤ 0. 0 0 5 0 %、 N : ≤ 0. 0 1 5 0 %, A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : l 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i +N b ) / ( C + N) : 5. 0〜 3 0. 0 を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義され る Y値が一 1 0. 4以下であるステンレス鋼板基材の表面に、 S n および不可避的不純物からなり付着量が 1 0 g / m2以上 2 0 0 g /m2以下である防食めつき層を有することを特徴とする塩害環境 での耐食性および溶接部信頼性に優れた自動車燃料夕ンク用および 自動車燃料パイプ用表面処理ステンレス鋼板。
( 1 ) 式 : Y= 3. 0 [N i ] + 3 0 [C] + 3 0 [N] + 0. 5 [M n ] + 0. 3 [C u ] - 1. 1 [C r ] 一 2. 6 [S i ] - 1 . 1 [M o ] — 0. 6 ( [N b] + [T i ] ) - 0. 3 ( [ A 1 ] + [V] )
6. 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 0. 6 0 %、 M n : ≤ 0. 6 0 %、 P ≤ 0 . 0 4 0 %、 S : ≤ 0. 0 0 5 0 %、 N
: ≤ 0. 0 1 5 0 %、 A 1 : 0. 0 1 0〜 0 . 1 0 0 %、 C r : l 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i + N t^ / C N) : 5. 0〜 3 0. 0 を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義され る Y値が一 1 0. 4以下であるステンレス鋼板基材の表面に、 Z n
: 0. 8〜 1 0. 0 %と残部が S nおよび不可避的不純物からなり 付着量が 1 0 g /in2以上 2 0 0 g Zm2以下である防食めつき層を 有することを特徴とする塩害環境での耐食性および溶接部信頼性に 優れた自動車燃料タンク用および自動車燃料パイプ用表面処理ステ ンレス鋼板。
( 1 ) 式 : Y= 3. 0 [N i ] + 3 0 [ C ] + 3 0 [N] + 0. 5 [M n ] + 0. 3 [ C u ] - 1 . 1 [ C r ] 一 2. 6 [ S i ] - 1 . 1 [M o ] - 0. 6 ( [N b ] + [T i ] ) - 0. 3 ( [ A 1 ] + [V] )
7. 請求項 1, 3, 5のいずれかに記載のステンレス鋼板基材に 、 さらに、 質量%で、 B : 0. 0 0 0 2〜 0 . 0 0 2 0 %含有する ことを特徴とする塩害環境での耐食性および溶接部信頼性に優れた 自動車燃料タンク用および自動車燃料パイプ用表面処理ステンレス
Si板。
8. 請求項 2, 4 , 6のいずれかに記載のステンレス鋼板基材に 、 さらに、 質量%で、 B : 0. 0 0 0 2 - 0. 0 0 2 0 %含有する ことを特徴とする塩害環境での耐食性および溶接部信頼性に優れた 自動車燃料タンク用および自動車燃料パイプ用表面処理ステンレス 鋼板。
9. 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 0. 6 0 %、 M n : ≤ 0. 6 0 %、 P≤ 0. 0 4 0 %、 S : ≤ 0. 0 0 5 0 %、 N : ≤ 0. 0 1 5 0 %. A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : l 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i + N b ) / (C + N) : 5. 0〜 3 0. 0 を満たす T i , N bの; L種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義され る Y値が一 1 0. 4以下であり、 フェライ ト単相の金属組織を有し 、 平均 r値が 1. 4以上、 全伸びが 3 0 %以上を有するステンレス 鋼板基材の表面に、 S nおよび不可避的不純物からなり、 付着量が 1 0 g/m2以上 2 0 0 gZm2以下である防食めつき層を有するこ とを特徴とする塩害環境での耐食性および溶接部信頼性に優れた自 動車燃料タンク用および自動車燃料パイプ用表面処理ステンレス鋼 板。
( 1 ) 式 : Y = 3. 0 [N i ] + 3 0 [ C ] + 3 0 [N] + 0. 5 [M n ] + 0. 3 [ C u ] — 1. 1 [C r ] - 2. 6 [S i ] ー 1. 1 [M o ] - 0. 6 ( [N b ] + [T i ] ) - 0. 3 ( [ A 1 ] + [V] )
10. 質量%で、 C : ≤ 0. 0 1 0 0 %、 S i : ≤ 0. 6 0 %、 M n : ≤ 0. 6 0 %、 P≤ 0. 0 4 0 %、 S : ≤ 0. 0 0 5 0 %、 N : ≤ 0. 0 1 5 0 %, A 1 : 0. 0 1 0〜 0. 1 0 0 %、 C r : l 0. 0 0〜 2 5. 0 0 %を含有し、 加えて (T i + N b ) Z (C + N) : 5. 0〜 3 0. 0を満たす T i , N bの 1種または 2種を含 有し、 残部が不可避的不純物と F eより成り、 ( 1 ) 式で定義され る Y値が一 1 0. 4以下であり、 フェライ ト単相の金属組織を有し 、 平均 ]:値が 1. 4以上、 全伸びが 3 0 %以上を有するステンレス 鋼板基材の表面に、 Z n : 0. 8〜 1 0. 0 %と残部が S nおよび 不可避的不純物からなり付着量が 1 0 gZm2以上 2 0 0 gZm2以 下である防食めつき層を有することを特徴とする塩害環境での耐食 性および溶接部信頼性に優れた自動車燃料タンク用および自動車燃 料パイプ用表面処理ステンレス鋼板。
( 1 ) 式 : Y= 3. 0 [Ν i ] + 3 0 [C ] + 3 0 [N] + 0. 5 [ n ] + 0. 3 [C u ] - 1. 1 [C r ] 一 2. 6 [S i ] — 1. 1 [M o ] - 0. 6 ( [N b] + [T i ] ) - 0. 3 ( [ A 1 ] + [V] )
11. 防食めつき層の上に化成処理皮膜を形成させた請求項 1から 1 0のいずれかに記載の塩害環境での耐食性および溶接部信頼性に 優れた自動車燃料タンク用および自動車燃料パイプ用表面処理ステ ンレス鋼板。
12. 防食めつき層あるいは化成処理皮膜の上に摩擦係数が 0. 1 5以下となる可水溶性潤滑皮膜を形成させたことを特徴とする請求 項 1から 1 1のいずれかに記載の塩害環境での耐食性および溶接部 信頼性に優れた自動車燃料タンク用および自動車燃料パイプ用表面 処理ステンレス鋼板。
13. 請求項 9、 1 0のいずれかに記載の表面処理ステンレス鋼板 を素材とする溶接管であって、 溶接部のビッカース硬さ H vwと母 材部のピツカ一ス硬さ H vMとの硬度差厶 H v ( = H vw - Η νΜ) が 1 0〜 4 0の範囲で、 溶接部のビード厚さ Twと母材部の肉厚 TM との比 R T (= TW/TM) が 1. 0 5〜 1. 3であることを特徴と する拡管加工性に優れた自動車給油管用表面処理ステンレス鋼溶接 管。
14. 成形、 溶接、 矯正後の溶接管母材部の円周方向伸びが 1 5 % 以上であることを特徴とする請求項 1 3に記載の拡管加工性に優れ た自動車給油管用表面処理ステンレス鋼溶接管。
PCT/JP2007/071359 2006-11-21 2007-10-26 Feuillet d'acier inoxydable traité en surface présentant une excellente résistance aux dommages dus au sel / à la corrosion et une excellente fiabilité de soudure destinée à un réservoir de carburant d'automobile et à une conduite de carburant d'automobile, et conduite soudée WO2008062650A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0708438A BRPI0708438B1 (pt) 2006-11-21 2007-10-26 tubo soldado de aço inoxidável com superfície tratada para um tubo de admissão de combustível para automóveis
CN2007800073710A CN101395293B (zh) 2006-11-21 2007-10-26 在盐害环境下的耐蚀性和焊接区可靠性优异的汽车燃料箱用和汽车燃料管用表面处理不锈钢板和扩管加工性优异的汽车供油管用表面处理不锈钢焊管
US12/224,455 US20090053551A1 (en) 2006-11-21 2007-10-26 Surface Treated Stainless Steel Sheet for Automobile Fuel Tank and for Automobile Fuel Pipe with Excellent Salt Corrosion Resistance and Weld Zone Reliability and Surface Treated Stainless Steel Welded Pipe for Automobile Fuel Inlet Pipe Excellent in Pipe Expandability
CA2636327A CA2636327C (en) 2006-11-21 2007-10-26 Surface treated stainless steel sheet for automobile fuel tank and for automobile fuel pipe with excellent salt corrosion resistance and weld zone reliability and surface treated stainless steel welded pipe for automobile fuel inlet pipe excellent in pipe expandability
KR1020087021326A KR101165792B1 (ko) 2006-11-21 2007-10-26 염해 내식성 및 용접부 신뢰성이 우수한 자동차용 연료 탱크용 및 자동차 연료 파이프용 표면 처리 스테인레스 강판 및 확관 가공성이 우수한 자동차 급유관용 표면 처리 스테인레스강 용접관

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-314725 2006-11-21
JP2006314725 2006-11-21
JP2007216195 2007-08-22
JP2007-216195 2007-08-22
JP2007266715A JP5258253B2 (ja) 2006-11-21 2007-10-12 塩害耐食性および溶接部信頼性に優れた自動車用燃料タンク用および自動車燃料パイプ用表面処理ステンレス鋼板および拡管加工性に優れた自動車給油管用表面処理ステンレス鋼溶接管
JP2007-266715 2007-10-12

Publications (1)

Publication Number Publication Date
WO2008062650A1 true WO2008062650A1 (fr) 2008-05-29

Family

ID=39429588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071359 WO2008062650A1 (fr) 2006-11-21 2007-10-26 Feuillet d'acier inoxydable traité en surface présentant une excellente résistance aux dommages dus au sel / à la corrosion et une excellente fiabilité de soudure destinée à un réservoir de carburant d'automobile et à une conduite de carburant d'automobile, et conduite soudée

Country Status (7)

Country Link
US (1) US20090053551A1 (ja)
JP (1) JP5258253B2 (ja)
KR (1) KR101165792B1 (ja)
CN (1) CN101395293B (ja)
BR (1) BRPI0708438B1 (ja)
CA (1) CA2636327C (ja)
WO (1) WO2008062650A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280981A (ja) * 2009-06-08 2010-12-16 Nippon Steel & Sumikin Stainless Steel Corp 塩害耐食性に優れた自動車用燃料タンク用表面処理ステンレス鋼板
JP2017115872A (ja) * 2015-12-09 2017-06-29 新日鐵住金ステンレス株式会社 自動車用部材
JP6597947B1 (ja) * 2018-04-26 2019-10-30 日本製鉄株式会社 溶融Sn−Zn系合金めっき鋼板およびその製造方法
WO2021201122A1 (ja) * 2020-03-31 2021-10-07 日鉄ステンレス株式会社 溶接構造体及び貯蔵タンク
JP7276640B1 (ja) * 2022-01-19 2023-05-18 Jfeスチール株式会社 プロジェクション溶接継手およびプロジェクション溶接方法
WO2023139923A1 (ja) * 2022-01-19 2023-07-27 Jfeスチール株式会社 プロジェクション溶接継手およびプロジェクション溶接方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349153B2 (ja) * 2009-06-15 2013-11-20 日新製鋼株式会社 ろう付け用フェライト系ステンレス鋼材および熱交換器部材
US9080692B2 (en) * 2009-09-18 2015-07-14 Toyo Kohan Co., Ltd. Steel sheet used to manufacture pipe and having corrosion-resistant properties against fuel vapors, and pipe and fuel supply pipe that use same
JP2012012005A (ja) * 2010-06-03 2012-01-19 Nippon Steel & Sumikin Stainless Steel Corp 給油管およびその製造方法
EP2626228B1 (en) 2010-10-05 2019-12-04 Nippon Steel Corporation Fuel tank for vehicle
JP6056132B2 (ja) * 2010-11-25 2017-01-11 Jfeスチール株式会社 燃料タンク用オーステナイト・フェライト系二相ステンレス鋼
WO2014104424A1 (ko) * 2012-12-24 2014-07-03 주식회사 포스코 내응축수 부식특성, 성형성 및 고온 내산화 특성이 우수한 자동차 배기계용 페라이트계 스테인리스강 및 그 제조방법
CN103060712B (zh) * 2012-12-26 2015-06-03 宁波市瑞通新材料科技有限公司 一种锅炉用不锈耐酸钢
JP5842988B2 (ja) * 2014-05-15 2016-01-13 Jfeスチール株式会社 容器用鋼板
JP6412596B2 (ja) * 2015-02-10 2018-10-24 新日鐵住金ステンレス株式会社 廉価で塩害耐食性に優れた自動車用部材および給油管
JP6541992B2 (ja) * 2015-03-12 2019-07-10 日鉄ステンレス株式会社 塗装かつ犠牲防食効果を利用した耐穴あき性に優れた自動車用部材および自動車用給油管
JP6598478B2 (ja) * 2015-03-12 2019-10-30 日鉄ステンレス株式会社 塩害耐食性に優れかつ外観劣化を抑制した自動車用給油管
JP6601283B2 (ja) * 2016-03-10 2019-11-06 日本製鉄株式会社 燃料タンク
CN105586557B (zh) * 2016-03-25 2018-05-08 大连新锋钢管厂 一种箍筋表面热浸镀锡合金工艺
US10266934B1 (en) * 2016-06-03 2019-04-23 Sabre Communications Corporation Selective coating to inhibit cracking from galvanizing
US10641159B2 (en) * 2016-09-23 2020-05-05 Caterpillar Inc. Pre-chamber assembly for fuel injector
CN106435398B (zh) * 2016-10-15 2017-12-29 睿智钢业有限公司 耐腐蚀焊接结构钢及其制备方法
JP7080583B2 (ja) * 2017-02-28 2022-06-06 臼井国際産業株式会社 スチール製燃料圧送配管の製造方法
EP3587610B1 (en) * 2017-04-27 2022-07-06 JFE Steel Corporation Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same
JP6874609B2 (ja) * 2017-09-05 2021-05-19 日本製鉄株式会社 フェライト系ステンレス溶接部材
CN113186472B (zh) * 2021-01-15 2022-07-22 江苏省沙钢钢铁研究院有限公司 耐蚀钢筋及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217199A (ja) * 1985-07-12 1987-01-26 Nippon Steel Corp 塗装性と耐食性にすぐれた容器用Sn被覆鋼板とその製造法
JPH05311464A (ja) * 1992-05-13 1993-11-22 Nippon Steel Corp アルコールもしくはアルコール含有燃料用容器鋼板
JP2002012954A (ja) * 2000-06-28 2002-01-15 Nippon Steel Corp めっき密着性に優れた表面処理ステンレス鋼
JP2002030406A (ja) * 2000-07-14 2002-01-31 Nisshin Steel Co Ltd プレス成形性及びアルカリ洗浄性に優れた燃料タンク用アルミ系めっき鋼板
JP2002097552A (ja) * 2000-09-19 2002-04-02 Nippon Steel Corp 燃料タンク用溶融めっきフェライト系ステンレス鋼板およびその製造方法
JP2004131819A (ja) * 2002-10-11 2004-04-30 Nippon Steel Corp 良好な耐食性を有する溶融Sn−Zn系めっき鋼板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL150852B (nl) * 1970-10-29 1976-09-15 Tollens & Co N V Werkwijze voor het van een beschermende bekleding voorzien van voorwerpen, die door dompelen in een gesmolten metaal met een metaallaag zijn bekleed en aldus van een bekleding voorziene voorwerpen.
DE69221007T2 (de) * 1991-04-25 1997-11-13 Nippon Steel Corp Verfahren und Vorrichtung zum Aufbringen von schmelzflüssigen Metallüberzügen
US5491036A (en) * 1992-03-27 1996-02-13 The Louis Berkman Company Coated strip
WO1996030560A1 (fr) * 1995-03-28 1996-10-03 Nippon Steel Corporation Tole d'acier prevenant la corrosion pour citernes a combustible et procede d'elaboration de cette tole
JPH10237583A (ja) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd 高張力鋼およびその製造方法
JP3769479B2 (ja) * 2000-08-07 2006-04-26 新日鐵住金ステンレス株式会社 プレス成形性に優れた燃料タンク用フェライト系ステンレス鋼板
JP3941762B2 (ja) * 2002-09-06 2007-07-04 Jfeスチール株式会社 自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼
DE60331765D1 (de) * 2002-10-11 2010-04-29 Nippon Steel Corp Feuerveredelte/s zinn-zink-beschichtete/s stahlplatte oder blech mit sehr guter korrosionsbeständigkeit und verarbeitbarkeit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217199A (ja) * 1985-07-12 1987-01-26 Nippon Steel Corp 塗装性と耐食性にすぐれた容器用Sn被覆鋼板とその製造法
JPH05311464A (ja) * 1992-05-13 1993-11-22 Nippon Steel Corp アルコールもしくはアルコール含有燃料用容器鋼板
JP2002012954A (ja) * 2000-06-28 2002-01-15 Nippon Steel Corp めっき密着性に優れた表面処理ステンレス鋼
JP2002030406A (ja) * 2000-07-14 2002-01-31 Nisshin Steel Co Ltd プレス成形性及びアルカリ洗浄性に優れた燃料タンク用アルミ系めっき鋼板
JP2002097552A (ja) * 2000-09-19 2002-04-02 Nippon Steel Corp 燃料タンク用溶融めっきフェライト系ステンレス鋼板およびその製造方法
JP2004131819A (ja) * 2002-10-11 2004-04-30 Nippon Steel Corp 良好な耐食性を有する溶融Sn−Zn系めっき鋼板

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280981A (ja) * 2009-06-08 2010-12-16 Nippon Steel & Sumikin Stainless Steel Corp 塩害耐食性に優れた自動車用燃料タンク用表面処理ステンレス鋼板
JP2017115872A (ja) * 2015-12-09 2017-06-29 新日鐵住金ステンレス株式会社 自動車用部材
JP6597947B1 (ja) * 2018-04-26 2019-10-30 日本製鉄株式会社 溶融Sn−Zn系合金めっき鋼板およびその製造方法
WO2019208775A1 (ja) * 2018-04-26 2019-10-31 日本製鉄株式会社 溶融Sn-Zn系合金めっき鋼板およびその製造方法
CN111989419A (zh) * 2018-04-26 2020-11-24 日本制铁株式会社 热浸镀Sn-Zn系合金镀层钢板及其制造方法
CN111989419B (zh) * 2018-04-26 2022-09-30 日本制铁株式会社 热浸镀Sn-Zn系合金镀层钢板及其制造方法
JPWO2021201122A1 (ja) * 2020-03-31 2021-10-07
CN114829653A (zh) * 2020-03-31 2022-07-29 日铁不锈钢株式会社 焊接结构体及贮藏罐
WO2021201122A1 (ja) * 2020-03-31 2021-10-07 日鉄ステンレス株式会社 溶接構造体及び貯蔵タンク
JP7246568B2 (ja) 2020-03-31 2023-03-27 日鉄ステンレス株式会社 溶接構造体及び貯蔵タンク
US11946126B2 (en) 2020-03-31 2024-04-02 Nippon Steel Stainless Steel Corporation Welded structure and storage tank
JP7276640B1 (ja) * 2022-01-19 2023-05-18 Jfeスチール株式会社 プロジェクション溶接継手およびプロジェクション溶接方法
WO2023139923A1 (ja) * 2022-01-19 2023-07-27 Jfeスチール株式会社 プロジェクション溶接継手およびプロジェクション溶接方法

Also Published As

Publication number Publication date
US20090053551A1 (en) 2009-02-26
CA2636327C (en) 2015-11-17
BRPI0708438A2 (pt) 2011-05-31
JP5258253B2 (ja) 2013-08-07
CN101395293A (zh) 2009-03-25
KR20080102380A (ko) 2008-11-25
KR101165792B1 (ko) 2012-07-18
JP2009068102A (ja) 2009-04-02
CA2636327A1 (en) 2008-05-29
BRPI0708438B1 (pt) 2018-11-21
CN101395293B (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5258253B2 (ja) 塩害耐食性および溶接部信頼性に優れた自動車用燃料タンク用および自動車燃料パイプ用表面処理ステンレス鋼板および拡管加工性に優れた自動車給油管用表面処理ステンレス鋼溶接管
JP4424907B2 (ja) Sn系、Al系めっき鋼板用6価クロムフリー表面処理薬剤および表面処理鋼板
KR101436711B1 (ko) 급유관 및 그 제조 방법
JP3497413B2 (ja) 耐食性、加工性および溶接性に優れた燃料容器用表面処理鋼板
WO2008126945A1 (ja) 低温靱性に優れたプレス加工用溶融めっき高強度鋼板およびその製造方法
KR20030078028A (ko) 자동차용 내식성 연료탱크 및 급유관
WO2007083580A1 (ja) 塩害環境での耐食性に優れた自動車用燃料タンク用表面処理ステンレス鋼板
AU718855B2 (en) Rustproof steel sheet for automobile fuel tank with excellent resistance weldability corrosion resistance and press moldability
JP2019073778A (ja) Alめっき鋼管部品
JP3133231B2 (ja) 加工性・耐食性・溶接性に優れた燃料タンク用防錆鋼板
JP3485457B2 (ja) 耐食性、溶接性に優れた燃料タンク用防錆鋼板
JP5130475B2 (ja) 錫系めっき鋼板のスポット溶接方法
EP1378548B1 (en) Chromium containing ferritic stainless steel comprising a corrosion resistant film containing small metal particles
JP2001355051A (ja) 耐食性に優れた溶融Zn−Sn系めっき鋼板
JP3941762B2 (ja) 自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼
JP3283826B2 (ja) 耐食性に優れた自動車用燃料容器
JP5700917B2 (ja) 塩害耐食性に優れた自動車用燃料タンク用表面処理ステンレス鋼板
JPH0689475B2 (ja) 燃料容器用鋼板
TWI690604B (zh) 熔融Sn-Zn系合金鍍敷鋼板及其製造方法
JP3002445B1 (ja) 接合特性に優れた自動車燃料タンク用溶融Sn系めっき鋼板
JP2002317278A (ja) 加工性及び耐食性に優れた被覆鋼板
JPS61270389A (ja) 燃料容器用鋼板
JPS61243192A (ja) 燃料容器用表面処理鋼板
JP2002371378A (ja) スポット溶接性に優れたアルミ系めっき鋼板
JPS61246346A (ja) 燃料容器用表面処理鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2636327

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12224455

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087021326

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780007371.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0708438

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080901