[go: up one dir, main page]

WO2007015427A1 - 熱硬化性エポキシ樹脂組成物及び半導体装置 - Google Patents

熱硬化性エポキシ樹脂組成物及び半導体装置 Download PDF

Info

Publication number
WO2007015427A1
WO2007015427A1 PCT/JP2006/314971 JP2006314971W WO2007015427A1 WO 2007015427 A1 WO2007015427 A1 WO 2007015427A1 JP 2006314971 W JP2006314971 W JP 2006314971W WO 2007015427 A1 WO2007015427 A1 WO 2007015427A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
composition according
thermosetting epoxy
acid anhydride
Prior art date
Application number
PCT/JP2006/314971
Other languages
English (en)
French (fr)
Inventor
Takayuki Aoki
Toshio Shiobara
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Priority to CN2006800369607A priority Critical patent/CN101283016B/zh
Priority to KR1020087005178A priority patent/KR101318279B1/ko
Priority to US11/997,831 priority patent/US20100104794A1/en
Priority to JP2007529236A priority patent/JP4837664B2/ja
Publication of WO2007015427A1 publication Critical patent/WO2007015427A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3236Heterocylic compounds
    • C08G59/3245Heterocylic compounds containing only nitrogen as a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing

Definitions

  • the present invention has excellent curability, heat resistance and light resistance, and has a good strength, suppresses discoloration due to heat, particularly yellowing, and provides a cured product having excellent reliability.
  • Photosensitive epoxy resin composition and cured product of the composition with a light receiving element and other semiconductor elements excluding light emitting elements such as LED elements, but not including photocouplers in which the light emitting element and the light receiving element are integrated
  • the present invention relates to a semiconductor device encapsulating
  • Polyphthalamide resin (PPA) is now widely used as one of the materials for semiconductor electronic devices such as photocouplers using such semiconductor elements.
  • a sealing resin is a B-stage optical semiconductor encapsulating containing epoxy resin, curing agent and curing accelerator as constituent components.
  • an optical semiconductor device characterized in that it is an epoxy resin composition for stopping, and is composed of a cured body of a resin composition in which the above-mentioned constituent components are uniformly mixed at a molecular level.
  • the above-mentioned epoxy resin composition for encapsulating an optical semiconductor can be suitably used particularly as a light-receiving element encapsulating material for a compact disk or a line sensor or an area sensor that is a solid-state image sensing element.
  • An optical semiconductor device formed by using an epoxy resin composition for optical semiconductor encapsulation and encapsulating a light-receiving element such as a solid-state image sensor, for example, has a striped pattern caused by optical unevenness of the resin, It is a high-performance product that does not show black spots due to foreign matter in the sealed resin, and it exhibits a performance equal to or higher than that of a ceramic package product while being a sealed resin product. ”
  • epoxy resin bisphenol A type epoxy resin or bisphenol F type epoxy resin is mainly used, and it is described that triglycidyl isocyanate can be used.
  • isocyanate is used by adding a small amount to the bisphenol type epoxy resin, and according to the study by the present inventors, this epoxy resin composition for B-stage semiconductor encapsulation is used. There is a problem that things turn yellow when left at high temperature for a long time.
  • publicly known documents related to the present invention include the following patent documents 5 to 7 and non-patent document 1.
  • Patent Document 1 Japanese Patent No. 2656336
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-196151
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-224305
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-306952
  • Patent Document 5 Japanese Patent No. 3512732
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-234032
  • Patent Document 7 JP 2002-302533 A
  • Non-Patent Document 1 Electronics Packaging Technology 2004. 4 Special Feature Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and is a thermosetting epoxy resin composition that retains heat resistance and light resistance over a long period of time, is uniform and has little yellowing !, and gives a cured product.
  • a semiconductor device in which a semiconductor element (excluding a light emitting element such as an LED element, but including a photocoupler in which a light emitting element and a light receiving element are integrated) is sealed with a cured product of the composition and the composition. The purpose is to provide.
  • the inventors of the present invention used a triazine derivative epoxy resin alone as an epoxy resin, and preferably used the triazine derivative epoxy resin and an acid anhydride. Blended in the proportion of epoxy group equivalent Z acid anhydride group equivalent 0.6 to 2.0 in the presence of antioxidant and Z or curing catalyst, and used the pulverized solid obtained by reaction as a resin component
  • the present thermosetting epoxy resin composition has been found to be excellent in curability, heat resistance and light resistance, and can be a cured product having good strength, and has led to the present invention.
  • thermosetting epoxy resin composition and semiconductor device.
  • thermosetting epoxy resin composition comprising a solid product obtained by reacting at a ratio of 0.6 to 2.0 as a resin component.
  • thermosetting epoxy resin composition according to [I] wherein the triazine derivative epoxy resin is 1,3,5-triazine nucleus derivative epoxy resin.
  • R is an acid anhydride residue, and n is a number from 0 to 200.
  • thermosetting epoxy resin composition according to [II] which contains a compound represented by the formula: [IV]
  • thermosetting epoxy resin composition according to [I], [II] or [III] wherein the acid anhydride is non-aromatic and has no carbon-carbon double bond.
  • thermosetting epoxy resin composition according to any one of [I] to [IV], wherein the reaction between the triazine derivative epoxy resin and the acid anhydride is performed in the presence of an antioxidant. .
  • thermosetting epoxy resin composition according to [V] wherein the acid / antioxidant is one or more selected from phenolic, phosphorus, and sulfur-based acid / antioxidant powers.
  • thermosetting epoxy resin composition according to [VI] comprising triphenyl phosphite and Z or 2,6-di-t-butyl-p-cresol.
  • thermosetting epoxy resin composition according to [IX] wherein the curing catalyst is 2-ethyl-4-methylimidazole.
  • thermosetting epoxy resin composition according to any one of [I] to [XII], which contains titanium dioxide.
  • thermosetting epoxy resin composition according to any one of [I] to [XIII], which is blended with an inorganic filler other than titanium dioxide.
  • thermosetting epoxy resin composition according to any one of [I] to [XII] formed transparently.
  • thermosetting epoxy resin composition Any of [I] to [XV] for forming a semiconductor element case excluding light emitting elements.
  • the following thermosetting epoxy resin composition The following thermosetting epoxy resin composition.
  • thermosetting epoxy resin composition according to any one of [XVII] [I] to [XV], a semiconductor element (however, except for the light emitting element, the light emitting element and the light receiving element are integrated) Semiconductor device).
  • thermosetting epoxy resin composition of the present invention is excellent in curability, has good strength, retains heat resistance and light resistance over a long period of time, and is a cured product that is uniform and has little yellowing. Is given. For this reason, a semiconductor'electronic device having a light receiving element such as a photopower blur sealed with a cured product of the composition of the present invention is particularly useful in industry.
  • FIG. 1 shows an example of a photocoupler using the thermosetting resin composition of the present invention.
  • thermosetting epoxy resin composition according to the present invention comprises (A) a triazine derivative epoxy resin and (B) an acid anhydride in an epoxy group equivalent Z acid anhydride group equivalent of 0.6 to 2.0.
  • the triazine derivative epoxy resin used in the present invention contains a solid pulverized product obtained by reacting it with an acid anhydride at a specific ratio as a resin component, so that a thermosetting epoxy resin can be obtained.
  • a semiconductor light emitting device is realized that suppresses yellowing of a cured product of the composition and has little deterioration over time.
  • 1, 3, 5-triazine core derivative epoxy resin is preferable.
  • epoxy resin having an isocyanurate ring is excellent in light resistance and electrical insulation, and preferably has a divalent, more preferably a trivalent epoxy group for one isocyanurate ring. Specifically, trinitrate or the like can be used.
  • the softening point of the triazine derivative epoxy resin used in the present invention is preferably 90 to 125 ° C. In the present invention, the triazine derivative epoxy resin does not include a hydrogenated triazine ring.
  • the acid anhydride of component (B) used in the present invention acts as a curing agent and is preferably non-aromatic and free of carbon-carbon double bonds in order to provide light resistance.
  • These acid anhydride curing agents may be used alone or in combination of two or more.
  • the amount of the acid anhydride-based curing agent to be added is 0.6 to 2.0 equivalents, preferably 1 to 1 equivalent of the epoxy group of the triazine derivative epoxy resin. 0 to 2.0 equivalents, more preferably 1.2 to 1.6 equivalents. If it is less than 6 equivalents, poor curing may occur and reliability may be reduced. On the other hand, if the amount exceeds 2.0 equivalents, the unreacted curing agent may remain in the cured product, which may deteriorate the moisture resistance of the resulting cured product.
  • antioxidant (C) used in the epoxy resin composition of the present invention phenol-based, phosphorus-based, and sulfur-based antioxidants can be used.
  • acid prevention agent examples of the acid prevention agent are as follows.
  • Phenolic antioxidants include 2,6-di-tert-butyl- ⁇ -cresol, butylated hydroxy-sol, 2,6-di-tert-butyl-p-ethylphenol, stearyl j8- (3,5 di-tert-butyl-4-hydroxyphenol ) Propionate, 2, 2, -methylenbis (4-methyl-6-t butylphenol), 4, 4, -butylidenebis (3-methyl-6-t butylphenol), 3, 9 bis [1, 1 dimethyl 2- ⁇ j8- ( 3-t-butyl 4-hydroxy-5-methylphenol) propio-loxy ⁇ ethyl] 2, 4, 8, 10-tetraxaspiro [5.5] undecane, 1, 1, 3 tris (2-methyl 4-hydroxy-5- t-butylphenol) butane, 1, 3, 5 trimethyl-2,4,6 tris (3,5 di-tert-butyl-4-hydroxybenzyl) benzene, among others, 2,6-di-tert-but
  • Phosphorus antioxidants include triphenyl phosphite, diphenylalkyl phosphite, phenoldialkyl phosphite, triphosphine phosphite, trilauryl phosphite.
  • Trioctadecyl phosphite Trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris (2,4 di-tert-butylphenol) phosphite, diisodecylpentaerythritol diphosphite, di (2,4 di-tert-butylphenol) Examples include pentaerythritol diphosphite, tristearyl sorbitol triphosphite, and tetrakis (2,4 ditertbutylbutyl) -4,4'-biphenyl diphosphonate. Among them, triphosphite is preferred.
  • examples of the sulfur-based acid / anti-oxidation agent include dilauryl-3,3 ′ thiodipropionate, dimyristyl-3,3,1 thiodipropionate, distearyl 3,3,1 thiodipropionate, and the like. Can be mentioned.
  • each of these antioxidants can be used alone, but it is particularly preferable to use a phosphorus-based antioxidant alone or a combination of a phenol-based acid antioxidant and a phosphorus-based acid antioxidant.
  • the blending amount of the antioxidant is preferably 0.01 to 10 parts by mass, particularly 0.03 to 5 parts by mass, with respect to 100 parts by mass of the epoxy resin composition. If the amount is too small, sufficient heat resistance may not be obtained and discoloration may occur, while if too large, curing inhibition may occur, and sufficient curability and strength may not be obtained.
  • curing catalyst for component (D) those known as curing catalysts for epoxy resin compositions can be used, and are not particularly limited, but are not limited to tertiary amines, imidazoles, their organic carboxylates, Phosphorus curing catalysts such as carboxylic acid metal salts, metal-organic chelate compounds, aromatic sulfonium salts, organic phosphine compounds, phosphonium compounds, one or more of these salts, etc. Can be used. Of these, imidazoles, phosphorus-based curing catalysts such as 2-ethyl-4-methylimidazole, More preferred are ruphospho-mu-dimethyl phosphate and quaternary phospho-mu-bromide.
  • the use amount of the curing catalyst is preferably in the range of 0.05 to 5% by mass, particularly 0.1 to 2% by mass of the entire composition. If it is out of the above range, the balance between the heat resistance and moisture resistance of the cured product of the epoxy resin composition may be deteriorated.
  • the above-described components (A) and (B), preferably (A), (B) and (C) are previously added to 70 to 120 ° C., preferably 80 to 110. 4 to 20 hours at ° C, preferably 6 to 15 hours, or (A), (B), (D) component or (A), (B), (C), (D) component for 30 to 30 hours in advance
  • the reaction solid obtained here is gel permeation chromatography (GPC) among the reaction products of (A) component triazine derivative epoxy resin and (B) component acid anhydride.
  • GPC gel permeation chromatography
  • the sample concentration is 0.2 mass%
  • injection volume is 50 / zL as the analysis condition
  • mobile phase is 100% THF
  • flow rate is 1. OmL / min
  • temperature is 40 ° C, measured by detector RI
  • the high molecular weight component is 20 to 70% by mass
  • the medium molecular weight component is 10 to 60% by mass
  • the monomer is preferably 10 to 40% by mass.
  • the reaction solid contains a reaction product represented by the following formula (1)
  • the acid anhydride of the component (B) is particularly In the case of methylhexahydrophthalic anhydride, it contains a reaction product represented by the following formula (2).
  • R is an acid anhydride residue
  • n is any component in the range of 0 to 200, and is a component having an average molecular weight of 500,000 to 100,000.
  • a high molecular weight component having a molecular weight exceeding 1500 is 20 to 70% by mass, particularly 30 to 60% by mass
  • a medium molecular weight component having a molecular weight of 300 to 1500 is 10 to 60% by mass, particularly 10 to 40% by mass
  • a monomer It is preferable that the components (unreacted epoxy resin and acid anhydride) are contained in an amount of 10 to 40% by mass, particularly 15 to 30% by mass.
  • the epoxy resin composition of the present invention contains the resin component obtained as described above.
  • (C) an antioxidant and (D) a curing catalyst are used. If not, it is preferable to add (C) an antioxidant and (D) a curing catalyst to the resin component during the preparation of the epoxy resin composition.
  • the following components can be further mix
  • the epoxy resin composition of the present invention can contain titanium dioxide.
  • the component (E) titanium dioxide is added as a white colorant to increase whiteness, and the unit cell of this titanium dioxide bismuth may be either a rutile type or an anatase type. Also, the average particle size and shape are not limited.
  • the above titanium dioxide can be surface-treated in advance with a hydrous acid oxide such as A1 or Si in order to enhance the compatibility and dispersibility with the inorganic filler.
  • the filling amount is 2 to 80% by mass of the total composition, especially 5 to 50% by mass is preferred. If it is less than 2% by mass, sufficient whiteness may not be obtained, and if it exceeds 80% by mass, moldability such as voids may be reduced.
  • titanium dioxide potassium titanate, acid zircon, zinc sulfide, zinc oxide, magnesium oxide, etc. can be used in combination as the white colorant.
  • These average particle sizes and shapes are not particularly limited.
  • the epoxy resin composition of the present invention may further contain an inorganic filler other than the component (E) such as titanium dioxide or titanium dioxide.
  • an inorganic filler other than the component (E) such as titanium dioxide or titanium dioxide.
  • the inorganic filler of the component (F) to be blended those usually blended in the epoxy resin composition can be used. Examples include fused silica, silicas such as crystalline silica, alumina, silicon nitride, aluminum nitride, boron nitride, glass fiber, antimony trioxide, and the like.
  • the average particle size of these inorganic fillers is not particularly limited.
  • the inorganic filler is preliminarily surface-treated with a coupling agent such as a silane coupling agent or a titanate coupling agent. .
  • Such coupling agents include, for example, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropinolemethinolegoxysilane, j8 — (3,4-epoxycyclohexyl) ethyl chloride.
  • Epoxy-functional alkoxysilanes such as methoxysilane, N- ⁇ (aminoethyl) -y-aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -file ⁇ -aminopropyltrimethoxysilane It is preferable to use aminofunctional alkoxysilanes such as ⁇ -mercaptopropyltrimethoxysilane and other mercaptofunctional alkoxysilanes.
  • the amount of coupling agent used for the surface treatment and the surface treatment method are not particularly limited.
  • the filling amount of the inorganic filler is preferably 20 to 700 parts by weight, particularly 50 to 400 parts by weight, with respect to 100 parts by weight of the total amount of (i) epoxy resin and (ii) acid anhydride. If it is less than 20 parts by mass, sufficient strength may not be obtained. If it exceeds 700 parts by mass, unfilled defects due to thickening and flexibility will be lost, resulting in defects such as peeling in the device. There is a case.
  • This inorganic filler is in the range of 10 to 90% by weight, particularly 20 to 80% by weight of the total composition. It is preferable to contain.
  • an epoxy resin other than the above can be used in combination with a certain amount or less as long as the effects of the present invention are not impaired.
  • this epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, 3, 3 ', 5, 5'-tetramethyl-4,4'-biphenol type epoxy resin or 4,4'-biphenol Type epoxy resin, biphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, naphthalenediol type epoxy resin, trisphenol-methane And epoxy resin obtained by hydrogenating the aromatic ring of type epoxy resin, tetrakisphenol-ethane type epoxy resin, and phenol dicyclopentagen novolac type epoxy resin.
  • the softening point of other epoxy resins is preferably 70-100 ° C! /.
  • various additives can be further blended as necessary.
  • various thermoplastic additives, thermoplastic elastomers, organic synthetic rubbers, silicone-based low stress agents, waxes, halogen trapping agents and the like are added to the present invention for the purpose of improving the properties of the resin. It can be added and blended as long as the effect is not impaired.
  • the components (A) and (B), preferably the components (A), (B) and (C) are mixed in advance. 70 to 120 ° C, preferably 80 to: L in a temperature range of 10 ° C, or in advance (A), (B), (D) component or (A), (B), (C ) And (D) are mixed and uniformly melted and mixed in an apparatus such as a reaction vessel capable of heating without solvent in a temperature range of 30 to 80 ° C, preferably 40 to 60 ° C. , A mixture which is cooled and solidified with a softening point sufficient to handle the mixture at room temperature, specifically 50-100 ° C, more preferably 60-90 ° C. And
  • the temperature range in which these components are mixed includes the components (A) and (B), or (A), (B),
  • a suitable force is 70 to 120 ° C, more preferably 80 to 110 ° C.
  • the mixing temperature is less than 70 ° C, a mixture that becomes solid at room temperature is obtained.
  • the temperature is too low, and at temperatures exceeding 120 ° C, the reaction rate becomes too fast, making it difficult to stop the reaction at the expected reactivity.
  • the temperature when mixing the components (A), (B), (D) or (A), (B), (C), (D) is as described above, but the mixing temperature is too low. On the other hand, the disadvantage of being too high is the same as above.
  • each component of components (D), (E), (F), (G) and other additives are blended at a predetermined composition ratio as necessary.
  • the mixture is melt-mixed with a hot roll, adader, etastruder, etc., then cooled and solidified, pulverized to an appropriate size, and molded into an epoxy resin composition. It can be.
  • the epoxy resin composition of the present invention excludes light emitting elements such as LED elements (however, includes a photocoupler in which a light emitting element and a light receiving element are integrated). 'It can be effectively used as a sealing material for electronic device devices, particularly photocouplers.
  • FIG. 1 shows a cross-sectional view of a photocoupler which is an example of a semiconductor device using the yarn composition of the present invention.
  • the photocoupler shown in FIG. 1 is die-bonded to a semiconductor element 1 force S lead frame 2 having a compound semiconductor power, and further bonded to another lead frame 2 (not shown) by a bonding wire 3.
  • a light receiving semiconductor element 4 is die-bonded on the lead frame 5 so as to face the semiconductor element 1, and is further wire-bonded to another lead frame (not shown) by a bonding wire 6.
  • a space between these semiconductor elements is filled with a transparent sealing resin 7. Further, the semiconductor element covered with the sealing resin 7 is sealed with the thermosetting epoxy resin composition 8 of the present invention.
  • the most general method for sealing the thermosetting epoxy resin composition of the present invention is a low-pressure transfer molding method.
  • the molding temperature of the epoxy resin composition of the present invention is preferably 150 to 185 ° C for 30 to 180 seconds.
  • Post-curing can be done at 150-195 ° C for 2-20 hours!
  • Tris (2,3 epoxypropyl) isocyanate (TEPIC— S: product name, product name, epoxy equivalent 100)
  • Bisphenol A type hydrogenated epoxy resin (YL-7170: Product name, Epoxy equivalent 1,200, manufactured by Japan Epoxy Resins Co., Ltd.)
  • Bisphenol A type epoxy resin (E1004: Japan Epoxy Resin Co., Ltd. trade name, epoxy equivalent 890)
  • Non-carbon carbon double bond acid anhydride methyl hexahydrophthalic anhydride (Ricacid MH: Shin Nippon Rika Co., Ltd. trade name)
  • Carbon-containing carbon double bond acid anhydride Tetrahydrophthalic anhydride (Ricacid TH: Shin Nippon Riyaku Co., Ltd. product name)
  • Phenolic novolak resin (TD— 2131: trade name, manufactured by Dainippon Ink & Chemicals, Inc.) (C) Antioxidant
  • Phosphorous antioxidant Triphenyl phosphite (trade name, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Phenolic antioxidants 2, 6 di-t-butyl p-taresol (BHT: Wako Pure Chemical Industries, Ltd. trade name)
  • Phosphorus-based curing catalyst quaternary phosphorous bromide (U—CAT5003: product name of Sanpro Corporation)
  • Phosphorus-based curing catalyst methyl-tributyl phospho-mu-dimethyl phosphate
  • Imidazole catalyst 2 ethyl 4 methylimidazole (2E4MZ: Shikoku Kasei Co., Ltd.) Product name)
  • the (reaction) component was melt-mixed under the conditions shown in the same table, and the resulting reaction solid was pulverized and blended with the (post-blending) component to prepare an epoxy resin composition. Obtained.
  • the characteristics of the cured product obtained by curing the reaction solid and the epoxy resin composition with a transfer molding machine were examined by the following method. The results are also shown in Table 1.
  • the reaction solid was subjected to GPC analysis under the following conditions.
  • the TEPIC-S monomer ratio, MH monomer ratio, medium molecular weight component ratio, and high molecular weight component ratio were calculated as follows.
  • each component ratio value indicates a mass ratio.
  • the gelation time, yellowing, thermogravimetric analysis (TG—DTA), and strength of the composition were measured and evaluated as follows.
  • Yellowing The yellowing when 10 g of a sample was cured in an aluminum petri dish at 180 ° C. for 60 seconds and the yellowing after standing at 180 ° C. for 24 hours were evaluated. Evaluation criteria Transparent and colorless
  • Ding 0-0 Ding Hachi Obtained by measuring from room temperature to 500 ° C at a temperature of 5 ° CZmin using a cylindrical test piece with a bottom surface of 10mm ⁇ and a height of 2mm that was molded in 180 seconds at 180 ° The temperature when 0.2% of the weight was reduced from the temperature-weight curve was obtained.
  • the specimen was cured at 180 ° C. for 60 seconds to prepare a 50 ⁇ 10 ⁇ 0.5 mm test piece, and the 3-point bending strength was measured at a test speed of 2 mmZ seconds at room temperature.
  • the viscosity was measured at a temperature of 1 75 ° C. using a nozzle with a diameter of 1 mm under a pressure of 10 kgf.
  • a disk having a diameter of 50 ⁇ 3 mm was formed under the conditions of 175 ° C., 6.9 NZmm 2 , and molding time of 2 minutes, and left at 180 ° C. for 24 hours to compare yellowing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6~2.0の割合で反応させて得られる固形物の粉砕物を樹脂成分として含有してなることを特徴とする熱硬化性エポキシ樹脂組成物。

Description

明 細 書
熱硬化性エポキシ樹脂組成物及び半導体装置
技術分野
[0001] 本発明は、硬化性に優れ、耐熱性、耐光性に優れると共に、良好な強度を有し、熱 による変色、特に黄変を抑えて、信頼性に優れた硬化物を与える熱硬化性エポキシ 榭脂組成物及び該組成物の硬化物で受光素子その他の半導体素子 (但し、 LED素 子等の発光素子を除くが、発光素子と受光素子とが一体化されたフォトカプラーは包 含する)を封止した半導体装置に関する。
背景技術
[0002] 半導体'電子機器装置の封止材への信頼性要求は、薄型化、小型化と共に、高出 力化によって、益々厳しくなつている。一例として、 LEDや LD (lazer diode)等の半 導体素子は、小型で効率よく鮮やかな色の発光をし、また半導体素子であるため球 切れがなぐ駆動特性が優れ、振動や ONZOFF点灯の繰り返しに強い。そのため、 各種インジケータや種々の光源として利用されて 、る。
このような半導体素子を用いたフォトカプラー等の半導体'電子機器装置の材料の ひとつとして、ポリフタルアミド榭脂(PPA)が現在広く使用されている。
[0003] し力しながら、今日の光半導体技術の飛躍的な進歩により、光半導体装置の高出 力化及び短波長化が著しぐ高エネルギー光を発光又は受光可能なフォトカプラー 等の光半導体装置では、特に無着色'白色の材料として従来の PPA榭脂を用いた 半導体素子封止及びケースでは、長期間使用による劣化が著しぐ色ムラの発生や 剥離、機械的強度の低下等が起こりやすぐこのため、このような問題を効果的に解 決することが望まれた。
[0004] 更に詳述すると、特許第 2656336号公報 (特許文献 1)には、封止榭脂が、ェポキ シ榭脂、硬化剤及び硬化促進剤を構成成分とする Bステージ状の光半導体封止用 エポキシ榭脂組成物であって、上記構成成分が分子レベルで均一に混合されて ヽる 榭脂組成物の硬化体で構成されていることを特徴とする光半導体装置が記載されて おり、 「上記光半導体封止用エポキシ榭脂組成物は、特にコンパクトディスクの受光素子 封止材料あるいは固体撮像素子であるラインセンサー,エリアセンサーの封止材料 に好適に用いることができる。そして、このような光半導体封止用エポキシ榭脂組成 物を用い、例えば固体撮像素子等の受光素子を榭脂封止してなる光半導体装置は 、形成画像に、榭脂の光学むらに起因する縞模様や封止榭脂中の異物に起因する 黒点が現れることのない高性能品であり、榭脂封止品でありながら、セラミックパッケ ージ品と同等力それ以上の性能を発揮する。」
旨記載されている。この場合、エポキシ榭脂としては、ビスフエノール A型エポキシ榭 脂又はビスフエノール F型エポキシ榭脂が主として用いられ、トリグリシジルイソシァネ 一ト等を使用し得ることも記載されている力 トリグリシジルイソシァネートは、実施例 にお 、てビスフエノール型エポキシ榭脂に少量添加使用されて ヽるもので、本発明 者らの検討によれば、この Bステージ状半導体封止用エポキシ榭脂組成物は、特に 高温'長時間の放置で黄変するという問題がある。
また、発光素子封止用エポキシ榭脂糸且成物におけるトリァジン誘導体エポキシ榭脂 の使用については、特開 2000— 196151号公報(特許文献 2)、特開 2003— 2243 05号公報 (特許文献 3)、特開 2005— 306952号公報 (特許文献 4)に記載があるが 、これらは、いずれもトリァジン誘導体エポキシ榭脂と酸無水物とを反応させて得られ た固形物を用いたものではな 、。
なお、本発明に関連する公知文献としては、上記の公報に加えて、下記特許文献 5〜7及び非特許文献 1が挙げられる。
特許文献 1:特許第 2656336号公報
特許文献 2:特開 2000 - 196151号公報
特許文献 3:特開 2003 - 224305号公報
特許文献 4:特開 2005— 306952号公報
特許文献 5 :特許第 3512732号公報
特許文献 6:特開 2001— 234032号公報
特許文献 7:特開 2002— 302533号公報
非特許文献 1:エレクトロニクス実装技術 2004. 4の特集 発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記事情に鑑みなされたもので、長期間にわたり耐熱性、耐光性を保 持し、均一でかつ黄変の少な!/、硬化物を与える熱硬化性エポキシ榭脂組成物及び 該組成物の硬化物で半導体素子 (但し、 LED素子等の発光素子を除くが、発光素 子と受光素子とが一体化されたフォトカプラーは包含する)が封止された半導体装置 を提供することを目的とする。
課題を解決するための手段
[0007] 本発明者らは、上記目的を達成すべく鋭意検討を行った結果、エポキシ榭脂として トリァジン誘導体エポキシ榭脂を単独で用い、このトリァジン誘導体エポキシ榭脂と酸 無水物とを好ましくは酸化防止剤及び Z又は硬化触媒の存在下にエポキシ基当量 Z酸無水物基当量 0. 6〜2. 0の割合で配合し、反応して得られる固形物の粉砕物 を榭脂成分として使用した熱硬化性エポキシ榭脂組成物が、硬化性に優れ、耐熱性 、耐光性に優れると共に、良好な強度を有する硬化物となり得ることを見出し、本発 明をなすに至った。
[0008] 従って、本発明は、下記に示す熱硬化性エポキシ榭脂組成物並びに半導体装置 を提供する。
〔I〕トリァジン誘導体エポキシ榭脂と酸無水物とをエポキシ基当量 Z酸無水物基当量
0. 6〜2. 0の割合で反応させて得られる固形物の粉砕物を榭脂成分として含有して なることを特徴とする熱硬化性エポキシ榭脂組成物。
〔II〕トリァジン誘導体エポキシ榭脂が、 1, 3, 5—トリアジン核誘導体エポキシ榭脂で ある〔I〕記載の熱硬化性エポキシ榭脂組成物。
〔III〕上記固形物が、下記一般式(1)
[化 1]
Figure imgf000005_0001
(式中、 Rは酸無水物残基、 nは 0〜200の数である。 )
で示される化合物を含有するものである〔II〕記載の熱硬化性エポキシ榭脂組成物。 〔IV〕酸無水物が、非芳香族であり、かつ炭素炭素二重結合を有さないものである〔I〕 , [II]又は〔III〕記載の熱硬化性エポキシ榭脂組成物。
〔V〕トリァジン誘導体エポキシ榭脂と酸無水物との反応を、酸化防止剤の存在下で 行うようにした〔I〕〜〔IV〕の 、ずれかに記載の熱硬化性エポキシ榭脂組成物。
〔VI〕酸ィ匕防止剤が、フエノール系、リン系、硫黄系酸ィ匕防止剤力も選ばれる 1種又は 2種以上である〔V〕記載の熱硬化性エポキシ榭脂組成物。
〔VII〕酸化防止剤力 亜リン酸トリフエ-ル及び Z又は 2, 6—ジ— t—ブチル—p—ク レゾールを含む〔VI〕記載の熱硬化性エポキシ榭脂組成物。
〔VIII〕トリァジン誘導体エポキシ榭脂と酸無水物とを 70〜120°Cにて反応して固形 物を得るようにした〔V〕 , [VI]又は〔VII〕記載の熱硬化性エポキシ榭脂組成物。 〔IX〕トリァジン誘導体エポキシ榭脂と酸無水物との反応を、硬化触媒又は硬化触媒 と酸化防止剤の存在下で行うようにした〔I〕〜〔IV〕の 、ずれかに記載の熱硬化性ェ ポキシ榭脂組成物。
〔X〕硬化触媒が、 2—ェチルー 4ーメチルイミダゾールである〔IX〕記載の熱硬化性ェ ポキシ榭脂組成物。
〔XI〕硬化触媒が、メチル—トリブチルホスホ-ゥム―ジメチルホスフェイト又は第四級 ホスホ-ゥムブロマイドである〔IX〕記載の熱硬化性エポキシ榭脂組成物。
〔XII〕トリァジン誘導体エポキシ榭脂と酸無水物とを 30〜80°Cにて反応して固形物 を得るようにした〔IX〕, 〔X〕又は〔XI〕記載の熱硬化性エポキシ榭脂組成物。
[XIII]二酸化チタンを配合した〔I〕〜〔XII〕の 、ずれかに記載の熱硬化性エポキシ 榭脂組成物。
[XIV]二酸ィ匕チタン以外の無機充填剤を配合した〔I〕〜〔XIII〕の 、ずれかに記載の 熱硬化性エポキシ榭脂組成物。
〔XV〕透明に形成された〔I〕〜〔XII〕の 、ずれか〖こ記載の熱硬化性エポキシ榭脂組 成物。
[XVI]発光素子を除く半導体素子ケース形成用である〔I〕〜〔XV〕の 、ずれかに記 載の熱硬化性エポキシ榭脂組成物。
[XVII]〔I〕〜〔XV〕の 、ずれかに記載の熱硬化性エポキシ榭脂組成物の硬化物で 半導体素子 (但し、発光素子を除くが、発光素子と受光素子とが一体化された素子 は包含する)を封止した半導体装置。
発明の効果
[0009] 本発明の熱硬化性エポキシ榭脂組成物は、硬化性に優れ、良好な強度を有すると 共に、長期間にわたり耐熱性、耐光性を保持し、均一でかつ黄変の少ない硬化物を 与えるものである。そのため、本発明の組成物の硬化物にて封止されたフォト力ブラ 一等の受光素子を有する半導体'電子機器装置は、産業上特に有用である。
図面の簡単な説明
[0010] [図 1]本発明の熱硬化性榭脂組成物を用いたフォトカプラーの一例を示すものである 発明を実施するための最良の形態
[0011] 繊
本発明に係る熱硬化性エポキシ榭脂組成物は、 (A)トリアジン誘導体エポキシ榭 脂と(B)酸無水物とを、エポキシ基当量 Z酸無水物基当量 0. 6〜2. 0で配合し、好 ましくは (C)酸化防止剤及び Z又は(D)硬化触媒の存在下にお!/ヽて反応して得られ た固形物の粉砕物を榭脂成分として使用する。
[0012] (A)トリァジン誘導体エポキシ撒脂
本発明で用いられるトリァジン誘導体エポキシ榭脂は、これを酸無水物と特定の割 合で反応させて得られる固形物の粉砕物を榭脂成分として含有することにより、熱硬 化性エポキシ榭脂組成物の硬化物の黄変を抑制し、かつ経時劣化の少な!/、半導体 発光装置を実現する。力かるトリァジン誘導体エポキシ榭脂としては、 1, 3, 5—トリア ジン核誘導体エポキシ榭脂であることが好まし 、。特にイソシァヌレート環を有するェ ポキシ榭脂は、耐光性や電気絶縁性に優れており、 1つのイソシァヌレート環に対し て、 2価の、より好ましくは 3価のエポキシ基を有することが望ましい。具体的には、トリ ヌレート等を用いることができる。 [0013] 本発明で用いるトリァジン誘導体エポキシ榭脂の軟ィ匕点は 90〜125°Cであることが 好ましい。なお、本発明において、このトリァジン誘導体エポキシ榭脂としては、トリア ジン環を水素化したものは包含しな 、。
[0014] (B)酸無水物
本発明で用いられる(B)成分の酸無水物は、硬化剤として作用するものであり、耐 光性を与えるために非芳香族であり、かつ炭素炭素二重結合を有さないものが好ま しぐ例えば、へキサヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸、トリアルキ ルテトラヒドロ無水フタル酸、水素ィ匕メチルナジック酸無水物などが挙げられ、これら の中でもメチルへキサヒドロ無水フタル酸が好まし 、。これらの酸無水物系硬化剤は 、 1種類を単独で使用してもよぐまた 2種類以上を併用してもよい。
[0015] 酸無水物系硬化剤の配合量としては、上記したトリァジン誘導体エポキシ榭脂のェ ポキシ基 1当量に対し、酸無水物基が 0. 6〜2. 0当量であり、好ましくは 1. 0〜2. 0 当量、更に好ましくは 1. 2〜1. 6当量である。 0. 6当量未満では硬化不良が生じ、 信頼性が低下する場合がある。また、 2. 0当量を超える量では未反応硬化剤が硬化 物中に残り、得られる硬化物の耐湿性を悪ィ匕させる場合がある。
[0016] (C)酸化方 I I
本発明のエポキシ榭脂組成物に用いられる(C)成分の酸ィ匕防止剤としては、フエノ ール系、リン系、硫黄系酸ィ匕防止剤を使用でき、酸化防止剤の具体例としては、以 下のような酸ィ匕防止剤が挙げられる。
[0017] フエノール系酸化防止剤としては、 2, 6 ジー tーブチルー ρ クレゾール、ブチル 化ヒドロキシァ-ソール、 2, 6 ジ tーブチルー p ェチルフエノール、ステアリル j8 - (3, 5 ジ tーブチルー 4ーヒドロキシフエ-ル)プロピオネート、 2, 2,ーメチレ ンビス(4ーメチルー 6— t ブチルフエノール)、 4, 4,ーブチリデンビス(3—メチルー 6— t ブチルフエノール)、 3, 9 ビス [1, 1 ジメチルー 2—{ j8—(3— t—ブチル 4ーヒドロキシー5 メチルフエ-ル)プロピオ-ルォキシ}ェチル ] 2, 4, 8, 10—テ トラォキサスピロ [5. 5]ゥンデカン、 1, 1, 3 トリス(2—メチル 4 ヒドロキシ一 5— t ブチルフエ-ル)ブタン、 1, 3, 5 トリメチルー 2, 4, 6 トリス(3, 5 ジ一 t ブ チルー 4ーヒドロキシベンジル)ベンゼン等が挙げられ、中でも 2, 6 ジー t—ブチル p クレゾ一ノレが好まし!/、。
[0018] リン系酸化防止剤としては、亜リン酸トリフエ-ル、亜リン酸ジフエ-ルアルキル、亜リ ン酸フヱ-ルジアルキル、亜リン酸トリ(ノ -ルフヱ-ル)、亜リン酸トリラウリル、亜リン 酸トリオクタデシル、ジステアリルペンタエリトリトールジホスフアイト、トリス(2, 4 ジ— tert ブチルフエ-ル)ホスファイト、ジイソデシルペンタエリトリトールジホスファイト、 ジ(2, 4 ジ— tert—ブチルフエ-ル)ペンタエリトリトールジホスフアイト、トリステアリ ルソルビトールトリホスファイト及びテトラキス(2, 4 ジ tert ブチルフエ-ル)ー4 , 4'—ビフエ-ルジホスホネート等が挙げられ、中でも亜リン酸トリフエ-ルが好ましい
[0019] また、硫黄系酸ィ匕防止剤としては、ジラウリル—3, 3 ' チォジプロピオネート、ジミ リスチルー 3, 3,一チォジプロピオネート、ジステアリル 3, 3,一チォジプロビオネ ート等が挙げられる。
[0020] これらの酸化防止剤は、それぞれ単独で使用できるが、リン系酸化防止剤単独又 はフエノール系酸ィ匕防止剤とリン系酸ィ匕防止剤とを組み合わせて使用することが特 に好ましい。この場合、フエノール系酸ィ匕防止剤とリン系酸ィ匕防止剤との使用割合は 、質量比でフエノール系酸化防止剤:リン系酸化防止剤 =0 : 100〜70 : 30、特〖こ 0 : 100〜50: 50とすることが好まし!/、。
[0021] 酸化防止剤の配合量は、エポキシ榭脂組成物 100質量部に対して 0. 01〜10質 量部、特に 0. 03〜5質量部とすることが好ましい。配合量が少なすぎると十分な耐 熱性が得られず、変色する場合があり、多すぎると硬化阻害を起こし、十分な硬化性 、強度を得ることができない場合がある。
[0022] (On mm
この(D)成分の硬化触媒としては、エポキシ榭脂組成物の硬化触媒として公知のも のが使用でき、特に限定されないが、第三級ァミン類、イミダゾール類、それらの有機 カルボン酸塩、有機カルボン酸金属塩、金属一有機キレート化合物、芳香族スルホ ニゥム塩、有機ホスフィンィ匕合物類、ホスホ-ゥム化合物類等のリン系硬化触媒、これ らの塩類等の 1種又は 2種以上を使用することができる。これらの中でも、イミダゾー ル類、リン系硬化触媒、例えば 2 ェチルー 4ーメチルイミダゾール、メチルートリブチ ルホスホ-ゥムージメチルホスフェイト、第四級ホスホ-ゥムブロマイドが更に好ましい
[0023] 硬化触媒の使用量は、組成物全体の 0. 05〜5質量%、特に 0. 1〜2質量%の範 囲内で配合することが好ましい。上記範囲を外れると、エポキシ榭脂組成物の硬化物 の耐熱性及び耐湿性のバランスが悪くなるおそれがある。
[0024] 本発明にお 、ては、上記した (A) , (B)成分、好ましくは (A) , (B) , (C)成分を、 予め 70〜120°C、好ましくは 80〜110°Cにて 4〜20時間、好ましくは 6〜15時間、 又は (A) , (B) , (D)成分又は (A) , (B) , (C) , (D)成分を予め 30〜80°C、好ましく は 40〜60°Cにて 10〜72時間、好ましくは 36〜60時間反応して、軟化点が 50〜: LO 0°C、好ましくは 60〜90°Cである固形物とし、これを粉砕して配合することが好ましい 。反応して得られる物質の軟化点が、 50°C未満では固形物とはならず、 100°Cを超 える温度では流動性が低下するおそれがある。
[0025] この場合、反応時間が短すぎると、高分子成分が少なくて固形物とならず、長すぎ ると、流動性が低下する場合が生じる。
[0026] ここで得られた反応固形物は、(A)成分のトリァジン誘導体エポキシ榭脂と (B)成 分の酸無水物との反応生成物のうち、ゲルパーミエーシヨンクロマトグラフィー(GPC )による分析において (但し、分析条件として試料濃度 0. 2質量%、注入量 50 /z Lを 移動相 THF100%、流量 1. OmL/min,温度 40°Cの条件下、検出器 RIで測定)、 分子量が 1500を超える高分子量成分と、分子量 300〜 1500の中分子量成分と、モ ノマー成分とを含有し、高分子量成分が 20〜70質量%、中分子量成分が 10〜60 質量%、モノマー成分が 10〜40質量%であることが好ましい。
[0027] 上記反応固形物は、(A)成分としてトリグリシジルイソシァネートを用いた場合、下 記式(1)で示される反応生成物を含有し、特に (B)成分の酸無水物がメチルへキサ ヒドロ無水フタル酸である場合、下記式(2)で示される反応生成物を含有する。
[0028] [化 2]
Figure imgf000011_0001
Figure imgf000011_0002
[0029] 上記式中、 Rは酸無水物残基、 nが 0〜200の範囲の任意のものを含み、平均分子 量が 500〜10万の成分である力 本発明に係る反応固形物にあっては、分子量 15 00を超える高分子量成分を 20〜70質量%、特に 30〜60質量%、分子量が 300〜 1500の中分子量成分を 10〜60質量%、特に 10〜40質量%、モノマー成分 (未反 応エポキシ榭脂及び酸無水物)を 10〜40質量%、特に 15〜30質量%含有すること が好ましい。
[0030] 本発明のエポキシ榭脂組成物は、上記のようにして得られる榭脂成分を含有する 力 この榭脂成分の製造に際し、(C)酸化防止剤、(D)硬化触媒を使用しなかった 場合、エポキシ榭脂組成物の調製の段階で榭脂成分に (C)酸化防止剤、(D)硬化 触媒を配合することが好まし 、。
また、エポキシ榭脂組成物には、更に下記の成分を配合し得る。
[0031] (E)二酸化チタン
本発明のエポキシ榭脂組成物には、二酸ィ匕チタンを配合することができる。(E)成 分の二酸化チタンは、白色着色剤として、白色度を高めるために配合するものであり 、この二酸ィ匕チタンの単位格子はルチル型、アナタース型のどちらでも構わない。ま た、平均粒径や形状も限定されない。上記二酸化チタンは、榭脂ゃ無機充填剤との 相溶性、分散性を高めるため、 A1や Siなどの含水酸ィ匕物等で予め表面処理すること ができる。
[0032] 二酸ィ匕チタンを配合する場合の充填量は、組成物全体の 2〜80質量%、特に 5〜 50質量%が好ましい。 2質量%未満では十分な白色度が得られない場合があり、 80 質量%を超えると未充填ゃボイド等の成形性が低下する場合がある。
また、白色着色剤として、二酸化チタン以外にチタン酸カリウム、酸ィ匕ジルコン、硫 化亜鉛、酸化亜鉛、酸ィ匕マグネシウム等を併用して使用することができる。これらの 平均粒径や形状は特に限定されな ヽ。
[0033] (F)無機權剤
本発明のエポキシ榭脂組成物には、更に二酸ィ匕チタン等の上記 (E)成分以外の 無機充填剤を配合することができる。配合される (F)成分の無機充填剤としては、通 常エポキシ榭脂組成物に配合されるものを使用することができる。例えば、溶融シリ 力、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイト ライド、ガラス繊維、三酸ィ匕アンチモン等が挙げられる。これら無機充填剤の平均粒 径ゃ形状は特に限定されな 、。
[0034] 上記無機充填剤は、榭脂と無機充填剤との結合強度を強くするため、シランカップ リング剤、チタネートカップリング剤などのカップリング剤で予め表面処理したものを配 合してちょい。
このようなカップリング剤としては、例えば、 γ—グリシドキシプロピルトリメトキシシラ ン、 γ—グリシドキシプロピノレメチノレジェトキシシラン、 j8 —(3, 4—エポキシシクロへ キシル)ェチルトリメトキシシラン等のエポキシ官能性アルコキシシラン、 N— β (ァミノ ェチル) - y—ァミノプロピルトリメトキシシラン、 γ—ァミノプロピルトリエトキシシラン 、 Ν—フエ-ル一 γ—ァミノプロピルトリメトキシシラン等のアミノ官能性アルコキシシラ ン、 γ —メルカプトプロピルトリメトキシシラン等のメルカプト官能性アルコキシシランな どを用いることが好ましい。なお、表面処理に用いるカップリング剤の配合量及び表 面処理方法にっ 、ては特に制限されるものではな 、。
[0035] 無機充填剤の充填量は、 (Α)エポキシ榭脂と (Β)酸無水物の総量 100質量部に対 し、 20〜700質量部、特に 50〜400質量部が好ましい。 20質量部未満では、十分 な強度を得ることができないおそれがあり、 700質量部を超えると、増粘による未充填 不良や柔軟性が失われることで、装置内の剥離等の不良が発生する場合がある。な お、この無機充填剤は、組成物全体の 10〜90質量%、特に 20〜80質量%の範囲 で含有することが好ましい。
[0036] (G)その他のエポキシ榭月旨
また、必要に応じて、上記以外のエポキシ榭脂を本発明の効果を損なわない範囲 で一定量以下併用することができる。このエポキシ榭脂の例として、ビスフエノール A 型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、 3, 3' , 5, 5'—テトラメチルー 4, 4'ービフエノール型エポキシ榭脂又は 4, 4'ービフエノール型エポキシ榭脂のような ビフエノール型エポキシ榭脂、フエノールノボラック型エポキシ榭脂、クレゾールノボラ ック型エポキシ榭脂、ビスフエノール Aノボラック型エポキシ榭脂、ナフタレンジオール 型エポキシ榭脂、トリスフエ-ロールメタン型エポキシ榭脂、テトラキスフエ-ロールェ タン型エポキシ榭脂、及びフエノールジシクロペンタジェンノボラック型エポキシ榭脂 の芳香環を水素化したエポキシ榭脂等が挙げられる。
また、その他のエポキシ榭脂の軟化点は 70〜100°Cであることが好まし!/、。
[0037] その他の添加剤
本発明のエポキシ榭脂組成物には、更に必要に応じて各種の添加剤を配合するこ とができる。例えば、榭脂の性質を改善する目的で種々の熱可塑性榭脂、熱可塑性 エラストマ一、有機合成ゴム、シリコーン系等の低応力剤、ワックス類、ハロゲントラッ プ剤等の添加剤を本発明の効果を損なわない範囲で添加配合することができる。
[0038] エポキシ榭脂 成物の調製 法
本発明のエポキシ榭脂組成物を成形材料として調製する場合の方法としては、予 め(A) , (B)成分、好ましくは (A) , (B) , (C)成分の各成分を混合して、 70〜 120°C 、好ましくは 80〜: L 10°Cの温度範囲にて、又は、予め (A) , (B) , (D)成分又は (A) , (B) , (C) , (D)成分の各成分を混合して 30〜80°C、好ましくは 40〜60°Cの温度 範囲にて、無溶媒の加温可能な反応釜等の装置により均一に溶融混合し、混合物 が常温で取扱うのに十分な軟ィ匕点、具体的には 50〜100°C、より好ましくは 60〜90 °Cになるまで増粘させたものを冷却して、固形化した混合物とする。
[0039] この場合、これら成分を混合する温度域としては、 (A) , (B)成分、又は (A) , (B) ,
(C)成分を混合する場合は 70〜120°Cが適切である力 より好ましくは 80〜110°C の範囲である。混合温度が 70°C未満では、室温で固形となるような混合物を得るた めには温度が低すぎ、 120°Cを超える温度では、反応速度が速くなりすぎるため、期 待した反応度で反応を停止することが難しくなつてしまう。なお、(A) , (B) , (D)成分 又は (A) , (B) , (C) , (D)成分を混合する場合の温度は上記の通りであるが、混合 温度が低すぎる場合、逆に高すぎる場合の不利は上記と同様である。
[0040] 次に、この混合物を粉砕した後、必要に応じ (D) , (E) , (F) , (G)成分の各成分、 その他の添加物を所定の組成比で配合し、これをミキサー等によって十分均一に混 合した後、熱ロール、エーダー、エタストルーダー等による溶融混合処理を行い、次 いで冷却固化させ、適当な大きさに粉砕してエポキシ榭脂組成物の成形材料とする ことができる。
[0041] このようにして得られる本発明のエポキシ榭脂組成物は、 LED素子等の発光素子 を除く(但し、発光素子と受光素子とが一体化されたフォトカプラーは包含する)半導 体'電子機器装置、特にはフォトカプラー用の封止材として有効に利用できる。なお ここで、本発明の糸且成物を用いた半導体素子の一例であるフォトカプラーの断面図 を図 1に示す。図 1で示されるフォトカプラーは、化合物半導体力 なる半導体素子 1 力 Sリードフレーム 2にダイボンドされ、更にボンディングワイヤ 3により別のリードフレー ム 2 (図示せず)にワイヤボンドされている。また、この半導体素子 1と対向するように 受光用の半導体素子 4がリードフレーム 5上にダイボンドされ、更にボンディングワイ ャ 6により別のリードフレーム(図示せず)にワイヤーボンディングされている。これらの 半導体素子の間は透明封止榭脂 7により充填されている。更に、この封止榭脂 7によ り被覆された半導体素子は本発明の熱硬化性エポキシ榭脂組成物 8により榭脂封止 されている。
[0042] この場合、本発明の熱硬化性エポキシ榭脂組成物の封止の最も一般的な方法とし ては低圧トランスファー成形法が挙げられる。なお、本発明のエポキシ榭脂組成物の 成形温度は 150〜185°Cで 30〜180秒行うことが望ましい。後硬化は 150〜195°C で 2〜20時間行ってもよ!ヽ。
実施例
[0043] 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の 実施例に制限されるものではな 、。 [0044] 下記例で使用した原料を以下に示す。
(A)エポキシ榭脂
(A- 1)トリァジン誘導体エポキシ榭脂
トリス(2, 3 エポキシプロピル)イソシァネート (TEPIC— S :日産化学 (株)製商品 名、エポキシ当量 100)
(A— 2)水素添加エポキシ榭脂
ビスフエノール A型水素添カ卩エポキシ榭脂(YL— 7170:ジャパンエポキシレジン( 株)製商品名、エポキシ当量 1, 200)
(A- 3)その他の芳香族エポキシ榭脂
ビスフエノール A型エポキシ榭脂(E1004:ジャパンエポキシレジン (株)製商品名、 エポキシ当量 890)
[0045] (B)酸無水物
非炭素炭素二重結合酸無水物;メチルへキサヒドロ無水フタル酸 (リカシッド MH: 新日本理化 (株)製商品名)
含炭素炭素二重結合酸無水物;テトラヒドロ無水フタル酸 (リカシッド TH:新日本理 ィ匕 (株)製商品名)
(Β' )硬化剤
フエノールノボラック榭脂 (TD— 2131:大日本インキ化学工業 (株)製商品名) (C)酸化防止剤
リン系酸化防止剤;亜リン酸トリフ ニル (和光純薬 (株)製商品名)
フエノール系酸化防止剤; 2, 6 ジ— t ブチル p タレゾール (BHT:和光純薬 (株)製商品名)
[0046] (D)硬化触媒
リン系硬化触媒;第四級ホスホ-ゥムブロマイド (U— CAT5003 :サンァプロ(株) 製商品名)
リン系硬化触媒;メチルートリブチルホスホ-ゥムージメチルホスフェイト
(PX-4MP :日本化学 (株)製商品名)
イミダゾール系触媒; 2 ェチル 4 メチルイミダゾール( 2E4MZ:四国化成(株) 製商品名)
(E)二酸化チタン;ルチル型 (R-45M:堺化学工業 (株)製商品名)
(F)無機充填剤;破砕溶融シリカ( (株)龍森製商品名 )
[0047] [実施例 1〜4、比較例 1, 2]
表 1に示す成分のうち、(反応)成分を同表に示す条件で溶融混合し、得られた反 応固形物を粉砕したものを (後配合)成分と配合し、エポキシ榭脂組成物を得た。 上記反応固形物、及び上記エポキシ榭脂組成物をトランスファー成型機にて硬化 して得られた硬化物の特性を下記方法で調べた。結果を表 1に併記する。
[0048] 繊
下記条件で反応固形物を GPC分析した。
(GPC分析条件)
HLC -8120 (東ソ一社製の装置)を用い、カラム; TSKguardcolumnHXL— L + G4, 3, 2, 2HxL、試料濃度 0. 2%、注入量 Lを移動相 THF100%,流量 1. OmL/min,温度 40°Cの条件下、検出器 RIにて測定した。
得られた GPC分析データから、以下のようにして TEPIC— Sモノマー比、 MHモノ マー比、中分子量成分比、高分子量成分比を算出した。なお、表 1において各成分 比の値は質量割合を示す。
•TEPIC— Sモノマー比; 37. 3±0. 5分にピークを持つ 1つのエリア
•MHモノマー比; 38. 3±0. 5分にピークを持つ 1つのエリア
'中分子量成分比; 30. 8〜36. 8分の範囲のエリア
'高分子量成分比; 0〜30. 7分の範囲のエリア
[0049] 組成物の評価
組成物のゲル化時間、黄変性、熱重量分析 (TG— DTA)、強度について以下のよ うに測定、評価した。
ゲルィ匕時間: 175°Cの熱板上に試料 1. Ogを置き、同時にストップウォッチにて測定 を開始し、熱板上の試料を削り取り、試料がゲルィ匕開始した時点を測定した。
黄変性:試料 10gをアルミシャーレにて 180°C, 60秒で硬化した場合の黄変性、及 び、これを 180°Cで 24時間放置した後の黄変性を評価した。 評価基準 透明無色
〇:薄黄色
△:茶色
X:褐色
丁0— 0丁八:試料を180で, 60秒で成形した底面 10mm φ、高さ 2mmの円筒試験 片を用いて、昇温 5°CZminにて室温から 500°Cまで測定し、得られた温度重量曲 線から 0. 2%減量する場合の温度を求めた。
強度:試料を 180°C, 60秒で硬化して 50 X 10 X 0. 5mmの試験片を作製し、室温 にてテストスピード 2mmZ秒で 3点曲げ強度を測定した。
[0050] [表 1]
Figure imgf000017_0001
* ( ) 内は、 全エポキシ基と酸無水物基とのモル比
[0051] なお、実施例 1〜4の反応固形物において、下記式(2)で示される成分のうち、分 子量 1500を超えるものの割合 X、分子量 300〜1500の割合 Y、モノマーの割合 Ζは 以下のとおりである。割合は質量割合である。
[化 3]
Figure imgf000018_0001
(: 2 実施例 1の反応固形物
X 51. 6
Y 16. 2
Z 27. 0
実施例 2の反応固形物
X 53. 8
Y 17. 3
Z 20. 4
実施例 3の反応固形物
X 49. 0
Y 16. 3
Z 27. 2
実施例 4の反応固形物
X 23. 8
Y 58. 3
Z 10. 2
[実施例 5, 6、比較例 3〜8]
表 2に示す成分のうち、エポキシ榭脂、酸無水物、酸化防止剤を予め反応釜により 、 100°Cにて 3時間反応させ、冷却して固化させた後(軟ィ匕点は 60°C)、粉砕し、他 成分と所定の組成比にて配合し、熱 2本ロールにて均一に溶融混合し、冷却、粉砕 してフォトカプラー用白色エポキシ榭脂組成物を得た。
[0053] これらの組成物につき、以下の諸特性を測定した。結果を表 2に示す。
《スパイラルフロー値》
EMMI規格に準じた金型を使用して、 175°C、
Figure imgf000019_0001
成形時間 120秒の 条件で測定した。
[0054] 《溶融粘度》
高化式フローテスターを用い、 lOkgfの加圧下、直径 lmmのノズルを用い、温度 1 75°Cで粘度を測定した。
[0055] 《曲げ強度》
EMMI規格に準じた金型を使用して、 175°C、
Figure imgf000019_0002
成形時間 120秒の 条件で硬化物を作製し、その曲げ強度を JIS K 6911に基づいて測定した。
[0056] 《耐熱性;黄変性》
175°C、 6. 9NZmm2、成形時間 2分の条件で直径 50 X 3mmの円盤を成形し、 1 80°Cで 24時間放置し、黄変性を比較した。
[0057] [表 2]
Figure imgf000019_0003
* ( ) 内は、 全エポキシ基と酸無水物基との配合モル比

Claims

請求の範囲
[1] z誘導体エポキシ榭脂と酸無水物とをエポキシ基当量 Z酸無水物基当量 o
. 6〜2. 0の割合で反応させて得られる固形物の粉砕物を榭脂成分として含有して なることを特徴とする熱硬化性エポキシ榭脂組成物。
[2] トリアジン誘導体エポキシ榭脂が、 1, 3, 5—トリアジン核誘導体エポキシ榭脂であ る請求項 1記載の熱硬化性エポキシ榭脂組成物。
[3] 上記固形物が、下記一般式(1)
[化 1]
(· 1
Figure imgf000020_0001
(式中、 Rは酸無水物残基、 ηは 0〜200の数である。 )
で示される化合物を含有するものである請求項 2記載の熱硬化性エポキシ榭脂組成 物。
[4] 酸無水物が、非芳香族であり、かつ炭素炭素二重結合を有さないものである請求 項 1 , 2又は 3記載の熱硬化性エポキシ榭脂組成物。
[5] トリァジン誘導体エポキシ榭脂と酸無水物との反応を、酸化防止剤の存在下で行う ようにした請求項 1乃至 4の 、ずれ力 1項記載の熱硬化性エポキシ榭脂組成物。
[6] 酸化防止剤が、フエノール系、リン系、硫黄系酸ィ匕防止剤力 選ばれる 1種又は 2 種以上である請求項 5記載の熱硬化性エポキシ榭脂組成物。
[7] 酸化防止剤が、亜リン酸トリフエ-ル及び Z又は 2, 6—ジ—tーブチルー p—クレゾ ールを含む請求項 6記載の熱硬化性エポキシ榭脂組成物。
[8] トリァジン誘導体エポキシ榭脂と酸無水物とを 70〜120°Cにて反応して固形物を得 るようにした請求項 5, 6又は 7記載の熱硬化性エポキシ榭脂組成物。
[9] トリアジン誘導体エポキシ榭脂と酸無水物との反応を、硬化触媒又は硬化触媒と酸 化防止剤の存在下で行うようにした請求項 1乃至 4の 、ずれか 1項記載の熱硬化性 エポキシ榭脂組成物。
[10] 硬化触媒が、 2—ェチルー 4ーメチルイミダゾールである請求項 9記載の熱硬化性 エポキシ榭脂組成物。
[11] 硬化触媒が、メチル—トリブチルホスホ-ゥム―ジメチルホスフェイト又は第四級ホ スホ -ゥムブロマイドである請求項 9記載の熱硬化性エポキシ榭脂組成物。
[12] トリァジン誘導体エポキシ榭脂と酸無水物とを 30〜80°Cにて反応して固形物を得 るようにした請求項 9, 10又は 11記載の熱硬化性エポキシ榭脂組成物。
[13] 二酸ィ匕チタンを配合した請求項 1乃至 12のいずれか 1項記載の熱硬化性エポキシ 榭脂組成物。
[14] 二酸ィ匕チタン以外の無機充填剤を配合した請求項 1乃至 13のいずれか 1項記載 の熱硬化性エポキシ榭脂組成物。
[15] 透明に形成された請求項 1乃至 12の 、ずれか 1項記載の熱硬化性エポキシ榭脂 組成物。
[16] 発光素子を除く半導体素子ケース形成用である請求項 1乃至 15のいずれか 1項記 載の熱硬化性エポキシ榭脂組成物。
[17] 請求項 1乃至 15の 、ずれか 1項記載の熱硬化性エポキシ榭脂組成物の硬化物で 半導体素子 (但し、発光素子を除くが、発光素子と受光素子とが一体化した素子は 包含する)を封止した半導体装置。
PCT/JP2006/314971 2005-08-04 2006-07-28 熱硬化性エポキシ樹脂組成物及び半導体装置 WO2007015427A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800369607A CN101283016B (zh) 2005-08-04 2006-07-28 热固性环氧树脂组合物及半导体装置
KR1020087005178A KR101318279B1 (ko) 2005-08-04 2006-07-28 열경화성 에폭시 수지 조성물 및 반도체 장치
US11/997,831 US20100104794A1 (en) 2005-08-04 2006-07-28 Thermosetting epoxy resin composition and semiconductor device
JP2007529236A JP4837664B2 (ja) 2005-08-04 2006-07-28 熱硬化性エポキシ樹脂組成物及び半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-226236 2005-08-04
JP2005226236 2005-08-04

Publications (1)

Publication Number Publication Date
WO2007015427A1 true WO2007015427A1 (ja) 2007-02-08

Family

ID=37708707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314971 WO2007015427A1 (ja) 2005-08-04 2006-07-28 熱硬化性エポキシ樹脂組成物及び半導体装置

Country Status (6)

Country Link
US (1) US20100104794A1 (ja)
JP (2) JP4837664B2 (ja)
KR (1) KR101318279B1 (ja)
CN (1) CN101283016B (ja)
TW (1) TWI385209B (ja)
WO (1) WO2007015427A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045014A (ja) * 2006-08-14 2008-02-28 Mitsubishi Chemicals Corp エポキシ樹脂組成物およびその用途
WO2008059856A1 (fr) * 2006-11-15 2008-05-22 Hitachi Chemical Co., Ltd. Composition de résine thermodurcissable pour réfléchir la lumière, procédé de fabrication de la composition de résine, et substrat de montage d'éléments semi-conducteurs optiques et dispositif semi-conducteur optique utilisant la composition de résine
JP2010031269A (ja) * 2008-07-02 2010-02-12 Shin-Etsu Chemical Co Ltd 熱硬化性シリコーン樹脂−エポキシ樹脂組成物及び当該樹脂で成形したプレモールドパッケージ
JP2010138347A (ja) * 2008-12-15 2010-06-24 Nichia Corp 熱硬化性エポキシ樹脂組成物及び半導体装置
JP2010138380A (ja) * 2008-11-14 2010-06-24 Shin-Etsu Chemical Co Ltd 熱硬化性樹脂組成物
KR20110025112A (ko) * 2009-09-01 2011-03-09 신에쓰 가가꾸 고교 가부시끼가이샤 광 반도체 기판 형성용 백색 열경화성 실리콘 에폭시 혼성 수지 조성물 및 그의 제조 방법, 및 프리몰드 패키지 및 led 장치
JP2011063664A (ja) * 2009-09-15 2011-03-31 Shin-Etsu Chemical Co Ltd アンダーフィル材組成物及び光半導体装置
WO2014077260A1 (ja) * 2012-11-14 2014-05-22 日本カーバイド工業株式会社 熱硬化性化合物、熱硬化性組成物、光半導体素子パッケージ形成用熱硬化性組成物、樹脂硬化物および光半導体装置
JP2015093904A (ja) * 2013-11-11 2015-05-18 日本カーバイド工業株式会社 熱硬化性組成物
JP2016079344A (ja) * 2014-10-21 2016-05-16 信越化学工業株式会社 フォトカプラー一次封止用熱硬化性エポキシ樹脂組成物及び光半導体装置
JP2017002316A (ja) * 2006-11-15 2017-01-05 日立化成株式会社 熱硬化性光反射用樹脂組成物およびその製造方法
WO2017064992A1 (ja) * 2015-10-13 2017-04-20 日産化学工業株式会社 熱硬化性樹脂組成物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575632B2 (en) 2005-08-04 2013-11-05 Nichia Corporation Light-emitting device, method for manufacturing same, molded body and sealing member
EP2112697B1 (en) 2006-12-28 2020-01-22 Nichia Corporation Light emitting device, package, light emitting device manufacturing method, package manufacturing method and package manufacturing die
EP2397507B1 (en) * 2009-02-10 2017-09-20 Nissan Chemical Industries, Ltd. Long chain alkylene group-containing epoxy compound
WO2012147203A1 (ja) * 2011-04-28 2012-11-01 三菱電機株式会社 システムコントローラ及びプログラム
JP5650097B2 (ja) * 2011-11-09 2015-01-07 信越化学工業株式会社 熱硬化性エポキシ樹脂組成物及び光半導体装置
EP2920224A4 (en) * 2012-11-16 2016-06-15 Blue Cube Ip Llc EPOXY RESIN COMPOSITIONS
TWI661037B (zh) * 2014-12-03 2019-06-01 日商信越化學工業股份有限公司 光半導體元件封裝用熱固性環氧樹脂組合物及使用其的光半導體裝置
CN104788899B (zh) * 2015-01-14 2017-09-12 合复新材料科技(无锡)有限公司 一种高耐热抗黄变热固性环氧组合物
JP6439616B2 (ja) * 2015-07-14 2018-12-19 信越化学工業株式会社 光半導体素子封止用熱硬化性エポキシ樹脂組成物及びそれを用いた光半導体装置
JP2017082027A (ja) * 2015-10-22 2017-05-18 信越化学工業株式会社 フォトカプラー一次封止用熱硬化性エポキシ樹脂組成物
CN105440261B (zh) * 2015-11-30 2017-10-10 中南民族大学 一种可降解自交联超支化环氧树脂及其制备方法
CN116376496A (zh) * 2023-04-20 2023-07-04 瑞能半导体科技股份有限公司 用于半导体的环氧封装组合物及其制备方法和半导体器件封装层

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187421A (ja) * 1988-08-19 1990-07-23 Haisoole Japan Kk 紫外線感光又は透過素子用の紫外線透過性保護又は支持材料
JP2001234032A (ja) * 2000-02-24 2001-08-28 Sumitomo Bakelite Co Ltd 光半導体封止用エポキシ樹脂組成物
JP2001278955A (ja) * 2000-03-28 2001-10-10 Toshiba Chem Corp 半導体封止用エポキシ樹脂組成物、その製造方法および半導体装置
JP2001342326A (ja) * 2000-05-31 2001-12-14 Sumitomo Bakelite Co Ltd 光半導体封止用エポキシ樹脂組成物の製造方法
JP2002327044A (ja) * 2001-05-02 2002-11-15 Sumitomo Bakelite Co Ltd 半導体封止用エポキシ樹脂組成物の製造方法、半導体封止用エポキシ樹脂組成物及び半導体装置
JP2003224305A (ja) * 2001-11-01 2003-08-08 Nichia Chem Ind Ltd 発光装置及びその形成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264123A (ja) * 1991-02-19 1992-09-18 Nissan Chem Ind Ltd トリグリシジルイソシアヌレート組成物
JPH0797434A (ja) * 1993-09-29 1995-04-11 Nissan Chem Ind Ltd エポキシ樹脂組成物
JP3512732B2 (ja) * 2000-11-09 2004-03-31 京セラケミカル株式会社 封止用樹脂組成物および電子部品封止装置
JP3891554B2 (ja) * 2001-01-30 2007-03-14 住友ベークライト株式会社 光半導体封止用エポキシ樹脂組成物及び光半導体装置
US6989412B2 (en) * 2001-06-06 2006-01-24 Henkel Corporation Epoxy molding compounds containing phosphor and process for preparing such compositions
US6924596B2 (en) * 2001-11-01 2005-08-02 Nichia Corporation Light emitting apparatus provided with fluorescent substance and semiconductor light emitting device, and method of manufacturing the same
JP2005306952A (ja) * 2004-04-20 2005-11-04 Japan Epoxy Resin Kk 発光素子封止材用エポキシ樹脂組成物
JP2006193570A (ja) * 2005-01-12 2006-07-27 Stanley Electric Co Ltd 熱硬化性樹脂組成物、該組成物を熱硬化してなる透光性硬化物、該硬化物で封止された発光ダイオード

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187421A (ja) * 1988-08-19 1990-07-23 Haisoole Japan Kk 紫外線感光又は透過素子用の紫外線透過性保護又は支持材料
JP2001234032A (ja) * 2000-02-24 2001-08-28 Sumitomo Bakelite Co Ltd 光半導体封止用エポキシ樹脂組成物
JP2001278955A (ja) * 2000-03-28 2001-10-10 Toshiba Chem Corp 半導体封止用エポキシ樹脂組成物、その製造方法および半導体装置
JP2001342326A (ja) * 2000-05-31 2001-12-14 Sumitomo Bakelite Co Ltd 光半導体封止用エポキシ樹脂組成物の製造方法
JP2002327044A (ja) * 2001-05-02 2002-11-15 Sumitomo Bakelite Co Ltd 半導体封止用エポキシ樹脂組成物の製造方法、半導体封止用エポキシ樹脂組成物及び半導体装置
JP2003224305A (ja) * 2001-11-01 2003-08-08 Nichia Chem Ind Ltd 発光装置及びその形成方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045014A (ja) * 2006-08-14 2008-02-28 Mitsubishi Chemicals Corp エポキシ樹脂組成物およびその用途
US10381533B2 (en) 2006-11-15 2019-08-13 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting substrate and optical semiconductor device using thermosetting resin composition for light reflection
JPWO2008059856A1 (ja) * 2006-11-15 2010-03-04 日立化成工業株式会社 熱硬化性光反射用樹脂組成物及びその製造方法、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
JP2017002316A (ja) * 2006-11-15 2017-01-05 日立化成株式会社 熱硬化性光反射用樹脂組成物およびその製造方法
US9387608B2 (en) 2006-11-15 2016-07-12 Hitachi Chemical Company, Ltd. Thermosetting resin composition for light reflection, method for manufacturing the resin composition and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP2012254633A (ja) * 2006-11-15 2012-12-27 Hitachi Chemical Co Ltd 熱硬化性光反射用樹脂組成物及びその製造方法、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
WO2008059856A1 (fr) * 2006-11-15 2008-05-22 Hitachi Chemical Co., Ltd. Composition de résine thermodurcissable pour réfléchir la lumière, procédé de fabrication de la composition de résine, et substrat de montage d'éléments semi-conducteurs optiques et dispositif semi-conducteur optique utilisant la composition de résine
JP2013237865A (ja) * 2006-11-15 2013-11-28 Hitachi Chemical Co Ltd 熱硬化性光反射用樹脂組成物及びその製造方法、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
JP2013127068A (ja) * 2006-11-15 2013-06-27 Hitachi Chemical Co Ltd 熱硬化性光反射用樹脂組成物及びその製造方法、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
JP2012212935A (ja) * 2006-11-15 2012-11-01 Hitachi Chem Co Ltd 熱硬化性光反射用樹脂組成物及びその製造方法、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
JP2012227547A (ja) * 2006-11-15 2012-11-15 Hitachi Chem Co Ltd 熱硬化性光反射用樹脂組成物及びその製造方法、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
JP2012238876A (ja) * 2006-11-15 2012-12-06 Hitachi Chem Co Ltd 熱硬化性光反射用樹脂組成物及びその製造方法、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
JP2010031269A (ja) * 2008-07-02 2010-02-12 Shin-Etsu Chemical Co Ltd 熱硬化性シリコーン樹脂−エポキシ樹脂組成物及び当該樹脂で成形したプレモールドパッケージ
US8237189B2 (en) 2008-07-02 2012-08-07 Shin-Etsu Chemical Co., Ltd. Heat-curable silicone resin-epoxy resin composition, and premolded package molded from same
JP2010138380A (ja) * 2008-11-14 2010-06-24 Shin-Etsu Chemical Co Ltd 熱硬化性樹脂組成物
JP2013082939A (ja) * 2008-11-14 2013-05-09 Shin-Etsu Chemical Co Ltd 熱硬化性樹脂組成物
US8088856B2 (en) 2008-11-14 2012-01-03 Shin-Etsu Chemical Co., Ltd. Heat-curable resin composition
US9303115B2 (en) 2008-12-15 2016-04-05 Nichia Corporation Thermosetting epoxy resin composition and semiconductor device
JP2010138347A (ja) * 2008-12-15 2010-06-24 Nichia Corp 熱硬化性エポキシ樹脂組成物及び半導体装置
JP2011074359A (ja) * 2009-09-01 2011-04-14 Shin-Etsu Chemical Co Ltd 光半導体装置用白色熱硬化性シリコーンエポキシ混成樹脂組成物及びその製造方法並びにプレモールドパッケージ及びled装置
KR20110025112A (ko) * 2009-09-01 2011-03-09 신에쓰 가가꾸 고교 가부시끼가이샤 광 반도체 기판 형성용 백색 열경화성 실리콘 에폭시 혼성 수지 조성물 및 그의 제조 방법, 및 프리몰드 패키지 및 led 장치
KR101725996B1 (ko) * 2009-09-01 2017-04-11 신에쓰 가가꾸 고교 가부시끼가이샤 광 반도체 기판 형성용 백색 열경화성 실리콘 에폭시 혼성 수지 조성물 및 그의 제조 방법, 및 프리몰드 패키지 및 led 장치
JP2011063664A (ja) * 2009-09-15 2011-03-31 Shin-Etsu Chemical Co Ltd アンダーフィル材組成物及び光半導体装置
WO2014077260A1 (ja) * 2012-11-14 2014-05-22 日本カーバイド工業株式会社 熱硬化性化合物、熱硬化性組成物、光半導体素子パッケージ形成用熱硬化性組成物、樹脂硬化物および光半導体装置
JP2015093904A (ja) * 2013-11-11 2015-05-18 日本カーバイド工業株式会社 熱硬化性組成物
JP2016079344A (ja) * 2014-10-21 2016-05-16 信越化学工業株式会社 フォトカプラー一次封止用熱硬化性エポキシ樹脂組成物及び光半導体装置
WO2017064992A1 (ja) * 2015-10-13 2017-04-20 日産化学工業株式会社 熱硬化性樹脂組成物
TWI667282B (zh) * 2015-10-13 2019-08-01 日商日產化學工業股份有限公司 熱硬化性樹脂組成物
US10774237B2 (en) 2015-10-13 2020-09-15 Nissan Chemical Industries, Ltd. Thermosetting resin composition

Also Published As

Publication number Publication date
JPWO2007015427A1 (ja) 2009-02-19
TWI385209B (zh) 2013-02-11
JP2009024185A (ja) 2009-02-05
US20100104794A1 (en) 2010-04-29
CN101283016B (zh) 2011-05-11
KR101318279B1 (ko) 2013-10-15
CN101283016A (zh) 2008-10-08
JP4837664B2 (ja) 2011-12-14
KR20080031498A (ko) 2008-04-08
TW200716706A (en) 2007-05-01
JP5110311B2 (ja) 2012-12-26

Similar Documents

Publication Publication Date Title
WO2007015427A1 (ja) 熱硬化性エポキシ樹脂組成物及び半導体装置
JP6361761B2 (ja) 発光装置及びその製造方法並びに成形体
JP5218298B2 (ja) 熱硬化性シリコーン樹脂−エポキシ樹脂組成物及び当該樹脂で成形したプレモールドパッケージ
TWI470022B (zh) White thermosetting silicone epoxy resin composition for forming an optical semiconductor substrate, a method of manufacturing the same, and a preform package and an LED device
JP2008189833A (ja) 熱硬化性エポキシ樹脂組成物及び半導体装置
JP5470680B2 (ja) 発光装置及びその製造方法並びに成形体
JP2008189827A (ja) 熱硬化性エポキシ樹脂組成物及び半導体装置
US20080255283A1 (en) Thermosetting epoxy resin composition and semiconductor device
KR101869704B1 (ko) 열경화성 에폭시 수지 조성물 및 광반도체 장치
JP7571815B2 (ja) 封止組成物及び半導体装置
WO2019131095A1 (ja) ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置
WO2019131096A1 (ja) ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置
JP5281040B2 (ja) 熱硬化性エポキシ樹脂組成物、プレモールドパッケージ、led装置及び半導体装置
JP2014095051A (ja) 熱硬化性エポキシ樹脂組成物、該組成物を用いたled用リフレクター及びled装置
JP2014095039A (ja) 熱硬化性エポキシ樹脂組成物及び光半導体装置
JPH1121427A (ja) 電子部品封止用エポキシ樹脂成形材料及び電子部品
JP2002194064A (ja) 半導体封止用樹脂組成物、およびそれを用いた半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036960.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007529236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005178

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06781881

Country of ref document: EP

Kind code of ref document: A1