[go: up one dir, main page]

WO2003041170A1 - Surge protection semiconductor device - Google Patents

Surge protection semiconductor device Download PDF

Info

Publication number
WO2003041170A1
WO2003041170A1 PCT/JP2002/011578 JP0211578W WO03041170A1 WO 2003041170 A1 WO2003041170 A1 WO 2003041170A1 JP 0211578 W JP0211578 W JP 0211578W WO 03041170 A1 WO03041170 A1 WO 03041170A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
diode element
region
anode
diode
Prior art date
Application number
PCT/JP2002/011578
Other languages
English (en)
French (fr)
Inventor
Ritsuo Oka
Original Assignee
Shindengen Electric Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co., Ltd. filed Critical Shindengen Electric Manufacturing Co., Ltd.
Priority to EP02780027A priority Critical patent/EP1453094A4/en
Priority to JP2003543104A priority patent/JP4369230B2/ja
Publication of WO2003041170A1 publication Critical patent/WO2003041170A1/ja
Priority to US10/835,062 priority patent/US6870202B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/60Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
    • H10D89/601Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D18/00Thyristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/201Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits
    • H10D84/204Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors
    • H10D84/221Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors of only diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/60Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D10/00 or H10D18/00, e.g. integration of BJTs
    • H10D84/676Combinations of only thyristors

Definitions

  • the present invention relates to a semiconductor surge protection device for protecting a circuit system in a communication device, a computer, and the like from an overvoltage and an overcurrent such as a lightning surge and a switching surge.
  • This type of surge protection device has been realized by combining a pn p11 type thyristor element and a pn diode element on a substrate to form a desired circuit.
  • the surge protection device configured as described above mounts multiple parts of a pnpn-type surge protection device and a pn diode device on a substrate, which complicates the mounting process and reduces product size. Size is large and expensive.
  • US Pat. No. 6,075,277 discloses a conventional technique in which the n11 thyristor element and the pn diode element have a monolithic structure.
  • this technique is applicable only to a circuit configuration in which a pnpn thyristor element T hy4 is arranged between the ACs of a diode bridge as shown in Fig. 5. However, it cannot be applied to a circuit in which the pnpn thyristor T hy4 is arranged between the DC of the diode bridge.
  • An object of the present invention is to form a balance circuit on the same semiconductor substrate. To provide a monolithic surge protection semiconductor device.
  • Another object of the present invention is to provide a surge protection semiconductor device in which diode elements are separated by a double separation region.
  • Another object of the present invention is to provide a compact and long-life surge protection semiconductor device.
  • a surge protection semiconductor device is formed on a semiconductor substrate of a first conductivity type having a first surface and a second surface, and extending from the first surface to the second surface.
  • a thyristor element provided in the first semiconductor region of the second conductivity type and having an anode electrode and a force source electrode, the thyristor element being adjacent to one side of the first semiconductor region;
  • a first conductivity type substrate region comprising the semiconductor substrate extending from the surface of the first semiconductor region to the second surface; 1 and 2 provided in the second semiconductor region of the first conductivity type formed of the semiconductor substrate and extending on the surface of the first and second electrodes, each having a common source electrode and an anode electrode.
  • a diode element and the second conductivity type adjacent to the substrate region.
  • the first, second, and third semiconductor regions of the first conductivity type which are separated from each other by the separation region and extend from the first surface to the second surface, are provided by the semiconductor substrate.
  • third, fourth, and fifth diode elements having an anode electrode and a force source electrode formed on the first surface, respectively, and the third semiconductor element is adjacent to the second semiconductor region.
  • 6 diode elements are provided in the sixth semiconductor region of the first conductivity type, comprising the semiconductor substrate, extending from the first surface to the second surface, the anode having an anode electrode and a force source electrode.
  • FIG. 1 is a sectional view showing a surge protection semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a used circuit including an equivalent circuit (within a dashed line) of the surge protection semiconductor device according to the present invention.
  • FIG. 3 is a sectional view showing a surge protection semiconductor device according to a second embodiment of the present invention.
  • FIG. 4 is a sectional view showing a surge protection semiconductor device according to a third embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a circuit of a surge protection semiconductor device according to the related art.
  • FIG. 1 is a sectional view showing a surge protection semiconductor device 10 according to the first embodiment
  • FIG. 2 is a circuit used including an equivalent circuit thereof (within a dashed line).
  • a p-type impurity is selectively diffused from both sides of the n-type semiconductor substrate 11 having the first and second surfaces to form a P + -type isolation region 40.
  • the isolation region 40 separates the n-type semiconductor substrate 11 into a plurality of element regions. That is, the element regions 41-45 comprising a plurality of n-type semiconductor substrates extending from the first surface to the second surface and the p + type anode of the thyristor element T hy1.
  • a load region 46 is formed.
  • an isolation region 47 made of an n-type semiconductor substrate is interposed between the p + -type anode region 46 and the n-type device region 43 to form an n -type device region 41.
  • n + type element region 43 is doubly isolated by the p + type anode regions 46 and 11-type separation region 47 and p + type region 40.
  • Cy Li is te element T hy 1 also serves as a p + -type isolation region in the side surface.
  • the P-type impurity diffusion forming the anode region 46 of the thyristor element T hy1 is performed so that the region 48 made of an n-type semiconductor substrate remains.
  • an n-type buried layer 32 having an impurity concentration higher than that of the semiconductor substrate is formed, and then, after forming a p-type region, a plurality of n + -type emitter layers are formed.
  • P-type and n-type impurities are diffused from the first surface in each of the element regions 41 to 45 to form an anode region and a force source region. Electrodes are provided in these anode region and cathode region to form horizontal diode elements D 1 to D 6. Further, an electrode is provided on the n + -type emitter layer and the anode region 46 to form a thyristor element T hy1.
  • reference numeral 10 denotes a semiconductor chip
  • 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 22, 23, and 24 indicate metal.
  • Electrodes, 25, 26 and 27 are metal electrode terminals
  • 30 and 31 are insulating films such as silicon oxide.
  • a pnpn thyristor element T hy 1 having a buried diffusion layer 32 between metal electrodes 14 and 15 is shown, and the buried diffusion layer 32 has the same conductivity type as the semiconductor substrate. It has an impurity concentration slightly higher than the substrate concentration.
  • Metal electrodes 1 2-1 3, 1 8-1 3, 2 1-2 2, 2 3-2 4, 16-17 and 1 9-20 6 are pn diode elements Dl, D2, D3, D4, D5, and D6.
  • the first metal electrode terminal 25 has the anode-side metal electrode 12 of the first pn diode element D 1 and the fourth pn diode element D 4.
  • the second metal electrode terminal 26 is connected to the second metal electrode terminal 26 and the second metal electrode terminal 26 is connected to the anode metal electrode 18 and the fifth pn diode of the second diode element D 2.
  • the force side metal electrode 24 of the diode element D 5 is connected to the third metal electrode terminal 27, and the anode metal electrode 19 of the sixth pn diode element D 6 and the third metal electrode terminal 27 are connected to the third metal electrode terminal 27.
  • the first, second, and sixth pn diode elements D 1, D 2, and D 6 are connected to the source side metal electrode 17 of the pn diode element D 3 of FIG.
  • the electrodes 13 and 20 are connected to the anode side metal 14 of the thyristor element T hy 1, and the anodes of the third, fourth and fifth diode elements D 3, D 4 and D 5 are connected.
  • the metal electrodes 16, 21, and 23 of the thyristor element Thy 1 are connected to the metal terminals 15 of the thyristor element Thy 1.
  • the separation region 47 made of an n-type semiconductor substrate is interposed between the n_-type device region 41 and the n-type device region 43 and the n-type device region 41 and ⁇ —P- type isolation region 4 6, n —type isolation region 4 7 and p + -type isolation region 4 Since it is doubly isolated by 0, the breakdown voltage between the diode elements D1 and D4 increases, and the reliability of the diode bridge is improved.
  • the elements are doubly isolated, the arrangement of the elements in the areas A and B can be changed, but the elements in the areas A and B are different. The arrangement cannot be changed.
  • FIG. 2 is a diagram for explaining a use circuit including an equivalent circuit (within a chain line) of the surge protection semiconductor device according to the present invention.
  • Lines L 1 and L 2 indicate signal lines, and S indicates a protected circuit unit such as a communication device.
  • the inside of the dashed line indicates the equivalent circuit of the surge protection semiconductor device according to the present invention.
  • the metal electrode terminal 25 is connected to L1
  • the metal electrode terminal 26 is connected to L2
  • the metal electrode terminal 27 is connected to the ground line. ing.
  • the thyristor element Thyl of 1 is off.
  • an overvoltage or overcurrent such as a lightning surge that enters L1 and L2 in phase into L1 and L2
  • Surge that enters either 1 or L 2
  • the voltage is clamped via the thyristor T hy 1, the overcurrent is grounded, and the protected circuit S is protected from overvoltage and overcurrent surge Is done.
  • the protection element portion indicated by the dashed line is in an off state because the applied voltage value is equal to or less than the breakdown voltage value of Thy1, and the communication signal current flows to the protected circuit S.
  • T y 1 becomes conductive due to the surge voltage, and the surge current becomes
  • FIG. 3 is a sectional view showing a surge protection semiconductor device according to a second embodiment of the present invention.
  • the same parts are given the same reference numbers as in FIG. 3
  • the thyristor element T hy1 and the first, second, and sixth diode elements Dl, D2, and D6 have a vertical element structure in consideration of surge withstand capability and the like. Same as Fig.1.
  • an isolation region 40 between an element region 41 forming the diode elements Dl and D2 and an element region 45 forming the D6 is formed. It can be omitted.
  • the surge withstand capability is reduced.
  • An increased surge protection semiconductor device can be obtained.
  • FIG. 4 is a sectional view showing a surge protection semiconductor device according to a third embodiment of the present invention.
  • the same parts are given the same reference numbers as in Fig. 1.
  • the thyristor element Thy1 and the first to sixth diode elements D11 to D6 have a vertical element structure in consideration of surge resistance and the like.
  • the n-type semiconductor substrate 11 is separated into the p + -type isolation region 40 to form the thyristor element T hy1 and the n-type element region 50 and the first, second, and sixth diodes.
  • the n-type element regions 51 forming the elements Dl, D2, and D6.
  • the element region 50 includes an anode region formed from the second surface, an n-type buried layer 32 having an impurity concentration higher than that of the semiconductor substrate formed from the first surface, A p-type base region and a plurality of n + -type emitter layers are provided.
  • the respective anode regions of the first, second, and sixth diode elements Dl, D2, and D6 formed from the first surface and the second surface are provided.
  • the common force source electrode 52 provided in the common force source region is connected to the anode electrode 14 of the thyristor element T hy1.
  • a diode bridge shown in FIG. 2 is configured in the same manner as in the above embodiment. Others are the same as Fig.1.
  • the n-type element region 50 and the n-type element region 4 are interposed between the n-type element region 50 and the n-type 3 is doubly isolated by the p + -type separation region 40, the n-type separation region 47, and the p + -type separation region 40, so that the thyristor element T hy 1
  • the breakdown voltage between the diode and the diode element D4 is increased, and the reliability of the diode bridge is improved.
  • the forward breakdown voltage of the thyristor element T hy1 is calculated from the breakdown voltage of the first to sixth diode elements Dl, D2, D3, D4, D5, and D6.
  • a method of setting a lower value a method using a buried structure type thyristor element T hy1 having a buried diffusion layer 32 as described above, or a p-type anode of a diode element may be used.
  • a method may be used in which the base diffusion depth of the thyristor element is made shallower than the base diffusion depth.
  • the withstand voltage of the thyristor T hy1 is determined by the buried layer 32, but is determined to be 230 V, 290 V, 310 V, 350 V or the like is required, and the diode withstand voltage is required to be higher, for example, 800 V or the like.
  • the thyristor element T hy 1 and the diode elements D l, D 2, D 3, D 4, D 5, and D 6 are monolithically formed on the same semiconductor chip, and the diode element D 1 And diode element D 4 Is separated by a double separation region, so that a surge protection semiconductor device with a high withstand voltage and a compact and high reliability can be obtained.

Landscapes

  • Thyristors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

明 細 書
サージ防護半導体装置
技術分野
本発明は雷サージ及びスイ ッチングサージ等の過電圧およ び過電流から通信機器、 コ ンピュータ等における回路系を保 護するための半導体サージ防護装置に関する。
背景技術
この種のサージ防護装置は、 p n p 11型サイ リ スタ素子及 び p n ダイォー ド素子を基板上で組合せて所望の回路を構成 する こ と によ り 実現していた。 これらの技術は、 米国特許第 6 1 0 4 5 9 1 号、 米国特許第 5 5 1 2 7 8 4号、 米国特許 第 4 6 4 4 4 3 7号に開示されている。
しかしなが ら、 このよ う に構成されるサージ防護装置は p n p n型サージ防護素子及び p n ダイォー ド素子の複数部品 を基板上に実装しているため、 実装工程が複雑であ り 、 また 製品サイ ズが大き く な り 、 高価である。
さ らに、 n 11サイ リ ス タ素子と p n ダイォー ド素子を モノ リ シッ ク化構造と した従来技術も米国特許第 6 0 7 5 2 7 7号に開示されている。
し力、しなが ら、 こ の技術は図 5 に示すよ う なダイオー ドプ リ ッ ジの A C間に p n p nサイ リ スタ素子 T h y 4 を配置す る回路構成のみに適用可能であ り 、 p n p nサイ リ スタ T h y 4 をダイォー ドプリ ッジの D C間に配置する よ う な回路に 適用する こ と はできない。
本発明の 目的は、 バラ ンス回路を同一半導体基板内に形成 してモノ リ シック なサージ防護半導体装置を提供する こ と に める。
本発明の他の 目的は、 ダイオー ド素子間を二重の分離領域 で分離したサージ防護半導体装置を提供する こ と にある。
本発明の他の 目的は、 コ ンパク トで、 長寿命なサージ防護 半導体装置を提供する こ と にある。
発明の開示
サージ防護半導体装置は、 第 1 の表面と第 2 の表面と を有 する第 1 導電型の半導体基板と、 前記第 1 の表面から前記第 2 の表面に延在 して前記半導体基板に形成された第 2 導電型 の第 1 の半導体領域に設け られ、 ァノ ー ド電極および力 ソー ド電極を有するサイ リ スタ素子と 、 前記第 1 の半導体領域の 一側部に隣接し、 前記第 1 の表面から前記第 2 の表面に延在 する前記半導体基板からなる前記第 1 導電型の基板領域と、 前記第 1 の半導体領域の他の側部に隣接し、 前記第 1 の表面 から前記第 2 の表面に延在する前記半導体基板からなる前記 第 1 導電型の第 2 の半導体領域に設け られ、 それぞれァ ノ ー ド電極と共通の力 ソー ド電極を有する第 1 およぴ第 2 のダイ オー ド素子と、 前記基板領域に隣接して前記第 2導電型の分 離領域によ り 互いに分離される と共に、 前記第 1 の表面から 前記第 2 の表面に延在する前記半導体基板からなる前記第 1 導電型の第 3 、 第 4及び第 5 の半導体領域に設け られ、 それ ぞれ前記第 1 の表面上に形成されたァノー ド電極と力 ソー ド 電極を有する第 3 、 第 4及び第 5 のダイオー ド素子と、 前記 第 2 の半導体領域に隣接して前記分離領域によ り 分離される と共に、 前記第 1 の表面から前記第 2 の表面に延在する前記 半導体基板からなる前記第 1導電型の第 6 の半導体領域に設 け られ、 アノ ー ド電極と力 ソー ド電極を有する第 6 のダイォ 一 ド素子と から構成される。
図面の簡単な説明
図 1 は本発明による第 1 の実施例に係るサージ防護半導体 装置を示す断面図である。
図 2 は本発明によるサージ防護半導体装置の等価回路 (一 点鎖線内) を含む使用回路を説明する図である。
図 3 は本発明によ る第 2 の実施例に係るサージ防護半導体 装置を示す断面図である。
図 4 は本発明によ る第 3 の実施例に係るサージ防護半導体 装置を示す断面図である。
図 5 は従来技術に係るサージ防護半導体装置の回路を説明 する図である。
発明を実施するための最良の形態
図 1 は第 1 の実施例によるサージ防護半導体装置 1 0 を示 す断面図であ り 、 図 2 はその等価回路 (一点鎖線内) を含む 使用回路である。
即ち、 第 1 及び第 2 の表面を有する n 型半導体基板 1 1 の両面から p 型不純物を選択的に拡散して P +型分離領域 4 0 を形成する。 こ の分離領域 4 0 によ り n 型半導体基板 1 1 は複数個の素子領域に分離される。 即ち、 第 1 の表面から 第 2 の表面に延在する複数個の n 型半導体基板からなる素 子領域 4 1 - 4 5 及ぴサイ リ スタ素子 T h y 1 の p +型ァノ ー ド領域 4 6 が形成される。 この場合、 p +型ア ノ ー ド領域 4 6 と n —型素子領域 4 3 と の間には n —型半導体基板か ら なる分離領域 4 7 が介在 して n —型素子領域 4 1 と n —型素 子領域 4 3 と の間は p +型ア ノ ー ド領域 4 6 、 11 —型分離領 域 4 7及び p +型領域 4 0 によ り 2重にアイ ソ レー ト される c つま り 、 サイ リ ス タ素子 T h y 1 の p +型ア ノ ー ド領域 4 6 は側面において p +型分離領域を兼ねている。
また、 前記サイ リ スタ素子 T h y 1 のアノ ー ド領域 4 6 を 形成する前記 P型不純物拡散は n —型半導体基板からなる領 域 4 8 が残存する よ う に行われる。 こ の領域 4 8 に半導体基 板の不純物濃度よ り 高い不純物濃度を有する n型埋め込み層 3 2 が形成され、 次いで、 p型領域を形成した後、 複数個の n +型エ ミ ッタ層を形成する。
各素子領域 4 1 — 4 5 に対して、 第 1 の表面から p型及び n型不純物を拡散してァノ ー ド領域及び力 ソー ド領域を形成 する。 これ らのァノ ー ド領域及ぴカ ソ一 ド領域に電極を設け て横型ダイ オー ド素子 D 1 — D 6 を形成する。 また、 前記 n +型エ ミ ッ タ層 と前記アノ ー ド領域 4 6 に電極を設けてサ ィ リ スタ素子 T h y 1 を形成する。
図 1 において、 1 0 は半導体チップ、 1 2、 1 3、 1 4、 1 5、 1 6、 1 7、 1 8、 1 9、 2 0、 2 1 、 2 2、 2 3、 2 4 は金属電極、 2 5、 2 6及び 2 7 は金属電極端子、 3 0 及び 3 1 は酸化珪素等の絶縁膜である。 金属電極 1 4 一 1 5 間は埋込拡散層 3 2 を有する p n p nサイ リ スタ素子 T h y 1 を示し、 埋込拡散層 3 2 は半導体基板と 同一導電型であ り 基板濃度よ り若干高い不純物濃度を有している。
金属電極 1 2 — 1 3 間、 1 8 — 1 3 間、 2 1 — 2 2 間、 2 3 — 2 4 間、 1 6 — 1 7 間及び 1 9 一 2 0 間はそれぞれ第 1 力 ら第 6 の p n ダイオー ド素子 D l 、 D 2、 D 3 、 D 4 、 D 5 、 D 6 である。
半導体表面の金属配線による結線関係は、 第 1 の金属電極 端子 2 5 には第 1 の p n ダイオー ド素子 D 1 のアノー ド側金 属電極 1 2 及ぴ第 4 の p n ダイオー ド素子 D 4 の力 ソー ド側 金属電極 2 2 を接続し、 第 2 の金属電極端子 2 6 には第 2 の p n ダイ ォー ド素子 D 2 のァノ ー ド側金属電極 1 8及び第 5 の p nダイ ォー ド素子 D 5 の力 ソー ド側金属電極 2 4 を接続 し、 第 3 の金属電極端子 2 7 には第 6 の p n ダイオー ド素子 D 6 のア ノ ー ド側金属電極 1 9 、 第 3 の p n ダイ オー ド素子 D 3 の力 ソー ド側金属電極 1 7 を接続し、 第 1 、 第 2 、 第 6 の p nダイ オー ド素子 D 1 、 D 2及ぴ D 6 の力 ソー ド側金属 電極 1 3 、 2 0 をサイ リ スタ素子 T h y 1 のアノ ー ド側金属 1 4 に接続し、 第 3 、 第 4及び第 5 ダイオー ド素子 D 3 、 D 4及び D 5 のアノー ド側金属電極 1 6 、 2 1 、 2 3 はサイ リ スタ素子 T h y 1 の力 ソー ド側金属端子 1 5 に結線接続され る。 これによ り バラ ンス型サージ防護回路を 1 つの基板上に 構成するモノ リ シッ ク化サージ防護半導体装置が得られる。
前記したよ う に、 n _型素子領域 4 1 と n —型素子領域 4 3 と の間には n—型半導体基板からなる分離領域 4 7 が介在 して n —型素子領域 4 1 と η —型素子領域 4 3 と の間は p + 型分離領域 4 6 、 n —型分離領域 4 7 及び p +型分離領域 4 0 によ り 2重にアイ ソ レー ト されているので、 ダイオー ド素 子 D 1 と D 4 と の間の耐圧が増大 し、 ダイオー ドプリ ッジの 信頼性が改善される。
また、 この実施例においては、 前記サイ リ スタ素子 T h y 1 及びダイォー ド素子 D 1 - D 6 の各金属電極は前記半導体 基板の前記第 1 の表面上に配置されているので、 実装する際 の配線処理が容易 と なる。
さ らに、 前記したよ う に、 サイ リ スタ素子 T h y 1 、 ダイ オー ド素子 D l 、 D 2、 D 6 を含む領域 A と ダイオー ド素子 D 3 、 D 4、 D 5 を含む領域 B は二重にァイ ソ レー ト さ れ ているが、 前記各領域 A及び B の中での各素子の配置を変え る こ とはでき る ものの、 前記領域 A及ぴ B間での各素子の配 置は変える こ と ができない。
図 2 は本発明によるサージ防護半導体装置の等価回路 (一 点鎖線内) 含む使用回路を説明する図である。
ライ ン L 1 及び L 2 は信号線を示し、 S は通信機器等の被 保護回路部を示す。 一点鎖線内部は本発明によるサージ防護 半導体装置の等価回路を示 し、 金属電極端子 2 5 は L 1 に、 金属電極端子 2 6 は L 2 に、 金属電極端子 2 7 は接地線へと 接続されている。
信号線 L 1 , L 2 における平常時の信号線一接地間電圧、 即ち、 金属電極端子 2 5 - 2 7 間及び金属電極端子 2 6 - 2 7 間に電圧が印加された際には、 図 1 のサイ リ スタ素子 T h y l はオフ状態にある。 し力 し、 L 1及ぴ L 2 へ同相で侵入 する雷サージな どの過電圧あるいは過電流の発生時には、 L 1 あるいは L 2 どち らに侵入したサージもサイ リ ス タ T h y 1 を経由 して電圧はク ラ ンプされて過電流は接地され、 被保 護回路部 S は過電圧及び過電流サージから保護される。
即ち、 通常時には、 前記一点鎖線内で示す保護素子部は、 印加電圧値が T h y 1 のブレーク ダウン電圧値以下のためォ フ状態であ り 、 通信信号電流は被保護回路 S へ流れる。
信号線 L 1及び L 2 から正極性サージが侵入した場合、 T h y 1 はサージ電圧によ り 導通状態と な り 、 サージ電流は、
( 1 ) L 1侵入経路の際、 2 5 → D l → T h y l → D 3 → 2 7 → G N Dの経路で接地され、
( 2 ) L 2侵入経路の際、 2 6 → D 2 → T h y l → D 3 → 2 7 → G N Dの経路で接地される。
逆極性サージの場合、
( 3 ) L 1侵入経路に対して、 2 5 → D 4 → T h y l → D 6 → 2 7 → G N Dの経路で接地され、
( 4 ) L 2侵入経路に対して、 2 6 → D 5 → T h y l → D 6 → 2 7 → G N Dの経路で接地される。
図 3 は本発明によ る第 2 の実施例に係るサージ防護半導体 装置を示す断面図である。 なお、 図 3 においては、 同一部品 には図 1 と 同一の図番を付している。
サージ耐量等を考慮して、 サイ リ スタ素子 T h y 1 及び第 1 、 第 2 、 第 6 のダイオー ド素子 D l 、 D 2 、 D 6 を縦型素 子構造と してお り 、 その他は図 1 と 同様である。
この場合、 ダイオー ド素子 D l 、 D 2 を形成する素子領域 4 1 と D 6 を形成する素子領域 4 5 と の間の分離領域 4 0 を 省く こ と もでき る。
こ の実施例においては、 前記サイ リ スタ素子 T h y 1 及び 第 1 、 第 2 、 第 6 のダイオー ド素子 D l 、 D 2、 D 6 を縦型 素子構造と しているので、 サージ耐量の増大 したサージ防護 半導体装置を得る こ と ができ る。
図 4 は本発明によ る第 3 の実施例に係るサージ防護半導体 装置を示す断面図である。 なお、 図 4 においては、 同一部品 には図 1 と 同一の図番を付している。
サージ耐量等を考慮して、 サイ リ スタ素子 T h y 1 及び第 1 乃至第 6 のダイォー ド素子 D 1 一 D 6 を縦型素子構造と し ている。 この場合、 n —型半導体基板 1 1 は p +型分離領域 4 0 に分離されてサイ リ スタ素子 T h y 1 を形成する n —型 素子領域 5 0 と第 1 、 第 2 、 第 6 のダイオー ド素子 D l 、 D 2、 D 6 を形成する n —型素子領域 5 1 と を画成 してレ、る。 前記素子領域 5 0 には、 第 2 の表面から形成されたァノー ド領域と、 第 1 の表面から形成された半導体基板の不純物濃 度よ り 高い不純物濃度を有する n型埋め込み層 3 2 と 、 p型 ベース領域と 、 複数個の n +型エ ミ ッタ層 と が設け られてい る。
また、 前記前記素子領域 5 1 には、 第 1 の表面から形成さ れた第 1 、 第 2 、 第 6 のダイオー ド素子 D l 、 D 2、 D 6 の 各ァノー ド領域と第 2 の表面から形成された共通カ ソー ド領 域が設け られている。
前記共通力 ソー ド領域に設け られた共通力 ソー ド電極 5 2 はサイ リ スタ素子 T h y 1 のアノー ド電極 1 4 に接続されて 前記実施例と同様に図 2 に示されるダイオー ドプリ ッジを構 成する。 その他は図 1 と 同様である。
前記 した よ う に、 n 型素子領域 5 0 と n 型素子領域 4 3 と の間には n 型半導体基板からなる分離領域 4 7 が介在 して n 型素子領域 5 0 と n 型素子領域 4 3 と の間は p + 型分離領域 4 0 、 n 型分離領域 4 7及び p +型分離領域 4 0 によ り 2重にアイ ソ レー ト されている ので、 サイ リ スタ素 子 T h y 1 と ダイオー ド素子 D 4 との間の耐圧が増大し、 ダ ィオー ドプリ ッ ジの信頼性が改善される。
なお、 サイ リ スタ素子 T h y 1 の順降伏電圧を第 1 のダイ オー ド素子乃至第 6 のダイ オー ド素子 D l 、 D 2 、 D 3 、 D 4、 D 5 、 D 6 の降伏電圧よ り 低く 設定する方法と して、 上 記説明の如 く 埋込拡散層 3 2 を有する埋込構造型サイ リ スタ 素子 T h y 1 を用いる方法の他、 ダイ オー ド素子の p型ァノ ー ド拡散深さ よ り サイ リ スタ素子の; 型ベース拡散深さ を浅 く するな どの方法を用いても よい。
また、 通信回線での一次防護用途例と して、 サイ リ スタ T h y 1 の耐圧は、 埋め込み層 3 2 によ り 決定されが、 2 3 0 V、 2 9 0 V、 3 1 0 V、 3 5 0 V等が必要とな り 、 ダイォ ー ド耐圧はそれ以上が必要であ り 、 例えば、 8 0 0 V等であ る。
産業上の利用可能性
サイ リ スタ素子 T h y 1 及びダイオー ド素子 D l 、 D 2、 D 3 、 D 4、 D 5 、 D 6 を同一半導体チップ上にモノ リ シッ ク の形で構成し、 ダイ オー ド素子 D 1 と ダイオー ド素子 D 4 との間を二重の分離領域で分離しているので、 高耐圧でコ ン パク トな信頼性の大きいサージ防護半導体装置を得る こ と が でき る。

Claims

請 求 の 範 囲
1 . 第 1 の表面と第 2 の表面と を有する第 1 導電型の半 導体基板と 、
前記第 1 の表面から前記第 2 の表面に延在 して前記半導体 基板に形成された第 2導電型の第 1 の半導体領域に設けられ. アノ ー ド電極およびカ ソー ド電極を有するサイ リ スタ素子と . 前記第 1 の半導体領域の一側部に隣接し、 前記第 1 の表面 から前記第 2 の表面に延在する前記半導体基板からなる前記 第 1 導電型の基板領域と、
前記第 1 の半導体領域の他の側部に隣接し、 前記第 1 の表 面から前記第 2 の表面に延在する前記半導体基板からなる前 記第 1 導電型の第 2 の半導体領域に設け られ、 それぞれァノ ー ド電極と共通の力 ソー ド電極を有する第 1 および第 2 のダ ィォー ド素子と 、
前記基板領域に隣接して前記第 2導電型の分離領域によ り 互いに分離される と共に、 前記第 1 の表面から前記第 2 の表 面に延在する前記半導体基板からなる前記第 1導電型の第 3 第 4及び第 5 の半導体領域に設け られ、 それぞれ前記第 1 の 表面上に形成されたァノー ド電極と力 ソー ド電極を有する第 3 、 第 4及び第 5 のダイオー ド素子と 、
前記第 2 の半導体領域に隣接して前記分離領域によ り 分離 される と共に、 前記第 1 の表面から前記第 2 の表面に延在す る前記半導体基板からなる前記第 1導電型の第 6 の半導体領 域に設け られ、 ァノー ド電極とカ ソー ド電極を有する第 6 の ダイォー ド秦子と を具備するサージ防護半導体装置。
2 . 前記第 2 の表面は絶縁膜で被覆される請求項 1 記載 のサージ防護半導体装置。
3 . 前記サイ リ スタ素子、 前記第 1 一第 6 のダイ オー ド 素子は、 前記第 1 の表面にそれぞれ前記ァノ一ドおよび力 ソ 一 ド電極の形成された横型構造を有する請求項 1 記載のサー ジ防護半導体装置。
4 . 少なく と も前記第 1 一第 2 のダイオー ド素子及び前 記第 6 のダイオー ド素子は、 前記第 1 の表面にそれぞれ前記 アノ ー ド電極が形成され、 前記第 2 の表面にそれぞれ前記力 ソー ド電極が形成された縦型構造を有する と共に、 前記サイ リ ス タ素子は、 前記第 1 の表面に前記力 ソー ド電極が形成さ れ、 前記第 2 の表面に前記アノ ー ド電極が形成された縦型構 造を有する請求項 1 記載のサージ防護半導体装置。
5 . 前記第 1 のダイオー ド素子の前記アノー ド電極と前 記第 4 のダイォー ド素子の前記力 ソー ド電極と を接続し、 前 記第 1 のダイォー ド素子の前記力 ソー ド電極と前記第 2 のダ ィオー ド素子の前記力 ソー ド電極と を接続し、 前記第 2 のダ ィォー ド素子の前記ァノ ー ド電極と前記第 5 のダイォー ド素 子の前記力 ソー ド電極と を接続し、 前記第 5 のダイオー ド素 子の前記ァノ ー ド電極と前記第 4 のダイォー ド素子の前記ァ ノー ド電極と を接続し、 前記第 1 のダイオー ド素子の前記力 ソー ド電極と前記第 2 のダイォー ド素子の前記カ ソー ド電極 との第 1 のノ ー ドと前記第 5 のダイォー ド素子の前記ァ ノー ド電極と前記第 4 のダイォー ド素子の前記ァノー ド電極と の 第 2 のノ ー ド間に前記第 1 のノ ー ドが正極と なる よ う に前記 サイ リ スタ素子を接続し、 前記第 1 のノー ドに前記第 6 のダ ィオー ド素子の前記力 ソー ド電極を接続し、 前記第 2 のノー ドに前記第 3 のダイォー ド素子の前記ァノー ド電極を接続す る と共に、 前記第 6 のダイォー ド素子の前記アノ ー ド電極及 び前記第 3 のダイォー ド素子の前記力 ソー ド電極をアース端 子に接続する請求項 1 記載のサージ防護半導体装置。
6 . 前記第 1 のダイオー ド素子の前記アノー ド電極と前 記第 4 のダイ ォー ド素子の前記カ ソー ド電極との第 3 のノー ドと前記第 2 のダイオー ド素子の前記ァノ ー ド電極と前記第
5 のダイォー ド素子の前記カ ソー ド電極と の第 4 のノー ドに それぞれ第 1 及び第 2 の電極端子が接続される と共に、 被保 護回路に接続される請求項 3記載のサージ防護半導体装置。
7 . 前記サイ リ スタ素子の順降伏電圧を前記第 1 乃至第
6 のダイォー ド素子の降伏電圧よ り 低く 設定している請求項
1 記載のサージ防護半導体装置。
PCT/JP2002/011578 2001-11-07 2002-11-06 Surge protection semiconductor device WO2003041170A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02780027A EP1453094A4 (en) 2001-11-07 2002-11-06 NOSE GUARD SEMICONDUCTOR COMPONENT
JP2003543104A JP4369230B2 (ja) 2001-11-07 2002-11-06 サージ防護半導体装置
US10/835,062 US6870202B2 (en) 2001-11-07 2004-04-30 Surge protection semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001342236 2001-11-07
JP2001-342236 2001-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/835,062 Continuation US6870202B2 (en) 2001-11-07 2004-04-30 Surge protection semiconductor device

Publications (1)

Publication Number Publication Date
WO2003041170A1 true WO2003041170A1 (en) 2003-05-15

Family

ID=19156126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011578 WO2003041170A1 (en) 2001-11-07 2002-11-06 Surge protection semiconductor device

Country Status (5)

Country Link
US (1) US6870202B2 (ja)
EP (1) EP1453094A4 (ja)
JP (1) JP4369230B2 (ja)
CN (1) CN1321457C (ja)
WO (1) WO2003041170A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515323A (ja) * 2005-10-19 2009-04-09 リトルフューズ、インク 低電圧線路を過電圧から保護するための集積回路
CN115346979A (zh) * 2022-10-18 2022-11-15 富芯微电子有限公司 一种基于晶闸管结构的tvs器件及其制造方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189610B2 (en) * 2004-10-18 2007-03-13 Semiconductor Components Industries, L.L.C. Semiconductor diode and method therefor
US7622753B2 (en) * 2005-08-31 2009-11-24 Stmicroelectronics S.A. Ignition circuit
US7515391B2 (en) * 2005-10-19 2009-04-07 Littlefuse, Inc. Linear low capacitance overvoltage protection circuit
US7538409B2 (en) * 2006-06-07 2009-05-26 International Business Machines Corporation Semiconductor devices
US7508643B2 (en) * 2006-10-27 2009-03-24 Manitowoc Crane Companies, Inc. System for overvoltage suppression for construction equipment
KR101532424B1 (ko) * 2008-09-12 2015-07-01 페어차일드코리아반도체 주식회사 정전기 방전 다이오드
CN101640414B (zh) * 2009-08-26 2011-06-15 苏州晶讯科技股份有限公司 具有深阱结构的可编程半导体抗浪涌保护器件
US9520486B2 (en) 2009-11-04 2016-12-13 Analog Devices, Inc. Electrostatic protection device
US8507966B2 (en) 2010-03-02 2013-08-13 Micron Technology, Inc. Semiconductor cells, arrays, devices and systems having a buried conductive line and methods for forming the same
US9608119B2 (en) * 2010-03-02 2017-03-28 Micron Technology, Inc. Semiconductor-metal-on-insulator structures, methods of forming such structures, and semiconductor devices including such structures
US8288795B2 (en) 2010-03-02 2012-10-16 Micron Technology, Inc. Thyristor based memory cells, devices and systems including the same and methods for forming the same
US9646869B2 (en) 2010-03-02 2017-05-09 Micron Technology, Inc. Semiconductor devices including a diode structure over a conductive strap and methods of forming such semiconductor devices
US8513722B2 (en) 2010-03-02 2013-08-20 Micron Technology, Inc. Floating body cell structures, devices including same, and methods for forming same
US8432651B2 (en) 2010-06-09 2013-04-30 Analog Devices, Inc. Apparatus and method for electronic systems reliability
US10199482B2 (en) 2010-11-29 2019-02-05 Analog Devices, Inc. Apparatus for electrostatic discharge protection
CN102569289A (zh) * 2010-12-23 2012-07-11 中芯国际集成电路制造(上海)有限公司 消除天线效应的结构及消除天线效应的方法
US8598621B2 (en) 2011-02-11 2013-12-03 Micron Technology, Inc. Memory cells, memory arrays, methods of forming memory cells, and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor
US8592860B2 (en) 2011-02-11 2013-11-26 Analog Devices, Inc. Apparatus and method for protection of electronic circuits operating under high stress conditions
US8952418B2 (en) 2011-03-01 2015-02-10 Micron Technology, Inc. Gated bipolar junction transistors
US8519431B2 (en) 2011-03-08 2013-08-27 Micron Technology, Inc. Thyristors
US8772848B2 (en) 2011-07-26 2014-07-08 Micron Technology, Inc. Circuit structures, memory circuitry, and methods
US8680620B2 (en) 2011-08-04 2014-03-25 Analog Devices, Inc. Bi-directional blocking voltage protection devices and methods of forming the same
US8947841B2 (en) 2012-02-13 2015-02-03 Analog Devices, Inc. Protection systems for integrated circuits and methods of forming the same
US8829570B2 (en) 2012-03-09 2014-09-09 Analog Devices, Inc. Switching device for heterojunction integrated circuits and methods of forming the same
US8946822B2 (en) 2012-03-19 2015-02-03 Analog Devices, Inc. Apparatus and method for protection of precision mixed-signal electronic circuits
US8637899B2 (en) * 2012-06-08 2014-01-28 Analog Devices, Inc. Method and apparatus for protection and high voltage isolation of low voltage communication interface terminals
US10074642B2 (en) 2012-07-05 2018-09-11 Littelfuse, Inc. Crowbar device for voltage transient circuit protection
US8796729B2 (en) 2012-11-20 2014-08-05 Analog Devices, Inc. Junction-isolated blocking voltage devices with integrated protection structures and methods of forming the same
US9123540B2 (en) 2013-01-30 2015-09-01 Analog Devices, Inc. Apparatus for high speed signal processing interface
US9006781B2 (en) 2012-12-19 2015-04-14 Analog Devices, Inc. Devices for monolithic data conversion interface protection and methods of forming the same
US8860080B2 (en) 2012-12-19 2014-10-14 Analog Devices, Inc. Interface protection device with integrated supply clamp and method of forming the same
US9275991B2 (en) 2013-02-13 2016-03-01 Analog Devices, Inc. Apparatus for transceiver signal isolation and voltage clamp
US9147677B2 (en) 2013-05-16 2015-09-29 Analog Devices Global Dual-tub junction-isolated voltage clamp devices for protecting low voltage circuitry connected between high voltage interface pins and methods of forming the same
US9171832B2 (en) 2013-05-24 2015-10-27 Analog Devices, Inc. Analog switch with high bipolar blocking voltage in low voltage CMOS process
EP2863432A1 (en) * 2013-10-21 2015-04-22 Nxp B.V. ESD protection device
US9209187B1 (en) 2014-08-18 2015-12-08 Micron Technology, Inc. Methods of forming an array of gated devices
US9673054B2 (en) 2014-08-18 2017-06-06 Micron Technology, Inc. Array of gated devices and methods of forming an array of gated devices
US9224738B1 (en) 2014-08-18 2015-12-29 Micron Technology, Inc. Methods of forming an array of gated devices
US9484739B2 (en) 2014-09-25 2016-11-01 Analog Devices Global Overvoltage protection device and method
US9478608B2 (en) 2014-11-18 2016-10-25 Analog Devices, Inc. Apparatus and methods for transceiver interface overvoltage clamping
US10068894B2 (en) 2015-01-12 2018-09-04 Analog Devices, Inc. Low leakage bidirectional clamps and methods of forming the same
US10181719B2 (en) 2015-03-16 2019-01-15 Analog Devices Global Overvoltage blocking protection device
US9673187B2 (en) 2015-04-07 2017-06-06 Analog Devices, Inc. High speed interface protection apparatus
CN104900645B (zh) * 2015-05-28 2019-01-11 北京燕东微电子有限公司 电压浪涌保护器件及其制造方法
CN105023953A (zh) * 2015-07-10 2015-11-04 淄博汉林半导体有限公司 一种垂直场效应二极管及制造方法
FR3039014B1 (fr) * 2015-07-13 2019-06-14 Stmicroelectronics (Tours) Sas Protection de ligne telephonique contre les surtensions
US9831233B2 (en) 2016-04-29 2017-11-28 Analog Devices Global Apparatuses for communication systems transceiver interfaces
US10734806B2 (en) 2016-07-21 2020-08-04 Analog Devices, Inc. High voltage clamps with transient activation and activation release control
US10249609B2 (en) 2017-08-10 2019-04-02 Analog Devices, Inc. Apparatuses for communication systems transceiver interfaces
CN108364947A (zh) * 2018-02-02 2018-08-03 苏州晶讯科技股份有限公司 一种半导体电压浪涌保护器件
US10700056B2 (en) 2018-09-07 2020-06-30 Analog Devices, Inc. Apparatus for automotive and communication systems transceiver interfaces
US11387648B2 (en) 2019-01-10 2022-07-12 Analog Devices International Unlimited Company Electrical overstress protection with low leakage current for high voltage tolerant high speed interfaces
US12224279B2 (en) 2019-06-03 2025-02-11 Littelfuse Semiconductor (Wuxi) Co., Ltd. Integrated mult-device chip and package
US11362083B2 (en) * 2020-02-11 2022-06-14 Semtech Corporation TVS diode circuit with high energy dissipation and linear capacitance
CN111668211B (zh) * 2020-07-13 2024-11-26 北京时代华诺科技有限公司 一种半导体结构、浪涌保护器件和制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4643937B1 (ja) * 1968-02-26 1971-12-27
JPH0536979A (ja) * 1991-07-30 1993-02-12 Shindengen Electric Mfg Co Ltd サージ防護素子
US5243488A (en) * 1990-12-07 1993-09-07 Sgs-Thomson Microelectronics, S.A. Protection circuit limiting overvoltages between two selected limits and its monolithic integration
JPH097729A (ja) * 1995-06-16 1997-01-10 Shinko Electric Ind Co Ltd 半導体アレスタおよびコンビネーション型アレスタ
US6017778A (en) * 1994-12-30 2000-01-25 Sgs-Thomson Microelectronics S.A. Method for making power integrated circuit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127985B2 (ja) * 1971-10-01 1976-08-16
US4644437A (en) * 1985-11-01 1987-02-17 At&T Bell Laboratories Telephone subscriber loop overvoltage protection integrated circuit
US5493469A (en) * 1991-01-18 1996-02-20 Mildred A. Lace Surge protection for data lines
US5369291A (en) * 1993-03-29 1994-11-29 Sunpower Corporation Voltage controlled thyristor
US5512784A (en) * 1994-04-19 1996-04-30 Jerrold Communications, General Instrument Corporation Surge protector semiconductor subassembly for 3-lead transistor aotline package
FR2719721B1 (fr) * 1994-05-09 1996-09-20 Sgs Thomson Microelectronics Protection d'interface de lignes téléphoniques.
KR100240872B1 (ko) * 1997-02-17 2000-01-15 윤종용 정전기 방전 보호 회로 및 그것을 구비하는 집적 회로
US6104591A (en) * 1998-03-09 2000-08-15 Teccor Electronics, Inc. Telephone line protection element
FR2783353A1 (fr) * 1998-09-16 2000-03-17 St Microelectronics Sa Mur d'isolement entre composants de puissance
FR2800513B1 (fr) * 1999-11-03 2002-03-29 St Microelectronics Sa Detecteur d'etat de composant de puissance
FR2808621B1 (fr) * 2000-05-05 2002-07-19 St Microelectronics Sa Composant monolithique a commande unique pour un pont mixte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4643937B1 (ja) * 1968-02-26 1971-12-27
US5243488A (en) * 1990-12-07 1993-09-07 Sgs-Thomson Microelectronics, S.A. Protection circuit limiting overvoltages between two selected limits and its monolithic integration
JPH0536979A (ja) * 1991-07-30 1993-02-12 Shindengen Electric Mfg Co Ltd サージ防護素子
US6017778A (en) * 1994-12-30 2000-01-25 Sgs-Thomson Microelectronics S.A. Method for making power integrated circuit
JPH097729A (ja) * 1995-06-16 1997-01-10 Shinko Electric Ind Co Ltd 半導体アレスタおよびコンビネーション型アレスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1453094A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515323A (ja) * 2005-10-19 2009-04-09 リトルフューズ、インク 低電圧線路を過電圧から保護するための集積回路
DE112006002915B4 (de) * 2005-10-19 2020-06-18 Littelfuse, Inc. Integrierte Schaltung und Verfahren zum Bewirken von Überspannungsschutz für Niederspannungsleitungen
CN115346979A (zh) * 2022-10-18 2022-11-15 富芯微电子有限公司 一种基于晶闸管结构的tvs器件及其制造方法

Also Published As

Publication number Publication date
CN1321457C (zh) 2007-06-13
US6870202B2 (en) 2005-03-22
US20040201035A1 (en) 2004-10-14
JPWO2003041170A1 (ja) 2005-03-03
CN1582497A (zh) 2005-02-16
EP1453094A1 (en) 2004-09-01
JP4369230B2 (ja) 2009-11-18
EP1453094A4 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
WO2003041170A1 (en) Surge protection semiconductor device
US11456596B2 (en) USB type-C load switch ESD protection
CN1131565C (zh) 用户接口保护电路
JP2006100532A (ja) 静電保護回路
TW200818652A (en) Circuit configurations to reduce snapback of a transient voltage suppressor
US20130285196A1 (en) Esd protection circuit providing multiple protection levels
JPH0145296B2 (ja)
USRE35854E (en) Programmable protection circuit and its monolithic manufacturing
US6515345B2 (en) Transient voltage suppressor with diode overlaying another diode for conserving space
JP2000164894A (ja) 半導体構成素子並びに該半導体構成素子の製造方法
JP3163758B2 (ja) 双方向過電圧保護装置
JPH0282533A (ja) バイポーラ・トランジスタ
CN112652618B (zh) 使用齐纳二极管对感测igbt的静电放电处理
JP2791067B2 (ja) モノリシック過電圧保護集合体
JPH09307099A (ja) 多端子サージ防護デバイス
EP0564473A1 (en) Piso electrostatic discharge protection device
KR102463902B1 (ko) 다이오드를 내장한 mos 구조의 사이리스터 소자
WO2003041236A1 (en) Surge protecting semiconductor device
US20070077738A1 (en) Fabrication of small scale matched bi-polar TVS devices having reduced parasitic losses
JPH01214055A (ja) 静電破壊保護装置
JPH0478162A (ja) 集積回路用保護装置
JPH11168222A (ja) サージ防護素子
JP3275218B2 (ja) 半導体装置及びその形成方法
JPH1098202A (ja) 半導体サージ防護素子
JP2781298B2 (ja) サージ防護素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003543104

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028219392

Country of ref document: CN

Ref document number: 10835062

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002780027

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002780027

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 2002780027

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002780027

Country of ref document: EP