[go: up one dir, main page]

KR20140066734A - 타겟 구조체 및 x선 발생장치 - Google Patents

타겟 구조체 및 x선 발생장치 Download PDF

Info

Publication number
KR20140066734A
KR20140066734A KR1020147007907A KR20147007907A KR20140066734A KR 20140066734 A KR20140066734 A KR 20140066734A KR 1020147007907 A KR1020147007907 A KR 1020147007907A KR 20147007907 A KR20147007907 A KR 20147007907A KR 20140066734 A KR20140066734 A KR 20140066734A
Authority
KR
South Korea
Prior art keywords
target
conductive member
substrate
ray
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020147007907A
Other languages
English (en)
Other versions
KR101581313B1 (ko
Inventor
야스에 사토
타카오 오구라
카즈유키 우에다
이치로 노무라
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20140066734A publication Critical patent/KR20140066734A/ko
Application granted granted Critical
Publication of KR101581313B1 publication Critical patent/KR101581313B1/ko
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/088Laminated targets, e.g. plurality of emitting layers of unique or differing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • X-Ray Techniques (AREA)

Abstract

본 발명에 따른 타겟 구조체(100)에서는, 타겟(102)을 절연성 기판(101)의 중앙영역에 설치하고, 상기 타겟에 전압을 공급하기 위한 제1 도전부재(103a)를, 상기 타겟과 겹치는 영역을 제외하고 상기 타겟에 의해 덮어져 있지 않은 상기 절연성 기판의 주변영역에 설치함으로써, 상기 제1 도전부재는 상기 타겟의 주변부와 접해서 전기적으로 접속된다. 이에 따라서, 불필요한 X선의 방출을 억제하면서, 상기 타겟에서 발생한 열의 확산을 방해하지 않고, 상기 타겟에의 전압공급 라인을 쉽게 형성하는 것이 가능하다.

Description

타겟 구조체 및 X선 발생장치{TARGET STRUCTURE AND X-RAY GENERATING APPARATUS}
본 발명은, 전자빔의 조사에 따라 X선을 발생하는 타겟 구조체와, 그 타겟 구조체를 사용한 X선 발생장치에 관한 것이다.
종래, 타겟 구조체로서는, 세라믹이나 유리 재료로 이루어진 절연성 기판 위에, 타겟과는 다른 금속으로 이루어진 대전방지층을 형성하고, 이 위에 타겟을 형성한 것이 알려져 있다(예를 들면, 특허문헌1).
또한, 합성 다이아몬드로 만든 양극 베이스 기판에 매설된 타겟에 가속 전압을 인가하기 위해서, 불필요한 X선을 거의 발생하지 않는 도전 재료의 피막을 도전 리드(lead)로서 좁게 형성한 타겟 구조체도 알려져 있다(예를 들면, 특허문헌2).
일본국 공개특허공보 특개2002-352754호 일본국 공개특허공보 특개평7-169422호
그렇지만, 특허문헌1에 기재된 타겟 구조체에서는, 타겟과 기판과의 사이에 대전방지층이 개재하고 있으므로, 타겟에서 발생한 열의 기판에의 확산을 쉽게 방해하는 문제가 있다.
부수적으로, 도전 재료의 피막이 타겟의 전자빔 조사영역 위에 형성되면, 그 형성된 도전 재료의 피막으로부터 불필요한 X선이 발생되기 때문에 X선원으로서의 성능이 저하해버리는 문제가 있다. 특허문헌2에 기재된 타겟 구조체에서는, 도전 리드에 의한 불필요한 X선의 발생을 억제하려고 하고 있지만, 도전 리드를 형성하는 공정과 그 도전 리드 자체의 배치에 관한 제약이 커진다고 하는 문제가 있다.
상기 과제를 감안하여 이루어진 본 발명은, 타겟에서 발생한 열의 기판에의 확산을 용이하게 하고, 또한 불필요한 X선의 방출을 억제하면서, 상기 타겟에의 전압공급 라인을 쉽게 형성할 수 있게 하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위해서, 본 발명은, 절연성 기판과, 상기 절연성 기판의 한면에 설치된 타겟을 구비한, 타겟 구조체를 제공하고, 상기 타겟이 상기 절연성 기판의 중앙영역에 설치되어 있고, 상기 타겟에 전압을 공급하기 위한 제1 도전부재가, 상기 타겟의 중앙부와 겹치는 영역을 제외하고 상기 타겟으로 덮어져 있지 않은 상기 절연성 기판의 주변영역의 일부에 설치되어, 상기 설치된 제1 도전부재가 상기 타겟에 접속된다.
본 발명에서는, 전자빔이 조사되는 타겟의 상기 중앙부에는 제1 도전부재가 설치되지 않으므로, 이 제1 도전부재에 전자빔이 조사되는 것에 의한 불필요한 X선의 발생을 억제할 수 있다. 따라서, 특히, 제1 도전부재로서, X선을 발생하지 않는 재료를 선택할 필요가 없고, 상기 제1 도전부재를 상기 기판의 주변영역에 임의의 폭으로 설치할 수 있어서, 상기 타겟에의 전압공급 라인의 배치에 관한 제약이 작다.
또한, 본 발명에서는, 제1 도전부재에 의해, 상기 타겟과 상기 기판 사이에 다른 도전부재를 개재시키지 않고, 상기 타겟에 전압을 공급하고 소위 챠지 업(charge-up)을 방지할 수 있다. 따라서, 타겟으로부터 상기 기판에의 열 에너지의 수송이 양호할 수 있으므로, 양호한 X선 방출의 선형성 및 양호한 출력 안정성을 얻을 수 있다.
또한, 본 발명에서는, 제2 도전부재가, 상기 제1 도전부재와 상기 타겟간의 전기적 접속 상태를 안정화시켜서, 상기 타겟의 상기 기판에의 밀착성을 높일 수 있다.
본 발명의 또 다른 특징들은, 첨부도면을 참조하여 이하의 예시적 실시예들의 설명으로부터 명백해질 것이다.
도 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i 및 1j는, 본 발명에 따른 타겟 구조체를 나타낸 모식도다.
도 2는 본 발명에 따른 투과형 X선 발생장치를 나타내는 모식도다.
도 3은 본 발명에 따른 반사형 X선 발생장치를 나타내는 부분 모식도다.
도 4는 본 발명에 따른 X선 촬영 시스템을 나타내는 모식도다.
실시예 1
도 1a 및 1b는, 각각, 본 발명의 실시예 1에 따른 타겟 구조체(100)를 가리키는 단면도 및 평면도다. 제2 도전부재(103b)는, 기판(101)의 한면의 중앙영역과 주변영역의 양자에 걸치는 상태를 갖는 타겟 구조체(100)에 설치되고, 타겟(102)은 상기 기판(101)의 중앙영역의 제2 도전부재(103b) 위에 설치된다. 타겟(102)으로 덮어져 있지 않은 기판(101)의 주변영역의 제2 도전부재(103b) 위에 제1 도전부재(103a)가 설치된다. 즉, 제2 도전부재(103b)는, 타겟(102)의 밑면측을 덮고, 또한 기판(101)의 주변영역에 있어서의 제1 도전부재(103a)와 겹친 영역으로 연장하도록 형성되어 있다. 제1 도전부재(103a)는, 제1 도전부재(103a)의 내부 단부면이 타겟(102)의 주변측면(peripheral side surface)에 접함으로써 전기적으로 접속된 상태로, 타겟(102)과 겹친 영역을 제외하는 영역에 형성되어 있다.
제1 도전부재(103a)의 두께는, 타겟(102)에 필요한 전압을 쉽게 공급 가능한 두께의 범위로부터 선택된다. 제2 도전부재(103b)는, 0.1㎛이하의 두께로 설치되고, 생략될 수도 있다. 그러나, 제2 도전부재(103b)를 설치하면, 제1 도전부재(103a)와 타겟(102)의 양자간에 걸쳐서 소위 하지층(underlayer)으로서 형성되어 있으므로, 제1 도전부재(103a)와 타겟(102) 사이의 전기적 접속을 안정화할 수 있다. 또한, 타겟(102)의 하지층의 역할을 하는 제2 도전부재(103b)의 존재에 의해, 타겟(102)의 기판(101)에의 밀착성을 증가시킬 수 있다. 제2 도전부재(103b)가 기판(101)과 타겟(102)의 사이에 개재되는 경우도, 제2 도전부재(103b)를 0.1㎛이하의 두께를 갖도록 함으로써, 타겟(102)의 기판(101)에의 열확산을 방해하지 않는다. 상기 전기적 접속 상태에서의 안정성과 타겟(102)의 기판(101)에의 밀착성 향상을 얻기 위한 관점에서, 제2 도전부재(103b)의 두께는 0.1nm이상인 것이 바람직하다.
타겟(102)은, 전자빔(104)의 조사를 받아서 X선을 발생시킨다. 타겟(102)의 재질로서는, 예를 들면 W, Cu, Ta, Pt, Mo, Te 및 그것들의 합금이 적합하다. 또한, 기타 필요에 따라, 그 재질은 도전부재(금속, 합금, 반도체등)로부터 선택될 수 있다. 전자빔(104)이 가지는 에너지의 대부분은, 열 에너지로 변환되고, 타겟(102)의 온도는 고온(수백도 이상)으로 상승된다. 상기 타겟(102)에서 발생된 열은, 상기 기판(101)으로 이동하여 기판(101)의 온도를 상승시킨다. 기판(101)은 내열성과 양호한 열전도성이 요구되고, 예를 들면 세라믹, 다이아몬드, 유리 등의 재질이 사용되는 것이 적합하다. 또한, 기판(101)을 통해 외부에 X선을 방사하는 투과형 타겟 구조체를 형성하는 경우에는, 그 발생된 X선을 크게 감쇠시키지 않도록, 상기 재질, 그 두께 등을 선택하는 것이 바람직하다.
제1 도전부재(103a) 및 제2 도전부재(103b)의 재질로서는, 예를 들면 Ti, Ta등의 금속이 바람직하다. 그렇지만, 기타 필요에 따라, 도전성의 금속(합금도 포함한다)으로부터 그 재질을 선택할 수 있다. 또한, 제1 도전부재(103a)와 제2 도전부재(103b)에 대해서 같은 재질이나 다른 재질이 이용 가능하다.
상기 기판(101)의 표면으로부터 상기 제1 도전부재(103a)의 표면까지의 높이는, 상기 기판(101)의 표면으로부터 상기 타겟(102)의 표면까지의 높이와 같다.
실시예 2
도 1c 및 1d는, 각각, 본 발명의 실시예 2에 따른 타겟 구조체(100)를 가리키는 단면도와 평면도다. 타겟(102) 및 제1 도전부재(103a)가 기판(101)의 한면 위에 직접 설치되어 있고, 제2 도전부재(103b)가 타겟(102) 및 제1 도전부재(103a) 위에 설치된다. 실시예 2는, 상기 점이외는 상술한 실시예 1과 같다.
타겟(102)과 제1 도전부재(103a)의 윗면에 이들을 교차하는 상태로 제2 도전부재(103b)가 형성된다는 사실에 의해, 타겟(102)과 제1 도전부재(103a) 사이의 전기적 접속 상태를 안정화할 수 있다. 타겟(102)의 윗면측을 제2 도전부재(103b)가 덮고 있지만, 제2 도전부재(103b)가 0.1㎛이하의 두께인 사실에 의해, 전자빔(104)의 조사를 받아도 불필요한 X선의 발생을 억제할 수 있다. 또한, 실시예 1의 경우와 마찬가지로 제2 도전부재(103b)를 생략할 수도 있다. 그렇지만, 상기 전기적 접속 상태의 안정성을 얻기 위한 관점에서, 제2 도전부재(103b)의 두께를 0.1nm 이상이 되도록 설정하는 것이 바람직하다.
실시예 3
도 1e 및 1f는, 각각, 본 발명의 실시예 3에 따른 타겟 구조체(100)를 가리키는 단면도 및 평면도다. 실시예 3은, 제1 도전부재(103a)의 내단부가 타겟(102)의 주변부와 겹쳐져 있는 점을 제외하고는 상기 실시예 1과 거의 동일하다. 즉, 내단부가 타겟(102)의 주변부와 겹쳐지는 제1 도전부재(103a)는, 타겟(102)과 접속되어 있고, 타겟(102)의 중앙부를 제외한 영역에 형성되어 있다. 이러한 구조를 채용함으로써, 타겟(102)과 제1 도전부재(103a) 사이의 전기적 접속을 더 확실하게 하기 쉽다. 통상, 전자빔(104)이 타겟(102)의 중앙부에 조사되므로, 제1 도전부재(103a)의 내단부를 겹치는 일부분이 타겟(102)의 주변부상이면, 전자빔(104)의 조사로 인한 불필요한 X선의 발생을 억제할 수 있다. 제2 도전부재(103b)는, 기판(101)의 한면 전체면에 고정되어 있지 않고, 타겟(102)과 겹친 일부분으로부터 타겟(102)으로 덮어져 있지 않은 기판(101)의 주변영역의 중간부분까지 연장한 상태로 상기 기판(101)에 고정되어 있다. 이러한 구조를 채용함으로써, 제2 도전부재(103b)의 형성 면적을 작은 크기로 감소시킬 수 있고, 타겟(102)과 기판(101)간의 밀착성을 향상할 수 있고, 타겟(102)과 제1 도전부재(103a)간의 전기적 접속 상태를 안정화할 수 있다.
실시예 4
도 1g 및 1h는, 각각, 본 발명의 실시예 4에 따른 타겟 구조체(100)를 가리키는 단면도 및 평면도다. 실시예 4는, 타겟(102)의 주변부가 제1 도전부재(103a)의 내단부와 겹쳐져 있는 점을 제외하고는 실시예 1과 거의 동일하다. 즉, 제1 도전부재(103a)는, 상기 타겟(102)의 주변부가 제1 도전부재(103a)의 내단부와 겹치게 형성함으로써 타겟(102)과 전기적으로 접속됨과 아울러, 타겟(102)의 중앙부를 제외하는 영역에 형성되어 있다. 이러한 구조를 채용함으로써, 타겟(102)과 제1 도전부재(103a) 사이의 전기적 접속을 더 확실하게 하기 쉽다. 또한, 제1 도전부재(103b)의 내단부가 타겟(102)의 주변부와만 겹치므로, 타겟(102)의 열이 기판(101)에 전해지는 것을 거의 방해하지 않는다. 또한, 재질이 제1 도전부재(103a)와는 다른 제2 도전부재(103b)는, 타겟(102)에 대응하는 영역에만 설치된다. 제2 도전부재(103b)를, 타겟(102)의 기판(101)에의 밀착성의 향상의 주 목적을 위해서 설치하는 경우, 상술한 것과 같은 범위에 제2 도전부재(103b)를 설치하여서, 그 제2 도전부재(103b)를 형성하는데 필요한 이 범위의 크기를 작은 크기로 억제하도록 실현한다.
실시예 5
도 1i 및 1j는, 각각, 본 발명의 실시예 5에 따른 타겟 구조체(100)를 가리키는 단면도 및 평면도다. 실시예 5는, 제1 도전부재(103a)가, 타겟(102)으로 덮어져 있지 않은 기판(101)의 주변영역의 일부에 설치되는 점을 제외하고는 상기 실시예 4와 거의 동일하다. 제1 도전부재(103a)의 형성 면적은, 타겟(102)에의 전압부여에 필요한 범위에 의거하여 선택될 수 있다. 제1 도전부재(103a)가 일 개소에 설치되지만, 몇몇의 부재(103a)는 복수의 개소에 따로따로 설치될 수도 있다. 예를 들면, 방사 방향으로 복수개가 설치될 수 있다. 또한, 제2 도전부재(103b)가, 상기 기판(101)이 상기 제1 도전부재(103a)와 동시에 겹친 주변영역과, 상기 기판(101)이 상기 제1 도전부재(103a)와 동시에 겹치지 않는 주변영역과의 양쪽 영역으로 연장되도록, 형성될 수 있다.
실시예 6
다음에, 본 발명에 따른 타겟 구조체를 사용한 X선 발생장치를 설명한다. 도 2는, 전자빔(104)의 진행 방향과 같은 방향으로 X선을 추출하는 투과형 X선 발생장치를 가리키는 모식도다. 우선, X선 발생관(200)에 관하여 설명한다. 금속제의 전자총 플랜지(204), 원통형의 절연체(205) 및 금속제의 애노드부(206)는, 그들의 접합부(207)에서 상호 진공기밀 접합되어, 감압가능한 외위기(208)를 형성한다. 절연체(205)로는 유리 또는 세라믹이 사용되는 것이 바람직하고, 절연성, 진공기밀성, 열전도성, 및 금속과의 습윤성의 점에서, 알루미나가 사용되는 것이 바람직하다. 전자총 플랜지(204)의 재질로서는, 절연체(205)가 알루미나일 경우, 코바르(Kovar)가 사용되는 것이 최적이고, 절연체(205)의 재질의 품질을 고려해 그 전자총 플랜지(204)의 재질의 품질을 결정한다. 진공기밀접합의 방법으로서는 납땜 방법이 바람직하다.
전자총 플랜지(204)에는, 전자방출원(전자총)(201)이 설치되어 있다. 전자방출원(201)은, 캐소드(202)에서 전자를 방출시켜, 제어 전극(203)에서 캐소드(202)로부터 방출된 전자를 원하는 궤도와 사이즈를 가지는 전자빔(104)으로 형성하여, 타겟(102)을 향해 출사한다. 캐소드(202)로서, 텅스텐, 레늄 등의 고융점 금속 또는 상술한 금속의 표면에 산화이트륨 등을 도포한 필라멘트형 캐소드, 열전계 방출형 캐소드, 및 다공질 텅스텐에 BaO를 주성분으로서 함침시킨 함침형 캐소드가 적응가능하다. 또한, 스핀트(Spindt)형 콜드 캐소드, 카본 나노튜브나 표면전도형 콜드 캐소드로 대표된 콜드 캐소드 등도 적응 가능하다. 전자방출원(201)을 구동하기 위해서 필요한 전력 및 전기신호는, 구동전원부(211)에 의해 발생되고, 전자총 플랜지(204)에 고정된 진공기밀 전류/전압 도입부(210)를 통해 외부로부터 공급된다.
애노드부(206)는 전자방출원(201)에 대향하게 설치되어 있다. 실시예1 내지 5 각각에 따른 타겟 구조체(100)는, 애노드부(206)에 형성된 개구부에 진공기밀 접합되어 있다. 타겟 구조체(100)의 기판(101)은, 상기 개구부의 벽면에 접합되어 있다. 상기 기판(101)의 재질이 알루미나일 경우, 타겟 구조체(100)를 제외하는 애노드부(206)의 재질로서, 알루미나와 같은 열팽창율의 코바르가 바람직하다. 절연체(205)와 기판(101)의 열팽창율이 크게 서로 다른 경우에는, 1종류의 금속뿐만 아니라 열팽창율이 거의 서로 동일한 금속도 진공기밀 접합된 후, 그것들의 금속을 서로 진공기밀 접합될 수 있다. 상기 금속간에 행해진 진공기밀 접합의 방법으로서는, 납땜 방법 또는 용접이 바람직하다. 구동전원부(211)는, 전자빔(104)을 가속하는데 사용된 가속전압을 발생하고, 그 전압을 애노드부(206)에 인가한다. 이 때문에, 구동전원부(211)는 애노드부(206)와 전기적으로 접속되고, 추가로, 애노드부(206)와 전기적으로 접속된 제1 도전부재(103a)(및 제2 도전부재(103b))를 통해 타겟(102)이 상기 구동전원부(211)와 전기적으로 접속되어 있다.
외위기(208)의 내부는, 게터(209)에 의해 진공상태가 되도록 유지되어 있다. 게터(209)로서는, Ba를 사용한 증착형 게터 또는 Zr, Ti, V, Fe, Al등으로 이루어진 합금으로 구성된 비증착형 게터가 사용가능하다.
투과형 X선 발생장치는, 용기(213)내에 설치된 상기 X선 발생관(200)과 구동전원부(211)를 갖는다. 그 용기(213)내의 여유공간에는, 절연유(214)로 채워져 있어 내전압을 확보하고, 용기(213)의 기판(101)과 대향하는 위치에는, X선을 용기(213)의 외부로 추출하는데 사용된 외부창(212)이 고정되어 있다.
전자방출원(201)으로부터 방출된 전자빔(104)은, 애노드부(206)에 인가된 전압에 의해 더욱 가속되어, 타겟 구조체(100)의 타겟(102)에 충돌하고나서, 그 에너지의 일부를 X선으로서 방사한다. X선은, 절연 기판(101), 절연유(214) 및 외부창(212)을 통해서 외부에 추출된다. 그렇지만, 나머지의 거의 모든 에너지는 타겟(102)에서 열 에너지로 변환된다.
실시예 7
도 3은, 본 발명에 따른 타겟 구조체를 사용한 반사형 X선 발생장치를 가리키는 모식도다. X선(215)은, 전자빔(104)의 진행 방향과는 다른 방향으로부터 추출된다. 본 실시예에서는, 제1 내지 제5 실시예 각각에 따른 타겟 구조체(100)를 사용한다. 타겟 구조체(100)는 개구부가 없는 애노드부(206)에 부착되고, 외위기(208)로부터 X선을 추출하는데 사용된 X선창(610)은 절연체(205)에 설치된다. 용기(213)에 설치된 외부창(212)은, 기판(101)에 대향하지 않고 X선창(610)에 대향하는 상기 위치에 설치된다.
실시예 8
도 4는 본 발명에 따른 X선 촬영 시스템의 블록도다. 시스템 제어장치(402)는, X선 발생장치(400)와 X선 검출장치(401)를 연계 제어한다. 제어부(405)는 상기 시스템 제어장치(402)의 제어하에 X선관(406)에 각종 제어신호를 출력한다. X선을 X선 발생장치(400)로부터 방출되게 하는 방출 조건은 상기 제어신호에 의해 제어된다. X선 발생장치(400)로부터 방출된 X선은, 검출기(408)에서 검출되는 피사체(404)를 투과한다. 상기 검출기(408)는, 그 검출된 X선을 화상신호로 변환하여 신호처리부(407)에 출력한다. 신호처리부(407)는, 상기 시스템 제어장치(402)의 제어하에 상기 화상신호에 대한 소정의 신호처리를 행하고, 그 처리된 화상신호를 상기 시스템 제어장치(402)에 출력한다. 상기 시스템 제어장치(402)는, 표시장치(403)에 화상을 표시하는데 사용된 표시신호를, 상기 처리된 화상신호에 의거하여 그 표시장치(403)에 출력한다. 표시장치(403)는, 화면에, 상기 피사체(404)의 촬영화상으로서 상기 표시신호에 의거한 화상을 표시한다.
예시 1
우선, 도 2에 나타낸 전자방출원(201)을 제작했다. 캐소드(202)로서, BaO를 주성분으로 하는 함침형 캐소드를 사용하였다. 그리고, 전자방출원과 캐소드 사이에, 제어 전극(203)으로서, 직경 φ가 2mm인 통과 구멍을 가지는 2개의 전극으로 형성된 몰리브덴 전극들을 사용했다. 전자방출원(201)을 전자총 플랜지(204)에 고정하고, 추가로, 진공기밀 전압/전류 도입부(210)는 전자방출원(201)의 전극과 접속되었다. 또한, 게터(209)로서, 전자총 플랜지(204)에 이탈리아 SAES Getters S.p.A회사제의 비증발형 게터 "ST172"을 설치하고, 그 게터(209)에 내장된 히터는 상기 전압/전류 도입부(210)와 접속되었다.
다음에, 도 1a 및 1b에 나타낸 타겟 구조체(100)를 제작했다. 절연성 기판(101)으로서, 인공 다이아몬드인 스미토모 전기공업주식회사 제품의 "SumicrystalTM"을 사용했다. 그 크기는 직경 5mm, 두께 1mm이다. 제2 도전부재(103b)로서, 스퍼터링법으로, 기판(101) 위에 Ti를 0.05㎛의 두께를 갖도록 성막했다. 그 제2 도전부재(103b) 위에, 타겟(102)으로서, 직경 3mm, 두께 10㎛의 크기를 갖는 W를, 마스크를 사용한 스퍼터링법으로 기판(101)의 중앙영역에 형성했다. 추가로, 마찬가지로 마스크를 사용한 스퍼터링법에 의해, 타겟(102)으로 덮어져 있지 않은 기판(101)의 주변영역에, 제1 도전부재(103a)로서 Ti를 0.05㎛의 두께를 갖도록 성막했다.
다음에, 애노드부(206)를 제작했다. 우선, 타겟(102)을 형성한 상기 기판(101)의 측면부에 금속 페이스트를 사용해서 메탈라이즈 처리를 행했다. 다음에, 애노드부(206)에 관해서, 그 주 부분은, 직경φ가 50mm인 코바르이고, 그 중심에 상기 타겟 구조체(100)를, Toyo Riken 주식회사제의 납땜재 "BA-108"을 사용하여, 진공공간내 850℃의 고온에서 땜질하고, 진공기밀 접합했다.
다음에, 절연체(205)를 제작했다. 직경φ 50mm, 두께4mm의 원통형을 갖는 절연체(205)의 재질은 알루미나다. 그 절연체(205)의 양단에는, 금속 페이스트를 사용해 메탈라이즈 처리를 행했다.
다음에, 진공노(vacuum furnace)내에, 전자방출원(201)등이 설치된 전자총 플랜지(204), 타겟 구조체(100)가 설치된 애노드부(206) 및 상기 절연체(205)를 넣어서, 저온에서 땜질하였다. 저온 납땜 처리는, Toyo Riken 주식회사제의 납땜재 "BA-143"을 사용하여, 진공분위기중 700℃의 온도에서 행하고, 도 2에 나타낸 외위기(208)가 설치된 X선 발생장치를 제작했다. 이때, 동시에, 전자총 플랜지(204)에서 직경φ가 1/4인치인 동(copper) 파이프(도면에 나타내지 않는다)를 납땜재 "BA-143"을 사용해서 땜질하였다. 또한, 애노드부(206)와 제1 도전부재(103a)의 일부와의 사이에 납땜재 "BA-143"을 소량 실어서 용융시켜, 양자간에 도통을 취했다.
다음에, 상기 동 파이프를 진공배기계(도면에 나타내지 않는다)에 접속하고, 외위기(208)의 내부를 진공배기하면서, 외위기(208)를 400℃에 베이킹하여서, 진공가열 탈가스 처리를 행했다. 또한, 전압/전류 도입부(210)에 구동전원부(도면에 나타내지 않는다)를 접속하고, 전자방출원(201)의 필라멘트를 가열하고, 캐소드(202)를 활성화했다. 다음에, 애노드부(206)에 전압인가수단(도면에 나타내지 않는다)을 접속해서 1kV의 전압을 인가하고 나서, 전자방출원(201)으로부터 10mA의 전자빔(104)을 타겟(102)에 충돌시켜, 48시간 에이징(aging) 테스트를 행했다. 그 후에, 게터(209)에 전류를 인가하여 600℃에서 활성화한 후, 상기 동 파이프를 칩 오프해서 X선 발생관(200)을 제작했다.
다음에, 상기 X선 발생관(200)을 절연유가 채워진 용기(213)에 설치하고, 전압/전류 도입부(210)와 구동전원부(211)를 접속하고, 애노드부(206)와 구동전원부(211)를 동시에 접속했다. 최후에, 용기(213)를 밀폐하고, X선 발생장치의 제작을 완료했다.
X선량을 측정하기 위해서, X선 투과창인 기판(101)으로부터 1m 떨어진 위치에, 미국 래드칼사(Radcal Corporation)제의 이온 챔버 방식의 선량계(2186선량계와 이온 챔버 "10X6-180")를 설치했다. 추가로, 애노드부(206)에 100kV의 전압을 인가하고, 전류밀도 1mA/mm2∼20mA/mm2의 범위내에서, 타겟(102)상의 초점 사이즈가 직경 φ가 1mm가 되도록 X선 발생장치를 조정했다.
먼저, 전자빔(104)의 전류밀도를 변화시키고 나서, 방사하는 X선량의 선형성을 측정했다. 애노드부(206)의 인가전압은 100kV가 되도록 고정하고, 전류밀도를 1.0mA/mm2 내지 5.0mA/mm2와 1.0mA/mm2 내지 20.0mA/mm2로 변화시키고, 그 때 방사한 X선량을 상기 선량계에서 측정했다. 전류밀도가 1.0mA/mm2일 때, X선량은 0.3mR/h정도이었다. 전자빔(104)의 전류밀도 1.0mA/mm2을 기준으로 X선량의 선형성을 평가했다. 표 1에 그 평가 결과를 나타낸다.
챠지 업 현상은 발생하지 않고, 선형성으로부터의 차이는 거의 없기 때문에, 타겟(102)의 온도가 상승해도 문제가 없었다. 다음에, 그 안정성을 평가했다. 전자빔(104)의 전류밀도를 10.OmA/mm2의 레벨에서 일정한 밀도가 되게 유지하고, 또한, 애노드부(206)의 인가전압을 100kV의 레벨에서 일정한 전압이 되게 유지하고 나서, X선량의 경시변화를 측정했다. 표 1에 그 측정결과를 나타낸다. 50시간 경과 후에도, 거의 X선량은 변화하지 않고 안정한 상태로 있고, 우수한 안정성을 나타내는 것을 확인했다. 표 1에 나타낸 평가에 있어서, 마크 "o"는 우수한 결과를 의미한다.
예시 2
우선, 도 1e 및 1f에 나타낸 타겟 구조체(100)를 제작했다. 이들 도면에 있어서의 절연성 기판(101)으로서, 인공 다이아몬드인 스미토모 전기공업주식회사 제품의 "SumicrystalTM"을 사용했다. 크기는 직경 5mm, 두께 1mm이다. 제2 도전부재(103b)로서, Ti를 스퍼터링법에 의해 0.05㎛ 두께의 상기 기판(101)의 한면 전체면에 성막했다. 그 제2 도전부재(103b)상에서 기판(101)의 중앙영역에, 타겟(102)으로서, 직경 φ 4mm, 두께 10㎛ 크기를 갖는 W를 마스크를 사용한 스퍼터링법에 의해 성막했다. 또한, 제1 도전부재(103a)로서, 마스크를 사용하여, 중심부에 직경φ 3mm만의 구멍을 형성하고 나서, 두께 0.095㎛의 Ti를 스퍼터링법으로 성막했다. 본 예시에서는, 중심부에서 노출된 타겟(102)은, 타겟(102)의 주변부에서 제1 도전부재(103a)와 겹쳐 있다.
다음에, 상기 타겟 구조체(100)를 사용하여, 상기 예시 1의 경우와 마찬가지로 외위기(208)를 제작했다. 또한, 예시 1의 경우와 마찬가지로 진공 베이킹 처리, 에이징 테스트 및 칩 오프 처리를 행하여서, X선 발생관(200)을 제작했다. 다음에, 예시 1의 경우와 마찬가지로, 용기(213)에 상기 X선 발생관(200)을 설치해 X선 발생장치를 제작했다.
다음에, 예시 1의 경우와 마찬가지로 선형성과 안정성을 측정했다. 그 측정결과를 표 1에 나타낸다. 챠지 업 현상은 발생하지 않고, 선형성으로부터의 차이는 거의 없고, 타겟(102)의 온도가 상승해도 문제가 없었다. 또한, 50시간 경과 후에도, 거의 X선량은 변화하지 않고, 우수한 안정성을 갖는 것을 확인했다.
또한, 방출되는 X선의 스펙트럼을 미국 AMPTEK회사의 반도체 검출기로 측정했다. 제2 도전부재(103b)의 성분인 Ti로부터의 특성 X선(4.5keV, 4.9keV)의 양은 0.1%미만의 레벨에 있고, 이 결과에 의해 문제가 일어나지 않았다.
예시 3
우선, 도 1g 및 1h에 나타낸 타겟 구조체(100)를 제작했다. 이들 도면에 있어서의 절연성 기판(101)으로서, 인공 다이아몬드인 스미토모 전기공업주식회사 제품의 "SumicrystalTM"을 사용했다. 그 크기는 직경 5mm, 두께 1mm이다. 제2 도전부재(103b)로서, 마스크를 사용한 스퍼터링법에 의해, 기판(101)의 중앙영역 위에 직경 φ3mm의 Ti을 0.095㎛의 두께를 갖도록 성막했다. 다음에, 마스크를 사용하여, 제2 도전부재(103b)의 원주영역인 상기 기판(101)의 주변영역에, 두께 1㎛의 Mo를 스퍼터링법으로 성막하여서, 제1 도전부재(103a)를 형성했다. 또한, 타겟(102)으로서, 마스크를 사용하여서, 직경 φ4mm, 두께 10㎛ 크기를 갖는 W를 성막했다. 타겟(102)은, 타겟(102)의 주변부에서 제1 도전부재(103a)와 겹치도록 형성되었다.
다음에, 상기 타겟 구조체(100)를 사용하여, 예시 1의 경우와 마찬가지로 외위기(208)를 제작했다. 또한, 예시 1의 경우와 마찬가지로 진공 베이킹 처리, 에이징 테스트 및 칩 오프 처리를 행하여서, X선 발생관(200)을 제작했다. 다음에, 예시 1의 경우와 마찬가지로, 용기(213)에 상기 X선 발생관(200)을 설치하고, X선 발생장치의 제작을 완료했다.
다음에, 예시 1의 경우와 마찬가지로, 선형성과 안정성을 측정했다. 그 측정결과를 표 1에 나타낸다. 선형성으로부터의 차이는 거의 없기 때문에, 타겟(102)의 온도가 상승해도 문제가 없었다. 50시간 경과 후에도, 거의 X선량은 변화하지 않고, 우수한 안정성을 갖는 것을 확인했다.
예시 4
우선, 도 1i 및 1j에 나타낸 타겟 구조체(100)를 제작했다. 절연성 기판(101)으로서, 인공 다이아몬드인 스미토모 전기공업주식회사 제품의 "SumicrystalTM"을 사용했다. 그 크기는 직경 5mm, 두께 1mm이다. 기판(101)의 주변으로부터 기판(101)의 중심에 근접하는 과정에서의 중간점까지의 위치에, 마스크를 사용한 스퍼터링법에 의해, 폭 1mm, 길이 1.3mm 및 두께 1㎛를 갖는 크기의 Mo로 제조된 제1 도전부재(103a)를 제작했다. 다음에, 마스크를 사용하여, 기판(101)의 중앙영역에, 제2 도전부재(103b)로서, 직경 φ 3mm의 Ti를 0.05㎛ 두께로 성막했다. 다음에, 타겟(102)으로서, 마스크를 사용하여서, 직경 φ 3mm, 두께 10㎛의 크기를 갖는 W를 성막했다. Mo로 제조된 제1 도전부재(103a)의 내단부 위에, Ti로 제조된 제2 도전부재(103b)의 주변부와 타겟(102)의 주변부가 겹치도록 형성했다.
다음에, 상기 타겟 구조체(100)를 사용하여, 예시 1의 경우와 마찬가지로 외위기(208)를 제작했다. 또한, 예시 1의 경우와 마찬가지로 진공 베이킹 처리, 에이징 테스트 및 칩 오프처리를 행해서 X선 발생관(200)을 제작했다. 다음에, 예시 1의 경우와 마찬가지로, 용기(213)에 상기 X선 발생관(200)을 설치하고, X선 발생장치의 제작을 완료했다.
예시 1의 경우와 마찬가지로 선형성과 안정성을 측정했다. 그 측정결과를 표 1에 나타낸다. 챠지 업 현상은 발생하지 않고, 선형성으로부터의 차이는 거의 없기 때문에, 타겟(102)의 온도가 상승해도 문제가 없었다. 또한, 50시간 경과 후에도 거의 X선량은 변화하지 않고, 우수한 안정성을 갖는 것을 확인했다.
예시 5
우선, 도 3에 나타낸 타겟 구조체(100)를 제작했다. 이 도면에 있어서의 절연성 기판(101)으로서, 인공 다이아몬드인 스미토모 전기공업주식회사 제품의 "SumicrystalTM"을 사용했다. 그 크기는 직경 5mm, 두께 1mm이다. 제2 도전부재(103b)로서, 스퍼터링법에 의해, 마스크를 사용해서 직경 φ 4mm, 두께 0.05㎛의 크기를 갖는 Ti를 기판(101)의 중앙영역에 성막했다. 그 제2 도전부재(103b) 위에, 타겟(102)으로서, 마스크를 사용하여, 직경 φ 4mm, 두께 10㎛의 크기를 갖는 W를 성막했다. 또한, 제1 도전부재(103a)로서, 마스크를 사용하여 중심부에 직경 φ 3mm만인 구멍을 형성한 후, 두께 0.095㎛의 Mo를 스퍼터링법으로 성막했다. 본 예시에서는, 타겟(102)의 윗면은 노출하고 있고, 타겟(102)의 주변부는 상기 도전부재(103b)와 겹쳐 있다. 본 예시는 전자빔(104)의 진행 방향과 반대 방향으로 X선을 방사하는 반사형 X선 발생장치를 가리킨다.
다음에, 상기 타겟 구조체(100)를 사용하여서, 기판(101)이 설치되는 일부가 외부를 향해서 개방되지 않고 있는 애노드부(206)에 대해, 예시 1의 경우와 마찬가지로 납땜 처리를 행했다. 그 후, 그 일부에 Be(베릴륨)로 제조된 X선창(610)을 설치한 절연체(205)를 사용하고, 상술한 절연체(205)를 제외하는 예시 1과 같은 부재를 사용하여서, 도 3에 나타낸 외위기(208)를 제작했다. 또한, 예시 1의 경우와 마찬가지로 진공 베이킹 처리, 에이징 테스트 및 칩 오프 처리를 행하여서, X선 발생관(200)을 제작했다. 다음에, X선 외부창(212)을 변경하여 또 다른 위치에 형성한 용기(213)에, 예시 1의 경우와 마찬가지로, 상기 X선 발생관(200)을 설치하고, X선 발생장치의 제작을 완료했다.
다음에, 예시 1의 경우와 마찬가지로 선형성과 안정성을 측정했다. 그 측정결과를 표 1에 나타낸다. 챠지 업 현상은 발생하지 않고, 선형성으로부터의 차이는 거의 없기 때문에, 타겟(102)의 온도가 상승해도 문제가 없었다. 50시간 경과 후에도, 거의 X선량은 변화하지 않고, 우수한 안정성을 갖는 것을 확인했다.
또한, 방출되는 X선의 스펙트럼을 미국 AMPTEK회사의 반도체 검출기에 의해 측정했다. 제2 도전부재(103b)의 성분인 Mo로부터의 특성 X선(17.5keV, 19.6keV)의 양은 0.3%미만의 레벨에 있고, 이 결과에 의해 문제가 일어나지 않았다.
Figure pct00001
마크 "o"는 우수한 결과를 의미한다.
[부호의 설명]
100 타겟 구조체
101 기판
103a 제1 도전부재
103b 제2 도전부재
본 발명을 예시적 실시예들을 참조하여 기재하였지만, 본 발명은 상기 개시된 예시적 실시예들에 한정되지 않는다는 것을 알 것이다. 아래의 청구항의 범위는, 모든 변형예, 동등한 구조 및 기능을 포함하도록 폭 넓게 해석해야 한다.
본 출원은, 여기서 전체적으로 참고로 포함된, 2011년 8월 31일에 제출된 일본국 특허출원번호 2011-189107의 이점을 청구한다.

Claims (9)

  1. 절연성 기판과, 상기 절연성 기판의 한면에 설치된 타겟과를 구비한 타겟 구조체로서,
    상기 타겟이 상기 절연성 기판의 중앙영역에 설치되어 있고,
    상기 타겟에 전압을 공급하기 위한 제1 도전부재가, 상기 타겟의 중앙부와 겹치는 영역을 제외하고 상기 타겟으로 덮어져 있지 않은 상기 절연성 기판의 주변영역의 일부에 설치되어, 그 설치된 제1 도전부재가 상기 타겟에 접속되는, 타겟 구조체.
  2. 제 1 항에 있어서,
    상기 제1 도전부재의 내단부(inner edge portion)가 상기 타겟의 주변측면과 접하여 있는, 타겟 구조체.
  3. 제 1 항에 있어서,
    상기 제1 도전부재의 내단부가 상기 타겟의 주변부와 겹쳐 있는, 타겟 구조체.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    두께가 0.1㎛이하인 제2 도전부재가, 상기 타겟의 윗면과 밑면 중 어느 한쪽 또는 양쪽의 적어도 일부를 덮도록, 또한 상기 제1 도전부재와 접속되도록, 설치되는, 타겟 구조체.
  5. 제 4 항에 있어서,
    상기 제2 도전부재의 두께가 0.1nm이상인, 타겟 구조체.
  6. 제 4 항 또는 제 5 항에 있어서,
    상기 제2 도전부재가, 상기 절연성 기판의 주변영역에 있어서의 상기 제1 도전부재와 겹치는 영역에서 연장하도록 형성되는, 타겟 구조체.
  7. 제 6 항에 있어서,
    상기 제1 도전부재가 상기 절연성 기판의 상기 주변영역의 일부에 설치되어 있고, 상기 제2 도전부재가, 상기 절연성 기판의 주변영역에 있어서의 상기 제1 도전부재와 겹치는 영역과, 상기 절연성 기판의 주변영역에 있어서의 상기 제1 도전부재로 덮어져 있지 않은 영역에서, 연장하도록 형성되는, 타겟 구조체.
  8. 전자방출원과, 상기 전자방출원과 대향하는 측에 타겟을 가지는 타겟 구조체와를 구비한 X선 발생장치로서,
    상기 타겟 구조체가, 청구항 1 내지 7 중 어느 한 항에 기재된 타겟 구조체인, X선 발생장치.
  9. 청구항 8에 기재된 X선 발생장치;
    상기 X선 발생장치로부터 방출되어 피검체를 투과한 X선을 검출하는 X선 검출장치; 및
    상기 X선 발생장치와 상기 X선 검출장치가 서로 연계하도록 상기 X선 발생장치와 상기 X선 검출장치를 제어하는 제어장치를 구비한, X선 촬영 시스템.
KR1020147007907A 2011-08-31 2012-08-08 타겟 구조체 및 x선 발생장치 Expired - Fee Related KR101581313B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-189107 2011-08-31
JP2011189107A JP5896649B2 (ja) 2011-08-31 2011-08-31 ターゲット構造体及びx線発生装置
PCT/JP2012/070715 WO2013031535A2 (en) 2011-08-31 2012-08-08 Target structure and x-ray generating apparatus

Publications (2)

Publication Number Publication Date
KR20140066734A true KR20140066734A (ko) 2014-06-02
KR101581313B1 KR101581313B1 (ko) 2015-12-31

Family

ID=47003165

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147007907A Expired - Fee Related KR101581313B1 (ko) 2011-08-31 2012-08-08 타겟 구조체 및 x선 발생장치

Country Status (6)

Country Link
US (1) US9524846B2 (ko)
EP (1) EP2751828B1 (ko)
JP (1) JP5896649B2 (ko)
KR (1) KR101581313B1 (ko)
CN (1) CN103765546B (ko)
WO (1) WO2013031535A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022235985A1 (en) * 2021-05-05 2022-11-10 Rad Source Technologies, Inc. Through transmission x-ray system with electron manipulation and methods of use

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871529B2 (ja) * 2011-08-31 2016-03-01 キヤノン株式会社 透過型x線発生装置及びそれを用いたx線撮影装置
JP5875297B2 (ja) 2011-08-31 2016-03-02 キヤノン株式会社 放射線発生管及びそれを用いた放射線発生装置、放射線撮影システム
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
JP5984367B2 (ja) 2011-12-02 2016-09-06 キヤノン株式会社 放射線発生装置及びそれを用いた放射線撮影システム
US9008278B2 (en) * 2012-12-28 2015-04-14 General Electric Company Multilayer X-ray source target with high thermal conductivity
JP6230389B2 (ja) 2013-06-05 2017-11-15 キヤノン株式会社 X線発生管及びそれを用いたx線発生装置とx線撮影システム
JP6327802B2 (ja) 2013-06-12 2018-05-23 キヤノン株式会社 放射線発生管及びそれを用いた放射線発生装置と放射線撮影システム
JP2015028879A (ja) * 2013-07-30 2015-02-12 東京エレクトロン株式会社 X線発生用ターゲット及びx線発生装置
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
US9390881B2 (en) 2013-09-19 2016-07-12 Sigray, Inc. X-ray sources using linear accumulation
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US9449781B2 (en) 2013-12-05 2016-09-20 Sigray, Inc. X-ray illuminators with high flux and high flux density
US9570265B1 (en) 2013-12-05 2017-02-14 Sigray, Inc. X-ray fluorescence system with high flux and high flux density
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
KR20150051820A (ko) * 2013-11-05 2015-05-13 삼성전자주식회사 투과형 평판 엑스레이 발생 장치 및 엑스레이 영상 시스템
US9823203B2 (en) 2014-02-28 2017-11-21 Sigray, Inc. X-ray surface analysis and measurement apparatus
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
JP6456172B2 (ja) * 2015-02-04 2019-01-23 キヤノン株式会社 陽極及びこれを用いたx線発生管、x線発生装置、x線撮影システム
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
JP2017022054A (ja) * 2015-07-14 2017-01-26 株式会社ニコン X線発生装置、x線装置、構造物の製造方法、及び構造物製造システム
JP6573380B2 (ja) * 2015-07-27 2019-09-11 キヤノン株式会社 X線発生装置及びx線撮影システム
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US11094497B2 (en) 2017-02-24 2021-08-17 General Electric Company X-ray source target
JP6937380B2 (ja) 2017-03-22 2021-09-22 シグレイ、インコーポレイテッド X線分光を実施するための方法およびx線吸収分光システム
JP6867224B2 (ja) * 2017-04-28 2021-04-28 浜松ホトニクス株式会社 X線管及びx線発生装置
CN107195517A (zh) * 2017-06-02 2017-09-22 重庆涌阳光电有限公司 具有高真空的场发射x射线管
GB2570646A (en) * 2018-01-24 2019-08-07 Smiths Heimann Sas Radiation Source
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
WO2020023408A1 (en) 2018-07-26 2020-01-30 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
WO2020051221A2 (en) 2018-09-07 2020-03-12 Sigray, Inc. System and method for depth-selectable x-ray analysis
EP3882949A4 (en) * 2018-11-12 2022-11-16 Peking University MINIATURE X-RAY SOURCE ON A CHIP AND MANUFACTURING METHOD THEREOF
WO2021011209A1 (en) 2019-07-15 2021-01-21 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure
WO2023137334A1 (en) 2022-01-13 2023-07-20 Sigray, Inc. Microfocus x-ray source for generating high flux low energy x-rays
US12360067B2 (en) 2022-03-02 2025-07-15 Sigray, Inc. X-ray fluorescence system and x-ray source with electrically insulative target material
US20240112877A1 (en) * 2022-10-04 2024-04-04 Moxtek, Inc. X-ray tube with improved spectrum
US12181423B1 (en) 2023-09-07 2024-12-31 Sigray, Inc. Secondary image removal using high resolution x-ray transmission sources

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169422A (ja) 1993-12-14 1995-07-04 Toshiba Corp X線管
JP2002352754A (ja) 2001-05-29 2002-12-06 Shimadzu Corp 透過型x線ターゲット
JP2008077981A (ja) * 2006-09-21 2008-04-03 Hamamatsu Photonics Kk イオン化装置、質量分析器、イオン移動度計、電子捕獲検出器およびクロマトグラフ用荷電粒子計測装置
US20110058655A1 (en) * 2009-09-04 2011-03-10 Tokyo Electron Limited Target for x-ray generation, x-ray generator, and method for producing target for x-ray generation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148462A (en) 1991-04-08 1992-09-15 Moltech Corporation High efficiency X-ray anode sources
JP2000306533A (ja) * 1999-02-19 2000-11-02 Toshiba Corp 透過放射型x線管およびその製造方法
JP2002343290A (ja) 2001-05-21 2002-11-29 Medeiekkusutekku Kk X線管ターゲット、x線発生器、x線検査装置およびx線管ターゲットの製造方法
US6690765B1 (en) * 2001-09-06 2004-02-10 Varian Medical Systems, Inc. Sleeve for a stationary anode in an x-ray tube
JP2005276760A (ja) 2004-03-26 2005-10-06 Shimadzu Corp X線発生装置
JP4956701B2 (ja) * 2007-07-28 2012-06-20 エスアイアイ・ナノテクノロジー株式会社 X線管及びx線分析装置
JP4693884B2 (ja) * 2008-09-18 2011-06-01 キヤノン株式会社 マルチx線撮影装置及びその制御方法
JP2011189107A (ja) 2010-03-16 2011-09-29 Keiji Kizu 男子放尿時の散乱防止用紙具
JP5455880B2 (ja) 2010-12-10 2014-03-26 キヤノン株式会社 放射線発生管、放射線発生装置ならびに放射線撮影装置
CN103250225B (zh) 2010-12-10 2016-05-25 佳能株式会社 放射线产生装置和放射线成像装置
JP2013020792A (ja) 2011-07-11 2013-01-31 Canon Inc 放射線発生装置及びそれを用いた放射線撮影装置
JP6039282B2 (ja) 2011-08-05 2016-12-07 キヤノン株式会社 放射線発生装置及び放射線撮影装置
CN103733734B (zh) 2011-08-05 2016-04-27 佳能株式会社 放射线发生装置和放射线成像装置
JP5875297B2 (ja) 2011-08-31 2016-03-02 キヤノン株式会社 放射線発生管及びそれを用いた放射線発生装置、放射線撮影システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169422A (ja) 1993-12-14 1995-07-04 Toshiba Corp X線管
JP2002352754A (ja) 2001-05-29 2002-12-06 Shimadzu Corp 透過型x線ターゲット
JP2008077981A (ja) * 2006-09-21 2008-04-03 Hamamatsu Photonics Kk イオン化装置、質量分析器、イオン移動度計、電子捕獲検出器およびクロマトグラフ用荷電粒子計測装置
US20110058655A1 (en) * 2009-09-04 2011-03-10 Tokyo Electron Limited Target for x-ray generation, x-ray generator, and method for producing target for x-ray generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022235985A1 (en) * 2021-05-05 2022-11-10 Rad Source Technologies, Inc. Through transmission x-ray system with electron manipulation and methods of use

Also Published As

Publication number Publication date
WO2013031535A2 (en) 2013-03-07
KR101581313B1 (ko) 2015-12-31
US9524846B2 (en) 2016-12-20
JP2013051152A (ja) 2013-03-14
US20140177800A1 (en) 2014-06-26
EP2751828B1 (en) 2019-02-27
WO2013031535A3 (en) 2013-05-23
CN103765546B (zh) 2016-03-23
EP2751828A2 (en) 2014-07-09
JP5896649B2 (ja) 2016-03-30
CN103765546A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
KR101581313B1 (ko) 타겟 구조체 및 x선 발생장치
US9508524B2 (en) Radiation generating apparatus and radiation imaging apparatus
US8837680B2 (en) Radiation transmission type target
JP6415250B2 (ja) X線発生管、x線発生装置及びx線撮影システム
US9552956B2 (en) Radiation generating apparatus and radiation imaging apparatus
US9029795B2 (en) Radiation generating tube, and radiation generating device and apparatus including the tube
US9653252B2 (en) X-ray generating tube, X-ray generating apparatus and X-ray imaging system using the same
US9117621B2 (en) Radiation generating tube, radiation generating unit, and radiation image taking system
JP2016029644A (ja) X線発生管、x線発生装置、x線撮影システム及びこれらに用いられる陽極
US20140177796A1 (en) X-ray tube
US10242837B2 (en) Anode and X-ray generating tube, X-ray generating apparatus, and radiography system that use the anode
JP2013109937A (ja) X線管及びその製造方法
JP6272539B1 (ja) X線発生管及びそれを用いたx線発生装置とx線撮影システム
JP6580231B2 (ja) X線発生管、x線発生装置及びx線撮影システム
JP6611495B2 (ja) X線発生管、x線発生装置およびx線撮影システム
US20240274392A1 (en) X-ray tube
JP2016085946A (ja) X線発生管、x線発生装置及びx線撮影システム

Legal Events

Date Code Title Description
A201 Request for examination
PA0105 International application

Patent event date: 20140326

Patent event code: PA01051R01D

Comment text: International Patent Application

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20150331

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20151007

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20151223

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20151224

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20181126

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20181126

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20191219

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20211122

Start annual number: 7

End annual number: 7

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20231003