[go: up one dir, main page]

KR102421822B1 - 희토류 영구자석 및 희토류 영구자석을 갖는 회전기 - Google Patents

희토류 영구자석 및 희토류 영구자석을 갖는 회전기 Download PDF

Info

Publication number
KR102421822B1
KR102421822B1 KR1020177030230A KR20177030230A KR102421822B1 KR 102421822 B1 KR102421822 B1 KR 102421822B1 KR 1020177030230 A KR1020177030230 A KR 1020177030230A KR 20177030230 A KR20177030230 A KR 20177030230A KR 102421822 B1 KR102421822 B1 KR 102421822B1
Authority
KR
South Korea
Prior art keywords
magnet
permanent magnet
central region
earth permanent
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020177030230A
Other languages
English (en)
Other versions
KR20170132217A (ko
Inventor
마코토 후지하라
겐이치 후지카와
다카시 야마모토
쇼이치로 사이토
Original Assignee
닛토덴코 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛토덴코 가부시키가이샤 filed Critical 닛토덴코 가부시키가이샤
Publication of KR20170132217A publication Critical patent/KR20170132217A/ko
Application granted granted Critical
Publication of KR102421822B1 publication Critical patent/KR102421822B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

영구자석 매립형 전동 모터와 같은 회전기에 있어서, 매립된 영구자석에 감 자 작용을 미치는 외부 자계가 작용해도 성능 저하를 일으키지 않는 영구자석을 제공한다. 희토류 물질을 포함하는 자석 재료 입자가 일체로 소결 성형된 희토류 영구자석 형성용 소결체 및 그 소결체에 착자함으로써 얻어진 희토류 영구자석, 그리고 그 자석을 매립한 회전기를 개시한다. 희토류 영구자석 형성용 소결체는, 폭 방향의 중앙 영역과 그 중앙 영역의 양측에 위치하는 제 1 및 제 2 단부 영역으로 구획된다. 중앙 영역에 있어서는, 그 중앙 영역에 포함되는 자석 재료 입자는, 그 자화 용이축이, 폭 방향으로 연장되는 소결체 부분의 일표면에 대해 실질적으로 직각인 방향으로 배향되어 있고, 제 1 및 제 2 단부 영역의 일방 또는 양방에 있어서, 그 영역에 포함되는 자석 재료 입자는, 자화 용이축이 그 일표면에 지향되는 자석 재료 입자의 밀도가, 중앙 영역에 있어서의보다 높아지도록 집속하는 방향으로 배향된다. 이 희토류 영구자석 형성용 소결체에 의해 형성되는 자석에 있어서는, 단부 영역의 자속 밀도가 중앙 영역보다 높아져, 감자에 의한 성능 저하가 억제된다.

Description

희토류 영구자석 및 희토류 영구자석을 갖는 회전기{RARE-EARTH PERMANENT MAGNET AND ROTARY MACHINE INCLUDING RARE-EARTH PERMANENT MAGNET}
본 발명은, 희토류 영구자석 및 희토류 영구자석을 갖는 전동 모터 또는 발전기와 같은 회전기에 관한 것이다. 또, 본 발명은, 희토류 물질을 포함하는 자석 재료 입자가 일체로 소결된 구성을 갖고, 그 자석 재료 입자를 착자시킴으로써 희토류 영구자석을 형성할 수 있는, 희토류 영구자석 형성용 소결체에 관한 것이다.
스테이터와 로터를 구비하는 전동 모터에 있어서, 영구자석을 로터 코어 내에 매립함으로써, 마그넷 토크에 추가로 릴럭턴스 토크도 이용할 수 있도록 구성된, 영구자석 매립형 전동 모터가, 예를 들어 일본 공개특허공보 평8-331783호 (특허문헌 1) 에 의해 알려져 있다. 이러한 종류의 모터는, 복수의 자극 (磁極) 을 갖는 스테이터에 대해 에어 갭을 통하여 대향하도록 로터 코어가 배치된다. 그리고, 그 로터 코어에는, 그 둘레 방향 등간격의 복수의 위치에 영구자석 삽입용 슬롯이 형성되어 있고, 그 슬롯의 폭 방향 양 단부 (端部) 는, 로터 코어의 둘레면에 근접하는 위치에 있다. 따라서, 이 슬롯에 삽입되는 영구자석도, 그 폭 방향 양 단부가 폭 방향 중앙부보다 로터 코어의 둘레면에 근접하는 위치에 배치된다.
일본 공개특허공보 2000-50543호 (특허문헌 2) 에서는, 이러한 종류의 모터에 있어서, 모터를 소형화하기 위해서 스테이터의 티스부에 고밀도의 집중 권취를 실시한 경우에, 티스부의 자력이 높아져, 이웃하는 티스 사이에 흐르는 자속이 로터 코어의 영구자석의 위치까지 도달하고, 이 자속에 의해 영구자석에 감자를 발생시킨다는 문제가 있는 것을 지적하고 있다. 특허문헌 2 에 의하면, 이 감자 작용은, 특히 영구자석의 단부에 있어서 발생한다. 특허문헌 2 에서는, 이 문제에 대처하기 위해, 로터 코어에 매립되는 영구자석의 단부와 로터 코어 외주 사이에 비자성부를 형성하는 것을 제창하고 있다. 비자성부의 구체적인 예로서 특허문헌 2 는, 슬롯 양 단부를 연장하여 영구자석의 양 단부에 공극부를 형성하는 것을 교시하고 있다. 이와 같이 비자성부를 형성하면, 스테이터로부터의 자속이 그 비자성부를 통과하도록 되어, 로터 코어에 매립된 영구자석의 감자를 억제할 수 있다. 이 감자에 대처하기 위한 별도의 수법을 개시하는 문헌으로서, 일본 공개특허공보 평10-271722호 (특허문헌 3) 는, 영구자석의 양 단부를 보자력이 높은 자성 재료로 하는 것을 제창하고 있다.
상기 서술한 특허문헌 2 및 3 에 있어서는, 영구자석은 페라이트 자석이지만, 이들 특허문헌이 지적하는 감자의 문제는, 희토류 자석을 사용하는 모터에 있어서도 동일하게 발생한다고 생각된다. 일본 특허 제5444630호 (특허문헌 4) 는, 영구자석 매립형 모터에 있어서, 영구자석으로서 Nd-Fe-B 계 자석을 사용하는 모터를 개시한다. 이 특허문헌 4 에서는, 영구자석은, 2 개의 주면 (主面) 을 갖는 평판상으로 형성되고, 로터 코어 중심으로부터 볼 때 외향면이 로터 코어에 대해 자극을 나타내는 자극면이 되고, 내향면이 반자극면이 된다. 로터 코어 내에 매립된 상태에 있어서, 자석의 폭 방향 단부는 중간부보다 에어 갭에 가까운 위치에 있어 근접부로 불리고, 중간부는, 그 근접부보다 에어 갭으로부터 멀어 원방부로 불리고 있다. 이 특허문헌 4 에는, 영구자석의 폭 방향 단부에 발생하는 감자의 문제에 대처하기 위한 구성이 개시되어 있다. 즉, 영구자석은, 단면 (斷面) 이 대략 사다리꼴이 되도록 단부에 사면 (斜面) 이 형성되어 있고, 그 영구자석의 단부보다 폭 방향 외측에서는, 로터 코어에 공극부가 형성되어 있다. 이 공극부는, 자석의 단부와 그 공극부를 통하여 그 자석에 대향하는 로터 부분 사이의 자기저항을 크게 하는 효과가 있다고 설명되어 있다. 구체적인 예에서는, 공극부는, 자석이 매립되는 로터 코어 내의 슬롯에 대해 비스듬하게, 에어 갭의 방향으로 굴곡되도록 형성된다.
특허문헌 4 에는, 또한 영구자석에 있어서의 자화 용이축의 배향에 대한 기재가 있다. 즉, 자석의 길이 방향 중앙부에서는 자석 재료의 자화 용이축이 로터의 반경 방향을 향하게 되어 있고, 그 중앙부로부터 멀어지는 위치에서는, 원방부 및 근접부 어디에 있어서도, 자화 용이축이 중앙부의 방향으로 경사져 있고, 그 경사각은, 중앙부로부터 단부를 향해 점진적으로 증가하고 있다.
국제 공개 WO2007/119393호 (특허문헌 5) 는, 네오디뮴 자석에 있어서의 자화 용이축의 배향 제어 수법을 개시한다. 이 특허문헌 5 에는, 자석 입자와 결합제의 컴파운드를 압축 성형하고, 형성된 결합제의 가교 분자를 기계적으로 연신하고, 연신한 수직 이방성 박판 자석의 소성 변형으로 이방성의 방향을 레이디얼 방향으로 전환하는 방법이 기재되어 있다. 여기에 교시된 방법은, 자석 입자와, 그 자석 입자를 고정하는 망목상 고분자와, 선상 고분자, 및 필요에 따라 사용되는 첨가제에 의해 구성되는 컴파운드를 사용한다. 상기 서술한 고분자는, 자석 입자 고정상 A 와 유동상 B 로 이루어지고, 상 B 의 일부가 상 A 와 화학 결합하여, 고정상 A 의 군을 망목상으로 고정하고, 상 B 의 전단 유동 및 신장 유동으로 변형을 생기게 한다. 또한, 상 B 의 유동을 따른 변형에 의해 제조한 자석을 열처리하여, 가교 반응을 진행시켜, 상 B 의 유동성을 소실시킴으로써, 자석의 기계적 강도 및 내열성을 향상시킨다. 이 방법에 의하면, 상기 서술한 유동 변형에 의해, 자석 입자의 자화 용이축의 배향이 제어된다. 이 특허문헌 5 에 의해 제조되는 자석은, 네오디뮴 자석 입자가 소결되는 소결 자석이 아니고, 자석 내에는 고분자 재료가 그대로 잔존하고 있어, 본드 자석의 일종이라고 이해된다. 본드 자석은, 자석 재료 입자 사이에 결합제인 고분자 재료가 개재하고 있어, 자석 재료 입자의 함유 비율이 낮아지기 때문에, 잔류 자속 밀도가 저하한다는 결점이 있다.
일본 공개특허공보 평8-331783호 일본 공개특허공보 2000-50543호 일본 공개특허공보 평10-271722호 일본 특허 제5444630호 국제 공개 WO2007/119393호
본 발명은, 영구자석 매립형 회전기에 있어서, 매립된 영구자석이 조우하는 감자의 문제를 해결하는 수단을 제공하는 것을 해결해야 할 과제로 한다.
본 발명은 또, 회전기에 매립되었을 때에 감자의 문제를 발생시키지 않거나, 혹은 대폭 완화할 수 있는, 희토류 자석 또는 희토류 자석을 형성하기 위한 소결체를 제공하는 것을 다른 과제로 한다.
상기 과제를 달성하기 위해 본 발명은, 그 일 양태에 있어서, 희토류 자석 형성용 소결체를 제공한다. 이 소결체는, 희토류 물질을 포함하는 자석 재료 입자를 포함한다. 그 소결체는, 그 자석 재료 입자가, 길이 방향으로 연장되는 제 1 표면과, 그 제 1 표면으로부터 두께 방향으로 간격을 가진 위치에 있고 길이 방향으로 연장되는 제 2 표면과, 길이 방향 양 단부의 단면 (端面) 을 갖고, 그 양 단면의 각각이 그 제 1 표면의 길이 방향 단부로부터 길이 방향 외향으로 경사짐으로써 그 제 1 표면의 길이가 상기 제 2 표면보다 짧아지는 길이 방향 횡단면 형상을 가지는 소정의 입체 형상으로 일체로 소결 성형된 것이다. 그 소결체는, 적어도 길이 방향의 중앙 영역과, 그 중앙 영역의 양측에 위치하는 제 1 및 제 2 단부 영역으로 구획되고, 그 중앙 영역에 있어서는, 그 중앙 영역에 포함되는 자석 재료 입자는, 그 자화 용이축이, 소결체의 길이 방향으로 연장되는 소결체 부분의 제 1 표면에 대해 실질적으로 직각인 방향으로 배향된 패럴렐 배향으로 되어 있다. 그 단부 영역의 각각에 포함되는 자석 재료 입자는, 그 단면에 인접하는 위치에서는 그 단면의 경사를 따라 제 1 표면에 대해 경사지는 각도로 그 제 1 표면에 지향되고, 그 중앙 영역에 인접하는 위치에서는 그 제 1 표면에 대해 실질적으로 직각인 방향이 되도록 그 제 1 표면에 지향되고, 그 단면과 그 중앙 영역 사이에서는 그 단면으로부터 그 중앙 영역을 향하여 점차 감소하는 경사각으로 그 제 1 표면에 지향되도록 집속하는 배향으로 된다. 바람직한 일 양태에 있어서는, 그 제 1 및 제 2 단부 영역의 각각에 있어서의 단면은, 그 단면의 연장선과 상기 제 1 표면 사이의 각도가 45° ∼ 80°의 범위 내가 되도록, 보다 바람직하게는 그 각도가 55° ∼ 80°의 범위 내가 되도록 그 제 1 표면에 대해 경사진 형상으로 된다. 본 발명의 별도의 바람직한 양태에 있어서는, 희토류 자석 형성용 소결체는, 중앙 영역의 길이 방향 치수 P 와 제 1 표면의 길이 방향 치수 L 의 비 P/L 이 0.05 ∼ 0.8, 보다 바람직하게는 0.2 ∼ 0.5, 더욱 바람직하게는 0.3 ∼ 0.4 가 되도록, 그 중앙 영역이 정해진다. 또한, 본 발명에 있어서는, 자석 재료는, Nd-Fe-B 계 자석 재료인 것이 바람직하다.
본 발명은, 별도의 양태에 있어서, 상기 서술한 희토류 영구자석 형성용 소결체에 착자시킴으로써 형성된 희토류 영구자석을 제공한다.
본 발명은, 또 별도의 양태에 있어서, 전동 모터 또는 발전기와 같은 회전기를 제공한다. 이 회전기는, 회전축에 대해 평행한 중심축을 갖는 대략 원통상의 에어 갭을 통하여 스테이터와 대향하도록 그 스테이터 내에 자유롭게 회전할 수 있게 배치된 로터 코어를 갖는 구성이다. 그 로터 코어에는, 둘레 방향으로 간격을 가진 복수의 위치에 있어서 길이 방향 치수와 두께 방향 치수를 갖는 길이 방향 단면 (斷面) 형상의 슬롯이 복수개, 축 방향으로 연장되도록 형성되고, 그 슬롯의 각각 내에 상기 서술한 희토류 영구자석이 배치된다. 바람직한 양태의 회전기에 있어서는, 그 슬롯의 각각은, 그 슬롯 내에 배치되는 희토류 영구자석의 폭 방향 치수보다 큰 길이 방향 치수를 갖고, 그 슬롯 내에 배치되는 상기 희토류 영구자석의 양 단부에 그 슬롯에 의해 공극부가 형성된다. 이 공극부는, 자석을 수용하는 슬롯 부분에 대해 에어 갭의 방향으로 경사져 있는 것이 바람직하다.
본 발명에 의한 희토류 자석 형성용 소결체는, 자석 재료 입자가, 길이 방향과 두께 방향을 가지고 그 길이 방향의 양 단부의 각각이 그 제 1 표면의 길이 방향 단부로부터 길이 방향 외향으로 경사짐으로써 그 제 1 표면의 길이가 상기 제 2 표면보다 짧아지는 길이 방향 단면 형상을 가지는 소정의 입체 형상으로 일체로 소결 성형된 것이고, 그 소결체는, 적어도 길이 방향의 중앙 영역과, 그 중앙 영역의 양측에 위치하는 제 1 및 제 2 단부 영역으로 구획되고, 그 중앙 영역에 있어서는, 그 중앙 영역에 포함되는 자석 재료 입자는, 그 자화 용이축이, 소결체의 길이 방향으로 연장되는 소결체 부분의 제 1 표면에 대해 실질적으로 직각인 방향으로 배향된 패럴렐 배향으로 되어 있다. 그리고, 그 제 1 및 제 2 단부 영역의 각각에 포함되는 자석 재료 입자는, 그 자화 용이축이, 그 단면에 인접하는 위치에서는 그 단면의 경사각을 따르도록 제 1 표면에 대해 경사져 그 제 1 표면에 지향되고, 중앙 영역에 인접하는 위치에서는 제 1 표면에 대해 실질적으로 직각인 방향이 되도록 그 제 1 표면에 지향되고, 그 단면과 그 중앙 영역 사이에서는 그 단면으로부터 그 중앙 영역을 향하여 점차 증가하는 경사각으로 그 제 1 표면에 지향되도록 집속하는 배향으로 되어 있다. 자석 재료 입자의 자화 용이축을 이와 같은 배향으로 함으로써, 이 소결체를 착자하여 희토류 영구자석을 형성했을 때, 그 자석에 의해 형성되는 자속 밀도는, 양 단부인 제 1 및 제 2 영역에 있어서의 쪽이, 중앙 영역에 있어서의보다 높아진다. 그 때문에, 그 자석을 영구자석 매립형 모터 등의 회전 기계에 사용했을 때, 그 자석의 단부 영역에 감자 작용을 초래하는 외부 자계가 작용해도, 그 단부 영역에는 충분한 밀도의 자속이 생성되도록 되어, 회전 기계로서의 성능이 충분히 확보된다.
또한, 본 발명의 상기 구성은, 상기 서술한 특허문헌 4 에 기재된 감자 대책과 함께 사용하면, 한층 효과가 높아진다. 즉, 본 발명에 의한 희토류 자석을 매립한 전동 모터 등의 회전기에는, 특허문헌 4 에 기재되어 있는 것과 같은 공극부를 자석의 길이 방향 양 단부에 형성함으로써, 감자 효과를 한층 높일 수 있다.
도 1 은 본 발명의 일 실시형태에 의한 희토류 자석 형성용 소결체의 일례를 횡단면으로 나타내는 단면도 (斷面圖) 이고, (a) 는 전체를 나타내고, (b) 는 단부 영역의 일부를 나타내는 단면도이다.
도 2 는 본 발명에 의해 형성되는 자석이 매립되는 전동 모터의 로터 코어에 형성된 자석 삽입용 슬롯의 일례를 나타내는 로터 부분의 단면도이다.
도 3 은 도 2 에 나타내는 로터 코어에 영구자석이 매립된 상태를 나타내는 로터 부분의 단면도 (端面圖) 이다.
도 4 는 본 발명의 영구자석을 적용할 수 있는 전동 모터의 횡단면도이다.
도 5 는 도 1 에 나타내는 실시형태에 의한 소결체로 형성되는 희토류 영구자석에 있어서의 자속 밀도의 분포를 나타내는 도면이다.
도 6 의 (a) 는, 본 발명의 일 실시형태에 의한 희토류 자석을 장착한 전동 모터에 있어서의 자석의 최소 자화와 모터의 평균 토크에 대한 패럴렐률의 영향을 나타내는 도면이다. (b) 는, 본 발명의 일 실시형태에 의한 희토류 자석을 장착한 전동 모터에 있어서의 자석의 최소 자화와 모터의 평균 토크에 대한 단면 (端面) 경사각의 영향을 나타내는 도면이다. (c) 는, (b) 와는 상이한 패럴렐률의 영구자석을 사용한 전동 모터에 대한 (b) 와 동일한 도면이다. (d) 는, (b) 및 (c) 와는 상이한 패럴렐률의 영구자석을 사용한 전동 모터에 대한 (b)(c) 와 동일한 도면이다. (e) 는, (b) 와는 상이한 단면 경사각 및 자석 길이를 갖는 영구자석을 사용한 전동 모터에 대한 (b) 와 동일한 도면이다. (f) 는, (e) 와는 상이한 단면 경사각 및 자석 길이를 갖는 영구자석을 사용한 전동 모터에 대한 (e) 와 동일한 도면이다.
도 7 은 도 1 에 나타내는 영구자석 형성용 소결체의 제조 공정을 나타내는 개략도이고, (a) ∼ (d) 는 그린 시트 형성까지의 각 단계를 나타낸다.
도 8 은 본 실시형태에 있어서의 자석 재료 입자의 자화 용이축 배향 처리를 나타내는 가공용 시트편의 단면도 (斷面圖) 이고, (a) 는 자기장 인가 시의 시트편의 단면 형상을 나타내고, (b) 는 자기장 인가 후에 변형 처리가 실시된 소결 처리용 시트편의 단면 형상을 나타낸다.
도 9 는 가소 (假燒) 처리에 있어서의 바람직한 승온 속도를 나타내는 그래프이다.
도 10(a) 는 본 발명의 실시예 1 에 있어서 사용된 성형용 형 (型) 의 캐비티 형상을 나타내는 도면이고, 외부 자기장 인가 시에 사용되는 형을 나타낸다.
도 10(b) 는 본 발명의 실시예 1 에 있어서 사용된 성형용 형의 캐비티 형상을 나타내는 도면이고, 중간 성형용 형을 나타낸다.
도 10(c) 는 본 발명의 실시예 1 에 있어서 사용된 성형용 형의 캐비티 형상을 나타내는 도면이고, 최종 성형용 형을 나타낸다.
도 11 은 실시예 1 에 의해 얻어진 소결체에 있어서의 자화 용이축의 배향 각도 측정을 실시한 위치를 나타내는 도면이다.
도 12 는 소결체에 있어서의 자화 용이축의 배향 각도 측정을 위한 좌표축을 나타내는 도면이고, (a) 는 사시도, (b) 는 단면도이다.
도 13 은 실시예 1 에 있어서의 자화 용이축의 배향 각도의 설계값으로부터의 어긋남을 나타내는 그래프이다.
이하, 본 발명의 실시형태를 도면에 대해 설명한다. 도 1 ∼ 도 4 에, 본 발명의 일 실시형태에 의한 희토류 자석 형성용 소결체와, 그 소결체로 형성되는 영구자석을 장착한 전동 모터의 일례를 나타낸다. 본 실시예에 있어서는, 희토류 영구자석 (30) 은, 자석 재료로서 Nd-Fe-B 계 자석 재료를 포함한다. 전형적으로는, Nd-Fe-B 계 자석 재료는, Nd 를 27 ∼ 40 wt%, B 를 0.8 ∼ 2 wt%, Fe (전해철) 를 60 ∼ 70 wt% 의 비율로 포함한다. 이 자석 재료에는, 자기 특성 향상을 목적으로 하여, Dy, Tb, Co, Cu, Al, Si, Ga, Nb, V, Pr, Mo, Zr, Ta, Ti, W, Ag, Bi, Zn, Mg 등의 다른 원소를 소량 포함해도 된다.
도 1(a) 를 참조하면, 본 실시형태에 의한 자석 형성용 소결체 (1) 는, 상기 서술한 자석 재료의 미세 입자가 일체로 소결 성형된 것이고, 서로 평행한 상변 (2) 과 하변 (3), 및 좌우 양단의 단면 (4, 5) 을 갖고, 그 단면 (4, 5) 은 상변 (2) 및 하변 (3) 에 대해 경사진 경사면으로서 형성되어 있다. 상변 (2) 은, 본 발명의 제 1 표면의 단면 (斷面) 에 대응하는 변이고, 하변 (3) 은, 본 발명의 제 2 표면의 단면에 대응하는 변이다. 단면 (4, 5) 의 경사각은, 그 단면 (4, 5) 의 연장선 (4a, 5a) 과 상변 (2) 사이의 각도 θ 로서 정의된다. 바람직한 형태에서는, 경사각 (θ) 은, 45° ∼ 80°, 보다 바람직하게는 55° ∼ 80°이다. 그 결과, 자석 형성용 소결체 (1) 는, 상변 (2) 이 하변 (3) 보다 짧은 사다리꼴의 길이 방향 단면을 갖는 형상으로 형성되어 있다.
자석 형성용 소결체 (1) 는, 상변 (2) 및 하변 (3) 을 따른 길이 방향으로, 소정 길이의 중앙 영역 (6) 과, 양 단부측의 단부 영역 (7, 8) 으로 구분된 복수의 영역을 갖는다. 중앙 영역 (6) 에 있어서는, 그 영역 (6) 에 포함되는 자석 재료 입자는, 그 자화 용이축이 상변 (2) 및 하변 (3) 에 대해 실질적으로 직각인, 두께 방향에 평행으로 배향한 패럴렐 배향으로 되어 있다. 이에 대하여, 단부 영역 (7, 8) 에서는, 그 영역 (7, 8) 에 포함되는 자석 재료 입자의 자화 용이축은, 두께 방향에 대해, 아래로부터 위를 향하여, 배향 방향이 중앙 영역 (6) 의 방향으로 경사져 있고, 그 경사각은, 단면 (4, 5) 에 인접하는 위치에서는 그 단면 (4, 5) 의 경사각 (θ) 을 따른 각도이고, 중앙 영역 (6) 에 인접하는 위치에서는, 그 상변 (2) 에 대해 대략 직각이고, 단면 (4, 5) 에 인접하는 위치로부터 중앙 영역 (6) 에 근접함에 따라 점차 커진다. 이와 같은 자화 용이축의 배향을, 도 1(a) 에, 중앙 영역 (6) 의 패럴렐 배향에 대해서는 화살표 (9) 로, 단부 영역 (7, 8) 의 경사 배향에 대해서는 화살표 (10) 로, 각각 나타낸다. 단부 영역 (7, 8) 의 경사 배향에 관하여 별도의 표현을 하면, 이들 영역에 포함되는 자석 재료 입자의 자화 용이축은, 상변 (2) 과 단면 (4, 5) 이 교차하는 코너부로부터 중앙부를 향하여, 단부 영역 (7, 8) 의 길이 방향 치수에 대응하는 소정 길이의 영역에 집속하도록 배향된다. 이 배향의 결과, 단부 영역 (7, 8) 에 있어서는, 자화 용이축이 상변 (2) 에 지향되는 자석 재료 입자의 밀도가, 중앙 영역 (6) 에 있어서의보다 높아진다. 본 발명의 바람직한 형태에서는, 중앙부 (6) 에 대응하는 상변 (2) 의 길이 방향의 치수, 즉 패럴렐 길이 P 와, 상변 (2) 의 길이 방향 치수 L 의 비, 즉 패럴렐률 P/L 이, 0.05 ∼ 0.8, 보다 바람직하게는 0.2 ∼ 0.5 가 되도록, 중앙 영역 (6) 과 단부 영역 (7, 8) 의 길이가 정해진다.
상기한 단부 영역 (7, 8) 에 있어서의 자석 재료의 자화 용이축의 배향을, 단부 영역 (7) 에 대해 도 1(b) 에 과장하여 나타낸다. 도 1(b) 에 있어서, 자석 재료 입자의 각각의 자화 용이축 (C) 은, 단면 (4) 에 인접하는 부분에서는 그 단면 (4) 을 대략 따라, 그 단면 (4) 의 경사각 (θ) 만큼 경사져 배향된다. 그리고, 그 경사각은, 단부로부터 중앙부에 근접함에 따라, 점차 증가한다. 즉, 자석 재료 입자의 자화 용이축 (C) 의 배향은, 하변 (3) 의 측으로부터 상변 (2) 을 향하여 집속하도록 되어, 자화 용이축 (C) 이 상변 (2) 에 지향되는 자석 재료 입자의 밀도는, 패럴렐 배향의 경우에 비해 높아진다.
도 2 는, 상기 서술한 자화 용이축의 배향을 갖는 자석 형성용 소결체 (1) 를 착자시킴으로써 형성된 희토류 자석을 매립하여 사용하는 데에 적합한 전동 모터 (20) 의 로터 코어 부분을 확대하여 나타내는 단면도이다. 로터 코어 (21) 는, 그 둘레면 (21a) 이 에어 갭 (22) 을 통하여 스테이터 (23) 와 대향하도록, 그 스테이터 (23) 내에 자유롭게 회전할 수 있게 배치된다. 스테이터 (23) 는, 둘레 방향으로 간격을 가지고 배치 형성된 복수의 티스 (23a) 를 구비하고 있고, 이 티스 (23a) 에 계자 코일 (23b) 이 감긴다. 상기 서술한 에어 갭 (22) 은, 각 티스 (23a) 의 단면과 로터 코어 (21) 의 둘레면 (21a) 사이에 형성되게 된다. 로터 코어 (21) 에는, 자석 삽입용 슬롯 (24) 이 형성되어 있다. 이 슬롯 (24) 은, 직선상 중앙 부분 (24a) 과, 그 중앙 부분 (24a) 의 양 단부로부터 로터 코어 (21) 의 둘레면 (21a) 의 방향으로 비스듬하게 연장되는 1 쌍의 경사 부분 (24b) 을 갖는다. 도 2 로부터 알 수 있는 바와 같이 경사 부분 (24b) 은, 그 말단부가 로터 코어 (21) 의 둘레면 (21a) 에 근접한 위치에 있다.
상기 서술한 자화 용이축의 배향을 갖는 자석 형성용 소결체 (1) 를 착자시킴으로써 형성된 희토류 자석 (30) 을 도 2 에 나타내는 로터 코어 (21) 의 자석 삽입용 슬롯 (24) 에 삽입한 상태를 도 3 에 나타낸다. 도 3 에 나타내는 바와 같이, 희토류 영구자석 (30) 은, 그 상변 (2) 이 외측을, 즉 스테이터 (23) 측을 향하도록, 로터 코어 (21) 에 형성된 자석 삽입용 슬롯 (24) 의 직선상 중앙 부분 (24a) 에 삽입된다. 삽입된 자석 (30) 의 양단으로부터 외측에는, 슬롯 (24) 의 직선상 중앙 부분 (24a) 의 일부와 경사 부분 (24b) 이 공극부로서 남겨진다. 이와 같이, 로터 코어 (21) 의 슬롯 (24) 에 영구자석이 삽입됨으로써 형성된 전동 모터 (20) 의 전체를, 도 4 에 횡단면도로 나타낸다.
도 5 는, 상기 서술한 실시형태에 의해 형성되는 희토류 영구자석 (30) 에 있어서의 자속 밀도의 분포를 나타내는 것이다. 도 5 에 나타내는 바와 같이, 자석 (30) 의 양측 단부 영역 (7, 8) 에 있어서의 자속 밀도 A 는, 중앙 영역 (6) 에 있어서의 자속 밀도 B 보다 높아진다. 그 때문에, 이 자석 (30) 을 전동 모터 (20) 의 로터 코어 (21) 에 매립하여 작동시켰을 때, 자석 (30) 의 단부에 스테이터 (23) 로부터의 자속이 작용해도 자석 (30) 의 단부의 감자가 억제되고, 자석 (30) 의 단부에는, 감자 후에도 충분한 자속이 남겨지게 되어, 모터 (20) 의 출력이 저하하는 것이 방지된다.
도 4 에 나타내는 바와 같이 전동 모터 (20) 에 실장된 영구자석 (30) 은, 전동 모터 (20) 의 회전에 수반하여, 그 영구자석 (30) 에 작용하는 외부 자계의 영향에 의해, 그 자화가 1 회전 중에 변화한다. 1 회전 중에 있어서의 자화가 최소가 되는 상태에 있어서의 영구자석 (30) 의 자화를 「최소 자화」라고 부른다. 그리고, 영구자석 단체 (單體) 로 볼 때, 그 최소 자화는, 그 영구자석의 길이 방향 양 단부 영역에 발생한다.
일반적으로, 영구자석이 매립된 전동 모터에 있어서는, 각 영구자석의 자석량을 동일하게 하여 비교한 경우, 자석의 길이 L 을 크게 할수록 모터의 평균 토크가 커지지만, 자석의 최소 자화는 저하하는 경향을 나타낸다. 본 발명의 발명자들은, 상기 서술한 바와 같이 자석 재료의 자화 용이축이 패럴렐 배향된 중앙 영역 (6) 과 경사 배향된 단부 영역 (7, 8) 을 갖는 희토류 영구자석에 있어서, 패럴렐률 P/L 과, 최소 자화 및 모터의 평균 토크의 관계를 검토하였다. 그 결과, 모터의 평균 토크는 패럴렐률 P/L 의 증가에 대략 비례하여 증가하지만, 자석의 최소 자화는 패럴렐률 P/L 의 증가에 수반하여 지수함수적으로 감소하는 것을 알 수 있었다. 그 대표적인 예를, 길이 L 이 25 mm 이고 경사각 (θ) 이 70°인 자석에 대해 도 6(a) 에 나타낸다. 도 6(a) 에 나타내는 바와 같이, 패럴렐률 P/L 이 0.05 보다 큰 범위에서는, 패럴렐률이 0 인 경우보다 모터의 평균 토크가 높아지고, 최소 자화의 감소는 근소하다. 그러나, 패럴렐률 P/L 이 0.8 을 초과하면, 최소 자화의 저하가 무시할 수 없게 된다. 즉, 모터에 매립된 영구자석은, 모터의 작동 중에 고온에 노출되게 되지만, 영구자석은, 고온이 될수록 낮은 외부 자계하에서 자화 반전을 일으키는 자화 특성을 갖는다. 따라서, 최소 자화가 지나치게 낮아지면, 모터에 발생하는 온도 상승하에서 영구자석에 자화 반전을 일으킬 우려가 생긴다. 영구자석의 길이 L 이 20 mm 내지 26 mm 의 범위인 것에 대해 검토했지만, 이 경향은 어느 길이에서도 변화는 없었다. 따라서, 패럴렐률 P/L 은 0.8 이하로 하는 것이 바람직하다. 이 관점에서, 패럴렐률 P/L 은 0.05 ∼ 0.8 의 범위로 하는 것이 바람직하고, 모터의 평균 토크의 관점에서는, 패럴렐률 P/L 은 0.2 ∼ 0.8 의 범위로 하는 것이 보다 바람직하다. 또한, 평균 토크가 비교적 높고, 최소 자화의 저하가 비교적 근소한 패럴렐률 P/L 의 범위로는, 0.3 ∼ 0.4 가 가장 바람직하다.
또한, 발명자들은, 상기에 추가로, 영구자석의 최소 자화 및 모터의 평균 토크와 자석 단면 (4, 5) 의 경사각 (θ) 의 관계를 검토하였다. 그 결과를, 자석 길이 L 이 25 mm 이고, 중앙 영역 (6) 의 길이가 9 mm 인 자석에 대해, 도 6(b) 에 나타낸다. 도면으로부터 알 수 있는 바와 같이, 최소 자화는, 단면 경사각 (θ) 이 40°로부터 커짐에 따라, 극대값을 나타내는 각도까지는 비례적으로 커지지만, 그 극대값을 나타내는 각도를 지나면, 경사각의 증가에 수반하여 지수함수적으로 감소한다. 최소 자화가 이 극대값을 나타내는 단면 경사각 (θ) 보다 작은 경사각 범위에서는, 최소 자화는, 단부 영역 (7, 8) 내에서, 중앙 영역 (6) 에 근접한 영구자석의 제 2 표면 (3) 부근의 부위에 발생하지만, 단면 경사각 (θ) 이 극대값을 나타내는 단면 경사각 (θ) 보다 작은 범위에서는, 최소 자화는, 단면 (4, 5) 부근의 부위에 발생한다.
길이가 25 mm 인 자석에 대해, 중앙 영역 (6) 의 길이 P 를, 각각 13 mm 및 21 mm 로 한 경우의 단면 경사각 (θ) 이 영구자석의 최소 자화와 모터의 평균 토크의 관계에 미치는 영향을 도 6(c), (d) 에 나타낸다. 이들 도면에 나타내는 결과로부터, 자석의 길이 L 이 25 mm 인 경우에는, 단면 경사각 (θ) 이 약 70°일 때에 최소 자화가 최대가 되는 것을 알 수 있다. 이에 대하여, 모터의 평균 토크는, 중앙 영역 (6) 의 길이가 9 mm 인 자석에서는 2 차 함수적으로 변화하고, 경사각 (θ) 이 약 75°의 지점에서 극대가 된다. 그리고, 도 6(c) 에 나타내는 바와 같이, 중앙 영역 (6) 의 길이 P 가 13 mm 인 자석에서는, 모터의 평균 토크의 변화 경향은, 도 6(b) 에 나타내는 것과 동일하지만, 그 평균 토크는, 전체적으로 중앙 영역 (6) 이 9 mm 인 것보다 높아진다. 또, 도 6(d) 에 나타내는 바와 같이, 중앙 영역 (6) 의 길이 P 가 21 mm 인 자석에서는, 모터의 평균 토크의 변화 경향은, 도 6(b) 에 나타내는 것과는 상이하고, 단면 경사각 (θ) 의 변화에 수반하는 변화율이 작아지지만, 그 평균 토크는, 전체적으로 중앙 영역 (6) 이 9 mm 및 13 mm 인 것보다 높아진다. 이 점에서, 길이 L 이 25 mm 인 영구자석의 경우에는, 단면 경사각 (θ) 은 약 70°가 바람직한 것을 알 수 있다.
도 6(e)(f) 는, 영구자석의 길이 L 이 단면 경사각 (θ) 과 최소 자화의 관계에 미치는 영향에 대해 검토한 결과를 나타내는 도표이고, 도 6(e) 는, 길이 L 이 26 mm 이고, 중앙 영역 (6) 의 길이가 2 mm 인 영구자석의 예를 나타내고, 도 6(f) 는, 길이 L 이 20 mm 이고, 중앙 영역 (6) 의 길이가 8 mm 인 영구자석의 예를 나타낸다. 도 6(e) 에 나타내는 바와 같이, 자석의 길이 L 이 26 mm 이고, 중앙 영역 (6) 의 길이가 2 mm 인 자석의 경우, 최소 자화는 단면 경사각 (θ) 이 약 55°의 지점에서 극대가 된다. 도 6(f) 는, 자석 길이 L 이 20 mm 이고, 중앙 영역 (6) 의 길이 P 가 8 mm 인 자석의 경우에는, 단면 경사각 (θ) 이 약 65°일 때에 최소 자화가 극대가 되는 것을 나타내고 있다. 그리고, 자석 길이 L 이 25 mm 인 자석에 대한 도 6(b)(c)(d) 에 나타내는 결과는, 단면 경사각 (θ) 이 70°일 때에 최소 자화가 극대가 되는 것을 나타내고 있다. 따라서, 최소 자화가 극대가 되는 단면 경사각 (θ) 은, 55° ∼ 70°의 범위라고 생각할 수 있다. 이들 결과에 기초하여, 최소 자화가 극대가 되는 단면 경사각 (θ) 에 대해 ±10°를 유효한 범위로 하여 단면 경사각 (θ) 의 하한값 및 상한값을 정하면, 단면 경사각 (θ) 의 범위는, 45°이상이고 80°이하가 바람직하다고 할 수 있다. 도 6(e) 에 나타내는 결과 중, 모터의 평균 토크를 고려하면, 단면 경사각 (θ) 은, 55° ∼ 80°의 범위가 보다 바람직하다고 할 수 있다.
[희토류 영구자석 형성용 소결체의 제조 방법]
다음으로, 도 1 에 나타내는 실시형태에 의한 희토류 자석 형성용 소결체 (1) 의 제조 방법에 대해 도 7 을 참조하여 설명한다. 도 7 은, 본 실시형태에 관련된 영구자석 형성용 소결체 (1) 의 제조 공정을 나타내는 개략도이다.
먼저, 소정 분율의 Nd-Fe-B 계 합금으로 이루어지는 자석 재료의 잉곳을 주조법에 의해 제조한다. 대표적으로는, 네오디뮴 자석에 사용되는 Nd-Fe-B 계 합금은, Nd 가 30 wt%, 전해철인 것이 바람직한 Fe 가 67 wt%, B 가 1.0 wt% 의 비율로 포함되는 조성을 갖는다. 이어서, 이 잉곳을, 스탬프 밀 또는 크러셔 등의 공지된 수단을 사용하여 200 ㎛ 정도의 크기로 조분쇄한다. 대체적으로는, 잉곳을 용해하고, 스트립 캐스트법에 의해 플레이크를 제조하고, 수소 해쇄법으로 조분화한다. 그로써, 조분쇄 자석 재료 입자 (115) 가 얻어진다 (도 7(a) 참조).
이어서, 조분쇄 자석 재료 입자 (115) 를, 비즈 밀 (116) 에 의한 습식법 또는 제트 밀을 사용한 건식법 등에 의해 미분쇄한다. 예를 들어, 비즈 밀 (116) 에 의한 습식법을 이용한 미분쇄에서는, 용매 중에서 조분쇄 자석 입자 (115) 를 소정 범위의 입경 (예를 들어 0.1 ㎛ ∼ 5.0 ㎛) 으로 미분쇄하여, 용매 중에 자석 재료 입자를 분산시킨다 (도 7(b) 참조). 그 후, 습식 분쇄 후의 용매에 포함되는 자석 입자를 진공 건조 등의 수단에 의해 건조시키고, 건조시킨 자석 입자를 인출한다 (도시 생략). 여기서, 분쇄에 사용하는 용매의 종류에는 특별히 제한은 없고, 이소프로필알코올, 에탄올, 메탄올 등의 알코올류, 아세트산에틸 등의 에스테르류, 펜탄, 헥산 등의 저급 탄화수소류, 벤젠, 톨루엔, 자일렌 등 방향족류, 케톤류, 그들의 혼합물 등의 유기 용매, 또는 액화 아르곤 등의 무기 용매를 사용할 수 있다. 이 경우에 있어서, 용매 중에 산소 원자를 포함하지 않는 용매를 사용하는 것이 바람직하다.
한편, 제트 밀에 의한 건식법을 이용하는 미분쇄에 있어서는, 조분쇄한 자석 재료 입자 (115) 를, (a) 산소 함유량이 실질적으로 0 % 인 질소 가스, Ar 가스, He 가스 등의 불활성 가스로 이루어지는 분위기 중, 또는 (b) 산소 함유량이 0.0001 ∼ 0.5 % 인 질소 가스, Ar 가스, He 가스 등의 불활성 가스로 이루어지는 분위기 중에서, 제트 밀에 의해 미분쇄하여, 예를 들어 0.7 ㎛ ∼ 5.0 ㎛ 와 같은 소정 범위의 평균 입경을 갖는 미립자로 한다. 여기서, 산소 농도가 실질적으로 0 % 란, 산소 농도가 완전히 0 % 인 경우로 한정되지 않고, 미분의 표면에 아주 약간 산화 피막을 형성하는 정도의 양의 산소를 함유해도 되는 것을 의미한다.
다음으로, 비즈 밀 (116) 등으로 미분쇄된 자석 재료 입자를 소망 형상으로 성형한다. 이 자석 재료 입자의 성형을 위해서, 상기 서술한 바와 같이 미분쇄된 자석 재료 입자 (115) 와 바인더를 혼합한 혼합물을 준비한다. 바인더로는, 수지 재료를 사용하는 것이 바람직하고, 바인더에 수지를 사용하는 경우에는, 구조 중에 산소 원자를 포함하지 않고, 또한 해중합성이 있는 폴리머를 사용하는 것이 바람직하다. 또, 후술과 같이 자석 입자와 바인더의 혼합물을, 예를 들어 사다리꼴 형상과 같은 소망 형상으로 성형할 때에 생긴 혼합물의 잔여물을 재이용할 수 있도록 하기 위해서, 또한 혼합물을 가열하여 연화한 상태에서 자기장 배향을 실시할 수 있도록 하기 위해서, 열가소성 수지를 사용하는 것이 바람직하다. 구체적으로는, 이하의 일반식 (1) 로 나타내는 모노머로 형성되는 1 종 또는 2 종 이상의 중합체 또는 공중합체로 이루어지는 폴리머가 바람직하게 사용된다.
[화학식 1]
Figure 112017103361736-pct00001
(단, R1 및 R2 는, 수소 원자, 저급 알킬기, 페닐기 또는 비닐기를 나타낸다)
상기 조건에 해당하는 폴리머로는, 예를 들어 이소부틸렌의 중합체인 폴리이소부틸렌 (PIB), 이소프렌의 중합체인 폴리이소프렌 (이소프렌 고무, IR), 1,3-부타디엔의 중합체인 폴리부타디엔 (부타디엔 고무, BR), 스티렌의 중합체인 폴리스티렌, 스티렌과 이소프렌의 공중합체인 스티렌-이소프렌 블록 공중합체 (SIS), 이소부틸렌과 이소프렌의 공중합체인 부틸 고무 (IIR), 스티렌과 부타디엔의 공중합체인 스티렌-부타디엔 블록 공중합체 (SBS), 스티렌과 에틸렌, 부타디엔의 공중합체인 스티렌-에틸렌-부타디엔-스티렌 공중합체 (SEBS), 스티렌과 에틸렌, 프로필렌의 공중합체인 스티렌-에틸렌-프로필렌-스티렌 공중합체 (SEPS), 에틸렌과 프로필렌의 공중합체인 에틸렌-프로필렌 공중합체 (EPM), 에틸렌, 프로필렌과 함께 디엔 모노머를 공중합시킨 EPDM, 에틸렌의 중합체인 폴리에틸렌, 프로필렌의 중합체인 폴리프로필렌, 2-메틸-1-펜텐의 중합체인 2-메틸-1-펜텐 중합 수지, 2-메틸-1-부텐의 중합체인 2-메틸-1-부텐 중합 수지, α-메틸스티렌의 중합체인 α-메틸스티렌 중합 수지 등이 있다. 또, 바인더에 사용하는 수지로는, 산소 원자, 질소 원자를 포함하는 모노머의 중합체 또는 공중합체 (예를 들어, 폴리부틸메타크릴레이트나 폴리메틸메타크릴레이트 등) 를 소량 포함하는 구성으로 해도 된다. 또한, 상기 일반식 (1) 에 해당하지 않는 모노머가 일부 공중합하고 있어도 된다. 그 경우라도, 본 발명의 목적을 달성할 수 있다.
또한, 바인더에 사용하는 수지로는, 자기장 배향을 적절히 실시하기 위해 250 ℃ 이하에서 연화하는 열가소성 수지, 보다 구체적으로는 유리 전이점 또는 유동 개시 온도가 250 ℃ 이하인 열가소성 수지를 사용하는 것이 바람직하다.
열가소성 수지 중에 자석 재료 입자를 분산시키기 위해서, 분산제를 적당량 첨가하는 것이 바람직하다. 분산제로는, 알코올, 카르복실산, 케톤, 에테르, 에스테르, 아민, 이민, 이미드, 아미드, 시안, 인계 관능기, 술폰산, 이중 결합이나 삼중 결합 등의 불포화 결합을 갖는 화합물, 액상 포화 탄화 수소 화합물 중 적어도 하나를 첨가하는 것이 바람직하다. 복수를 혼합하여 사용해도 된다. 그리고, 후술하는 바와 같이, 자석 재료 입자와 바인더의 혼합물에 대해 자기장을 인가하여 그 자석 재료를 자기장 배향할 때에는, 혼합물을 가열하여 바인더 성분이 연화한 상태에서 자기장 배향 처리를 실시한다.
자석 재료 입자에 혼합되는 바인더로서 상기 조건을 만족하는 바인더를 사용함으로써, 소결 후의 희토류 영구자석 형성용 소결체 내에 잔존하는 탄소량 및 산소량을 저감시키는 것이 가능해진다. 구체적으로는, 소결 후에 자석 형성용 소결체 내에 잔존하는 탄소량을 2000 ppm 이하, 보다 바람직하게는 1000 ppm 이하로 할 수 있다. 또, 소결 후에 자석 형성용 소결체 내에 잔존하는 산소량을 5000 ppm 이하, 보다 바람직하게는 2000 ppm 이하로 할 수 있다.
바인더의 첨가량은, 슬러리 또는 가열 용융한 컴파운드를 성형하는 경우에, 성형의 결과로서 얻어지는 성형체의 두께 정밀도가 향상되도록, 자석 재료 입자 사이의 공극을 적절히 충전할 수 있는 양으로 한다. 예를 들어, 자석 재료 입자와 바인더의 합계량에 대한 바인더의 비율이, 1 wt% ∼ 40 wt%, 보다 바람직하게는 2 wt% ∼ 30 wt%, 더욱 바람직하게는 3 wt% ∼ 20 wt% 로 한다.
이하의 실시예에서는, 혼합물을 일단 제품 형상 이외로 성형한 상태에서 자기장을 인가하여 자기장 자석 재료 입자의 배향을 실시하고, 그 후에 소결 처리를 실시함으로써, 예를 들어 도 1 에 나타내는 사다리꼴 형상과 같은, 원하는 제품 형상으로 한다. 특히, 이하의 실시예에서는, 자석 재료 입자와 바인더로 이루어지는 혼합물, 즉 컴파운드 (117) 를, 시트 형상의 그린 성형체 (이하, 「그린 시트」라고 한다) 로 일단 성형한 후에, 배향 처리를 위한 성형체 형상으로 한다. 혼합물을 특히 시트 형상으로 성형하는 경우에는, 예를 들어 자석 재료 입자와 바인더의 혼합물인 컴파운드 (117) 를 가열한 후에 시트 형상으로 성형하는 핫멜트 도공에 의하거나, 또는 자석 재료 입자와 바인더와 유기 용매를 포함하는 슬러리를 기재 상에 도공함으로써 시트상으로 성형하는 슬러리 도공 등에 의한 성형을 채용할 수 있다.
이하에 있어서는, 특히 핫멜트 도공을 이용한 그린 시트 성형에 대해 설명하지만, 본 발명은, 그러한 특정 도공법으로 한정되는 것은 아니다.
이미 서술한 바와 같이, 비즈 밀 (116) 등으로 미분쇄된 자석 재료 입자에 바인더를 혼합함으로써, 자석 재료 입자와 바인더로 이루어지는 점토상의 혼합물, 즉 컴파운드 (117) 를 제조한다. 여기서, 바인더로는, 상기 서술한 바와 같이 수지, 분산제의 혼합물을 사용할 수 있다. 예를 들어, 수지로는, 구조 중에 산소 원자를 포함하지 않고, 또한 해중합성이 있는 폴리머로 이루어지는 열가소성 수지를 사용하는 것이 바람직하고, 한편 분산제로는, 알코올, 카르복실산, 케톤, 에테르, 에스테르, 아민, 이민, 이미드, 아미드, 시안, 인계 관능기, 술폰산, 이중 결합이나 삼중 결합 등의 불포화 결합을 갖는 화합물 중 적어도 하나를 첨가하는 것이 바람직하다. 또, 바인더의 첨가량은, 상기 서술한 바와 같이 첨가 후의 컴파운드 (117) 에 있어서의 자석 재료 입자와 바인더의 합계량에 대한 바인더의 비율이, 1 wt% ∼ 40 wt%, 보다 바람직하게는 2 wt% ∼ 30 wt%, 더욱 바람직하게는 3 wt% ∼ 20 wt% 가 되도록 한다.
여기서 분산제의 첨가량은 자석 재료 입자의 입자경에 따라 결정하는 것이 바람직하고, 자석 재료 입자의 입자경이 작을수록, 첨가량을 많게 하는 것이 추천된다. 구체적인 첨가량으로는, 자석 재료 입자에 대해 0.1 부 ∼ 10 부, 보다 바람직하게는 0.3 부 ∼ 8 부로 한다. 첨가량이 적은 경우에는 분산 효과가 작아, 배향성이 저하할 우려가 있다. 또, 첨가량이 많은 경우에는, 자석 재료 입자를 오염시킬 우려가 있다. 자석 재료 입자에 첨가된 분산제는, 자석 재료 입자의 표면에 부착되어, 자석 재료 입자를 분산시켜 점토상 혼합물을 부여함과 함께, 후술하는 자기장 배향 처리에 있어서, 자석 재료 입자의 회동을 보조하도록 작용한다. 그 결과, 자기장을 인가했을 때에 배향이 용이하게 실시되어, 자석 입자의 자화 용이축 방향을 대략 동일 방향으로 정렬하는 것, 즉 배향도를 높게 하는 것이 가능해진다. 특히, 자석 재료 입자에 바인더를 혼합하는 경우에는, 입자 표면에 바인더가 존재하도록 되기 때문에, 자기장 배향 처리 시의 마찰력이 높아지고, 그 때문에 입자의 배향성이 저하할 우려가 있어, 분산제를 첨가하는 것의 효과가 보다 높아진다.
자석 재료 입자와 바인더의 혼합은, 질소 가스, Ar 가스, He 가스 등의 불활성 가스로 이루어지는 분위기하에서 실시하는 것이 바람직하다. 자석 재료 입자와 바인더의 혼합은, 예를 들어 자석 재료 입자와 바인더를 각각 교반기에 투입하고, 교반기로 교반함으로써 실시한다. 이 경우에 있어서, 혼련성을 촉진하기 위해 가열 교반을 실시해도 된다. 또한, 자석 재료 입자와 바인더의 혼합도, 질소 가스, Ar 가스, He 가스 등 불활성 가스로 이루어지는 분위기에서 실시하는 것이 바람직하다. 또, 특히 자석 입자를 습식법으로 분쇄한 경우에 있어서는, 분쇄에 사용한 용매로부터 자석 입자를 인출하는 일 없이 바인더를 용매 중에 첨가하여 혼련하고, 그 후에 용매를 휘발시켜, 컴파운드 (117) 를 얻도록 해도 된다.
계속해서, 컴파운드 (117) 를 시트상으로 성형함으로써, 전술한 그린 시트를 제작한다. 핫멜트 도공을 채용하는 경우에는, 컴파운드 (117) 를 가열함으로써 그 컴파운드 (117) 를 용융하여, 유동성을 갖는 상태로 한 후, 지지 기재 (118) 상에 도공한다. 그 후, 방열에 의해 컴파운드 (117) 를 응고시켜, 지지 기재 (118) 상에 장척 시트상의 그린 시트 (119) 를 형성한다. 이 경우, 컴파운드 (117) 를 가열 용융할 때의 온도는, 사용하는 바인더의 종류나 양에 따라 상이하지만, 통상은 50 ∼ 300 ℃ 로 한다. 단, 사용하는 바인더의 유동 개시 온도보다 높은 온도로 할 필요가 있다. 또한, 슬러리 도공을 이용하는 경우에는, 다량의 용매 중에 자석 재료 입자와 바인더, 및 임의이지만 배향을 조장하는 첨가제를 분산시키고, 슬러리를 지지 기재 (118) 상에 도공한다. 그 후, 건조시켜 용매를 휘발시킴으로써, 지지 기재 (118) 상에 장척 시트상의 그린 시트 (119) 를 형성한다.
여기서, 용융한 컴파운드 (117) 의 도공 방식은, 슬롯 다이 방식 또는 캘린더 롤 방식 등의, 층두께 제어성이 우수한 방식을 이용하는 것이 바람직하다. 특히, 높은 두께 정밀도를 실현하기 위해서는, 특히 층두께 제어성이 우수한, 즉 기재의 표면에 고정밀도의 두께의 층을 도공할 수 있는 방식인 다이 방식이나 콤마 도공 방식을 이용하는 것이 바람직하다. 예를 들어, 슬롯 다이 방식에서는, 가열하여 유동성을 갖는 상태로 한 컴파운드 (117) 를 기어 펌프에 의해 압송하여 다이에 주입하고, 다이로부터 토출함으로써 도공을 실시한다. 또, 캘린더 롤 방식에서는, 가열한 2 개의 롤의 닙 간극에, 컴파운드 (117) 를 제어한 양으로 송입하고, 롤을 회전시키면서, 지지 기재 (118) 상에, 롤의 열에 의해 용융한 컴파운드 (117) 를 도공한다. 지지 기재 (118) 로는, 예를 들어 실리콘 처리 폴리에스테르 필름을 사용하는 것이 바람직하다. 또한, 소포제를 사용하거나, 가열 진공 탈포를 실시함으로써, 도공되고 전개된 컴파운드 (117) 의 층 중에 기포가 남지 않도록, 충분히 탈포 처리하는 것이 바람직하다. 혹은, 지지 기재 (118) 상에 도공하지 않고, 압출 성형이나 사출 성형에 의해 용융한 컴파운드 (117) 를 시트상으로 성형하면서 지지 기재 (118) 상에 압출함으로써, 지지 기재 (118) 상에 그린 시트 (119) 를 성형할 수도 있다.
도 7 에 나타내는 실시형태에서는, 슬롯 다이 (120) 를 사용하여 컴파운드 (117) 의 도공을 실시하도록 하고 있다. 이 슬롯 다이 방식에 의한 그린 시트 (119) 의 형성 공정에서는, 도공 후의 그린 시트 (119) 의 시트 두께를 실측하고, 그 실측값에 근거한 피드백 제어에 의해, 슬롯 다이 (120) 와 지지 기재 (118) 사이의 닙 간극을 조절하는 것이 바람직하다. 이 경우에 있어서, 슬롯 다이 (120) 에 공급하는 유동성 컴파운드 (117) 의 양의 변동을 최대한 저하시켜, 예를 들어 ±0.1 % 이하의 변동으로 억제하고, 또한 도공 속도의 변동도 최대한 저하시켜, 예를 들어 ±0.1 % 이하의 변동으로 억제하는 것이 바람직하다. 이와 같은 제어에 의해, 그린 시트 (119) 의 두께 정밀도를 향상시킬 수 있다. 또한, 형성되는 그린 시트 (119) 의 두께 정밀도는, 예를 들어 1 mm 와 같은 설계값에 대해 ±10 % 이내, 보다 바람직하게는 ±3 % 이내, 더욱 바람직하게는 ±1 % 이내로 하는 것이 바람직하다. 캘린더 롤 방식에서는, 캘린더 조건을 동일하게 실측값에 근거하여 피드백 제어함으로써, 지지 기재 (118) 에 전사되는 컴파운드 (117) 의 막두께를 제어하는 것이 가능하다.
그린 시트 (119) 의 두께는, 0.05 mm ∼ 20 mm 의 범위로 설정하는 것이 바람직하다. 두께를 0.05 mm 보다 얇게 하면, 필요한 자석 두께를 달성하기 위해서 다층 적층해야 하게 되므로, 생산성이 저하하게 된다.
다음으로, 상기 서술한 핫멜트 도공에 의해 지지 기재 (118) 상에 형성된 그린 시트 (119) 로부터 원하는 자석 치수에 대응하는 치수로 잘라내어진 가공용 시트편 (123) 을 제작한다. 본 실시형태에 있어서는, 가공용 시트편 (123) 은, 도 8(a) 에 나타내는 바와 같이, 최종 제품이 되는 희토류 영구자석 형성용 소결체 (1) 에 있어서의 중앙 영역 (6) 에 대응하는 길이 방향 길이의 직선상 영역 (6a) 과, 그 직선상 영역 (6a) 의 양단에 연속하는 원호상 영역 (7a, 8a) 을 갖는 단면 형상이다. 이 가공용 시트편 (123) 은, 도면의 지면에 직각인 방향의 폭 치수를 갖고, 단면의 치수 및 폭 치수는, 후술하는 소결 공정에 있어서의 치수의 축소를 예상하여, 소결 공정 후에 소정의 자석 치수가 얻어지도록 정한다.
도 8(a) 에 나타내는 가공용 시트편 (123) 에는, 직선상 영역 (6a) 의 표면에 직각이 되는 방향으로 평행 자기장 (121) 이 인가된다. 이 자기장 인가에 의해, 가공용 시트편 (123) 에 포함되는 자석 재료 입자의 자화 용이축이, 도 8(a) 에 화살표 (122) 로 나타내는 바와 같이, 자기장의 방향에, 즉 두께 방향에 평행으로 배향된다. 구체적으로 서술하면, 가공용 시트편 (123) 은, 그 가공용 시트편 (123) 에 대응하는 형상의 캐비티를 갖는 자기장 인가용 형 내에 수용되고 (도시 생략), 가열함으로써 가공용 시트편 (123) 에 포함되는 바인더를 연화시킨다. 상세하게는, 가공용 시트편 (123) 내에 포함되는 바인더의 점도가 1 ∼ 1500 Pa·s, 보다 바람직하게는 1 ∼ 500 Pa·s 가 될 때까지 가공용 시트편 (123) 을 가열하여, 바인더를 연화시킨다. 그로써, 자석 재료 입자는 바인더 내에서 회동할 수 있도록 되어, 그 자화 용이축을 평행 자기장 (121) 을 따른 방향으로 배향시킬 수 있다.
여기서, 가공용 시트편 (123) 을 가열하기 위한 온도 및 시간은, 사용하는 바인더의 종류 및 양에 따라 상이하지만, 예를 들어 40 ∼ 250 ℃ 에서 0.1 ∼ 60 분으로 한다. 어느 쪽이든, 가공용 시트편 (123) 내의 바인더를 연화시키기 위해서는, 가열 온도는, 사용되는 바인더의 유리 전이점 또는 유동 개시 온도 이상의 온도로 할 필요가 있다. 가공용 시트편 (123) 을 가열하기 위한 수단으로는, 예를 들어 핫 플레이트에 의한 가열, 또는 실리콘 오일과 같은 열매체를 열원으로 사용하는 방식이 있다. 자기장 인가에 있어서의 자기장의 강도는, 5000 [Oe] ∼ 150000 [Oe], 바람직하게는 10000 [Oe] ∼ 120000 [Oe] 로 할 수 있다. 그 결과, 가공용 시트편 (123) 에 포함되는 자석 재료 결정의 자화 용이축이, 도 8(a) 에 나타내는 바와 같이 평행 자기장 (121) 을 따른 방향으로, 평행으로 배향된다. 이 자기장 인가 공정에서는, 복수개의 가공용 시트편 (123) 에 대해 동시에 자기장을 인가하는 구성으로 할 수도 있다. 이를 위해서는, 복수개의 캐비티를 갖는 형을 사용하거나, 혹은 복수개의 형을 배열하고, 동시에 평행 자기장 (121) 을 인가하면 된다. 가공용 시트편 (123) 에 자기장을 인가하는 공정은, 가열 공정과 동시에 실시해도 되고, 가열 공정을 실시한 후이고 가공용 시트편 (123) 의 바인더가 응고하기 전에 실시해도 된다.
다음으로, 도 8(a) 에 나타내는 자기장 인가 공정에 의해 자석 재료 입자의 자화 용이축이 화살표 (122) 로 나타내는 바와 같이 평행 배향된 가공용 시트편 (123) 을, 자기장 인가용 형으로부터 인출하고, 도 8(b) 에 나타내는 가늘고 긴 길이 방향 치수의 사다리꼴 캐비티 (124) 를 갖는 최종 성형용 형 내로 옮기고, 소결 처리용 시트편 (125) 으로 성형한다. 이 성형에 의해, 가공용 시트편 (123) 은, 양단의 원호상 영역 (7a, 8a) 이, 중앙의 직선상 영역 (6a) 에 대해 직선상으로 연속하는 형상이 되고, 동시에 양 단부에는, 경사면 (125a, 125b) 이 형성된다. 이 성형 공정에 의해 형성되는 소결 처리용 시트편 (125) 에 있어서는, 중앙의 직선상 영역 (6a) 에 포함되는 자석 재료 입자의 자화 용이축은, 두께 방향에 평행으로 배향된 상태로 유지되지만, 양단의 영역 (7a, 8a) 에 있어서는, 상향으로 볼록한 형상이 중앙의 직선상 영역에 연속하는 직선 형상으로 변형되는 결과, 도 8(b) 에 나타내는 바와 같이, 자화 용이축은, 각각의 대응하는 영역에 있어서의 상변에 집속하는 배향이 된다.
이와 같이 하여 자석 재료 입자의 자화 용이축이 배향된 배향 후의 소결 처리용 시트편 (125) 을, 대기압, 혹은 대기압보다 높은 압력 또는 낮은 압력 (예를 들어, 1.0 Pa 또는 1.0 MPa) 으로 조절한 비산화성 분위기에 있어서, 바인더 분해 온도에서 수시간 ∼ 수십시간 (예를 들어 5 시간) 유지함으로써 가소 처리를 실시한다. 이 처리에서는, 수소 분위기 또는 수소와 불활성 가스의 혼합 가스 분위기를 사용하는 것이 추천된다. 수소 분위기하에서 가소 처리를 실시하는 경우에는, 가소 중의 수소의 공급량은, 예를 들어 5 L/min 으로 한다. 가소 처리를 실시함으로써, 바인더에 포함되는 유기 화합물을, 해중합 반응, 그 밖의 반응에 의해 모노머로 분해하고, 비산시켜 제거하는 것이 가능해진다. 즉, 소결 처리용 시트편 (125) 에 잔존하는 탄소의 양을 저감시키는 처리인 탈카본 처리가 실시되게 된다. 또, 가소 처리는, 소결 처리용 시트편 (125) 내에 잔존하는 탄소의 양이 2000 ppm 이하, 보다 바람직하게는 1000 ppm 이하로 하는 조건으로 실시하는 것이 바람직하다. 그로써, 그 후의 소결 처리에서 소결 처리용 시트편 (125) 전체를 치밀하게 소결시키는 것이 가능해져, 잔류 자속 밀도 및 보자력의 저하를 억제하는 것이 가능해진다. 또한, 상기 서술한 가소 처리를 실시할 때의 가압 조건을 대기압보다 높은 압력으로 하는 경우에는, 압력은 15 MPa 이하로 하는 것이 바람직하다. 여기서, 가압 조건은, 대기압보다 높은 압력, 보다 구체적으로는 0.2 MPa 이상으로 하면, 특히 잔존 탄소량 경감의 효과를 기대할 수 있다.
바인더 분해 온도는, 바인더 분해 생성물 및 분해 잔류물의 분석 결과에 근거하여 결정할 수 있다. 구체적으로는, 바인더의 분해 생성물을 포집하고, 모노머 이외의 분해 생성물이 생성되지 않고, 또한 잔류물의 분석에 있어서도 잔류하는 바인더 성분의 부반응에 의한 생성물이 검출되지 않는 온도 범위를 선택하는 것이 추천된다. 바인더의 종류에 따라 상이하지만, 200 ℃ ∼ 900 ℃, 보다 바람직하게는 400 ℃ ∼ 600 ℃, 예를 들어 450 ℃ 로 하면 된다.
상기 서술한 가소 처리에 있어서는, 일반적인 희토류 자석의 소결 처리와 비교해, 승온 속도를 작게 하는 것이 바람직하다. 구체적으로는, 승온 속도를 2 ℃/min 이하, 예를 들어 1.5 ℃/min 으로 함으로써, 바람직한 결과를 얻을 수 있다. 따라서, 가소 처리를 실시하는 경우에는, 도 9 에 나타내는 바와 같이 2 ℃/min 이하의 소정의 승온 속도로 승온시키고, 미리 설정된 설정 온도 (바인더 분해 온도) 에 도달한 후에, 그 설정 온도에서 수시간 ∼ 수십시간 유지함으로써 가소 처리를 실시한다. 이와 같이, 가소 처리에 있어서 승온 속도를 작게 함으로써, 소결 처리용 시트편 (125) 내의 탄소가 급격히 제거되지 않고, 단계적으로 제거되도록 되므로, 충분한 레벨까지 잔량 탄소를 감소시켜, 소결 후의 영구자석 형성용 소결체의 밀도를 상승시키는 것이 가능해진다. 즉, 잔류 탄소량을 감소시킴으로써, 영구자석 중의 공극을 감소시킬 수 있다. 상기 서술한 바와 같이, 승온 속도를 2 ℃/min 정도로 하면, 소결 후의 영구자석 형성용 소결체의 밀도를 98 % 이상 (7.40 g/㎤ 이상) 으로 할 수 있고, 착자 후의 자석에 있어서 높은 자석 특성을 달성하는 것을 기대할 수 있다.
계속해서, 가소 처리에 의해 가소된 소결 처리용 시트편 (125) 을 소결하는 소결 처리가 실시된다. 소결 처리로는, 진공 중에서의 무가압 소결법을 채용할 수도 있지만, 본 실시형태에서는, 소결 처리용 시트편 (125) 을 도면의 지면에 직각의 방향으로 1 축 가압한 상태에서 소결하는 1 축 가압 소결법을 채용하는 것이 바람직하다. 이 방법에서는, 도 8(b) 에 부호 「124」로 나타내는 것과 동일한 형상의 캐비티를 갖는 소결용 형 (도시 생략) 내에 소결 처리용 시트편 (125) 을 장전하고, 형을 닫고, 도면의 지면에 직각의 방향으로 가압하면서 소결을 실시한다. 상세하게 서술하면, 소결 처리용 시트편 (125) 으로 형성되는 희토류 영구자석을, 도 2 에 나타내는 자석 삽입용 슬롯 (24) 에 수용했을 때에 로터 코어 (21) 의 축 방향과 동일 방향이 되는 방향으로, 소결 처리용 시트편 (125) 을 도면의 지면에 직각의 방향으로 가압한 상태에서 소결하는 1 축 가압 소결이 이용된다. 이 가압 소결 기술로는, 예를 들어 핫 프레스 소결, 열간 정수압 가압 (HIP) 소결, 초고압 합성 소결, 가스 가압 소결, 방전 플라즈마 (SPS) 소결 등, 공지된 기술 중 어느 것을 채용해도 된다. 특히, 1 축 방향으로 가압 가능하고, 통전 소결에 의해 소결이 수행되는 SPS 소결을 사용하는 것이 바람직하다. 또한, SPS 소결로 소결을 실시하는 경우에는, 가압 압력을, 예를 들어 0.01 MPa ∼ 100 MPa 로 하고, 수 Pa 이하의 진공 분위기에서 900 ℃ ∼ 1000 ℃, 예를 들어 940 ℃ 까지, 3 ℃/분 ∼ 30 ℃/분, 예를 들어 10 ℃/분의 승온 속도로 온도 상승시키고, 그 후 가압 방향의 10 초당의 변화율이 0 이 될 때까지 유지하는 것이 바람직하다. 이 유지 시간은, 통상은 5 분 정도이다. 이어서 냉각하고, 다시 300 ℃ ∼ 1000 ℃ 로 승온시키고 2 시간, 그 온도로 유지하는 열처리를 실시한다. 이와 같은 소결 처리의 결과, 소결 처리용 시트편 (125) 은, 본 발명의 희토류 영구자석 형성용 소결체 (1) 가 제조된다. 이와 같이, 소결 처리용 시트편 (125) 을 도면의 지면에 직각의 방향으로 가압한 상태에서 소결하는 1 축 가압 소결법에 의하면, 소결 처리용 시트편 (125) 내의 자석 재료 입자에 부여된 자화 용이축의 배향이 변화할 우려는 없다.
이 희토류 영구자석 형성용 소결체 (1) 는, 도 2 에 나타내는 로터 코어 (21) 의 자석 삽입용 슬롯 (24) 내에, 미착자의 상태로 삽입된다. 그 후, 이 슬롯 (24) 내에 삽입된 희토류 영구자석 형성용 소결체 (1) 에 대해, 그 중에 포함되는 자석 재료 입자의 자화 용이축 즉 C 축을 따라 착자를 실시한다. 구체적으로 서술하면, 로터 코어 (21) 의 복수의 슬롯 (24) 에 삽입된 복수의 희토류 영구자석 형성용 소결체 (1) 에 대해, 로터 코어 (21) 의 둘레 방향을 따라, N 극과 S 극이 교대로 배치되도록 착자를 실시한다. 그 결과, 영구자석 1 을 제조하는 것이 가능해진다. 또한, 희토류 영구자석 형성용 소결체 (1) 의 착자에는, 예를 들어 착자 코일, 착자 요크, 콘덴서식 착자 전원 장치 등의 공지된 수단 중 어느 것을 사용해도 된다. 또, 희토류 영구자석 형성용 소결체 (1) 는, 슬롯 (24) 에 삽입하기 전에 착자를 실시하여, 희토류 영구자석으로 하고, 이 착자된 자석을 슬롯 (24) 에 삽입하도록 해도 된다.
그 후에, 로터에 대해 스테이터 (도시 생략) 및 회전축 (도시 생략) 등의 모터 구성 부재를 장착함으로써, 원하는 전동 모터, 예를 들어 IPM 모터가 제조된다.
이상 상세하게 설명한 바와 같이, 본 실시형태에 관련된 희토류 영구자석 형성용 소결체 (1) 의 제조 방법에 있어서는, 자석 재료를 자석 재료의 미세 입자로 분쇄하고, 분쇄된 자석 재료 입자와 바인더를 혼합함으로써, 컴파운드 (117) 를 생성한다. 그리고, 생성한 컴파운드 (117) 를 시트상으로 성형하여 그린 시트 (119) 를 제작한다. 그 후에, 성형한 그린 시트 (119) 로부터 소정 치수의 시트편을 잘라내고, 소망 형상으로 성형하여 가공용 시트편 (123) 을 형성하고, 이 가공용 시트편 (123) 에 대해 두께 방향으로 평행 자기장을 인가함으로써, 자석 재료 입자의 자화 용이축을 평행 자기장하에서 배향시키고, 배향 처리 후의 가공용 시트편 (123) 을 소정 형상으로 변형시킴으로써 제품 형상으로 성형하여 소결 처리용 시트편 (125) 으로 한다. 그 후, 비가압 상태에서, 또는 도면의 지면에 직각의 방향의 1 축 가압 상태에서 소결함으로써 희토류 영구자석 형성용 소결체 (1) 를 제조한다. 이와 같이 하여 얻어진 영구자석 형성용 소결체 (1) 에 착자함으로써 제조되는 희토류 영구자석에서는, 단부 영역에 있어서 자화 용이축이 그 표면에 지향되는 자석 재료 입자의 밀도가, 중앙 영역에 있어서의보다 높아지도록 집속한다. 따라서, 중앙 영역에 비해 감자되기 쉬운 영역인 단부 영역에 있어서, 중앙 영역보다 자속 밀도를 높게 할 수 있기 때문에, 감자 작용을 초래하는 외부 자속이 자석에 작용했다고 해도, 필요 충분한 표면 자속 밀도를 유지하는 것이 가능해진다. 그 결과, 회전 전기 (電機) 의 사용에 수반하여 회전 전기의 토크 또는 발전량이 저하하는 것을 방지할 수 있도록 된다. 또, 내감자 특성을 높게 할 수 있으면 필요한 내감자 특성을 유지한 상태에서 자석 체적을 줄이는 것도 가능하여, 영구자석의 소형화 및 제조 비용의 삭감을 실현하는 것이 가능해진다. 예를 들어, 필요한 내감자 특성을 확보할 수 있는 하한값까지 자석 체적을 줄임으로써, 영구자석의 성능과 제조 비용의 밸런스를 최적으로 유지하는 것이 가능하다.
또, 영구자석 (30) 의 전체가 아니고, 감자 대책이 필요한 단부 영역만을 대상으로 하여, 이 영역의 표면에 집속하도록 자화 용이축이 배향되므로, 단부 영역의 자속 밀도를 높게 할 수 있는 한편으로, 자화 용이축을 집속시키는 것에 의한 폐해, 예를 들어 감자 대상 영역으로부터 떨어진 지점에서 자속 밀도의 저하가 발생한다는 폐해를 해소하는 것이 가능해진다. 또한, 자화 용이축이 표면에 집속하도록 배향된 단부 영역 이외의 영역에서는, 레이디얼 방향이나 패럴렐 방향으로 자화 용이축을 배향시키므로, 영구자석을 사용하는 회전 전기의 종류에 따른 적절한 배향을 실현하는 것이 가능해진다.
또, 상기에 설명한 실시형태의 방법에서는, 자석 재료 입자와 바인더를 혼합 한 혼합물인 컴파운드를 성형함으로써, 감자 대책이 요망되는 단부 영역의 표면을 향하여 자화 용이축이 적절히 집속하도록 배향시키는 것이 가능해지므로, 착자 후에 있어서 적절히 자속을 집중시키는 것이 가능해져, 내감자성을 확보함과 함께 자속 밀도의 편차도 방지할 수 있다. 또한, 바인더와의 혼합물을 성형하므로, 압분 성형 등을 사용하는 경우와 비교해, 배향 후에 자석 입자가 회동하는 일도 없어, 배향도를 향상시키는 것이 가능해진다. 자석 재료 입자와 바인더의 혼합물에 대해 자기장을 인가하여 배향을 실시하는 방법에 의하면, 자기장 형성을 위한 전류를 통과시키는 권선의 권취수를 적절히 증가시킬 수 있기 때문에, 자기장 배향을 실시할 때의 자기장 강도를 크게 확보할 수 있고, 또한 정자기장으로 장시간의 자기장 인가를 실시할 수 있으므로, 편차가 적은 높은 배향도를 실현하는 것이 가능해진다. 그리고, 배향 후에 배향 방향을 보정하도록 하면, 고배향이고 편차가 적은 배향을 확보하는 것이 가능해진다.
이와 같이, 편차가 적은 고배향도가 실현 가능하다는 것은, 소결에 의한 수축의 편차 저감으로 이어진다. 따라서, 소결 후의 제품 형상의 균일성을 확보할 수 있다. 그 결과, 소결 후의 외형 가공에 대한 부담이 경감되어, 양산의 안정성이 크게 향상되는 것을 기대할 수 있다. 또, 자기장 배향하는 공정에서는, 자석 입자와 바인더의 혼합물에 대해 자기장을 인가함과 함께, 자기장이 인가된 혼합물을 성형체로 변형함으로써 자화 용이축의 방향을 조작하고, 자기장 배향을 실시하므로, 일단 자기장 배향된 혼합물을 변형함으로써 배향 방향을 보정하여, 감자 대상 에어리어와 자화 용이축을 적절히 집속시키도록 배향하는 것이 가능해진다. 그 결과, 고배향이고 편차가 적은 배향을 달성하는 것이 가능해진다. 혼합물을 가공용 시트편으로 성형하고, 그 가공용 시트편에 자계를 인가한 후에, 그 가공용 시트편을 변형시켜 소결 처리용 시트편으로 하고 있으므로, 이 변형 공정과 동시에 배향 방향을 보정하는 것이 가능해지고, 그 결과 영구자석의 성형 공정과 배향 공정을 단일의 공정으로 실시할 수 있어, 생산성을 향상시키는 것이 가능해진다. 또, 이미 서술한 바와 같이, 소결체 (1) 에 착자함으로써 형성된 영구자석이 배치된 회전 전기에서는, 영구자석 (30) 의 단부에 감자 작용을 부여하는 외부 자계가 작용했다고 해도, 토크 또는 발전량이 저하한다는 문제를 방지하는 것이 가능해진다. 예를 들어, 상기 실시형태에서는, 영구자석 형성용 소결체 (1) 를, 단면이 사다리꼴의 형상으로 하고 있지만, 사용하는 용도에 따라 기타 형상, 예를 들어 궁형 형상, 반원통형 형상으로 하는 것도 가능하다. 또한, 실현하는 자속 밀도 분포의 형상은, 영구자석의 형상 또는 용도에 따라 적절히 변경하는 것이 가능하다.
또, 본 발명은, 영구자석을, 로터측이 아니고, 스테이터측에 형성된 삽입부에 배치하는 회전 전기에 대해서도 적용할 수 있다. 또한, 상기 서술한 이너 로터형의 회전 전기에 한정하지 않고, 아우터 로터형의 회전 전기에도 적용 가능하다. 본 발명에 의한 영구자석은, 표면 자석형의 회전 전기 및 영구자석을 평면상으로 배치한 리니어 모터에 대해서도 적용 가능하다. 또, 본 발명에 관련된 영구자석은 모터 이외에, 발전기나 자기 감속기 등의 각종 회전 전기, 나아가서는 회전 전기 이외의 영구자석을 사용하는 각종 장치에 대해서도 적용 가능하다.
실시예
〔실시예 1〕
이하의 순서로, 도 1 에 나타내는 형상의 희토류 소결 자석을 제작하였다.
<조분쇄>
스트립 캐스팅법에 의해 얻어진, 합금 조성 A (Nd : 23.00 wt%, Pr : 6.75 wt%, B : 1.00 wt%, Ga : 0.10 wt%, Nb : 0.2 wt%, Co : 2.0 wt%, Cu : 0.10 wt%, Al : 미량, 잔부 Fe, 그 외 불가피 불순물을 포함한다) 의 합금에, 실온에 있어서 수소를 흡장시키고, 0.85 MPa 하에서 1 일 유지하였다. 그 후, 액화 Ar 로 냉각하면서, 0.2 MPa 하에서 1 일 유지하는 것에 의해, 수소 해쇄를 실시하여, 합금 조분을 얻었다.
<미분쇄>
수소 해쇄된 합금 조분 100 중량부에 대해 Zr 비즈 (2φ) 1.5 kg 을 혼합하고, 탱크 용량 0.8 L 의 볼 밀 (제품명 : 애트라이터 0.8L, 닛폰 코크스 공업사 제조) 에 투입하고, 회전수 500 rpm 으로 2 시간 분쇄하였다. 분쇄 시의 분쇄 보조제로서 벤젠을 10 중량부 첨가하고, 또 용매로서 액화 Ar 을 사용하였다.
<혼련>
분쇄 후의 합금 입자 100 중량부에 대해 1-옥타데신 6.7 중량부, 및 폴리이소부틸렌 (PIB) B150 의 톨루엔 용액 (7 중량%) 을 57 중량부 첨가하고, 믹서 (장치명 : TX-0.5, 이노우에 제작소 제조) 에 의해, 70 ℃ 의 감압 가열 교반 조건하에서 톨루엔을 제거한 후, 추가로 2 시간의 혼련을 실시하여, 점토상의 복합 재료를 제조하였다.
<자기장 배향>
그 혼련 공정에서 제조한 복합 재료를 도 10(a) 에 나타내는 형상과 동일한 캐비티를 갖는 스테인리스강 (SUS) 제의 형에 수용하고, 제 1 성형체를 형성한 후, 초전도 솔레노이드 코일 (장치명 : JMTD-12T100, JASTEC 제조) 에 의해, 외부로부터 평행 자기장을 인가함으로써 배향 처리를 실시하였다. 이 배향 처리는, 12 T 의 외부 자기장을 인가하면서, 80 ℃ 에서 10 분간 실시하고, 최단의 변 방향인 사다리꼴의 두께 방향에 대해, 평행이 되도록 외부 자기장을 인가하였다. 이 배향 처리의 온도로 유지한 채로, 솔레노이드 코일로부터 복합 재료를 인출하고, 그 후 역자기장을 거는 것에 의해, 탈자 처리를 실시하였다. 역자기장의 인가는, -0.2 T 부터 +0.18 T, 또한 -0.16 T 로 강도를 변화시키면서, 제로 자기장으로 점감시킴으로써 실시하였다.
<변형 공정>
배향 처리 후, 배향 처리용의 형으로부터 성형한 복합 재료의 성형 가공용 시트를 인출하고, 도 10(a) 에 나타내는, 단부 원호 형상보다는 얕은 단부 원호 형상의 캐비티를 갖는 스테인리스강 (SUS) 제의 중간 성형용 형 (도 10(b)) 으로 바꿔 넣고, 60 ℃ 로 가온하면서 가압하여, 변형 처리를 실시하였다. 또한, 성형한 그 성형 가공용 시트를 인출하고, 도 10(c) 에 나타내는 형상의 캐비티를 갖는 스테인리스강 (SUS) 제의 최종 성형형으로 바꿔 넣고, 60 ℃ 로 가온하면서, 가압하여, 변형을 실시하였다. 변형 후에는, SUS 형으로부터 복합 재료의 시트를 인출하고, 도 10(c) 와 동일 형상의 캐비티를 갖는 그라파이트형에 삽입하였다. 그라파이트형의 캐비티의 폭 방향 치수, 즉 도 10(c)의 지면에 직교하는 방향의 치수는, 성형한 사다리꼴 형상 컴파운드의 폭 방향 치수보다 20 mm 정도 큰 것이고, 복합 재료는, 캐비티의 중앙부에 위치하도록 삽입하였다. 그라파이트형에는 이형재로서 BN (질화붕소) 분말을 미리 도포하였다.
<탈오일 공정>
그라파이트형에 삽입된 컴파운드에 대해, 진공 분위기하에서, 탈오일 처리를 실시하였다. 배기 펌프로는, 로터리 펌프를 사용하여, 실온부터 100 ℃ 까지 0.9 ℃/min 의 승온 속도로 승온시키고, 100 ℃ 의 온도로 40 h 유지하였다. 이 공정에 의해, 배향 윤활제, 가소제와 같은 오일 성분을 휘발에 의해 제거할 수 있었다.
<가소 (탈탄소) 공정>
변형 후의 성형 가공용 시트에 대해, 0.8 Mpa 의 수소 가압 분위기하에서, 탈탄소 처리를 실시하였다. 이 처리에 있어서는, 실온부터 400 ℃ 까지 6.3 ℃/min 의 승온 속도로 승온시키고, 400 ℃ 의 온도로 2 시간 유지하였다. 이 처리에 있어서의 수소 유량은 2 ∼ 3 L/min 이었다.
<소결>
탈탄소 공정 후, 그라파이트형에 도 10(c) 와 동일한 단면 형상을 갖는 그라파이트제의 압형을 삽입하고, 그 압형에 가압력을 가함으로써, 진공 분위기하에서의 가압 소결을 실시하였다. 가압 방향은, 자화 용이축의 배향 방향에 대해 수직의 방향, 즉 복합 재료 시트의 폭 방향에 평행한 방향이었다. 소결 시에는, 초기 하중으로서 50 kgf 의 가압력을 가하면서, 700 ℃ 까지 22.7 ℃/min 의 승온 속도로 승온시키고, 그 후에 최종 소결 온도인 950 ℃ 까지, 50 kgf 의 가압하에서, 8.3 ℃/min 의 승온 속도로 승온시키고, 950 ℃ 의 온도로 5 min 유지하였다.
<어닐링>
소결 공정에 의해 얻어진 소결체를, 실온부터 500 ℃ 까지, 0.5 시간에 걸쳐 승온시킨 후, 500 ℃ 에서 1 시간 유지하고, 그 후 급랭함으로써 어닐링을 실시하여, 희토류 자석 형성용 소결체를 얻었다.
<배향축 각도의 측정>
얻어진 소결체에 있어서의 자화 용이축의 배향축 각도는, 소결체의 표면에 대해, SiC 페이퍼에 의한 연마, 버프에 의한 연마, 및 밀링에 의해 표면 처리를 실시한 후, EBSD 검출기 (장치명 : AZtecHKL EBSD NordlysNano Integrated, Oxford Instruments 제조) 를 구비한 SEM (장치명 : JSM-7001F, 닛폰 전자 제조) 에 의해 측정하였다. 이 측정에는, 대체적으로 EDAX 사 제조의 EBSD 검출기 (Hikari High Speed EBSD Detector) 를 구비한 주사 전자현미경 (ZEISS 사 제조 SUPRA40VP) 을 사용할 수도 있다. 또한, EBSD 의 분석은, 35 ㎛ 의 시야각으로, 0.2 ㎛ 피치로 실시하였다. 분석 정밀도를 향상시키기 위해서, 적어도 30 개의 소결 입자가 들어가는 영역에 대해 분석을 실시하였다.
실시예 1 에 있어서는, 소결체인 사다리꼴 자석을 폭 방향의 중앙에서 절단 하고, 그 단면인 길이 방향 단면에 있어서 실시하였다. 측정 개소를 도 11 에 나타낸다. 측정은, 당해 단면의 두께 방향의 중앙을 따라, 길이 방향 중앙으로부터 좌측으로 12 mm 의 위치 (a), 길이 방향 중앙으로부터 좌측으로 10 mm 의 위치 (b), 길이 방향 중앙으로부터 좌측으로 8 mm 의 위치 (c), 길이 방향 중앙으로부터 좌측으로 6 mm 의 위치 (d), 길이 방향 중앙으로부터 좌측으로 4 mm 의 위치 (e), 길이 방향 중앙으로부터 좌측으로 2 mm 의 위치 (f), 길이 방향 중앙의 위치 (g), 길이 방향 중앙으로부터 우측으로 2 mm 의 위치 (h), 길이 방향 중앙으로부터 우측으로 4 mm 의 위치 (i), 길이 방향 중앙으로부터 우측으로 6 mm 의 위치 (j), 길이 방향 중앙으로부터 우측으로 8 mm 의 위치 (k), 길이 방향 중앙으로부터 우측으로 10 mm 의 위치 (l), 길이 방향 중앙으로부터 우측으로 12 mm 의 위치 (m) 의 합계 12 지점에서 실시하였다.
각 측정 위치에 있어서, 자화 용이축 즉 결정 C 축 (001) 이 가장 고빈도로 향하고 있는 방향을 그 위치에 있어서의 배향축 각도로 하였다. 도 12 에 나타내는 바와 같이, 사다리꼴 저면에, A2 축과, 이것에 직교하는 A3 축 방향으로 이루어지는 직교좌표를 설정하고, 이 직교좌표를 포함하는 면을 기준면으로 하여 두께 방향으로, 그 A2 축 및 A3 축에 직교하는 A1 축을 설정하고, A1 축으로부터 A3 축 방향으로의 배향축의 어긋남각 α 와, A1 축으로부터 A2 축 방향으로의 배향축의 어긋남각 θ + β 를 구하였다.
A1 축 및 A2 축을 포함하는 평면에서는, 어느 분석 위치에 있어서도, 자화 용이축의 소정의 배향 방향은, 그 A1 축 및 A2 축을 포함하는 평면 내에 위치한다. 따라서, 경사각 α 는, 자화 용이축의 소정의 배향 방향으로부터의 변위량, 즉 「어긋남각」이 된다. 또, 각 β 에 관련해 사용되는 각 θ 는, 임의의 분석 위치에 있어서의, 설계한 자화 용이축의 배향 방향과 A1 축 사이의 각도이고, 따라서 각 β 는, 이 분석 위치에 있어서의 배향축의 소정 배향 방향에 대한 변위량, 즉 「어긋남각」이다. 얻어진 실시예 1 의 평가 결과를 표 1 에 나타낸다.
Figure 112017103361736-pct00002
중앙 영역 (측정 지점 e, f, g, h, i) 에 있어서는, 그 중앙 영역에 포함되는 자석 재료 입자는, 그 자화 용이축이, 폭 방향으로 연장되는 소결체 부분의 일표면에 대해 실질적으로 직각인 방향으로 배향되어 있고, 제 1 및 제 2 단부 영역의 일방 또는 양방에 있어서, 그 영역에 포함되는 자석 재료 입자는, 자화 용이축이 그 일표면에 지향되는 자석 재료 입자의 밀도가, 중앙 영역에 있어서의보다 높아지도록 집속하는 방향으로 배향되어 있다 (측정 지점 a, b, c, d, j, k, l, m).
배향축 각도의 설계값인 θ 로부터의 「어긋남각」인 β 는, 어느 측정 위치에 있어서도 작아, 설계와 같은 배향축 각도로 되어 있는 것을 알 수 있다 (도 13).
희토류 영구자석 형성용 소결체에 있어서의, 중앙 영역의 길이 방향 치수 P 와 상기 제 1 표면의 길이 방향 치수 L 의 비 P/L 은, 0.32 였다. 또, 길이 방향 단면과 제 1 표면 사이의 각도는 70°이고, 길이 방향 양 단면에 인접하는 위치에서는 단면의 경사각을 따르도록 그 제 1 표면에 대해 자화 용이축이 경사져 있었다.
또, 희토류 영구자석 형성용 소결체의 단면을 연마함으로써, 단면에 인접하는 위치에 있어서의 자화 용이화축의 경사각을 단면의 경사각과 실질적으로 동일하게 할 수도 있다.
1, 101 : 희토류 영구자석 형성용 소결체
2, 102 : 상변
3, 103 : 하변
4, 5, 104, 105 : 단면
6, 106 : 중앙 영역
7, 8, 107, 108 : 단부 영역
20 : 전동 모터
21 : 로터 코어
21a : 둘레면
22 : 에어 갭
23 : 스테이터
23a : 티스
23b : 계자 코일
24 : 자석 삽입용 슬롯
24a : 직선상 중앙 부분
24b : 경사 부분
30 : 희토류 자석
117 : 컴파운드
118 : 지지 기재
119 : 그린 시트
120 : 슬롯 다이
123 : 가공용 시트편
125 : 소결 처리용 시트편
C : 자화 용이축
θ : 경사각

Claims (11)

  1. 희토류 물질을 포함하는 자석 재료 입자를 포함하고, 길이 방향으로 연장되는 제 1 표면과, 그 제 1 표면으로부터 두께 방향으로 간격을 가진 위치에 있고 길이 방향으로 연장되는 제 2 표면과, 길이 방향 양 단부의 단면을 갖고, 그 양 단면의 각각이 그 제 1 표면의 길이 방향 단부로부터 길이 방향 외향으로 경사짐으로써 그 제 1 표면의 길이가 상기 제 2 표면보다 짧아지는 길이 방향 단면 형상을 가지는 입체 형상으로, 그 자석 재료 입자가 일체로 소결 성형된, 희토류 영구자석 형성용 소결체로서,
    길이 방향의 중앙 영역과, 그 중앙 영역의 양측에 위치하는 제 1 및 제 2 단부 영역으로 구획되고,
    상기 중앙 영역에 있어서는, 그 중앙 영역에 포함되는 상기 자석 재료 입자는, 그 자화 용이축이, 상기 길이 방향으로 연장되는 소결체 부분의 상기 제 1 표면에 대해 직각인 방향으로 배향된 패럴렐 배향으로 되어 있고,
    상기 제 1 및 제 2 단부 영역의 각각에 포함되는 상기 자석 재료 입자는, 자화 용이축이, 상기 단면에 인접하는 위치에서는 상기 단면의 경사각을 따르도록 상기 제 1 표면에 대해 경사져 상기 제 1 표면에 지향되고, 상기 중앙 영역에 인접하는 위치에서는 상기 제 1 표면에 대해 직각인 방향이 되도록 그 제 1 표면에 지향되고, 상기 단면과 상기 중앙 영역 사이에서는 상기 단면으로부터 상기 중앙 영역을 향하여 점차 증가하는 경사각으로 상기 제 1 표면에 지향되도록 집속하는 배향으로 되고,
    상기 중앙 영역의 길이 방향 치수 P 와, 상기 제 1 표면의 길이 방향 치수 L 의 비 P/L 이 0.2 ∼ 0.8 인 것을 특징으로 하는 희토류 영구자석 형성용 소결체.
  2. 제 1 항에 있어서,
    상기 제 1 및 제 2 단부 영역의 각각에 있어서의 상기 단면은, 그 단면의 연장선과 상기 제 1 표면 사이의 각도가 45° ∼ 80°의 범위 내가 되도록 그 제 1 표면에 대해 경사져 있는 것을 특징으로 하는 희토류 영구자석 형성용 소결체.
  3. 제 1 항에 있어서,
    상기 제 1 및 제 2 단부 영역의 각각에 있어서의 상기 단면은, 그 단면의 연장선과 상기 제 1 표면 사이의 각도가 55° ∼ 80°의 범위 내가 되도록 그 제 1 표면에 대해 경사져 있는 것을 특징으로 하는 희토류 영구자석 형성용 소결체.
  4. 삭제
  5. 제 1 항에 있어서,
    상기 중앙 영역의 길이 방향 치수 P 와 상기 제 1 표면의 길이 방향 치수 L 의 비 P/L 이 0.2 ∼ 0.5 인 것을 특징으로 하는 희토류 영구자석 형성용 소결체.
  6. 제 1 항에 있어서,
    상기 중앙 영역의 길이 방향 치수 P 와 상기 제 1 표면의 길이 방향 치수 L 의 비 P/L 이 0.3 ∼ 0.4 인 것을 특징으로 하는 희토류 영구자석 형성용 소결체.
  7. 제 1 항에 있어서,
    상기 자석 재료는, Nd-Fe-B 계 자석 재료인 것을 특징으로 하는 희토류 영구자석 형성용 소결체.
  8. 제 1 항 내지 제 3 항 및 제 5 항 내지 제 7 항 중 어느 한 항에 기재된 희토류 영구자석 형성용 소결체에 착자시킴으로써 형성된 희토류 영구자석.
  9. 회전축에 대해 평행한 중심축을 갖는 원통상의 에어 갭을 통하여 스테이터와 대향하도록 상기 스테이터 내에 자유롭게 회전할 수 있게 배치된 로터 코어를 갖는 회전기로서, 상기 로터 코어에는, 둘레 방향으로 간격을 가진 복수의 위치에 있어서 길이 방향 치수와 두께 방향 치수를 갖는 길이 방향 단면 형상의 슬롯이 복수개, 축 방향으로 연장되도록 형성되고, 상기 슬롯의 각각 내에, 제 8 항에 기재된 희토류 영구자석이 배치된 것을 특징으로 하는 회전기.
  10. 제 9 항에 있어서,
    상기 슬롯의 각각은, 그 슬롯 내에 배치되는 상기 희토류 영구자석의 길이 방향 치수보다 큰 길이 방향 치수를 갖고, 그 슬롯 내에 배치되는 상기 희토류 영구자석의 양 단부에 그 슬롯에 의해 공극부가 형성되어 있는 것을 특징으로 하는 회전기.
  11. 제 10 항에 있어서,
    상기 공극부는, 상기 자석을 수용하는 슬롯 부분에 대해 상기 에어 갭의 방향으로 경사져 있는 것을 특징으로 하는 회전기.
KR1020177030230A 2015-03-24 2016-03-24 희토류 영구자석 및 희토류 영구자석을 갖는 회전기 Active KR102421822B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015061080 2015-03-24
JPJP-P-2015-061080 2015-03-24
JPJP-P-2016-039116 2016-03-01
JP2016039116 2016-03-01
PCT/JP2016/059391 WO2016152976A1 (ja) 2015-03-24 2016-03-24 希土類永久磁石及び希土類永久磁石を有する回転機

Publications (2)

Publication Number Publication Date
KR20170132217A KR20170132217A (ko) 2017-12-01
KR102421822B1 true KR102421822B1 (ko) 2022-07-15

Family

ID=56978808

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177030230A Active KR102421822B1 (ko) 2015-03-24 2016-03-24 희토류 영구자석 및 희토류 영구자석을 갖는 회전기

Country Status (7)

Country Link
US (1) US11101707B2 (ko)
EP (1) EP3276795B1 (ko)
JP (1) JP7060957B2 (ko)
KR (1) KR102421822B1 (ko)
CN (1) CN107408854B (ko)
TW (1) TWI679658B (ko)
WO (1) WO2016152976A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6706487B2 (ja) * 2015-11-19 2020-06-10 日東電工株式会社 希土類永久磁石をもった回転子を備える回転電機
US20220044852A1 (en) * 2017-04-07 2022-02-10 Nitto Denko Corporation Rare earth-sintered magnet, method of manufacturing a rare earth-sintered body, method of manufacturing a rare earth-sintered magnet, and linear motor using a rare earth-sintered magnet
WO2019026979A1 (ja) 2017-08-01 2019-02-07 株式会社デンソー 回転電機、回転電機駆動システム、磁石、磁石の製造方法、着磁装置、及び磁石ユニット
JP6939735B2 (ja) * 2017-08-01 2021-09-22 株式会社デンソー 磁石の製造方法
JP7028707B2 (ja) * 2018-04-25 2022-03-02 株式会社日立インダストリアルプロダクツ 回転電機、回転電動機駆動システム、並びに電動車両
JP7331356B2 (ja) * 2018-12-14 2023-08-23 Tdk株式会社 永久磁石および回転電機
JP7302399B2 (ja) 2019-09-10 2023-07-04 株式会社デンソー 回転電機の製造装置と回転電機の製造方法
CN112908664B (zh) * 2019-12-03 2022-12-20 北京中科三环高技术股份有限公司 一种制备稀土烧结磁体的方法
CN115280642A (zh) * 2020-03-18 2022-11-01 日本电产株式会社 马达
CN114172343B (zh) * 2021-12-10 2023-03-24 合肥工业大学 基于气隙磁通密度波形正弦化设计的混合式磁极直线电机
JP2023116318A (ja) * 2022-02-09 2023-08-22 シンフォニアテクノロジー株式会社 磁石、電動機及び磁石の製造方法
KR102688809B1 (ko) * 2022-12-08 2024-07-26 성림첨단산업(주) 희토류 영구자석의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254143A (ja) * 2008-04-07 2009-10-29 Daikin Ind Ltd ロータ及び埋込磁石型モータ
JP2010200459A (ja) * 2009-02-24 2010-09-09 Mitsubishi Electric Corp 回転電機

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379363A (en) 1976-12-23 1978-07-13 Fujitsu Ltd Demodulating circuit
JPS572801A (en) 1980-06-05 1982-01-08 Mitsubishi Metal Corp Production of sintered permanent magnet
JPS6169104A (ja) 1984-09-12 1986-04-09 Sumitomo Special Metals Co Ltd 半円状異方性フェライト磁石の製造方法
JPH02308512A (ja) * 1989-05-24 1990-12-21 Hitachi Metals Ltd 偏倚異方性を有するR―Fe―B系永久磁石及びその製造方法
JPH0821497B2 (ja) * 1990-08-17 1996-03-04 富士電気化学株式会社 異方性磁石及びその製造方法
JP3216865B2 (ja) 1994-08-09 2001-10-09 日立金属株式会社 リニアモータ
US5808381A (en) 1994-08-09 1998-09-15 Hitachi Metals, Ltd. Linear motor
JP2823817B2 (ja) 1995-05-31 1998-11-11 松下電器産業株式会社 永久磁石埋め込みモータ
DE69629419T2 (de) 1995-05-31 2004-04-01 Matsushita Electric Industrial Co., Ltd., Kadoma Motor mit eingebauten Permanentmagneten
JPH10271722A (ja) 1997-03-21 1998-10-09 Matsushita Electric Ind Co Ltd 永久磁石埋め込みロータ
JP2000050543A (ja) 1998-07-24 2000-02-18 Matsushita Electric Ind Co Ltd 永久磁石埋め込みモータ
DE19933009A1 (de) 1998-07-24 2000-02-10 Matsushita Electric Ind Co Ltd Motor mit interne Permanentmagneten enthaltendem Rotor und einen solchen Motor verwendende Antriebseinheit
US6304162B1 (en) 1999-06-22 2001-10-16 Toda Kogyo Corporation Anisotropic permanent magnet
JP2001006924A (ja) 1999-06-22 2001-01-12 Toda Kogyo Corp 吸着用永久磁石
JP2003318012A (ja) 2002-04-19 2003-11-07 Toda Kogyo Corp モーター用永久磁石
US6992553B2 (en) 2002-06-18 2006-01-31 Hitachi Metals, Ltd. Magnetic-field molding apparatus
JP3997427B2 (ja) 2002-06-18 2007-10-24 日立金属株式会社 極異方性リング磁石の製造に用いる磁場中成形装置
JP2004031780A (ja) 2002-06-27 2004-01-29 Nissan Motor Co Ltd 希土類磁石およびその製造方法、ならびに希土類磁石を用いてなるモータ
CN100380779C (zh) 2003-07-22 2008-04-09 爱知制钢株式会社 薄型混合磁化环状磁铁和具有轭部的薄型混合磁化环状磁铁、以及无电刷电机
JP2006087204A (ja) 2004-09-15 2006-03-30 Tdk Corp リング状磁石及びその製造方法
WO2007119393A1 (ja) 2006-03-16 2007-10-25 Matsushita Electric Industrial Co., Ltd. ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ
US7839044B2 (en) 2007-03-23 2010-11-23 Panasonic Corporation Rotor magnet, spindle motor comprising the same, recording and reproducing apparatus, and jig for manufacturing the same
JP2008252968A (ja) 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd 流体軸受装置およびそれを備えたスピンドルモータ、ディスク駆動装置およびその製造方法
US20110012463A1 (en) 2007-08-01 2011-01-20 Gerald David Duncan appliance, rotor and magnet element
CN101123386B (zh) * 2007-09-24 2010-12-29 南京航空航天大学 切向磁钢永磁同步电机
JP5359192B2 (ja) 2007-11-12 2013-12-04 パナソニック株式会社 異方性永久磁石型モータ
JP5300325B2 (ja) 2008-05-26 2013-09-25 三菱電機株式会社 リニアモータ
JP5188357B2 (ja) 2008-10-23 2013-04-24 三菱電機株式会社 リニアモータ
JP2011109004A (ja) 2009-11-20 2011-06-02 Yokohama National Univ 磁気異方性磁石の製造方法
MX2013011851A (es) 2011-04-13 2014-03-13 Boulder Wind Power Inc Arreglo que enfoca el flujo para imanes permantes, metodos de abricacion de tales arreglos y maquinas que incluyen tales arreglos.
EP2685474B1 (en) 2011-06-24 2020-12-23 Nitto Denko Corporation Production method for rare earth permanent magnet
JP5969781B2 (ja) 2012-03-12 2016-08-17 日東電工株式会社 希土類永久磁石の製造方法
WO2013137134A1 (ja) 2012-03-12 2013-09-19 日東電工株式会社 希土類永久磁石及び希土類永久磁石の製造方法
JP2015156405A (ja) 2012-05-24 2015-08-27 パナソニック株式会社 異方性ボンド磁石とその製造方法およびそれらを用いたモータ
DE112014000526B4 (de) * 2013-01-23 2018-03-01 Mitsubishi Electric Corporation Rotor und drehende elektrische Maschine, die diesen Rotor enthält
CN104508764A (zh) 2013-07-31 2015-04-08 株式会社日立制作所 永久磁铁材料
JP2015032669A (ja) 2013-08-01 2015-02-16 日産自動車株式会社 焼結磁石の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254143A (ja) * 2008-04-07 2009-10-29 Daikin Ind Ltd ロータ及び埋込磁石型モータ
JP2010200459A (ja) * 2009-02-24 2010-09-09 Mitsubishi Electric Corp 回転電機

Also Published As

Publication number Publication date
KR20170132217A (ko) 2017-12-01
TWI679658B (zh) 2019-12-11
EP3276795B1 (en) 2021-12-22
TW201701303A (zh) 2017-01-01
WO2016152976A1 (ja) 2016-09-29
EP3276795A4 (en) 2019-01-09
JP7060957B2 (ja) 2022-04-27
CN107408854B (zh) 2019-11-26
US11101707B2 (en) 2021-08-24
EP3276795A1 (en) 2018-01-31
JPWO2016152976A1 (ja) 2018-02-01
CN107408854A (zh) 2017-11-28
US20180115205A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
KR102421822B1 (ko) 희토류 영구자석 및 희토류 영구자석을 갖는 회전기
KR102453981B1 (ko) 희토류 자석 형성용 소결체 및 희토류 소결 자석
CN108352768B (zh) 稀土类磁体形成用烧结体及对该烧结体进行磁化而得到的稀土类永磁体
JP6695857B2 (ja) 非平行の磁化容易軸配向を有する希土類永久磁石形成用焼結体の製造方法
KR102340439B1 (ko) 희토류 소결 자석 형성용 소결체 및 그 제조 방법
JP6899327B2 (ja) 永久磁石ユニットの製造方法
JP6786476B2 (ja) 希土類永久磁石形成用焼結体及び希土類永久磁石を有する回転電機
WO2017022685A1 (ja) 希土類磁石形成用焼結体及び希土類焼結磁石

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20171019

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20210112

Comment text: Request for Examination of Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20211224

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20220419

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20220713

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20220713

End annual number: 3

Start annual number: 1

PG1601 Publication of registration