KR100376768B1 - 전자, 스핀 및 광소자 응용을 위한 탄소나노튜브의 선택적 수평성장 방법 - Google Patents
전자, 스핀 및 광소자 응용을 위한 탄소나노튜브의 선택적 수평성장 방법 Download PDFInfo
- Publication number
- KR100376768B1 KR100376768B1 KR10-2000-0048907A KR20000048907A KR100376768B1 KR 100376768 B1 KR100376768 B1 KR 100376768B1 KR 20000048907 A KR20000048907 A KR 20000048907A KR 100376768 B1 KR100376768 B1 KR 100376768B1
- Authority
- KR
- South Korea
- Prior art keywords
- carbon nanotubes
- spin
- device applications
- electronic
- growth
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 46
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 32
- 239000000758 substrate Substances 0.000 title claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- 239000002184 metal Substances 0.000 claims abstract description 46
- 239000003054 catalyst Substances 0.000 claims abstract description 31
- 230000004888 barrier function Effects 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 13
- 230000003197 catalytic effect Effects 0.000 claims abstract description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 9
- 230000003647 oxidation Effects 0.000 claims abstract description 4
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 26
- 230000003287 optical effect Effects 0.000 claims description 10
- 150000004767 nitrides Chemical class 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- -1 Si 3 N 4 Inorganic materials 0.000 claims description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 10
- 238000011161 development Methods 0.000 description 4
- 238000001459 lithography Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002071 nanotube Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910020776 SixNy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002238 carbon nanotube film Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/605—Products containing multiple oriented crystallites, e.g. columnar crystallites
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/701—Organic molecular electronic devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/08—Aligned nanotubes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Theoretical Computer Science (AREA)
- Textile Engineering (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Claims (15)
- 고온의 전기로에서 산화법 및 CVD법을 이용하여 기판상에 50~1500nm 범위내의 두께를 갖는 절연막을 형성하는 단계와;상기 절연막상에 접촉전극 패드를 포함한 촉매금속층의 미세 패턴을 형성하는 단계와;상기 촉매금속층 상부에 수직성장 장벽층을 형성하는 단계와;가스압력 10~500torr 범위내의 분위기에서 화학기상증착공정(혹은 플라즈마 공정)을 이용하여 상기 촉매패턴 간에 탄소나노튜브를 직접 성장시키는 단계를 포함하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 삭제
- 삭제
- 제 1 항에 있어서,상기 촉매금속은 Ni, Ni/Ti(혹은 Nb), Co, Co/Ti(혹은 Nb), Fe, Fe/Ti(혹은 Nb), (Ni/Co)n, (Co/Ni)n및 (Co/Ni/Co)n, (Ni/Co/Ni)n을(n=1,2,3···) 및 Co/MgO 중 적어도 어느 하나를 이용하는 것을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 제 1 항에 있어서,상기 촉매금속은 3N 이상 순도를 갖고, 상온∼150℃로 80∼400nm 두께로 형성하는 것을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 삭제
- 삭제
- 제 1 항에 있어서,상기 CNT 성장은 자기촉매 역할로서 비정질 탄소박막과 흑연을 사용하고 성장속도는 100(nm/분)임을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 제 1 항에 있어서,상기 촉매금속 패턴간 이격거리는 50nm∼10㎛임을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 제 1 항에 있어서,상기 CNT의 직경은 1∼50nm임을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 제 1 항에 있어서,상기 접촉전극은 정상금속, 초전도성 금속, 자성금속류를 사용하는 것을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 제 1항에 있어서,상기 수직성장 장벽층으로 산화막, 질화막, 상기 산화막과 질화막의 적층구조, 상기 산화막과 질화막의 혼성구조, SiO2, Si3N4, SiO2-Si3N4, Al2O3 중 어느 하나가 사용되는 것을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 제 1항에 있어서,상기 수직 성장 장벽층으로 금속이나 상기 금속의 합금이 사용되며, 상기 금속으로 Ti, Pt, W, Nb, V, Au 가 사용되는 것을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 제 12항에 있어서,상기 수직 성장 장벽층은 탑게이트(top gate)소자 구현을 위해 20∼30㎚두께로 사용하는 것을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
- 제 13항에 있어서,상기 수직 성장 장벽층은 전극으로 사용되는 것을 특징으로 하는 전자, 스핀 및 광 소자 응용을 위한 탄소나노튜브의 선택적 수평성장방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0048907A KR100376768B1 (ko) | 2000-08-23 | 2000-08-23 | 전자, 스핀 및 광소자 응용을 위한 탄소나노튜브의 선택적 수평성장 방법 |
US09/933,833 US6833558B2 (en) | 2000-08-23 | 2001-08-22 | Parallel and selective growth method of carbon nanotube on the substrates for electronic-spintronic device applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0048907A KR100376768B1 (ko) | 2000-08-23 | 2000-08-23 | 전자, 스핀 및 광소자 응용을 위한 탄소나노튜브의 선택적 수평성장 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020015795A KR20020015795A (ko) | 2002-03-02 |
KR100376768B1 true KR100376768B1 (ko) | 2003-03-19 |
Family
ID=19684664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0048907A KR100376768B1 (ko) | 2000-08-23 | 2000-08-23 | 전자, 스핀 및 광소자 응용을 위한 탄소나노튜브의 선택적 수평성장 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6833558B2 (ko) |
KR (1) | KR100376768B1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100434271B1 (ko) * | 2001-06-07 | 2004-06-04 | 엘지전자 주식회사 | 탄소나노튜브 길이별 제조방법 |
KR100434272B1 (ko) * | 2001-06-28 | 2004-06-05 | 엘지전자 주식회사 | 탄소나노튜브의 수평성장 방법 |
US8535753B2 (en) | 2008-12-01 | 2013-09-17 | Samsung Electronics Co., Ltd. | Methods of forming carbon nanotubes |
Families Citing this family (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100405974B1 (ko) * | 2001-06-15 | 2003-11-14 | 엘지전자 주식회사 | 카본나노튜브의 수평 성장 방법 |
KR100396602B1 (ko) * | 2000-12-12 | 2003-09-02 | 엘지전자 주식회사 | 탄소나노튜브를 이용한 터널접합 자기저항 소자 |
US6835591B2 (en) | 2001-07-25 | 2004-12-28 | Nantero, Inc. | Methods of nanotube films and articles |
US6574130B2 (en) | 2001-07-25 | 2003-06-03 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US7566478B2 (en) * | 2001-07-25 | 2009-07-28 | Nantero, Inc. | Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US6919592B2 (en) | 2001-07-25 | 2005-07-19 | Nantero, Inc. | Electromechanical memory array using nanotube ribbons and method for making same |
US7259410B2 (en) * | 2001-07-25 | 2007-08-21 | Nantero, Inc. | Devices having horizontally-disposed nanofabric articles and methods of making the same |
US6706402B2 (en) | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
US6924538B2 (en) | 2001-07-25 | 2005-08-02 | Nantero, Inc. | Devices having vertically-disposed nanofabric articles and methods of making the same |
US7563711B1 (en) * | 2001-07-25 | 2009-07-21 | Nantero, Inc. | Method of forming a carbon nanotube-based contact to semiconductor |
US20070035226A1 (en) * | 2002-02-11 | 2007-02-15 | Rensselaer Polytechnic Institute | Carbon nanotube hybrid structures |
WO2003069019A1 (en) * | 2002-02-11 | 2003-08-21 | Rensselaer Polytechnic Institute | Directed assembly of highly-organized carbon nanotube architectures |
CA2374848A1 (en) * | 2002-03-06 | 2003-09-06 | Centre National De La Recherche Scientifique | A process for the mass production of multiwalled carbon nanotubes |
US6858197B1 (en) * | 2002-03-13 | 2005-02-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Controlled patterning and growth of single wall and multi-wall carbon nanotubes |
DE10217362B4 (de) * | 2002-04-18 | 2004-05-13 | Infineon Technologies Ag | Gezielte Abscheidung von Nanoröhren |
US7335395B2 (en) | 2002-04-23 | 2008-02-26 | Nantero, Inc. | Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
AU2003301728A1 (en) * | 2002-06-21 | 2004-05-25 | Nanomix. Inc. | Dispersed growth of nanotubes on a substrate |
KR20040050355A (ko) * | 2002-12-10 | 2004-06-16 | 삼성에스디아이 주식회사 | 열화학기상증착법을 이용한 탄소나노튜브의 제조방법 |
US8937575B2 (en) | 2009-07-31 | 2015-01-20 | Nantero Inc. | Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices |
US7858185B2 (en) | 2003-09-08 | 2010-12-28 | Nantero, Inc. | High purity nanotube fabrics and films |
US7560136B2 (en) | 2003-01-13 | 2009-07-14 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
WO2004065655A1 (en) * | 2003-01-13 | 2004-08-05 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US9574290B2 (en) | 2003-01-13 | 2017-02-21 | Nantero Inc. | Methods for arranging nanotube elements within nanotube fabrics and films |
US6764874B1 (en) * | 2003-01-30 | 2004-07-20 | Motorola, Inc. | Method for chemical vapor deposition of single walled carbon nanotubes |
DE602004018470D1 (de) * | 2003-02-25 | 2009-01-29 | Yeda Res & Dev | Nanoskopische struktur und diese verwendende vorrichtung |
US6938774B2 (en) * | 2003-04-15 | 2005-09-06 | Entegris, Inc. | Tray carrier with ultraphobic surfaces |
US6852390B2 (en) * | 2003-04-15 | 2005-02-08 | Entegris, Inc. | Ultraphobic surface for high pressure liquids |
US6845788B2 (en) * | 2003-04-15 | 2005-01-25 | Entegris, Inc. | Fluid handling component with ultraphobic surfaces |
US20040256311A1 (en) * | 2003-04-15 | 2004-12-23 | Extrand Charles W. | Ultralyophobic membrane |
US6911276B2 (en) * | 2003-04-15 | 2005-06-28 | Entegris, Inc. | Fuel cell with ultraphobic surfaces |
US6976585B2 (en) | 2003-04-15 | 2005-12-20 | Entegris, Inc. | Wafer carrier with ultraphobic surfaces |
US6923216B2 (en) * | 2003-04-15 | 2005-08-02 | Entegris, Inc. | Microfluidic device with ultraphobic surfaces |
US20050208268A1 (en) * | 2003-04-15 | 2005-09-22 | Extrand Charles W | Article with ultraphobic surface |
EP1631812A4 (en) * | 2003-05-14 | 2010-12-01 | Nantero Inc | SENSOR PLATFORM HAVING A HORIZONTAL NANOPHONE ELEMENT |
US7375369B2 (en) | 2003-09-08 | 2008-05-20 | Nantero, Inc. | Spin-coatable liquid for formation of high purity nanotube films |
US7416993B2 (en) * | 2003-09-08 | 2008-08-26 | Nantero, Inc. | Patterned nanowire articles on a substrate and methods of making the same |
TWI244159B (en) * | 2004-04-16 | 2005-11-21 | Ind Tech Res Inst | Metal nanoline process and its application on aligned growth of carbon nanotube or silicon nanowire |
US7335408B2 (en) * | 2004-05-14 | 2008-02-26 | Fujitsu Limited | Carbon nanotube composite material comprising a continuous metal coating in the inner surface, magnetic material and production thereof |
US7709880B2 (en) | 2004-06-09 | 2010-05-04 | Nantero, Inc. | Field effect devices having a gate controlled via a nanotube switching element |
US7129097B2 (en) * | 2004-07-29 | 2006-10-31 | International Business Machines Corporation | Integrated circuit chip utilizing oriented carbon nanotube conductive layers |
TWI399864B (zh) | 2004-09-16 | 2013-06-21 | Nantero Inc | 使用奈米管之發光體及其製造方法 |
WO2006132658A2 (en) * | 2004-09-21 | 2006-12-14 | Nantero, Inc. | Resistive elements using carbon nanotubes |
US7567414B2 (en) | 2004-11-02 | 2009-07-28 | Nantero, Inc. | Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches |
EP1825038B1 (en) * | 2004-12-16 | 2012-09-12 | Nantero, Inc. | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
US8941094B2 (en) | 2010-09-02 | 2015-01-27 | Nantero Inc. | Methods for adjusting the conductivity range of a nanotube fabric layer |
US9287356B2 (en) * | 2005-05-09 | 2016-03-15 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7271079B2 (en) * | 2005-04-06 | 2007-09-18 | International Business Machines Corporation | Method of doping a gate electrode of a field effect transistor |
US7479654B2 (en) | 2005-05-09 | 2009-01-20 | Nantero, Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
US9911743B2 (en) | 2005-05-09 | 2018-03-06 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8217490B2 (en) | 2005-05-09 | 2012-07-10 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7782650B2 (en) * | 2005-05-09 | 2010-08-24 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7835170B2 (en) | 2005-05-09 | 2010-11-16 | Nantero, Inc. | Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks |
US8513768B2 (en) | 2005-05-09 | 2013-08-20 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7781862B2 (en) | 2005-05-09 | 2010-08-24 | Nantero, Inc. | Two-terminal nanotube devices and systems and methods of making same |
US8183665B2 (en) * | 2005-11-15 | 2012-05-22 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8013363B2 (en) | 2005-05-09 | 2011-09-06 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US9196615B2 (en) | 2005-05-09 | 2015-11-24 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7598127B2 (en) | 2005-05-12 | 2009-10-06 | Nantero, Inc. | Nanotube fuse structure |
TWI264271B (en) * | 2005-05-13 | 2006-10-11 | Delta Electronics Inc | Heat sink |
US7915122B2 (en) * | 2005-06-08 | 2011-03-29 | Nantero, Inc. | Self-aligned cell integration scheme |
US7538040B2 (en) * | 2005-06-30 | 2009-05-26 | Nantero, Inc. | Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers |
WO2007030483A2 (en) * | 2005-09-06 | 2007-03-15 | Nantero, Inc. | Method and system of using nanotube fabrics as joule heating elements for memories and other applications |
US8366999B2 (en) * | 2005-09-06 | 2013-02-05 | Nantero Inc. | Nanotube fabric-based sensor systems and methods of making same |
US7927992B2 (en) * | 2005-09-06 | 2011-04-19 | Nantero, Inc. | Carbon nanotubes for the selective transfer of heat from electronics |
KR20080078879A (ko) * | 2005-12-19 | 2008-08-28 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | 탄소 나노튜브의 생성 |
JP2007212006A (ja) * | 2006-02-07 | 2007-08-23 | Nissan Motor Co Ltd | 触媒燃焼器の燃焼状態検知装置 |
US7638169B2 (en) * | 2006-03-28 | 2009-12-29 | Intel Corporation | Directing carbon nanotube growth |
DE102006048537A1 (de) * | 2006-10-13 | 2008-04-17 | Forschungszentrum Karlsruhe Gmbh | Vorrichtung mit einer Vielzahl von auf der isolierenden Oberfläche eines Substrats aufgebrachten Elektrodenpaaren, Verfahren zu ihrer Herstellung und ihre Verwendung |
US7956345B2 (en) * | 2007-01-24 | 2011-06-07 | Stmicroelectronics Asia Pacific Pte. Ltd. | CNT devices, low-temperature fabrication of CNT and CNT photo-resists |
KR100850499B1 (ko) * | 2007-01-31 | 2008-08-05 | 성균관대학교산학협력단 | 고밀도 탄소나노튜브 제조장치 및 방법 |
US20080238882A1 (en) * | 2007-02-21 | 2008-10-02 | Ramesh Sivarajan | Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs |
WO2008112764A1 (en) | 2007-03-12 | 2008-09-18 | Nantero, Inc. | Electromagnetic and thermal sensors using carbon nanotubes and methods of making same |
TWI461350B (zh) * | 2007-05-22 | 2014-11-21 | Nantero Inc | 使用奈米結構物之三極管及其製造方法 |
US8133793B2 (en) * | 2008-05-16 | 2012-03-13 | Sandisk 3D Llc | Carbon nano-film reversible resistance-switchable elements and methods of forming the same |
US8587989B2 (en) * | 2008-06-20 | 2013-11-19 | Nantero Inc. | NRAM arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same |
US8569730B2 (en) * | 2008-07-08 | 2013-10-29 | Sandisk 3D Llc | Carbon-based interface layer for a memory device and methods of forming the same |
US8466044B2 (en) * | 2008-08-07 | 2013-06-18 | Sandisk 3D Llc | Memory cell that includes a carbon-based memory element and methods forming the same |
US8835892B2 (en) * | 2008-10-30 | 2014-09-16 | Sandisk 3D Llc | Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same |
US8421050B2 (en) * | 2008-10-30 | 2013-04-16 | Sandisk 3D Llc | Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same |
US20100108976A1 (en) * | 2008-10-30 | 2010-05-06 | Sandisk 3D Llc | Electronic devices including carbon-based films, and methods of forming such devices |
US7915637B2 (en) | 2008-11-19 | 2011-03-29 | Nantero, Inc. | Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same |
US8183121B2 (en) * | 2009-03-31 | 2012-05-22 | Sandisk 3D Llc | Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance |
US8128993B2 (en) | 2009-07-31 | 2012-03-06 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US8574673B2 (en) | 2009-07-31 | 2013-11-05 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US20110034008A1 (en) * | 2009-08-07 | 2011-02-10 | Nantero, Inc. | Method for forming a textured surface on a semiconductor substrate using a nanofabric layer |
US8551806B2 (en) * | 2009-10-23 | 2013-10-08 | Nantero Inc. | Methods for passivating a carbonic nanolayer |
US8895950B2 (en) | 2009-10-23 | 2014-11-25 | Nantero Inc. | Methods for passivating a carbonic nanolayer |
US8351239B2 (en) * | 2009-10-23 | 2013-01-08 | Nantero Inc. | Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array |
US8492747B2 (en) | 2009-10-26 | 2013-07-23 | Samsung Electronics Co., Ltd. | Transistor and flat panel display including thin film transistor |
TW201119935A (en) * | 2009-12-04 | 2011-06-16 | Univ Nat Chiao Tung | Catalytic seeding control method |
US8222704B2 (en) | 2009-12-31 | 2012-07-17 | Nantero, Inc. | Compact electrical switching devices with nanotube elements, and methods of making same |
CN102834418B (zh) | 2010-02-12 | 2016-09-28 | 南泰若股份有限公司 | 用于控制纳米管织物层和膜中的密度、孔隙率和/或间隙大小的方法 |
US20110203632A1 (en) * | 2010-02-22 | 2011-08-25 | Rahul Sen | Photovoltaic devices using semiconducting nanotube layers |
US10661304B2 (en) | 2010-03-30 | 2020-05-26 | Nantero, Inc. | Microfluidic control surfaces using ordered nanotube fabrics |
JP6130787B2 (ja) | 2010-03-30 | 2017-05-17 | ナンテロ,インク. | ネットワーク、ファブリック及びフィルム内にナノスケール要素を配列させるための方法 |
CN102893421B (zh) | 2010-05-21 | 2016-01-20 | 默克专利股份有限公司 | 在塑料底材结构上的碳纳米管(cnt)聚合物基质的选择性蚀刻 |
KR101302058B1 (ko) * | 2011-05-25 | 2013-08-29 | 연세대학교 산학협력단 | 공중부유형 탄소나노튜브를 이용하는 가스센서 제작방법 |
US8878157B2 (en) | 2011-10-20 | 2014-11-04 | University Of Kansas | Semiconductor-graphene hybrids formed using solution growth |
US9650732B2 (en) | 2013-05-01 | 2017-05-16 | Nantero Inc. | Low defect nanotube application solutions and fabrics and methods for making same |
US10654718B2 (en) | 2013-09-20 | 2020-05-19 | Nantero, Inc. | Scalable nanotube fabrics and methods for making same |
US9299430B1 (en) | 2015-01-22 | 2016-03-29 | Nantero Inc. | Methods for reading and programming 1-R resistive change element arrays |
CN105350130A (zh) * | 2015-09-28 | 2016-02-24 | 复旦大学 | 水驱动的多级管道碳纳米管纤维及其制备方法 |
US9941001B2 (en) | 2016-06-07 | 2018-04-10 | Nantero, Inc. | Circuits for determining the resistive states of resistive change elements |
US9934848B2 (en) | 2016-06-07 | 2018-04-03 | Nantero, Inc. | Methods for determining the resistive states of resistive change elements |
CN106188614B (zh) * | 2016-07-12 | 2018-04-03 | 苏州赛福德备贸易有限公司 | 碳纳米管‑SiO2复合材料的制备方法 |
US10141528B1 (en) | 2017-05-23 | 2018-11-27 | International Business Machines Corporation | Enhancing drive current and increasing device yield in n-type carbon nanotube field effect transistors |
CN111235601B (zh) * | 2020-03-19 | 2021-04-20 | 国家纳米科学中心 | 一种复合薄膜、电催化析氢器件及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0931757A (ja) * | 1995-07-10 | 1997-02-04 | Res Dev Corp Of Japan | グラファイトファイバーの作成方法 |
JPH09228160A (ja) * | 1996-02-15 | 1997-09-02 | Kagaku Gijutsu Shinko Jigyodan | 炭素質ファイバーの作成方法 |
JPH11139815A (ja) * | 1997-11-07 | 1999-05-25 | Canon Inc | カーボンナノチューブデバイスおよびその製造方法 |
KR20020003782A (ko) * | 2000-07-04 | 2002-01-15 | 이정욱 | 탄소나노튜브의 제작 방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6346189B1 (en) * | 1998-08-14 | 2002-02-12 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube structures made using catalyst islands |
-
2000
- 2000-08-23 KR KR10-2000-0048907A patent/KR100376768B1/ko not_active IP Right Cessation
-
2001
- 2001-08-22 US US09/933,833 patent/US6833558B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0931757A (ja) * | 1995-07-10 | 1997-02-04 | Res Dev Corp Of Japan | グラファイトファイバーの作成方法 |
JPH09228160A (ja) * | 1996-02-15 | 1997-09-02 | Kagaku Gijutsu Shinko Jigyodan | 炭素質ファイバーの作成方法 |
JPH11139815A (ja) * | 1997-11-07 | 1999-05-25 | Canon Inc | カーボンナノチューブデバイスおよびその製造方法 |
KR20020003782A (ko) * | 2000-07-04 | 2002-01-15 | 이정욱 | 탄소나노튜브의 제작 방법 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100434271B1 (ko) * | 2001-06-07 | 2004-06-04 | 엘지전자 주식회사 | 탄소나노튜브 길이별 제조방법 |
KR100434272B1 (ko) * | 2001-06-28 | 2004-06-05 | 엘지전자 주식회사 | 탄소나노튜브의 수평성장 방법 |
US8535753B2 (en) | 2008-12-01 | 2013-09-17 | Samsung Electronics Co., Ltd. | Methods of forming carbon nanotubes |
Also Published As
Publication number | Publication date |
---|---|
US6833558B2 (en) | 2004-12-21 |
KR20020015795A (ko) | 2002-03-02 |
US20020025374A1 (en) | 2002-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100376768B1 (ko) | 전자, 스핀 및 광소자 응용을 위한 탄소나노튜브의 선택적 수평성장 방법 | |
US6764874B1 (en) | Method for chemical vapor deposition of single walled carbon nanotubes | |
US7361579B2 (en) | Method for selective chemical vapor deposition of nanotubes | |
US7491269B2 (en) | Method for catalytic growth of nanotubes or nanofibers comprising a NiSi alloy diffusion barrier | |
US6346189B1 (en) | Carbon nanotube structures made using catalyst islands | |
EP2586744B1 (en) | Nanostructure and precursor formation on conducting substrate | |
US6803260B2 (en) | Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method | |
US6808605B2 (en) | Fabrication method of metallic nanowires | |
KR100327496B1 (ko) | 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법 | |
KR20020003782A (ko) | 탄소나노튜브의 제작 방법 | |
JP2007534508A (ja) | ナノ構造及びそのようなナノ構造の製造方法 | |
KR100405974B1 (ko) | 카본나노튜브의 수평 성장 방법 | |
KR100434272B1 (ko) | 탄소나노튜브의 수평성장 방법 | |
JP2007105822A (ja) | 原子スケール金属ワイヤもしくは金属ナノクラスター、およびこれらの製造方法 | |
KR101399347B1 (ko) | 탄소나노튜브 이용한 나노 채널 제조 방법 및 이를 이용한 나노 구조물 | |
KR100434271B1 (ko) | 탄소나노튜브 길이별 제조방법 | |
GB2382718A (en) | Field effect transistor using horizontally grown carbon nanotubes | |
KR101319612B1 (ko) | 탄소나노튜브 수평성장방법 및 이를 이용한 전계 효과 트랜지스터 | |
US7718224B2 (en) | Synthesis of single-walled carbon nanotubes | |
US7645482B2 (en) | Method to make and use long single-walled carbon nanotubes as electrical conductors | |
KR100374042B1 (ko) | 탄소나노튜브의 선택적 제거를 통한 반도체 소자 제조방법 | |
KR101030434B1 (ko) | 탄소용융환원반응을 이용한 나노 홀 형성 방법 | |
KR100972913B1 (ko) | 반도체 소자의 제조 방법 | |
KR20090055205A (ko) | 선택성장에 의한 탄소나노튜브의 수평성장방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20000823 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20020926 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20030224 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20030306 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20030307 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20060228 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20070228 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20080229 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20080229 Start annual number: 6 End annual number: 6 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |