JPS6346138B2 - - Google Patents
Info
- Publication number
- JPS6346138B2 JPS6346138B2 JP16726279A JP16726279A JPS6346138B2 JP S6346138 B2 JPS6346138 B2 JP S6346138B2 JP 16726279 A JP16726279 A JP 16726279A JP 16726279 A JP16726279 A JP 16726279A JP S6346138 B2 JPS6346138 B2 JP S6346138B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- powder
- bronze
- sintered
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 46
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 18
- 229910052718 tin Inorganic materials 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 239000000314 lubricant Substances 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000001996 bearing alloy Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 description 21
- 239000000956 alloy Substances 0.000 description 21
- 239000010949 copper Substances 0.000 description 21
- 229910052742 iron Inorganic materials 0.000 description 15
- 239000011135 tin Substances 0.000 description 15
- 229910052802 copper Inorganic materials 0.000 description 14
- 229910000906 Bronze Inorganic materials 0.000 description 8
- 239000010974 bronze Substances 0.000 description 8
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 229910052745 lead Inorganic materials 0.000 description 4
- 229910000640 Fe alloy Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910001339 C alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910002549 Fe–Cu Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910020813 Sn-C Inorganic materials 0.000 description 1
- 229910018732 Sn—C Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000036314 physical performance Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010723 turbine oil Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
本発明は焼結軸受合金材の製造法に係り、強
度、靭性に優れていると共に摩擦係数その他の軸
受機能において卓越した特性を示す新規な焼結合
金を得ようとするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a sintered bearing alloy material, and an object thereof is to obtain a new sintered alloy that has excellent strength and toughness, and also exhibits excellent properties in terms of coefficient of friction and other bearing functions. It is something to do.
軸受材その他として用いられる焼結合金として
は従来から種々のものが知られているが、これを
大別すると銅系と鉄系とがあり、銅系にはCu−
Sn、Cu−Sn−C、Cu−Sn−Pb−C合金などが、
又鉄系にはFe−C、Fe−Pb−C、Fe−Cu、Fe
−Cu−C合金などが多様に提案され又実用化さ
れている。しかしこのような従来のものにおい
て、鉄系のものは銅系のものに比較して硬度が高
く、軸材などに対するなじみが必ずしも好ましい
ものとなし得ず、又耐食性などにおいても劣る
が、その機械的性質が優れ、したがつて薄肉化が
可能であると共に比較的安価であるなどのメリツ
トを有し、これらの特性に関しては銅系のものが
対称的な関係を有している。 Various sintered alloys have been known for use as bearing materials and other materials, but they can be roughly divided into copper-based and iron-based.
Sn, Cu-Sn-C, Cu-Sn-Pb-C alloys, etc.
In addition, iron-based materials include Fe-C, Fe-Pb-C, Fe-Cu, Fe
-Cu-C alloys and the like have been variously proposed and put into practical use. However, in such conventional products, iron-based products have higher hardness than copper-based products, do not necessarily conform well to shaft materials, etc., and are inferior in corrosion resistance. Copper-based materials have the advantage of having excellent physical properties, allowing for thin walls, and being relatively inexpensive. Copper-based materials have a symmetrical relationship with respect to these properties.
即ちこの種軸受などに用いられる焼結合金とし
ては上述したような軸材などに対するなじみ、耐
食性、機械的強度などの何れに関しても優れた性
能を有するものが好ましいことは当然であつて従
来から斯様な焼結合金を得べく種々に検討が重ね
られて来たところであるが、上記したような各特
性は技術的に相反するものと言うべく、それらを
有効に満足させる製品は未だ得られるに到つてお
らず、従つて一般的に銅系焼結合金は主として含
油軸受に利用すべきものとされ、機械部品には鉄
系焼結合金を採用すべきものとされている。 In other words, it is natural that the sintered alloy used in this type of bearing should be one that has excellent performance in terms of conformability to the shaft material, corrosion resistance, mechanical strength, etc., as described above, and has been conventionally used. Various studies have been conducted to obtain various sintered alloys, but since the above-mentioned characteristics are technically contradictory, a product that effectively satisfies them has not yet been obtained. Therefore, it is generally believed that copper-based sintered alloys should be used primarily for oil-impregnated bearings, and iron-based sintered alloys should be used for mechanical parts.
本発明は上記したような実情に鑑み検討を重ね
て創案されたものであつて、鉄粉に対し30〜70重
量%の青銅粉末を添加混合したものを成形し800
〜950℃で焼結し、気孔率15〜25容量%とするこ
とを提案するものであり、必要に応じ3%以下の
黒鉛粉末、二硫化モリブデン又はモリブデンのよ
うな固体潤滑剤を添加する。 The present invention was devised after repeated studies in view of the above-mentioned circumstances, and is made by molding a mixture of 30 to 70% by weight of bronze powder to iron powder.
It is proposed to be sintered at ~950°C to have a porosity of 15-25% by volume, and if necessary, add up to 3% graphite powder, molybdenum disulfide, or a solid lubricant such as molybdenum.
即ち斯かる本発明について更に説明すると、本
発明者は上記したような技術構想に立脚して鉄、
銅及び錫の如きを用いた各種焼結合金について仔
細な検討をなした結果、その銅及び錫を単体とし
て配合した場合とそれを合金とした青銅として利
用した場合においては焼結時の挙動を異にするこ
とを発見した。蓋しこの青銅は一般的にwt%で、
Cu:79〜90%、Sn:2〜11%、Zn:1〜12%の
ような組成を有し、他に若干のPbなどを含有す
るものであつて、このような範囲内においても
夫々の成分%範囲が種々に異ることによりそれな
りに異つた特性が得られるとしても、斯かる青銅
は何れにしても銅単体の場合よりは融点が低いも
のとなる。然して上記のように鉄、銅、錫の各粉
末を配合した場合にはSnが230℃程度のような比
較的低融点のものであるのに対し、Cuは1083℃、
Feは1539℃と夫々に融点が高く、このような3
種の金属粉末を混合成形して焼結させてもSnの
逆偏析の如きを発生し、所謂錫汗を発生してSn
含有量が高くδ相の多い硬質相を形成するような
こととなつて軸受材として好ましい軸材とのなじ
み性その他に欠けるものとならざるを得ないのに
対し、そのCuとSnとを一旦合金化させて得られ
る青銅粉末の場合には成程Fe粉末が用いられて
いるとしても一般的にFe系焼結金属において採
用される1100℃前後より相当に低い温度で焼結せ
しめられるだけでなしにその焼結時に青銅成分の
一部が鉄と共晶して青銅−鉄の合金組成を作るこ
ととなり、特にこのような青銅−鉄の合金組成に
よつて鉄粒子表面を被覆する傾向が認められて相
当量の鉄粉を配合したものにおいても単なる銅系
焼結合金に近い色彩、感覚を呈することとなつて
組成が均一で、鉄−銅焼結品において不可避的な
偏析などを見ることのない焼結合金を得しめる。
このように均一で偏析がなく、Fe粒子表面を青
銅−鉄の合金で被覆したような組成のものは充分
な耐食性を示すことは明かであり、又Fe粒子が
中核に存在し、それが青銅質合金で被覆された本
発明のものは従来の鉄系焼結合金と同等ないしそ
れ以上の機械的強度を有することとなり、しかも
その青銅質被覆層によつて軸材等に対するなじみ
も好ましいものとして得られる。 That is, to further explain the present invention, based on the technical concept as described above, the present inventor has developed an iron,
As a result of detailed studies on various sintered alloys using copper and tin, we found that the behavior during sintering differs when copper and tin are combined as single substances and when they are used as an alloy of bronze. I discovered something different. The bronze of the lid is generally wt%,
It has a composition of Cu: 79-90%, Sn: 2-11%, Zn: 1-12%, and also contains a small amount of Pb, etc. Even within these ranges, each Although different properties can be obtained by varying the percentage range of the components, such bronze will in any case have a lower melting point than copper alone. However, when iron, copper, and tin powders are blended as described above, Sn has a relatively low melting point of about 230℃, while Cu has a melting point of 1083℃,
Fe has a high melting point of 1539℃, and these three
Even when mixed metal powders are mixed and molded and sintered, a phenomenon similar to reverse segregation of Sn occurs, and so-called tin sweat is generated, causing the formation of Sn.
This results in the formation of a hard phase with a high content of δ phase, which results in a lack of compatibility with the shaft material, which is desirable as a bearing material. In the case of bronze powder obtained by alloying, even if a graded Fe powder is used, it can only be sintered at a temperature considerably lower than the approximately 1100°C generally used for Fe-based sintered metals. However, during sintering, a part of the bronze component becomes eutectic with iron to create a bronze-iron alloy composition, and in particular, such a bronze-iron alloy composition tends to coat the surface of iron particles. Even products containing a considerable amount of iron powder have a color and feel similar to those of simple copper-based sintered alloys, and the composition is uniform, with the inevitable segregation occurring in iron-copper sintered products. Achieving a sintered alloy with no damage.
It is clear that a composition with a uniform, non-segregating Fe particle surface coated with a bronze-iron alloy exhibits sufficient corrosion resistance. The material of the present invention coated with a high quality alloy has mechanical strength equivalent to or higher than that of conventional iron-based sintered alloys, and also has good conformability to shaft materials etc. due to its bronze coating layer. can get.
Fe粉末と前記青銅粉末との配合割合について
は青銅粉末を30〜70重量%の範囲内で適宜に変え
て実施することができる。即ち青銅粉末が30重量
%未満の場合には単なる鉄系焼結体に近いような
ものとなつて青銅との合金層も充分に得られない
ことから前記した本発明の特性を有効に得ること
ができない。又青銅粉末を70重量%以上も用いる
ようなことは前記したようなFe粒子による中核
的作用が得られず、その機械的強度等は単なる銅
系焼結合金に近いものとなり、特に青銅粉末とし
てSn分の高いものを用いるような場合には所謂
ハードスポツトとしての硬質相が顕われるような
傾向も示されて同じく本発明の目的を達し得な
い。 The blending ratio of the Fe powder and the bronze powder can be changed as appropriate within the range of 30 to 70% by weight of the bronze powder. That is, if the bronze powder content is less than 30% by weight, it becomes similar to a mere iron-based sintered body and a sufficient alloy layer with bronze cannot be obtained, so that the above-mentioned characteristics of the present invention cannot be effectively obtained. I can't. Furthermore, if more than 70% by weight of bronze powder is used, the above-mentioned core effect of Fe particles cannot be obtained, and its mechanical strength etc. will be close to that of a mere copper-based sintered alloy. When a material with a high Sn content is used, there is a tendency for a hard phase to appear as so-called hard spots, and the object of the present invention cannot be achieved.
焼結温度については上記したような範囲内での
青銅粉末配合量如何によつてそれなりに調整すべ
きであり、例えば青銅粉末が30重量%の場合(鉄
粉が70重量%)には950℃程度であり、又この青
銅粉末が70重量%(鉄粉が30重量%)の場合には
800℃程度を採用することが上記したような本発
明の特性を有効に発揮する所以であり、それらの
間の中間的配合関係の場合にはその程度に応じて
焼結温度を調整し操業する。何れにしても950℃
を超えるような高温で焼結すると、銅の融点
(1083℃)に近くなることから銅、鉄の共晶組織
が発達し硬度、抗張力が増大するものの軸受材と
しては相手軸材を摩滅させ摩擦係数の大きいもの
となつて好ましくない。 The sintering temperature should be adjusted accordingly depending on the amount of bronze powder mixed within the above range. For example, if the bronze powder is 30% by weight (iron powder is 70% by weight), the sintering temperature should be adjusted to 950℃. and if this bronze powder is 70% by weight (iron powder is 30% by weight)
Adopting a temperature of about 800°C is the reason for effectively exhibiting the characteristics of the present invention as described above, and in the case of an intermediate composition relationship between them, the sintering temperature is adjusted according to the degree of operation. . In any case, 950℃
When sintered at a high temperature exceeding 1,083℃, the temperature approaches the melting point of copper (1083℃), which develops a eutectic structure of copper and iron, increasing hardness and tensile strength. The coefficient becomes large, which is not desirable.
気孔率については15〜25容量%であつて、15容
量%未満の場合は強度的には充分であるが、含油
軸受材としての含油量が僅少となつて好ましい潤
滑性能を得難いこととなる。一方25容量%を超え
るような気孔率のものでは強度や靭性的に非常に
劣つたものとなり本発明の目的を達し得ない。 The porosity is 15 to 25% by volume, and if it is less than 15% by volume, it is sufficient in terms of strength, but the oil content as an oil-impregnated bearing material is so small that it is difficult to obtain desirable lubrication performance. On the other hand, if the porosity exceeds 25% by volume, the strength and toughness will be extremely poor and the object of the present invention cannot be achieved.
又場合によつては黒鉛質その他の固形潤滑剤を
3重量%以下の範囲で添加することによりその性
能をより改善することができる。本発明によるも
のの具体的な製造例について説明すると以下の如
くである。 In some cases, the performance can be further improved by adding graphite or other solid lubricants in an amount of 3% by weight or less. A specific manufacturing example of the product according to the present invention will be described below.
製造例 1
Cu:81.0〜87.0wt%、Sn:4.0〜6.0wt%、
Zn:4.0〜7.0wt%で残部がPb及び不純物より成
る青銅鋳物を溶融してから噴霧処理し得られた青
銅粉末の100〜350メツシユのものと150〜250メツ
シユの鉄粉を準備し、これらの等量に配合したも
のを用いて外径10mm、内径4mmで、高さが8mmの
軸受材に成形し、これを850℃で還元性雰囲気を
用い焼結し気孔率20容量%の製品を得た。Production example 1 Cu: 81.0-87.0wt%, Sn: 4.0-6.0wt%,
Bronze castings consisting of Zn: 4.0 to 7.0 wt% with the balance being Pb and impurities were melted and then sprayed to prepare 100 to 350 mesh of bronze powder and 150 to 250 mesh of iron powder. A bearing material with an outer diameter of 10 mm, an inner diameter of 4 mm, and a height of 8 mm was formed using a mixture of equal amounts of Obtained.
製造例 2
製造例1におけると同じ青銅粉及び鉄粉を用
い、青銅粉50wt%、鉄粉49wt%、黒鉛粉末1wt
%の割合で配合したものを製造例1と同じに成形
し、焼結させて気孔率20容量%の軸受材を得た。Production Example 2 Using the same bronze powder and iron powder as in Production Example 1, 50wt% bronze powder, 49wt% iron powder, 1wt graphite powder.
% was molded in the same manner as in Production Example 1 and sintered to obtain a bearing material with a porosity of 20% by volume.
又上記したような本発明製造例のものに対し、
別にFe系焼結合金として鉄粉98wt%に銅粉2wt
%として配合しこれを前記した各製造例と同じ寸
法の軸受材に成形したものを1050℃で焼結し気孔
率20容量%とした比較例1および銅粉90wt%に
錫粉10wt%の割合で配合したものを前記した製
造例と同じ寸法に成形し、800℃で焼結させ気孔
率20容量%とされた比較例2のものを準備し、こ
れらの焼結合金に夫々同じタービン油系の潤滑油
を含浸させたものについてその軸受性能を試験測
定した結果は次の第1図に示す通りであり、本発
明によるものが荷重15Kg/mm2以上、PV値1000以
上において従来の銅系軸受よりも優れた著しい軸
受性能の改善を得ていることが確認され、勿論鉄
系のものよりも全領域に亘つて好ましい特性のも
のであることを知つた。 In addition, for the production examples of the present invention as described above,
Separately, as Fe-based sintered alloy, 98wt% iron powder and 2wt% copper powder
Comparative Example 1 and the ratio of 90 wt% copper powder to 10 wt% tin powder. Comparative Example 2 was prepared by molding the mixture in the same dimensions as in the production example described above and sintering it at 800°C to have a porosity of 20% by volume, and each of these sintered alloys was treated with the same turbine oil system. The results of testing and measuring the performance of bearings impregnated with lubricating oil are shown in Figure 1 below. It was confirmed that a significant improvement in bearing performance was achieved, which was superior to that of bearings, and of course it was found to have more favorable characteristics over the entire range than iron-based bearings.
又上記したような本発明製造例及び比較例のも
のについてその機械的強度を検討し、即ち圧縮成
形、焼結して製品としたものの気孔率を10〜
25vol%に調整したものについてその圧環強度を
前記した気孔率20vol%の場合と共に測定した結
果は第2図に示す通りであり、本発明によるもの
が如何なる気孔率のものにおいても比較例より卓
越した機械的強度を示すものであることが確認さ
れた。 In addition, the mechanical strength of the above-mentioned production examples of the present invention and comparative examples was examined.
The results of measuring the radial crushing strength of the porosity adjusted to 25 vol% together with the case of the above-mentioned porosity of 20 vol% are shown in Figure 2. It was confirmed that it exhibits mechanical strength.
なお本発明者等は上記した青銅粉末として、別
に次のような成分組成のものについても夫々検討
したが、何れも同様な結果を得ることができた。 The inventors of the present invention also studied bronze powders having the following component compositions as described above, and were able to obtain similar results with each of them.
Cu:79〜83wt%、Sn:2.0〜4.0wt%、Zn:
8〜12wt%、Pb:3〜7wt%。 Cu: 79-83wt%, Sn: 2.0-4.0wt%, Zn:
8-12wt%, Pb: 3-7wt%.
Cu:86〜90wt%、Sn:7〜9wt%、Zn:3
〜5wt%、Pb:1wt%以下。 Cu: 86-90wt%, Sn: 7-9wt%, Zn: 3
~5wt%, Pb: 1wt% or less.
Cu:86.5〜89.5wt%、Sn:9〜11wt%、
Zn:1.0〜3.0wt%、Pb:1wt%以下。 Cu: 86.5-89.5wt%, Sn: 9-11wt%,
Zn: 1.0-3.0wt%, Pb: 1wt% or less.
Cu:86〜90wt%、Sn:5.0〜7.0wt%、Zn:
3.0〜5.0wt%、Pb:1〜3wt%。 Cu: 86-90wt%, Sn: 5.0-7.0wt%, Zn:
3.0-5.0wt%, Pb: 1-3wt%.
以上説明したような本発明によるときは軸材に
対するなじみや耐食性において従来の銅系焼結合
金と同等ないしそれ以上であり、しかもその機械
的強度においては従来の鉄系焼結合金に準ずる優
れた特質性を有する新規な焼結合金を的確に提供
し得るわけであり、その圧縮成形に当つても従来
の鉄系焼結合金の場合より金型の摩耗が少いなど
の特質を有するものであつて、工業的にその効果
の大きい発明である。 As explained above, the present invention is equivalent to or better than conventional copper-based sintered alloys in terms of conformability to the shaft material and corrosion resistance, and is superior in mechanical strength to that of conventional iron-based sintered alloys. It is possible to accurately provide a new sintered alloy with special characteristics, and when compression molding it, it has characteristics such as less wear on the mold than with conventional iron-based sintered alloys. This is an invention with great industrial effects.
図面は本発明の技術的内容を示すものであつ
て、第1図は本発明による焼結合金についての軸
受性能を従来法による比較例と共に測定した結果
を示す図表、第2図はそれらの機械的性能につい
ての測定結果を示す図表である。
The drawings show the technical contents of the present invention, and Figure 1 is a chart showing the results of measuring the bearing performance of the sintered alloy according to the present invention together with a comparative example using the conventional method. 2 is a chart showing measurement results regarding physical performance.
Claims (1)
〜12wt%を含有した青銅粉末を鉄粉に対して30
〜70重量%の範囲で添加混合したものを成形し
800〜950℃で焼結し、気孔率15〜25容量%とした
ことを特徴とする焼結軸受合金材の製造法。 2 Cu:79〜90wt%、Sn:2〜11wt%、Zn:1
〜12wt%を含有した青銅粉末を鉄粉に対して30
〜70重量%と黒鉛その他の固形潤滑剤粉末を3重
量%以下の範囲で添加混合した特許請求の範囲第
1項に記載の焼結軸受合金材の製造法。[Claims] 1 Cu: 79 to 90 wt%, Sn: 2 to 11 wt%, Zn: 1
Bronze powder containing ~12wt% to iron powder
Molding the mixture with addition in the range of ~70% by weight
A method for producing a sintered bearing alloy material characterized by sintering at 800 to 950°C to have a porosity of 15 to 25% by volume. 2 Cu: 79-90wt%, Sn: 2-11wt%, Zn: 1
Bronze powder containing ~12wt% to iron powder
70% by weight and graphite or other solid lubricant powder in a range of 3% by weight or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16726279A JPS5690954A (en) | 1979-12-22 | 1979-12-22 | Sintered alloy |
GB8037929A GB2067221B (en) | 1979-12-22 | 1980-11-26 | Sintered alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16726279A JPS5690954A (en) | 1979-12-22 | 1979-12-22 | Sintered alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5690954A JPS5690954A (en) | 1981-07-23 |
JPS6346138B2 true JPS6346138B2 (en) | 1988-09-13 |
Family
ID=15846469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16726279A Granted JPS5690954A (en) | 1979-12-22 | 1979-12-22 | Sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5690954A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6280242A (en) * | 1985-10-02 | 1987-04-13 | Nippon Kagaku Yakin Kk | Copper-base sintered thrust bearing containing oil |
JPS63186851A (en) * | 1987-01-29 | 1988-08-02 | Isamu Kikuchi | Compacted sintered alloy and its production |
JP2617334B2 (en) * | 1988-05-09 | 1997-06-04 | 菊池 勇 | Sintered alloy material and method for producing the same |
JPH036342A (en) * | 1989-06-01 | 1991-01-11 | Isamu Kikuchi | Sintered alloy and its production |
-
1979
- 1979-12-22 JP JP16726279A patent/JPS5690954A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5690954A (en) | 1981-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01225749A (en) | Sintered material for oilless bearing and production thereof | |
JP2918292B2 (en) | Sliding material | |
JPH01275735A (en) | Sintered alloy material and its manufacture | |
GB2333779A (en) | Composite metal powder for sintered bearing, and sintered oil-retaining bearing | |
US3795493A (en) | Bearing material for dry operation of the sintered bronze type | |
JPH0995759A (en) | Oil-impregnated sintered bearing and its production | |
JPS6346138B2 (en) | ||
JPH079046B2 (en) | Copper-based sintered body | |
JPH07166278A (en) | Copper-based sliding material and manufacturing method thereof | |
JPH0140907B2 (en) | ||
JPH01255631A (en) | Sintered alloy material and its manufacture | |
JP2553374B2 (en) | Sintered alloy material for oil-impregnated bearing and manufacturing method thereof | |
GB2067221A (en) | Sintered Alloys | |
JPS6133056B2 (en) | ||
JPH01136944A (en) | Sintered metallic material | |
JPS6253580B2 (en) | ||
JPH045745B2 (en) | ||
JPH0488139A (en) | Sliding material | |
US3728089A (en) | Aluminum-silicon base sintered porous bearing metals | |
JPH01283346A (en) | Sintered alloy material and its production | |
JPH0146580B2 (en) | ||
JPS59107006A (en) | Two-layered oil-impregnated bearing made of sintered fe material and its production | |
JPS6346139B2 (en) | ||
JPS6316455B2 (en) | ||
JPS6346140B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |