[go: up one dir, main page]

JP2553374B2 - Sintered alloy material for oil-impregnated bearing and manufacturing method thereof - Google Patents

Sintered alloy material for oil-impregnated bearing and manufacturing method thereof

Info

Publication number
JP2553374B2
JP2553374B2 JP63053694A JP5369488A JP2553374B2 JP 2553374 B2 JP2553374 B2 JP 2553374B2 JP 63053694 A JP63053694 A JP 63053694A JP 5369488 A JP5369488 A JP 5369488A JP 2553374 B2 JP2553374 B2 JP 2553374B2
Authority
JP
Japan
Prior art keywords
powder
copper
iron powder
iron
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63053694A
Other languages
Japanese (ja)
Other versions
JPH01230740A (en
Inventor
勇 菊池
眞紀 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63053694A priority Critical patent/JP2553374B2/en
Priority to GB8905402A priority patent/GB2216543B/en
Publication of JPH01230740A publication Critical patent/JPH01230740A/en
Priority to HK765/91A priority patent/HK76591A/en
Application granted granted Critical
Publication of JP2553374B2 publication Critical patent/JP2553374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 「発明の目的」 本発明は含油軸受用焼結合金材およびその製造法に係
り、軸材に対するなじみ性に優れ、摩擦係数が低くて運
転時における温度上昇が少なく、しかも負荷に対する抗
圧力が高くて耐食性に優れた音響機器用軸受の如きに適
した軸受材およびその好ましい製造法を提供しようとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION “Object of the Invention” The present invention relates to a sintered alloy material for oil-impregnated bearings and a method for producing the same, which is excellent in conformability to a shaft material, has a low friction coefficient, and has a small temperature rise during operation. Moreover, it is an object of the present invention to provide a bearing material suitable for a bearing for audio equipment, which has a high resistance to a load and is excellent in corrosion resistance, and a preferable manufacturing method thereof.

(産業上の利用分野) 回転軸を2個の軸受で支えるような使用条件において
同軸度の確保が容易で回転数の安定化を図り得る軸受材
およびその工業的な製造技術。
(Industrial field of application) A bearing material and its industrial manufacturing technology that can easily secure the coaxiality and stabilize the rotation speed under the use condition in which the rotating shaft is supported by two bearings.

従来の技術 焼結合金軸受材は含油軸受などに広く利用されてお
り、JIS規格においても各種産業用機器などについて種
々に規定され、その成分組成としても純鉄系、鉄−銅
系、鉄−炭素系、鉄−銅−炭素系、鉄−銅−鉛系、青銅
系、銅系、鉛青銅系など多様な材質、種類が規定されて
いる。
2. Description of the Related Art Sintered alloy bearing materials are widely used for oil-impregnated bearings, etc., and JIS standards are also stipulated for various industrial equipment, etc., and their composition is pure iron, iron-copper, iron- Various materials and types such as carbon-based, iron-copper-carbon-based, iron-copper-lead-based, bronze-based, copper-based, lead-bronze-based are defined.

なお例えば特開昭56−51554号公報などにおいては鉄
粉と黄銅粉を用いた圧粉体を焼結することが発表されて
いる。
Incidentally, for example, in Japanese Patent Laid-Open No. 56-51554, it is announced that a green compact made of iron powder and brass powder is sintered.

発明が解決しようとする問題点 上記したような従来のものにおいては、その成分組成
の如何によって夫々に異なった特性が得られるとして
も、一般的に強度を重視する場合には鉄粉を用いること
が不可欠的である。しかしこの鉄粉を用いたものにおい
ては摩擦係数が大であって軸部などの相手部材を損傷摩
耗する。又耐食性においても著しく劣っている不利があ
る。
Problems to be Solved by the Invention In the above-described conventional ones, iron powder is generally used when importance is attached to strength, although different properties can be obtained depending on the composition of the components. Is essential. However, in the case of using this iron powder, the friction coefficient is large and the mating member such as the shaft portion is damaged and worn. It also has the disadvantage of being extremely inferior in corrosion resistance.

斯うした鉄粉を用いた場合における不利をカバーする
ものが銅粉を用いた焼結材であるが、この銅系のものに
おいては強度的に不充分であると共に高価であるなどの
不利を有している。
What covers the disadvantages when using such iron powder is a sintered material using copper powder, but in this copper-based material there are disadvantages such as insufficient strength and high cost. Have

このような鉄系のものと銅系のものとの不利関係を調
整するものとして例えば特開昭57−169064号などに鉄粉
と銅粉を併用し、あるいは青銅、黄銅、鉛、洋白の如き
の合金粉を併用した上述のような合金材となるわけであ
るけれども、このような各金属または合金粉を併用した
従来のものにおいては各原料粉の比重、性状が異なるこ
とからその調整、取扱い上において偏析を生じ易く、又
鉄系粉が比較的大量に用いられたものにおいては鉄系材
としての摩擦係数や耐食性などに関する上記欠点が顕わ
れ、銅粉や合金粉を用いたことによるメリットは乏し
い。一方銅または銅系合金が比較的大量に用いられたも
のにおいては高価となると共に銅系材における前記不利
を避け得ないこととなる。
As a means for adjusting the disadvantageous relationship between such iron-based and copper-based materials, for example, Japanese Patent Laid-Open No. 57-169064 is used in combination with iron powder and copper powder, or bronze, brass, lead, nickel silver Although the alloy material as described above is used in combination with such alloy powder, in the conventional one in which each metal or alloy powder is used in combination, the specific gravity of each raw material powder is different, and the adjustment is performed, Segregation is liable to occur in handling, and in the case where iron-based powder was used in a relatively large amount, the above-mentioned drawbacks regarding the friction coefficient and corrosion resistance as an iron-based material were revealed, and it was due to the use of copper powder and alloy powder. The merit is scarce. On the other hand, when copper or a copper-based alloy is used in a relatively large amount, it becomes expensive and the above disadvantages of the copper-based material cannot be avoided.

なお上記したような従来のものにおいては圧縮成形性
が必ずしも好ましいものでなく、このため成形圧をそれ
なりに大きくし、あるいは固体潤滑材を配合して圧縮成
形の良好化を図るようなことが必要で、この固体潤滑材
を配合した製品は強度的に劣る不利を伴い、又圧縮成形
金型の耐用性が充分に得られないなどの欠点が認められ
る。
It should be noted that the compression moldability is not always preferable in the conventional ones as described above, and therefore it is necessary to increase the molding pressure to some extent or to improve the compression molding by blending a solid lubricant. However, the products containing this solid lubricant are disadvantageous in that they are inferior in strength and the durability of the compression molding die is not sufficiently obtained.

又上記のように単に銅粉を混合したものでは特性を異
にした両粉が各個に露出した状態となり、例えば鉄粉70
wt%と銅粉30wt%を入念に混合し圧粉成形してから焼結
したものについてその組織を顕微鏡的に拡大して示すと
第3図の如くであって鉄粉(1)の間に銅粉(2)が点
在し、その露出面積割合としてはその配合比に準じたも
のとなることは明らかである。
Further, as described above, in the case of simply mixing the copper powder, both powders having different characteristics are exposed in each piece, for example, iron powder 70
wt% and 30 wt% of copper powder were carefully mixed, compacted and then sintered, and the structure is microscopically magnified as shown in Fig. 3, showing that between iron powder (1) It is clear that the copper powder (2) is scattered and the exposed area ratio is in accordance with the compounding ratio.

一方今日においては斯うした軸受材の重要な用途の1
つに音響機器があり、例えばテーププレヤやビデオテー
プデッキにおけるキャプスタン軸の如きは慣性回転する
フライホイールを一端に取付けた条件下で高速から低速
までの回転をするものであるから負荷に対する抗圧力を
要すると同時に銅軸度の確保が不可欠であり、加えて低
摩擦係数と良好ななじみ性が必要であり、それによって
ワウ、フラッターやノイズその他の障害を有効に阻止す
ることが要請されるが、このような要請に即応すること
は非常に困難である。即ち安定したスピード(回転)を
得るために必要な前記フライホイールの如きが芯振れの
発生源として作用し、これを抑制して軸受けすることは
単なる強度やなじみの如きで解決し得ないものがあり、
このような関係を有効に満足し、比較的細い回転軸をそ
れなりの高速回転条件下において芯振れのない安定な状
態に軸受けさせることは技術的に至難とならざるを得な
いわけである。
On the other hand, today one of the important uses of such bearing materials is
One of them is audio equipment.For example, capstan shafts in tape players and video tape decks rotate from high speed to low speed under the condition that an inertially rotating flywheel is attached to one end. At the same time, it is indispensable to secure the copper axial degree, and in addition, it is necessary to have a low coefficient of friction and good conformability, so that it is required to effectively prevent wow, flutter, noise and other obstacles, It is very difficult to immediately respond to such requests. That is, the flywheel, which is necessary for obtaining a stable speed (rotation), acts as a source of core runout, and suppressing the bearing and bearing it is just strength or familiarity and can not be solved. Yes,
It is inevitably technically difficult to satisfy such a relationship effectively and to allow a relatively thin rotary shaft to be supported in a stable state without center runout under a moderately high speed rotation condition.

「発明の構成」 (課題を解決するための手段) 1.Fe:20〜55wt%、Cu:30〜75wt%、Sn:2〜12wt%、Pb:
2.5〜9wt%、 を含有し、前記Fe粒子の95%以上の周面がCuまたは銅合
金によって被覆されたことを特徴とし、気孔率15〜28vo
l%とされた焼結組織を有する含油軸受用焼結合金材。
"Structure of the Invention" (Means for Solving the Problems) 1. Fe: 20 to 55 wt%, Cu: 30 to 75 wt%, Sn: 2 to 12 wt%, Pb:
2.5 to 9 wt% of the Fe particles, and 95% or more of the Fe particles are covered with Cu or a copper alloy, and have a porosity of 15 to 28 vo
A sintered alloy material for oil-impregnated bearings having a sintered structure of 1%.

2.鉄粉の周面に25〜60wt%の銅を被覆率95%以上で被覆
した粉末100重量部に錫−鉛合金化粉または銅−錫−鉛
合金化粉の何れか一方または双方を10〜150重量部を添
加混合した原料粉を圧粉成形してから500〜780℃で焼結
することを特徴とし、次いでサイジングする含油軸受用
焼結合金材の製造法。
2. One or both of tin-lead alloyed powder or copper-tin-lead alloyed powder is added to 100 parts by weight of iron powder coated with 25 to 60 wt% of copper at a coverage of 95% or more. A method for producing a sintered alloy material for oil-impregnated bearings, which comprises compacting and mixing 10 to 150 parts by weight of a raw material powder, and then sintering at 500 to 780 ° C.

(作用) 粉状で配合されたFe:20wt%以上は焼結合金体におい
て骨格的に機能し、強度、特に負荷に対する抗圧力を確
保しながら回転軸の振れ防止作用をなす。このFeが55wt
%以下とされることによりCuおよびSn、Pbをそれぞれ適
度に配合することを可能とし、軸受に対するなじみ性を
得しめ、又摩擦係数の低減、温度上昇の低下などを得し
める。
(Function) Fe: 20 wt% or more mixed in powder form functions as a skeleton in the sintered alloy body, and has a function of preventing runout of the rotating shaft while securing strength, particularly coercive force against load. This Fe is 55wt
By setting the content to be not more than%, Cu, Sn, and Pb can be appropriately mixed, and the compatibility with the bearing can be obtained, the friction coefficient can be reduced, and the temperature rise can be reduced.

Cuが30wt%以上とされることにより少なくとも前記Fe
粒子表面を被覆率95%以上のように充分に被覆せしめる
と共に被覆の厚さを適切に得しめ、軸受条件下において
もFe粒子の軸受時における露出をなからしめると共に耐
食性などを確保する。このCuが70wt%を上限とすること
によりFeおよびSn、Pbの最低必要量を配合させ、それら
による作用を適切に得しめる。
When the Cu content is 30 wt% or more, at least the Fe
The particle surface is sufficiently covered so that the coverage is 95% or more and the thickness of the coating is appropriately obtained, so that even under bearing conditions, Fe particles are exposed during bearing and corrosion resistance is secured. By setting the upper limit of this Cu to 70 wt%, the minimum required amounts of Fe, Sn, and Pb can be mixed, and the action due to them can be properly obtained.

前記Cuによる被覆率が95%以上とされたことにより鉄
粉粒子をCuによって適切な完全状態に被覆し、耐食性を
充分に確保する。
Since the coating rate with Cu is 95% or more, the iron powder particles are coated with Cu in an appropriate perfect state, and sufficient corrosion resistance is secured.

Snが2wt%以上、Pb:2.5wt%以上が含有されることに
より軸材に対するなじみを良好にし、又摩擦係数の低減
などを適切に得しめる。Snの上限を12wt%とすることに
より低コスト性を得しめ、又Pbの上限を9wt%、特に7wt
%とすることと相俟って前記したFeおよびCuとのバラン
スを確保して上述したような特性を有効に得しめること
ができる。
By containing Sn in an amount of 2 wt% or more and Pb: 2.5 wt% or more, the compatibility with the shaft material is improved, and the friction coefficient can be appropriately reduced. Low cost can be obtained by setting the upper limit of Sn to 12wt%, and the upper limit of Pb is 9wt%, especially 7wt.
%, In combination with the above content, the balance with Fe and Cu can be secured, and the above-mentioned characteristics can be effectively obtained.

気孔率を15容量%以上とすることにより軸受として好
ましい含油量を確保し、有効な潤滑作用を得しめる。又
その上限を28容量%とすることにより軸受として適当な
機械的強度を得しめる。鉄粉に対し重量比で銅を25%以
上被覆させることにより鉄粉の露出を有効に防止し、耐
食性の向上と圧粉成形の容易化を図る。その被覆銅分の
上限を60wt%とすることにより錫−鉛などの適切な添
加、合金化を図らしめる。
By setting the porosity to 15% by volume or more, a preferable oil content for the bearing can be secured and an effective lubricating effect can be obtained. Also, by setting the upper limit to 28% by volume, it is possible to obtain an appropriate mechanical strength as a bearing. By covering more than 25% by weight of copper with respect to the iron powder, the exposure of the iron powder is effectively prevented, the corrosion resistance is improved and the powder compacting is facilitated. By setting the upper limit of the coated copper content to 60 wt%, tin-lead and the like can be appropriately added and alloyed.

このように銅の被覆された鉄粉による圧粉成形体は鉄
粉による骨格的機能を確保し、上記したようなその他の
配合金属分との相互作用で軸材の芯振れなどを適切に抑
止し、しかも軸材との間のなじみを良好にし、耐荷重性
などを充分に得しめる。勿論、上記のようにして鉄粉の
相当量が配合されることにより、製品の低コスト化をも
たらす。
In this way, the powder compact formed of iron powder coated with copper secures the skeletal function of iron powder, and properly suppresses the runout of the shaft material due to the interaction with other compounded metal components as described above. In addition, the compatibility with the shaft material is improved, and load resistance and the like can be sufficiently obtained. Of course, by adding a considerable amount of iron powder as described above, the cost of the product can be reduced.

前記のような銅被覆鉄粉に錫−鉛または銅−錫−鉛の
合金化銅粉を添加混合することにより軸材などの相手部
材に対するなじみ性が一層改善され、摩擦係数や連続回
転時における温度上昇を更に低下する。又この錫、鉛と
の合金化銅粉は前記銅被覆鉄粉の焼結性を良好にし、45
0〜750℃程度の比較的低温で好ましい焼結状態を形成す
る。
By adding and mixing tin-lead or an alloyed copper powder of copper-tin-lead to the copper-coated iron powder as described above, the conformability to the counterpart member such as the shaft material is further improved, and the friction coefficient and the continuous rotation The temperature rise is further reduced. This alloyed copper powder with tin and lead improves the sinterability of the copper-coated iron powder,
A favorable sintered state is formed at a relatively low temperature of about 0 to 750 ° C.

このような鉛、錫との合金化銅粉は銅被覆鉄粉100重
量部に対し10重量部未満ではそれらの効果を充分に得る
ことができず、一方150重量部を超えてもそれらの効果
が飽和し、しかも前記した銅被覆鉄粉における鉄粉の骨
格ないし中核的機能が阻害される傾向が認められ、勿論
高価となるので好ましくない。
Such an alloyed copper powder with lead and tin cannot sufficiently obtain those effects when the amount is less than 10 parts by weight with respect to 100 parts by weight of the copper-coated iron powder, while those effects are obtained even when it exceeds 150 parts by weight. Is saturated, and the skeleton or core function of the iron powder in the copper-coated iron powder is likely to be impaired, which of course is expensive, which is not preferable.

前記したような鉄粉に対する銅被覆および錫、鉛との
合金化銅粉配合は何れにしても圧粉成形を容易とする。
In any case, the above-described copper coating on iron powder and alloying copper powder with tin and lead facilitates powder compaction.

(実施例) 上記したような本発明によるものの具体的な実施態様
について説明すると、本発明においては既述のように銅
を被覆した鉄粉を用いるもので、このような鉄粉に対す
る銅の被覆は電気メッキ法、溶融メッキ法、無電解メッ
キ法、溶射法あるいはドライプレーティング法などの何
れによっても実施できる。具体例な銅被覆の若干は第
1、2図に示す如くであって鉄粉(1)の表面に銅被覆
(2a)が形成されて、実質的全体を被覆しているが部分
的に突起部(3)ないし微粉部(3a)が同じく銅によっ
て形成されたものとして得られる。
(Example) Explaining specific embodiments of the present invention as described above, in the present invention, the iron powder coated with copper as described above is used, and the coating of copper on such iron powder is described. Can be carried out by any of an electroplating method, a hot dipping method, an electroless plating method, a thermal spraying method or a dry plating method. Some of the specific copper coatings are as shown in FIGS. 1 and 2, and the copper coating (2a) is formed on the surface of the iron powder (1) to cover substantially the entire surface but partially project. The part (3) or the fine powder part (3a) is obtained as well, which is also made of copper.

上記のような銅の被覆量については通電量と時間、あ
るいは銅浴に対する加熱温度と鉄粉に対する予熱温度の
如き、被覆処理条件を適宜に選ぶことによりその程度を
適宜に選ぶことができるが、本発明において採用する範
囲は25〜60wt%であることは前記の通りである。より好
ましい範囲は28〜45wt%である。
Regarding the coating amount of copper as described above, the amount can be appropriately selected by appropriately selecting coating treatment conditions such as the amount of electricity and time, or the heating temperature for the copper bath and the preheating temperature for the iron powder, As described above, the range adopted in the present invention is 25 to 60 wt%. A more preferable range is 28 to 45% by weight.

何れにしてもその被覆処理により鉄粒子(1)の周面
は完全状態に銅被膜(2a)で被包されることは上記した
第1、2図の如くであって、被覆率は少なくとも95%以
上とされる。上記のような銅被膜(2a)により小突部
(3)が形成されていることを顕微鏡観察により確認し
得るとしても銅分によるもので圧粉成形時に適宜変形、
分断せしめられ、何れにしても鉄粉自体を圧粉成形する
より容易に圧粉成形効果が与えられる傾向があり、又鉄
粉と銅粉を混合する場合における如き偏析その他の不都
合を発生することがない。
In any case, the peripheral surface of the iron particles (1) is completely covered with the copper coating (2a) by the coating treatment as shown in FIGS. 1 and 2 above, and the coverage is at least 95%. % Or more. Even if it is possible to confirm by microscopic observation that the small protrusions (3) are formed by the copper coating (2a) as described above, it is due to the copper content and is appropriately deformed at the time of compacting,
In any case, it tends to give a compacting effect more easily than compacting iron powder itself, and also causes segregation and other inconveniences such as when mixing iron powder and copper powder. There is no.

なお、原材たる鉄粉粒子の大きさについては特に制限
されないが、純鉄系焼結体製造のために従来一般的に採
用されている100メッシュ以下程度(320メッシュ以下も
含む)より更に拡大した粒子範囲のものを採用すること
ができる。即ち比較的細粒のものでも銅被覆によって増
径され粒径的に従来一般的範囲のものと同様に処理する
ことが可能であるし、上記のように圧粉成形が容易とな
ることから従来普通の粒径範囲を超えて大径のものであ
っても従来法同然の圧粉成形処理で同等ないしそれより
容易に成形することができる。
The size of the iron powder particles as the raw material is not particularly limited, but it is further expanded from the 100 mesh or less (including 320 mesh or less) that has been generally adopted in the past for producing pure iron-based sintered bodies. Those having the above-mentioned particle range can be adopted. In other words, even relatively fine-grained ones can be treated in the same manner as those in the conventional general range in terms of particle size by copper coating and the particle size can be treated in the same manner as in the conventional general range. Even those having a large diameter exceeding the normal particle size range can be formed to the same or more easily by a compacting process similar to the conventional method.

錫−鉛または銅−錫−鉛の合金化粉末としては、Sn:2
〜12wt%、好ましくは5〜8wt%、Pb:1〜15wt%で好ま
しくは2〜8wt%、残部がCuよりなるものあるいはSnに
対しPbを10〜63wt%を含有させたものであって、それら
が合金化状態とされたものである。即ちこのように合金
化され、特にSnとPbとが合金化されることにより半田状
の挙動を示すこととなり、このものがCuと合金化されて
前記のような銅被覆鉄粉ともなじみのよいものとなる。
合金材においてSnが2wt%未満、Pbが2.5wt%未満では上
記のような関係が得難く、一方Snが12wt%を超え、又Pb
が7wt%を超えるときは銅被覆鉄粉との焼結による結合
性が劣化する傾向が認められる。
As tin-lead or copper-tin-lead alloying powder, Sn: 2
-12 wt%, preferably 5-8 wt%, Pb: 1-15 wt% preferably 2-8 wt%, the balance consisting of Cu or Sn containing Pb 10-63 wt%, They are alloyed. That is, alloyed in this way, in particular Sn and Pb will be a solder-like behavior by alloying, which is alloyed with Cu and is also familiar with the copper-coated iron powder as described above. Will be things.
In alloy materials, if Sn is less than 2 wt% and Pb is less than 2.5 wt%, it is difficult to obtain the above relationship, while Sn exceeds 12 wt% and Pb
When the content exceeds 7 wt%, the bondability due to sintering with the copper-coated iron powder tends to deteriorate.

銅被覆鉄粉と銅−錫−鉛合金化銅粉の配合割合につい
ては前記した通りであるが好ましい配合割合としては銅
被覆鉄粉100重量部に対して10〜150重量部である。
The compounding ratio of the copper-coated iron powder and the copper-tin-lead alloyed copper powder is as described above, but the preferred compounding ratio is 10 to 150 parts by weight with respect to 100 parts by weight of the copper-coated iron powder.

焼結のための圧粉成形は、一般的に気孔率23〜38vol
%、特に26〜32vol%程度であって、26vol%未満、特に
23vol%未満では焼結後に行なわれるサイジングのため
の適正な圧縮代を確保し、且つこのサイジング後におい
て含油軸受などとされる場合に目的の含油率を得るため
の気孔率を得ることが困難となる。これに対しこの気孔
率が32vol%を超え、特に38vol%を超えるような大きな
気孔率のものでは圧粉成形後の取扱いないし焼結処理中
においても部分的欠損ないし破壊の可能性が高くなり、
好ましくない。
Compacting for sintering generally has a porosity of 23 to 38 vol.
%, Especially about 26 to 32 vol%, and less than 26 vol%, especially
If it is less than 23 vol%, it is difficult to secure an appropriate compression allowance for sizing performed after sintering, and to obtain the porosity for obtaining the target oil content after the sizing when it is used as an oil-impregnated bearing. Become. On the other hand, if the porosity exceeds 32 vol%, and especially if it exceeds 38 vol%, there is a high possibility of partial defects or destruction even during handling after sintering or during sintering.
Not preferred.

なお本発明によるものは前記のように銅被覆された鉄
粉として、一般的には略同一の被覆率のものを採用する
が、場合によっては異なった被覆率のものを混合して採
用することができる。例えば銅被覆率10%のものと20%
または30%のものを混合し、このものに更に前記した合
金化銅粉を配合する。
As the iron powder coated with copper according to the present invention, generally, the iron powders having substantially the same coverage are adopted, but in some cases, the iron powders having different coverages are mixed and used. You can For example, copper coverage of 10% and 20%
Alternatively, 30% is mixed, and the alloyed copper powder described above is further added to this.

圧粉成形は一般的に2〜3Ton/cm2程度の加圧力で金型
の上下に対設されたパンチにより圧粉成形する。この成
形圧は鉄粉に対する成形圧の70〜85%程度である。
Generally, the powder compaction is performed by a punch provided in the upper and lower sides of a mold with a pressing force of about 2 to 3 Ton / cm 2 . This molding pressure is about 70 to 85% of the molding pressure for iron powder.

上記のように圧粉成形されたものは一般的に還元性な
いし不活性雰囲気において焼結される。この焼結温度は
一般的に500〜780℃であるが、好ましい範囲としては55
0〜700℃であり、焼結時間は30〜60分程度の範囲で適宜
に実施することができる。
The material compacted as described above is generally sintered in a reducing or inert atmosphere. The sintering temperature is generally 500 to 780 ° C, but a preferable range is 55
It is 0 to 700 ° C., and the sintering time can be appropriately carried out within the range of about 30 to 60 minutes.

前記のような焼結後にサイジング処理して目的の寸法
および気孔率をもった製品とするもので、このようなサ
イジングのための圧縮代は一般的に前記焼結前記気孔率
の20〜35%程度であって、サイジング後に得られる製品
の気孔率は15〜28%のものとして得られる。15%未満で
は軸受の如きとして用いるに当って好ましい含油量が得
られないことになり、一方28%以上では強度的に劣った
製品となる。より好ましい製品気孔率としては18〜23%
であって、適切な強度、含油率などを得しめる。
The above-mentioned sintering is followed by sizing treatment to obtain a product having a desired size and porosity, and the compression margin for such sizing is generally 20 to 35% of the porosity of the sintering. The porosity of the product obtained after sizing is of the order of 15-28%. If it is less than 15%, a favorable oil content for use as a bearing cannot be obtained, while if it is more than 28%, the product is inferior in strength. More preferable product porosity is 18-23%
Therefore, it is possible to obtain appropriate strength and oil content.

固体潤滑材としての黒鉛、二硫化モリブデンなどは粉
末として添加されることは当然であるが、黒鉛のような
固体潤滑材は鉄紛、洋白粉、青銅紛の何れに対しても比
重が小であって、このような黒鉛の如きを単に混合して
も他の原料粉に対し均一状態に分散させることが困難で
あり、しかも搬送荷役中およびプレスホッパーへの入替
え、圧粉成形時などにおいて黒鉛粉の浮上、片寄りなど
による偏析が発生する。そこでこのような黒鉛の如き固
体潤滑材に関し比較的粗粉のものを採用し、しかもその
微粉分を分級して除去したものを用いると有効であるこ
とが実験により確認された。即ち上記黒鉛粉末として一
般的に市販されているものが1〜30μm、あるいは1〜
50μmの如きであるのに対し本発明者等が好ましい固体
潤滑材としての黒鉛は10〜150μm、特に20〜100μmと
され、粗粉であると共に10μmまたは20μm以下の微粉
分をカットしたものであり、それによって均一分散を容
易化し、また荷役その他の取扱い時における偏析発生を
可及的に防止し得る。前記のような10μm未満、あるい
は20μm未満のような微粉分は液中での分級処理で粉塵
の発生がなく、しかも適切に分級し得る。又このような
固体潤滑材に対しては軽度の銅被覆を施し、圧粉成形、
サイジングを経ることでその被覆から露出するようにす
ることができる。
Graphite, molybdenum disulfide, etc. as solid lubricants are naturally added as powders, but solid lubricants such as graphite have a small specific gravity for iron powder, nickel silver powder, and bronze powder. Therefore, it is difficult to disperse the raw materials in a uniform state with other raw material powders simply by mixing such graphite, and the graphite is not used during the handling of cargo, replacement with the press hopper, compaction molding, etc. Segregation occurs due to the floating of the powder and offset. Therefore, experiments have confirmed that it is effective to use a relatively coarse powder of a solid lubricant such as graphite, and to use a powder obtained by classifying and removing the fine powder. That is, the commercially available graphite powder is generally 1 to 30 μm, or 1 to 30 μm.
The graphite as a solid lubricant, which is preferred by the present inventors to have a particle size of 50 μm, has a particle size of 10 to 150 μm, and particularly 20 to 100 μm. Therefore, uniform dispersion can be facilitated, and segregation can be prevented as much as possible during cargo handling and other handling. Fine particles having a particle size of less than 10 μm or less than 20 μm as described above do not generate dust in a classification treatment in a liquid, and can be appropriately classified. For such solid lubricants, light copper coating is applied, and powder compacting,
It can be exposed from the coating through sizing.

本発明によるものの具体的な製造例について説明する
と、以下の如くである。
A specific example of manufacturing the device according to the present invention is as follows.

製造例 粒径が100メッシュ以下の鉄粉に対して銅メッキ処理
し、そのメッキ処理時間を含む通電条件を調整して銅被
覆量が40%とされたものを準備し、又これとは別に5%
Sn、5%Pbの合金化銅粉、63%Sn、37%Pbの錫−鉛合金
粉および銅を軽度に被覆した二硫化モリブデン(MoS2
粉を準備し、これらによって次の第1表のようなNo.1〜
No.7の配合をなした。
Production example Copper powder is applied to iron powder with a particle size of 100 mesh or less, and the electrical current conditions including the plating time are adjusted to prepare a copper coating amount of 40%. 5%
Sn, 5% Pb alloyed copper powder, 63% Sn, 37% Pb tin-lead alloy powder and molybdenum disulfide (MoS 2 ) lightly coated with copper
Prepare the powder, and use these to No. 1 ~ as shown in Table 1 below.
Made No.7.

即ちこれらNo.1〜No.7による配合について、それらの
具体的成分組成および理論比重は次の第2表に示す通り
である。
That is, regarding the formulations according to No. 1 to No. 7, their specific component compositions and theoretical specific gravities are as shown in Table 2 below.

上記のような各原料粉は内径6.02mm、外径12.07mm
で、長さが10mmを目標として圧粉成形し、これを連続式
焼結炉に70mm/分の速度で装入し、650℃で焼結処理し
た。このものの成形密度、焼結密度、有効多孔率、外径
およびその変化、圧環強さおよび硬度を求めた結果は次
の第3表の如くである。
Each raw material powder as described above has an inner diameter of 6.02 mm and an outer diameter of 12.07 mm.
Then, powder compaction was performed with a target length of 10 mm, which was charged into a continuous sintering furnace at a rate of 70 mm / min and sintered at 650 ° C. The results of the molding density, sintered density, effective porosity, outer diameter and its change, radial crushing strength and hardness of this product are shown in Table 3 below.

以上のようにして得られた焼結体はそれぞれ内径6.08
mm、気孔率25容量%、外径12.00mmを目標としてサイジ
ングして製品とした。サイジング後の気孔率は24.8〜2
5.3%であって、含油に好ましい組織を有していること
が知られた。更に上記のような各製品について湿度80
%、温度60℃の耐食試験を行い、錆の発生が認められる
までの期間を測定したが何れも120日以上であって好ま
しい耐食性を有していることが確認された。
The sintered bodies obtained as described above each have an inner diameter of 6.08
mm, porosity of 25% by volume, and outer diameter of 12.00 mm were sized to obtain a product. Porosity after sizing is 24.8-2
It was 5.3%, and it was known to have a preferable structure for oil impregnation. Furthermore, the humidity of 80
%, A corrosion resistance test was carried out at a temperature of 60 ° C., and the period until the occurrence of rust was measured. All were 120 days or longer, and it was confirmed that they had favorable corrosion resistance.

得られた製品について1500rpmおよび5000rpmで回転す
る回転軸を支承させ、その温度上昇を試験したが回転開
始40分後(一般的に30分まで温度上昇し、それ以後は殆
ど温度変化なし)の上昇温度は1500rpmで15〜16℃、500
0rpmで24〜25℃程度であって軸受として好ましいことが
確認された。
About the obtained product, the rotating shaft rotating at 1500 rpm and 5000 rpm was supported, and the temperature rise was tested, but the temperature rises 40 minutes after the start of rotation (generally the temperature rises up to 30 minutes and there is almost no temperature change thereafter). Temperature is 1500 rpm at 15-16 ℃, 500
It was confirmed that the temperature was about 24 to 25 ° C. at 0 rpm, which was preferable as a bearing.

またこのような本発明によるものに対し、比較材とし
て同じく鍍金による銅被覆量40%である鉄粉96.4重量部
に錫粉3.6重量部のみを添加した原料粉により前記製造
例と同じに軸受を製造し、同様になじみ性に関する試験
を行った結果は、1500rpmのときの温度上昇が30〜31℃
で、5000rpmのときは34〜35℃であり、本発明によるも
のより10℃前後またはそれ以上も高い温度上昇を示し
た。
Further, in contrast to the one according to the present invention, as a comparative material, a bearing was prepared in the same manner as in the above-mentioned manufacturing example by using a raw material powder obtained by adding only 3.6 parts by weight of tin powder to 96.4 parts by weight of iron powder having a copper coverage of 40% by plating. As a result of manufacturing and similarly testing the compatibility, the temperature rise at 1500 rpm is 30 to 31 ° C.
The temperature was 34 to 35 ° C. at 5000 rpm, and the temperature increase was about 10 ° C. or higher than that according to the present invention.

なお本発明者等は前記したような調合No.1〜7のもの
についてその焼結温度を600℃としたバッチ焼結処理お
よび650℃および700℃とし、焼結時間を1時間とした焼
結処理を実施したが、焼結温度および時間が高くなるこ
とによって圧環強さで2〜6kg/mm2、硬度でも2〜25BRH
程度の範囲内で変動するとしてもその他の特性について
は何れも前記した第3表のものに準ずるものであった。
The inventors of the present invention prepared the above-mentioned compound Nos. 1 to 7 by batch sintering at a sintering temperature of 600 ° C. and sintering at 650 ° C. and 700 ° C. for a sintering time of 1 hour. Although the treatment was carried out, the radial crushing strength was 2 to 6 kg / mm 2 and the hardness was 2 to 25 BRH due to the increase in sintering temperature and time.
Even if it fluctuates within a certain range, the other properties were all in accordance with those shown in Table 3 above.

「発明の効果」 以上説明したような本発明によるときは軸受材に対す
るなじみ性に優れ、耐食性が高いと共に摩擦係数が低く
て軸受時における温度上昇が少なく、しかも抵抗力があ
るが同軸度等の精度確保が容易な軸受材を的確に提供し
得るものであって、工業的にその効果の大きい発明であ
る。
[Advantages of the Invention] According to the present invention as described above, the conformability to the bearing material is excellent, the corrosion resistance is high, and the friction coefficient is low so that the temperature rise at the time of bearing is small and the resistance is high, but the coaxiality and the like This is an invention that can accurately provide a bearing material whose accuracy is easily ensured and which has a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の技術的内容を示すものであって、第1図
と第2図は本発明で用いる銅被覆鉄粉の若干例について
その被覆状態を顕微鏡的に拡大して示した各断面図、第
3図は従来の技術による鉄粉と銅粉を70:30として圧粉
成形されたものの表面粒子状態の1例を顕微鏡的に拡大
して示した説明図である。 然してこれらの図面において、(1)は鉄粉、(2)は
銅粉、(2a)は銅被覆層、(3)は微粉分を夫々示すも
のである。
The drawings show the technical contents of the present invention, and FIGS. 1 and 2 are cross-sectional views showing the coating state of some examples of the copper-coated iron powder used in the present invention in a microscopically enlarged manner. FIG. 3 is a microscopically enlarged view showing an example of a surface particle state of a conventional powder compacted with iron powder and copper powder at 70:30. However, in these drawings, (1) shows iron powder, (2) shows copper powder, (2a) shows a copper coating layer, and (3) shows fine powder.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe:20〜55wt%、Sn:2〜12wt%、Pb:2.5〜9
wt%、 残部Cuからなり、前記Fe粒子の95%以上の周面がCuまた
は銅合金によって被覆されたことを特徴とし、気孔率15
〜28vol%とされた焼結組織を有する含油軸受用焼結合
金材。
1. Fe: 20-55 wt%, Sn: 2-12 wt%, Pb: 2.5-9
wt% and the balance Cu, and 95% or more of the Fe particles were coated with Cu or a copper alloy on the peripheral surface.
A sintered alloy material for oil-impregnated bearings having a sintered structure of up to 28 vol%.
【請求項2】鉄粉の周面に25〜60wt%の銅を被覆率95%
以上で被覆した粉末100重量部に錫−鉛合金化粉または
銅−錫−鉛合金化粉の何れか一方または双方を10〜150
重量部を添加混合した原料粉を圧粉成形してから500〜7
80℃で焼結することを特徴とし、次いでサイジングする
含油軸受用焼結合金材の製造法。
2. Covering the iron powder with 25 to 60 wt% of copper on the peripheral surface of 95%.
To 100 parts by weight of the powder coated as described above, either one or both of the tin-lead alloyed powder and the copper-tin-lead alloyed powder is added in an amount of 10 to 150.
500 ~ 7 after pressing the raw material powder mixed with parts by weight
A method for producing a sintered alloy material for oil-impregnated bearings, characterized by sintering at 80 ° C, and then sizing.
JP63053694A 1988-03-09 1988-03-09 Sintered alloy material for oil-impregnated bearing and manufacturing method thereof Expired - Lifetime JP2553374B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63053694A JP2553374B2 (en) 1988-03-09 1988-03-09 Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
GB8905402A GB2216543B (en) 1988-03-09 1989-03-09 Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy
HK765/91A HK76591A (en) 1988-03-09 1991-10-03 Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053694A JP2553374B2 (en) 1988-03-09 1988-03-09 Sintered alloy material for oil-impregnated bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01230740A JPH01230740A (en) 1989-09-14
JP2553374B2 true JP2553374B2 (en) 1996-11-13

Family

ID=12949918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053694A Expired - Lifetime JP2553374B2 (en) 1988-03-09 1988-03-09 Sintered alloy material for oil-impregnated bearing and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP2553374B2 (en)
GB (1) GB2216543B (en)
HK (1) HK76591A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150330A (en) * 1989-11-07 1991-06-26 Sankyo Seiki Mfg Co Ltd Manufacture of bearing
WO2000007773A1 (en) * 1998-08-03 2000-02-17 Tyrolit Schleifmittelwerke Swarovski Kg Abrasive tool
AUPP773998A0 (en) * 1998-12-16 1999-01-21 Public Transport Corporation of Victoria Low resistivity materials with improved wear performance for electrical current transfer and methods for preparing same
KR100455261B1 (en) * 2002-07-04 2004-11-06 삼성전기주식회사 Sintered oilless bearing and manufacturing method thereof
JP4380274B2 (en) * 2003-09-10 2009-12-09 日立粉末冶金株式会社 Method for producing ferrous copper-based sintered oil-impregnated bearing alloy
JP5384079B2 (en) * 2008-10-29 2014-01-08 Ntn株式会社 Sintered bearing
JP7143356B2 (en) * 2020-03-10 2022-09-28 大同メタル工業株式会社 Sliding member, its manufacturing method, and hard material manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129486A (en) * 1974-09-02 1976-03-12 Otsuka Pharma Co Ltd * 33 arukiruamino 22 hidorokishi * purohokishi 3 44 jihidorokarubosuchirirujudotai no seizoho
JPS5433812A (en) * 1977-08-22 1979-03-12 Hitachi Ltd Process for producing high-density sintered material
JPS57169064A (en) * 1981-04-10 1982-10-18 Hitachi Powdered Metals Co Ltd Low wear sintered sliding material containing oil

Also Published As

Publication number Publication date
GB8905402D0 (en) 1989-04-19
GB2216543B (en) 1991-04-24
JPH01230740A (en) 1989-09-14
HK76591A (en) 1991-10-11
GB2216543A (en) 1989-10-11

Similar Documents

Publication Publication Date Title
JP2652866B2 (en) Sintered material for oil-impregnated bearing and method for producing the same
CN100480409C (en) Pb free copper alloy sliding material
JP2512477B2 (en) Copper-based sliding material
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
JP2918292B2 (en) Sliding material
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
GB2333779A (en) Composite metal powder for sintered bearing, and sintered oil-retaining bearing
JP3774614B2 (en) Sintered oil-impregnated bearing material using copper-coated iron powder and manufacturing method thereof
JPH01275735A (en) Sintered alloy material and its manufacture
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
JPH01136944A (en) Sintered metallic material
KR102331498B1 (en) Sintered bearing and its manufacturing method
JP3042539B2 (en) Sliding material
JP2631146B2 (en) Sintered metal body and method for producing the same
GB2067221A (en) Sintered Alloys
JPS6082646A (en) Sintered alloy and its manufacture
JPS63282221A (en) Manufacture of composite sintered material
JPS58113335A (en) Self-lubricating wear-resistant sintered copper alloy and its manufacturing method
JPH01283346A (en) Sintered alloy material and its production
JPS6346138B2 (en)
JPH0428802A (en) Production of sintered sliding material
JPH0499836A (en) Sintered copper series sliding material
JPS6253580B2 (en)
JPS60200927A (en) Production of sintered alloy
JPS6111308B2 (en)