[go: up one dir, main page]

JPS6111308B2 - - Google Patents

Info

Publication number
JPS6111308B2
JPS6111308B2 JP5452581A JP5452581A JPS6111308B2 JP S6111308 B2 JPS6111308 B2 JP S6111308B2 JP 5452581 A JP5452581 A JP 5452581A JP 5452581 A JP5452581 A JP 5452581A JP S6111308 B2 JPS6111308 B2 JP S6111308B2
Authority
JP
Japan
Prior art keywords
sample
iron
boron
wear
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5452581A
Other languages
Japanese (ja)
Other versions
JPS57169064A (en
Inventor
Hideo Yomo
Tadao Hayasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP5452581A priority Critical patent/JPS57169064A/en
Publication of JPS57169064A publication Critical patent/JPS57169064A/en
Publication of JPS6111308B2 publication Critical patent/JPS6111308B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、摺動部材として用いた場合に、従来
材に比べて自己自身はもとより相手部材の摩耗も
少ない鉄―黄銅系,および鉄―青銅系の焼結合金
に関するものである。 一般に、鉄―銅系の焼結含油合金は銅―錫系に
比べて、価格の安い点が魅力であるが、相手部材
を摩耗させ易いことが欠点になつている。 そこで、亜鉛または錫を添加して改質した鉄―
黄銅系および鉄―青銅系の材料や、さらに少量の
鉛または黒鉛の追加によつて自己潤滑性を高めた
材料が用いられている。しかし、用途によつては
なお満足できない場合が多く、その改良が望まれ
ていた。 発明者らはこれに応えるべく種々研究の結果、
微量のホウ素を添加すると摺動特性が著しく改善
されることを見出した。即ち、本発明は、上記の
各材料に0.03〜1%のホウ素を添加することをそ
の骨子とするものである。 以下本発明を、その実施例および比較例を含む
実験結果に基づいて詳細に説明する。次に述べる
実験1は鉄―黄銅系に、後述の実験2は鉄―青銅
系に関するものである。 実験 1 〓〓〓〓〓
鉄―黄銅系焼結摺動材料の代表的な組成である
Fe―15Cu―10Znを基本とし、銅と亜鉛の配合は
黄銅合金粉の形で行なうこととした。 先ず、粒度200メツシユ以下で亜鉛含有量が40
%の黄銅粉を用意し、100メツシユ以下のアトマ
イズ鉄粉にこの合金粉25%と、潤滑剤として0.3
%のステアリン酸亜鉛を配合して充分に混合後、
内径12.5mm,外径16mm,長さ12mmで圧粉密度6.1
g/cm3の軸受に成形し、分解アンモニア雰囲気
中、850℃で20分間焼結した。焼結後にサイジン
グおよび2号タービン油の含浸を行ない、これを
試料1とした。 次にホウ素の添加用として粒度200メツシユ以
下のFe―20B合金粉を用意し、その0.75%を試料
1の原料粉に添加して成形以降の工程は試料1と
同様にし、試料2を作製した。この試料2のホウ
素含有量は0.15%である。 また、試料1の組成に鉛を1%追加した試料3
および試料2の組成に鉛を1%追加した試料4を
同様にして作製した。これらの試料の成分組成を
第1表に示す。ホウ素を含む試料2および試料4
が本発明の実施例に相当し、ホウ素を含まない1
および3は比較例である。
The present invention relates to iron-brass-based and iron-bronze-based sintered alloys that, when used as sliding members, cause less wear on themselves and on mating members than conventional materials. In general, iron-copper based sintered oil-impregnated alloys are attractive in that they are cheaper than copper-tin based alloys, but their drawback is that they tend to wear out mating parts. Therefore, iron modified by adding zinc or tin.
Brass-based and iron-bronze-based materials have been used, as well as materials that have been made self-lubricating by the addition of small amounts of lead or graphite. However, in many cases it is still unsatisfactory depending on the application, and improvements have been desired. In response to this, the inventors conducted various research and found that
It has been found that adding a small amount of boron significantly improves the sliding properties. That is, the gist of the present invention is to add 0.03 to 1% boron to each of the above materials. The present invention will be described in detail below based on experimental results including Examples and Comparative Examples. Experiment 1, which will be described next, concerns an iron-brass system, and Experiment 2, which will be described later, concerns an iron-bronze system. Experiment 1 〓〓〓〓〓
This is a typical composition of iron-brass sintered sliding materials.
Based on Fe-15Cu-10Zn, we decided to mix copper and zinc in the form of brass alloy powder. First, the particle size is less than 200 mesh and the zinc content is 40.
% brass powder, add 25% of this alloy powder to atomized iron powder of 100 mesh or less, and 0.3% as a lubricant.
After adding % zinc stearate and mixing thoroughly,
Green density 6.1 with inner diameter 12.5mm, outer diameter 16mm, length 12mm
g/cm 3 and sintered at 850° C. for 20 minutes in a decomposed ammonia atmosphere. After sintering, sizing and impregnation with No. 2 turbine oil were performed, and this was designated as Sample 1. Next, Fe-20B alloy powder with a grain size of 200 mesh or less was prepared for boron addition, and 0.75% of it was added to the raw material powder of Sample 1, and the steps after molding were the same as Sample 1 to create Sample 2. . The boron content of this sample 2 is 0.15%. In addition, sample 3 with 1% lead added to the composition of sample 1
Sample 4, which had the composition of Sample 2 with 1% lead added, was prepared in the same manner. The component compositions of these samples are shown in Table 1. Sample 2 and sample 4 containing boron
corresponds to an example of the present invention and does not contain boron 1
and 3 are comparative examples.

【表】 次に各試料を軸受試験機に掛け、S45C焼鈍材
を軸として荷重9Kg/cm2,周速120m/minの条件
で連続回転させ、所定時間毎に軸および軸受の摩
耗量を測定した。 その結果を第1図および第2図に示す。先ず、
最も重要な事項である軸の摩耗について第1図を
見ると、試験開始後20時間までは試料間の優劣は
ないが、基本組成である試料1は50時間以後に軸
の摩耗量が著しく増加し、鉛を添加した試料2も
100時間以後は増加の傾向を示している。 これに対して、本発明に係る試料3および4の
場合は100時間以後も軸の摩耗が少なく、特に試
料4では、ホウ素と鉛の相乗効果がよく現われて
いる。 次に軸受(試料自身)の摩耗を第2図について
見ると、試料1はかなり大きな初期摩耗を示した
のち暫く安定し、100時間すぎに再び増加してい
る。また、鉛を添加した試料2は初期摩耗こそ少
ないが、試料1と同様に、100時間すぎから摩耗
が著しく増加している。 これに対して、本発明に係る試料3および4の
場合は100時間以後も安定状態を継続し、特にホ
ウ素と鉛を併用した試料4では摩耗のレベルが著
しく低く、他の試料との間に明らかな有意差が認
められる。 実験 2 鉄―青銅系焼結摺動部材の代表的な組成である
Fe―22.5Cu―2.5Snを基本とし、銅と錫の配合は
青銅合金粉の形で行なうことにした。 先ず、粒度200メツシユ以下で錫の含有量が10
%の青銅粉を用意し、100メツシユ以下のアトマ
イズ鉄粉にこの合金粉25%と、潤滑剤として0.3
%のステアリン酸亜鉛を配合して実験1と同一形
状の軸受に成形した後、分解アンモニア雰囲気
中、830℃で20分間焼結した。焼結後に実験1の
場合と同様の処理を施し、これを試料5とした。 次に、Fe―20B合金粉0.75%を試料5の原料粉
に添加して成形以降の工程は試料5と同様にし、
試料6を作製した。この試料6のホウ素含有量は
0.15%である。 また試料5の組成に黒鉛を2%追加した試料7
と、試料6の組成に黒鉛を2%追加した試料8を
同様にして作製した。これらの試料の成分組成を
第2表に示す。ホウ素を含む試料6および試料8
が本発明の実施例に相当し、ホウ素を含まない5
および7は比較例である。
[Table] Next, each sample was placed in a bearing testing machine, and the S45C annealed material was rotated continuously at a load of 9 kg/cm 2 and peripheral speed of 120 m/min using the S45C annealed material as the shaft, and the amount of wear on the shaft and bearing was measured at predetermined intervals. did. The results are shown in FIGS. 1 and 2. First of all,
Looking at Figure 1 regarding shaft wear, which is the most important issue, there is no difference between the samples until 20 hours after the start of the test, but for sample 1, which has the basic composition, the amount of shaft wear increases significantly after 50 hours. However, sample 2 with lead added was also
After 100 hours, it shows an increasing trend. On the other hand, in the case of Samples 3 and 4 according to the present invention, the wear of the shaft was small even after 100 hours, and in particular, in Sample 4, the synergistic effect of boron and lead was clearly manifested. Next, looking at the wear of the bearing (sample itself) in Figure 2, sample 1 showed quite large initial wear, then stabilized for a while, and then increased again after 100 hours. In addition, sample 2 with lead added had less initial wear, but like sample 1, the wear increased significantly after 100 hours. On the other hand, Samples 3 and 4 according to the present invention remained stable even after 100 hours, and especially Sample 4, which used both boron and lead, had a significantly low level of wear and A clear significant difference is observed. Experiment 2 Typical composition of iron-bronze sintered sliding parts
Based on Fe-22.5Cu-2.5Sn, we decided to mix copper and tin in the form of bronze alloy powder. First, the particle size is 200 mesh or less and the tin content is 10
% bronze powder, add 25% of this alloy powder to atomized iron powder of 100 mesh or less, and 0.3% as a lubricant.
% of zinc stearate was mixed and formed into a bearing having the same shape as in Experiment 1, it was sintered at 830°C for 20 minutes in a decomposed ammonia atmosphere. After sintering, the same treatment as in Experiment 1 was performed, and this was designated as Sample 5. Next, 0.75% of Fe-20B alloy powder was added to the raw material powder of sample 5, and the steps after molding were the same as sample 5.
Sample 6 was produced. The boron content of this sample 6 is
It is 0.15%. In addition, sample 7 has the composition of sample 5 with 2% graphite added.
Sample 8, in which 2% graphite was added to the composition of sample 6, was prepared in the same manner. The component compositions of these samples are shown in Table 2. Sample 6 and sample 8 containing boron
corresponds to an example of the present invention and does not contain boron 5
and 7 are comparative examples.

【表】 次に各試料について実験1の場合と同様にして
〓〓〓〓〓
摩耗試験を行なつた。 その結果を第3図および第4図に示す通りで、
鉄―黄銅系に比べて摩耗が全体に少なく且つ安定
摩耗域が若干長くなつているが、各試料間の傾向
は実験1の場合とほぼ同様である。即ちこの系に
おいても、ホウ素の添加は、軸および軸受双方の
摩耗の減少に著しい効果を示している。 ホウ素の添加によつて耐摩耗性が向上する理由
については、一つは基地よりも硬いFe―B合金
相が基地中に分散して自身の耐摩耗性を高めるこ
とと、一つは焼結雰囲気中の窒素との反応により
窒化ホウ素が生成し、これが馴染み性を改善する
ため相手側の摩耗が減少するものと考えられるが
詳細は不明である。ちなみに窒素を含む雰囲気で
焼結した組織からはBNが検出され、これを摺動
試験に供した場合、摩擦による温度上昇が少ない
という結果が得られている。 この様な効果が明確に認められるホウ素添加量
の下限は0.03%であり、一方、1%を超えると材
質が過剰に硬化し、再び相手側の摩耗が増加す
る。これらの理由から、ホウ素の添加量を0.03〜
1%とする。その添加は純金属粉でもよいが、微
量を均一に混合するため鉄や銅との合金粉の形で
の添加が好ましい。 なお銅,亜鉛,錫などの配合は単味の金属粉を
用いることもできるが、均一な混合や所望の組織
が保証される合金粉での添加が好ましい。本発明
における合金組成は亜鉛10〜40%の黄銅粉や錫2
〜10%の青銅粉など、通常市販されている合金粉
を前提に、その10〜60%を鉄粉に配合している
が、そのこと自体は周知の事項である。 以上に述べたように、本発明によれば、銅系の
摺動材料より価格が安い利点を保ちながら従来に
比べて自己自身はもとより相手部材の摩耗も少な
い鉄―黄銅系,鉄―青銅系の摺動材料が得られ、
その適用範囲が価格,性能の両面で拡大された。
[Table] Next, for each sample, do the same as in Experiment 1.
A wear test was conducted. The results are shown in Figures 3 and 4.
Compared to the iron-brass system, there was less wear overall and the stable wear region was slightly longer, but the trends among the samples were almost the same as in Experiment 1. That is, in this system as well, the addition of boron has a remarkable effect on reducing wear of both the shaft and the bearing. The reasons why the wear resistance is improved by the addition of boron are that the Fe-B alloy phase, which is harder than the base, is dispersed in the base and improves its own wear resistance. Boron nitride is generated by reaction with nitrogen in the atmosphere, and it is thought that this improves compatibility and reduces wear on the other side, but the details are unknown. Incidentally, BN was detected in the structure sintered in an atmosphere containing nitrogen, and when this was subjected to a sliding test, results were obtained that the temperature rise due to friction was small. The lower limit of the amount of boron added at which such an effect can be clearly observed is 0.03%; on the other hand, if it exceeds 1%, the material becomes excessively hardened and wear on the other side increases again. For these reasons, the amount of boron added should be 0.03~
1%. Although pure metal powder may be added, it is preferable to add it in the form of alloy powder with iron or copper in order to uniformly mix a small amount. Although it is possible to use a single metal powder for the blending of copper, zinc, tin, etc., it is preferable to add an alloy powder that ensures uniform mixing and a desired structure. The alloy composition in the present invention is brass powder containing 10 to 40% zinc and 2% tin.
It is a well-known fact that 10 to 60% of alloy powder, such as ~10% bronze powder, is mixed with iron powder, which is usually commercially available. As described above, according to the present invention, iron-brass sliding materials and iron-bronze sliding materials have the advantage of being cheaper than copper-based sliding materials, while also causing less wear on themselves and mating members compared to conventional sliding materials. A sliding material of
Its scope of application has been expanded in terms of both price and performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1および2図は鉄―黄銅系焼結合金を軸受に
用いた場合における、基材へのホウ素および鉛の
添加が軸および軸受の耐摩耗性に及ぼす影響を示
すグラフ、第3および4図は、同じく鉄―青銅系
焼結合金におけるホウ素および黒鉛の影響を示す
グラフである。 〓〓〓〓〓
Figures 1 and 2 are graphs showing the effects of adding boron and lead to the base material on the wear resistance of shafts and bearings when iron-brass sintered alloys are used for bearings, Figures 3 and 4 is also a graph showing the influence of boron and graphite on the iron-bronze sintered alloy. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 重量比にて下記の組成を特徴とする摺動部材
用焼結合金。 Cu…6〜54%, Zn…1〜24%, B……0.03〜1%, Fe…残部。 2 重量比にて下記の組成を特徴とする摺動部材
用焼結合金。 Cu…6〜54%, Zn…1〜24%, CおよびPbの少なくとも一方…4%以下, B……0.03〜1%, Fe…残部。 3 重量比にて下記の組成を特徴とする摺動部材
用焼結結合金。 Cu…9〜60%, Sn…0.2〜6%, B……0.03〜1%, Fe…残部。 4 重量比にて下記の組成を特徴とする摺動部材
用焼結合金。 Cu…9〜60%, Sn…0.2〜6%, CおよびPbの少なくとも一方…4%以下, B……0.03〜1%, Fe…残部。 5 鉄―黄銅系合金または鉄―青銅系合金の原料
粉に重量比にて0.03〜1%のホウ素を添加して所
要の形状に成形し、窒素を含む雰囲気中で焼結す
ることを特徴とする摺動部材用焼結合金の製造方
法。
[Claims] 1. A sintered alloy for sliding members characterized by the following composition in terms of weight ratio: Cu...6 to 54%, Zn...1 to 24%, B...0.03 to 1%, Fe...the balance. 2. A sintered alloy for sliding members characterized by the following composition in terms of weight ratio: Cu...6 to 54%, Zn...1 to 24%, at least one of C and Pb...4% or less, B...0.03 to 1%, Fe...the remainder. 3. A sintered alloy for sliding members characterized by the following composition in terms of weight ratio: Cu...9 to 60%, Sn...0.2 to 6%, B...0.03 to 1%, Fe...the balance. 4. A sintered alloy for sliding members characterized by the following composition in terms of weight ratio: Cu...9 to 60%, Sn...0.2 to 6%, at least one of C and Pb...4% or less, B...0.03 to 1%, Fe...the remainder. 5. It is characterized by adding 0.03 to 1% by weight of boron to the raw material powder of iron-brass alloy or iron-bronze alloy, forming it into the desired shape, and sintering it in an atmosphere containing nitrogen. A method for manufacturing a sintered alloy for sliding members.
JP5452581A 1981-04-10 1981-04-10 Low wear sintered sliding material containing oil Granted JPS57169064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5452581A JPS57169064A (en) 1981-04-10 1981-04-10 Low wear sintered sliding material containing oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5452581A JPS57169064A (en) 1981-04-10 1981-04-10 Low wear sintered sliding material containing oil

Publications (2)

Publication Number Publication Date
JPS57169064A JPS57169064A (en) 1982-10-18
JPS6111308B2 true JPS6111308B2 (en) 1986-04-02

Family

ID=12973068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5452581A Granted JPS57169064A (en) 1981-04-10 1981-04-10 Low wear sintered sliding material containing oil

Country Status (1)

Country Link
JP (1) JPS57169064A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553374B2 (en) * 1988-03-09 1996-11-13 勇 菊池 Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
JPH01283346A (en) * 1988-05-09 1989-11-14 Isamu Kikuchi Sintered alloy material and its production
JP2631146B2 (en) * 1989-09-11 1997-07-16 勇 菊池 Sintered metal body and method for producing the same
KR100940117B1 (en) 2009-06-01 2010-02-02 한양대학교 산학협력단 Fe based alloy for self-lubricating bearing, manufacturing method for the same and self-lubricating bearing manufactured therefrom

Also Published As

Publication number Publication date
JPS57169064A (en) 1982-10-18

Similar Documents

Publication Publication Date Title
JP2652866B2 (en) Sintered material for oil-impregnated bearing and method for producing the same
US20150064045A1 (en) Sintered bearing and manufacturing method for same
CN107245601B (en) Sintered alloy with excellent wear resistance
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JPH02107731A (en) Wear-resistant copper-series sintered oiless bearing material
JPH01275735A (en) Sintered alloy material and its manufacture
JPS6111308B2 (en)
JPH0140907B2 (en)
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
JPS55134102A (en) Cu-base sintered bearing of high graphite content and production thereof
JP2021099134A (en) Sintered oil-impregnated bearing and manufacturing method of the same
JPH01136944A (en) Sintered metallic material
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JPH045745B2 (en)
US3728089A (en) Aluminum-silicon base sintered porous bearing metals
JP3254830B2 (en) Sintered sliding member
JP4109023B2 (en) Manufacturing method of iron-based sintered sliding member and iron-based sintered sliding member
JP2974738B2 (en) Sintered copper sliding material
JPWO2018100660A1 (en) Iron-based sintered oil-impregnated bearing
JPH01283346A (en) Sintered alloy material and its production
JPH0461064B2 (en)
JPS58113335A (en) Self-lubricating wear-resistant sintered copper alloy and its manufacturing method
JPH05209207A (en) Bearing
JPS6346138B2 (en)