JP2021099134A - Sintered oil-impregnated bearing and manufacturing method of the same - Google Patents
Sintered oil-impregnated bearing and manufacturing method of the same Download PDFInfo
- Publication number
- JP2021099134A JP2021099134A JP2019231338A JP2019231338A JP2021099134A JP 2021099134 A JP2021099134 A JP 2021099134A JP 2019231338 A JP2019231338 A JP 2019231338A JP 2019231338 A JP2019231338 A JP 2019231338A JP 2021099134 A JP2021099134 A JP 2021099134A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- pores
- less
- copper
- mesh sieve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000011148 porous material Substances 0.000 claims abstract description 183
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 126
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 61
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 26
- 239000000956 alloy Substances 0.000 claims abstract description 26
- 239000010949 copper Substances 0.000 claims abstract description 25
- 229910052802 copper Inorganic materials 0.000 claims abstract description 25
- 229910052742 iron Inorganic materials 0.000 claims abstract description 25
- 238000009826 distribution Methods 0.000 claims abstract description 23
- 230000002093 peripheral effect Effects 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 166
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical class [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 19
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 239000011701 zinc Substances 0.000 claims description 14
- 239000000314 lubricant Substances 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 12
- 238000001179 sorption measurement Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 5
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 5
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 5
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 4
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 3
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 3
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 claims description 3
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical group [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract 1
- 230000035699 permeability Effects 0.000 description 35
- 239000010687 lubricating oil Substances 0.000 description 25
- 239000003921 oil Substances 0.000 description 22
- 239000012071 phase Substances 0.000 description 15
- 230000007423 decrease Effects 0.000 description 9
- 229910000881 Cu alloy Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910017755 Cu-Sn Inorganic materials 0.000 description 6
- 229910017927 Cu—Sn Inorganic materials 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 229910000905 alloy phase Inorganic materials 0.000 description 5
- 230000005496 eutectics Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明の実施形態は、焼結含油軸受およびその製造方法に関し、特に、自動車等に電装される電動機用の焼結含油軸受およびその製造方法に関する。 An embodiment of the present invention relates to a sintered oil-impregnated bearing and a method for manufacturing the same, and more particularly to a sintered oil-impregnated bearing for an electric motor electrically mounted on an automobile or the like and a method for manufacturing the same.
焼結含油軸受は、多孔質焼結体により軸受本体を形成し、焼結体の気孔中に潤滑油を含浸したものであり、無給油で長時間使用できる利点を有する。この利点により、焼結含油軸受は、各種軸受装置に適用されており、自動車の製造分野においても各種電装用モータの軸受等に適用が進んでいる。これらの電装用モータは自動車の室内に配置されるため、軸と軸受内周面が金属接触して摺動する際に発生する騒音、いわゆる鳴き音が発生すると耳障りとなるため、鳴き音の発生防止のための各種手段が検討されている。 The sintered oil-impregnated bearing has a bearing body formed of a porous sintered body and impregnated with lubricating oil in the pores of the sintered body, and has an advantage that it can be used for a long time without lubrication. Due to this advantage, sintered oil-impregnated bearings are applied to various bearing devices, and are also being applied to bearings of various electrical motors in the field of automobile manufacturing. Since these electrical motors are arranged in the interior of an automobile, noise generated when the shaft and the inner peripheral surface of the bearing come into contact with metal and slide, that is, so-called squealing noise, is jarring and therefore squeaking noise is generated. Various means for prevention are being studied.
特許文献1および2は、例えば、零下20℃あるいは零下30℃に至るような寒冷地環境で使用しても鳴き音が発生しない焼結含油軸受を提供するもので、有効多孔率が高いながらも通気度が低いという相反する特性を焼結含油軸受に付与することで、鳴き音の発生を防止したものである。すなわち、通気度は潤滑油の滲み出し性および摺動面の油圧に影響し、通気度が高いものは、寒冷地環境での摺動の際に鳴き音が発生し易い。一方、通気度を高めるために焼結含油軸受の密度を高くすると気孔の数が減少し、その結果、有効多孔率が減少して、その分、含油能力が低下する。したがって、含油能力を高めるために有効多孔率を増加させると通気度は増加する。このように、通気度と有効多孔率は二律背反の関係にあり、有効多孔率(含油能力)を高くするとともに通気度を低下させることは困難とされている。 Patent Documents 1 and 2 provide sintered oil-impregnated bearings that do not generate squealing noise even when used in a cold region environment such as 20 ° C. below zero or 30 ° C. below zero, and have a high effective porosity. By imparting the contradictory characteristics of low air permeability to the sintered oil-impregnated bearing, the generation of squealing noise is prevented. That is, the air permeability affects the exudability of the lubricating oil and the oil pressure of the sliding surface, and those having a high air permeability are likely to generate a squealing noise when sliding in a cold region environment. On the other hand, if the density of the sintered oil-impregnated bearing is increased in order to increase the air permeability, the number of pores decreases, and as a result, the effective porosity decreases, and the oil-containing capacity decreases accordingly. Therefore, increasing the effective porosity to increase the oil-containing capacity increases the air permeability. As described above, the air permeability and the effective porosity are in a trade-off relationship, and it is difficult to increase the effective porosity (oil-containing capacity) and decrease the air permeability.
上記課題に対し、特許文献1及び2では、鉄粉末として多孔質の還元鉄粉末を用いることで、焼結含油軸受の鉄相に微細気孔を多数配置して有効多孔率を高くし、これにより、通気度を低く抑制しつつ有効多孔率を高めることで、相反する通気度と有効多孔率の問題を解決し、寒冷地環境で使用しても鳴き音が発生しない焼結含油軸受を提供している。 In response to the above problems, in Patent Documents 1 and 2, by using porous reduced porosity as the iron powder, a large number of fine pores are arranged in the iron phase of the sintered oil-impregnated bearing to increase the effective porosity. By increasing the effective porosity while keeping the air permeability low, we solve the conflicting problems of air permeability and effective porosity, and provide sintered oil-impregnated bearings that do not generate squealing noise even when used in cold climates. ing.
しかしながら、上記焼結含油軸受を自動車の窓開閉用のパワーウインド用モータの軸受として使用すると、常温環境下でも鳴き音が発生する問題がある。パワーウインドは短時間のみの作動であり、しかも間欠的に運転されるものであるから、充分な量の潤滑油が供給されて軸と軸受の内周面との間に強固な油膜が形成される以前に運転が停止され、そのため常に軸と軸受の内周面との間の油膜形成が不充分になってしまう問題がある。特許文献3に開示の技術では、焼結含油軸受の粒子間気孔において、中程度の気孔を配置するとともに大きな粒子間気孔の数を抑制することによって焼結含油軸受の通気度が小さく抑制されたまま、潤滑油の供給のための気孔が配置され、その結果、運転開始時から充分な量の潤滑油が供給され、軸と焼結含油軸受内周面との間に強固な油膜を形成することができる。 However, when the sintered oil-impregnated bearing is used as a bearing for a power window motor for opening and closing windows of an automobile, there is a problem that squealing noise is generated even in a normal temperature environment. Since the power window operates only for a short time and is operated intermittently, a sufficient amount of lubricating oil is supplied and a strong oil film is formed between the shaft and the inner peripheral surface of the bearing. There is a problem that the operation is stopped before the operation is performed, so that the oil film formation between the shaft and the inner peripheral surface of the bearing is always insufficient. In the technique disclosed in Patent Document 3, the air permeability of the sintered oil-impregnated bearing is suppressed to be small by arranging medium pores and suppressing the number of large interparticle pores in the interparticle pores of the sintered oil-impregnated bearing. As it is, pores for supplying lubricating oil are arranged, and as a result, a sufficient amount of lubricating oil is supplied from the start of operation, and a strong oil film is formed between the shaft and the inner peripheral surface of the sintered oil-impregnated bearing. be able to.
しかしながら、自動車の窓開閉用のパワーウインド用モータの軸受として使用する際、特許文献3の焼結含油軸受は、常温環境下での使用による鳴き音の発生を抑制することができるが、寒冷地環境等の低温環境下での使用では鳴き音の発生を十分に抑制することができない場合がある。 However, when used as a bearing for a power window motor for opening and closing windows of an automobile, the sintered oil-impregnated bearing of Patent Document 3 can suppress the generation of squealing noise due to use in a normal temperature environment, but in cold regions. When used in a low temperature environment such as an environment, it may not be possible to sufficiently suppress the generation of squealing noise.
本発明の実施形態は、鳴き音の発生が抑えられる焼結含油軸受と、そのような焼結含油軸受の製造方法を提供することを目的とする。 An object of the present invention is to provide a sintered oil-impregnated bearing in which the generation of squealing noise is suppressed, and a method for manufacturing such a sintered oil-impregnated bearing.
焼結含油軸受の「気孔」は、次の2種の気孔からなる。すなわち、一般の焼結合金が有する、粉末粒子間の隙間として形成される気孔(以下、「粒子間気孔」と称す)と、海綿状の多孔質鉄粉末により形成される焼結合金の鉄相(鉄部)内に分散する微細気孔(以下、「微細気孔」と称す)である。粒子間気孔は比較的大きな気孔であり、焼結含油軸受の通気度に与える影響が大きい。一方、微細気孔は、一部連通するものの多数は連通しておらず、焼結含油軸受の通気度に与える影響は小さい。 The "pores" of a sintered oil-impregnated bearing consist of the following two types of pores. That is, the pores formed as gaps between powder particles (hereinafter referred to as "interparticle pores") possessed by a general sintered alloy and the iron phase of the sintered alloy formed by spongy porous iron powder. Fine pores (hereinafter referred to as "fine pores") dispersed in (iron part). The interparticle pores are relatively large pores and have a large effect on the air permeability of the sintered oil-impregnated bearing. On the other hand, although some of the fine pores communicate with each other, many of them do not communicate with each other, and the influence on the air permeability of the sintered oil-impregnated bearing is small.
鳴き音の発生を抑制するためには、軸と、軸が摺動する軸受内周面とを金属接触させず良好な摺動状態とする必要があり、このため、軸と軸受内周面との間に適切な油膜を形成し、油膜の圧力で軸を保持して金属接触を抑制する必要がある。一般に、潤滑油の供給のためには通気度を高くして、潤滑油の供給を円滑に行うことが行われるが、軸と軸受内周面との間の油膜の形成の観点からは、軸受の通気度が高いと潤滑油の漏洩が生じ、適切な油膜が形成されなくなる。 In order to suppress the generation of squealing noise, it is necessary to keep the shaft and the inner peripheral surface of the bearing on which the shaft slides in a good sliding state without metal contact. Therefore, the shaft and the inner peripheral surface of the bearing must be in a good sliding state. It is necessary to form an appropriate oil film between the two, hold the shaft with the pressure of the oil film, and suppress metal contact. Generally, in order to supply lubricating oil, it is necessary to increase the air permeability to smoothly supply the lubricating oil, but from the viewpoint of forming an oil film between the shaft and the inner peripheral surface of the bearing, the bearing If the air permeability of the bearing is high, the lubricating oil leaks and an appropriate oil film cannot be formed.
また、低温環境下では潤滑油の粘度が増大するため、軸と軸受内周面との間の潤滑油が減少し、適切な油膜が形成されず、軸と軸受内周面とが金属接触することがある。 In addition, since the viscosity of the lubricating oil increases in a low temperature environment, the lubricating oil between the shaft and the inner peripheral surface of the bearing decreases, an appropriate oil film is not formed, and the shaft and the inner peripheral surface of the bearing come into metal contact. Sometimes.
そこで本発明者は、低温環境下においても適切な油膜が形成されるように粒子間気孔の大きさに着目し、適度な大きさの粒子間気孔を配置すれば、低温環境下においても軸受の通気度を小さく抑制したまま運転開始時に不足する潤滑油が供給され、運転開始時から良好な油膜を形成できるとの予測のもとに鋭意研究を重ねるとともに、微細気孔および粒子間気孔を含む大きめの気孔の数について検討を重ねた結果、本発明を完成するに至る。 Therefore, the present inventor pays attention to the size of the interparticle pores so that an appropriate oil film is formed even in a low temperature environment, and if the interparticle pores having an appropriate size are arranged, the bearing can be used even in a low temperature environment. We have conducted extensive research based on the prediction that a good oil film can be formed from the start of operation by supplying insufficient lubricating oil at the start of operation while keeping the air permeability small, and at the same time, a large size including fine pores and interparticle pores. As a result of repeated studies on the number of pores in the above, the present invention is completed.
本発明の一実施形態は、焼結含油軸受において、大きめの気孔として、気孔径が円相当径で100μmを超える粒子間気孔の数を気孔総数の0.5%を超え1.0%以下であるように配置するとともに、中程度の大きさの気孔として、気孔径が円相当径で80μmを超え100μm以下(以下、「80〜100μm」と記載することもある)である粒子間気孔の数を気孔総数の1.5%以下、気孔径が円相当径で60μmを超え80μm以下(以下、「60〜80μm」と記載することもある)である粒子間気孔の数が気孔総数の1.0%以下、気孔径が円相当径で40μmを超え60μm以下(以下、「40〜60μm」と記載することもある)である粒子間気孔の数が気孔総数の3.0%以下に調整する。このように粒子間気孔を含む大きめの気孔を所定割合で配置するとともに中程度の大きさの粒子間気孔の数を抑制することにより、低温環境下においても軸受の通気度を小さく抑制したまま、潤滑油の供給のための気孔が配置され、その結果、運転開始時から充分な量の潤滑油が供給され、軸と軸受内周面との間に強固な油膜を形成することができる。 In one embodiment of the present invention, as large pores in a sintered oil-impregnated bearing, the number of interparticle pores having a pore diameter of more than 100 μm, which is equivalent to a circle, is more than 0.5% of the total number of pores and 1.0% or less. The number of interparticle pores whose pore diameter is more than 80 μm and 100 μm or less (hereinafter, may be referred to as “80 to 100 μm”) as a medium-sized pore with a certain arrangement. The number of interparticle pores is 1.5% or less of the total number of pores, and the pore diameter is more than 60 μm and 80 μm or less (hereinafter, may be referred to as “60 to 80 μm”) in the equivalent circle diameter. The number of interparticle pores, which is 0% or less and the pore diameter is more than 40 μm and 60 μm or less (hereinafter, may be referred to as “40 to 60 μm”), is adjusted to 3.0% or less of the total number of pores. .. By arranging large pores including interparticle pores at a predetermined ratio and suppressing the number of medium-sized interparticle pores in this way, the air permeability of the bearing is kept small even in a low temperature environment. Pore for supplying lubricating oil is arranged, and as a result, a sufficient amount of lubricating oil is supplied from the start of operation, and a strong oil film can be formed between the shaft and the inner peripheral surface of the bearing.
本発明の実施形態の例を以下に挙げる。本発明は以下の実施形態に限定されない。 Examples of embodiments of the present invention are given below. The present invention is not limited to the following embodiments.
<1> 全体組成が、質量比で、銅:10%以上59%以下、錫:0.5%以上3.0%以下、を含み、残部が鉄と不可避不純物からなる鉄系焼結合金であって、軸受内周面の気孔面積率が20%以上50%以下であり、気孔総数が800個/mm2以上であり、および気孔分布が、円相当径で100μmを超える気孔の数が気孔総数の0.5%を超え1.0%以下、円相当径で80μmを超え100μm以下である気孔の数が気孔総数の1.5%以下、円相当径で60μmを超え80μm以下である気孔の数が気孔総数の1.0%以下、円相当径で40μmを超え60μm以下である気孔の数が気孔総数の3.0%以下、および円相当径で40μm以下の気孔が気孔総数の残部である、焼結含油軸受。 <1> An iron-based sintered alloy in which the overall composition contains copper: 10% or more and 59% or less and tin: 0.5% or more and 3.0% or less in terms of mass ratio, and the balance is iron and unavoidable impurities. The pore area ratio of the inner peripheral surface of the bearing is 20% or more and 50% or less, the total number of pores is 800 / mm 2 or more, and the pore distribution is the number of pores exceeding 100 μm in the equivalent circle diameter. The number of pores exceeding 0.5% and 1.0% or less of the total number, and the number of pores having a circle equivalent diameter of more than 80 μm and 100 μm or less is 1.5% or less of the total number of pores, and the number of pores having a circle equivalent diameter of more than 60 μm and 80 μm or less. The number of pores is 1.0% or less of the total number of pores, the number of pores with a circle-equivalent diameter of more than 40 μm and 60 μm or less is 3.0% or less of the total number of pores, and the number of pores with a circle-equivalent diameter of 40 μm or less is the balance of the total number of pores. Is a sintered oil-impregnated bearing.
<2> 全体組成に、亜鉛およびニッケルからなる群より選択される少なくとも1種を、5質量%以下含む、<1>に記載の焼結含油軸受。 <2> The sintered oil-impregnated bearing according to <1>, wherein the overall composition contains at least 5% by mass or less of at least one selected from the group consisting of zinc and nickel.
<3> 黒鉛、二硫化モリブデン、硫化マンガン、および弗化カルシウムからなる群より選択される少なくとも1種の固体潤滑剤成分が、前記鉄系焼結合金100質量部に対して0.2質量部以上2質量部以下であり、前記鉄系焼結合金の気孔中に分散する、<1>または<2>に記載の焼結含油軸受。 <3> At least one solid lubricant component selected from the group consisting of graphite, molybdenum disulfide, manganese sulfide, and calcium fluoride is 0.2 parts by mass with respect to 100 parts by mass of the iron-based sintered alloy. The sintered oil-impregnated bearing according to <1> or <2>, which is 2 parts by mass or less and is dispersed in the pores of the iron-based sintered alloy.
<4> 鉄粉末に、銅粉末と、錫粉末および銅錫合金粉末からなる群より選択される少なくとも1種の粉末とを混合した原料粉末を用い、前記原料粉末を圧縮成形して密度が5.5Mg/m3以上6.8Mg/m3以下の範囲である成形体を成形し、得られた成形体を焼結する焼結含油軸受の製造方法であって、前記原料粉末の組成が、質量比で、銅:10%以上59%以下、錫:0.5%以上3.0%以下、を含み、残部が鉄と不可避不純物からなり、前記鉄粉末として、表面から内部にわたり微細孔を有する海綿状で、気体吸着法による比表面積が110m2/kg以上500m2/kg以下であり、140メッシュ篩上の粉末が14%以上29%以下、140メッシュ篩下かつ325メッシュ篩上の粉末が45%以上64%以下、325メッシュ篩下の粉末が残部である粒度分布を有する多孔質鉄粉Aと、内部に気孔を有する中空状で、気体吸着法による比表面積が80m2/kg以上110m2/kg以下であり、90メッシュ篩上の粉末が5%を超え10%未満、90メッシュ篩下かつ140メッシュ篩上の粉末が20%以上35%以下、140メッシュ篩下の粉末が残部である粒度分布を有し、前記90メッシュ篩上の粉末の内部に50μm以上の気孔を有する粉末が該粉末に対して50%以上80%未満含まれ、かつ前記90メッシュ篩下かつ140メッシュ篩上の粉末の内部に40μm以上60μm以下の気孔を有する粉末が該粉末に対して50%以上80%未満含まれる多孔質鉄粉Bとからなる多孔質粉末であり、前記多孔質鉄粉末Aが多孔質鉄粉末に占める割合が、80%以上95%以下である鉄粉末を用い、前記錫粉末および前記銅錫合金粉末からなる群より選択される少なくとも1種の粉末として325メッシュ篩下の粉末を用い、前記銅錫合金粉末による銅以外の銅粉末として、100メッシュ篩下の箔状銅粉末、もしくは、前記原料粉末全量に対して2質量%以上の100メッシュ篩下の箔状銅粉末を含み残部が200メッシュ篩下の電解銅粉末を用い、前記焼結における焼結温度が760℃以上810℃以下である、焼結含油軸受の製造方法。 <4> Using a raw material powder obtained by mixing copper powder and at least one powder selected from the group consisting of tin powder and copper-tin alloy powder with iron powder, the raw material powder is compression-molded to have a density of 5. A method for producing a sintered oil-impregnated bearing in which a molded body in the range of .5 Mg / m 3 or more and 6.8 Mg / m 3 or less is molded and the obtained molded body is sintered. By mass ratio, it contains copper: 10% or more and 59% or less, tin: 0.5% or more and 3.0% or less, and the balance is composed of iron and unavoidable impurities. As the iron powder, fine pores are formed from the surface to the inside. It is spongy and has a specific surface area of 110 m 2 / kg or more and 500 m 2 / kg or less by the gas adsorption method, and the powder on the 140 mesh sieve is 14% or more and 29% or less, and the powder under the 140 mesh sieve and on the 325 mesh sieve. Is 45% or more and 64% or less, and the porous iron powder A having a particle size distribution in which the powder under the 325 mesh sieve is the balance, and the hollow shape having pores inside, and the specific surface area by the gas adsorption method is 80 m 2 / kg or more. 110 m 2 / kg or less, powder on 90 mesh sinter is more than 5% and less than 10%, powder under 90 mesh sinter and on 140 mesh sinter is 20% or more and 35% or less, powder under 140 mesh sinter is the balance The powder having a particle size distribution of 50 μm or more inside the powder on the 90 mesh sieve is contained in an amount of 50% or more and less than 80% with respect to the powder, and is under the 90 mesh sieve and 140 mesh sieve. The powder having pores of 40 μm or more and 60 μm or less inside the above powder is a porous powder composed of porous iron powder B containing 50% or more and less than 80% with respect to the powder, and the porous iron powder A is Using an iron powder having a proportion of 80% or more and 95% or less in the porous iron powder, the powder under a 325 mesh sieve is used as at least one powder selected from the group consisting of the tin powder and the copper-tin alloy powder. As a copper powder other than copper by the copper-tin alloy powder, a foil-like copper powder under a 100-mesh sieve or a foil-like copper powder under a 100-mesh sieve in an amount of 2% by mass or more based on the total amount of the raw material powder is used. A method for manufacturing a sintered oil-impregnated bearing, in which electrolytic copper powder under a 200-mesh sieve is used and the sintering temperature in the sintering is 760 ° C. or higher and 810 ° C. or lower.
<5> 前記原料粉末に、亜鉛およびニッケルからなる群より選択される少なくとも1種を、5質量%以下となるよう銅亜鉛合金粉末および銅ニッケル合金粉末からなる群より選択される少なくとも1種を添加する、<4>に記載の焼結含油軸受の製造方法。 <5> For the raw material powder, at least one selected from the group consisting of zinc and nickel, and at least one selected from the group consisting of copper-zinc alloy powder and copper-nickel alloy powder so as to be 5% by mass or less. The method for manufacturing a sintered oil-impregnated bearing according to <4>, which is added.
<6> 前記原料粉末100質量部に対し、0.2質量部以上2質量部以下の黒鉛粉末、二硫化モリブデン粉末、硫化マンガン粉末、および弗化カルシウム粉末からなる群より選択される少なくとも1種の固体潤滑剤成分粉末を添加する、<4>または<5>に記載の焼結含油軸受の製造方法。 <6> At least one selected from the group consisting of graphite powder of 0.2 parts by mass or more and 2 parts by mass or less, molybdenum disulfide powder, manganese sulfide powder, and calcium fluoride powder with respect to 100 parts by mass of the raw material powder. The method for producing a sintered oil-impregnated bearing according to <4> or <5>, wherein the solid lubricant component powder of the above is added.
なお、本明細書等において、nnnメッシュ篩下の粉末とは目開きがnnnメッシュの篩を通過する大きさの粉末を意味し、mmmメッシュ篩上の粉末とは目開きがmmmメッシュの篩を通過しない大きさの粉末を意味する。例えば、140メッシュ篩下かつ325メッシュ篩上の粉末とは、目開きが140メッシュの篩を通過し、目開きが325メッシュの篩を通過しない大きさの粉末を意味する。 In the present specification and the like, the powder under the nnn mesh sieve means a powder having a size of passing through the sieve of the nnn mesh, and the powder on the mmm mesh sieve means a sieve having an opening of mmm mesh. It means a powder of a size that does not pass through. For example, the powder under the 140-mesh sieve and on the 325-mesh sieve means a powder having a size of the mesh that passes through the sieve with a mesh size of 140 mesh and does not pass through the sieve with a mesh size of 325 mesh.
本発明の実施形態によれば、低温環境下においても鳴き音の発生が抑えられる焼結含油軸受を提供することができる。 According to the embodiment of the present invention, it is possible to provide a sintered oil-impregnated bearing in which the generation of squealing noise is suppressed even in a low temperature environment.
(1)焼結含油軸受
(1−1)焼結合金の組成
焼結含油軸受を構成する焼結合金としては、全体組成が、質量比で、銅:10%以上59%以下、錫:0.5%以上3.0%以下、を含み、残部が鉄と不可避不純物からなり、鉄相、銅合金(Cu−Sn合金)相、および気孔(粒子間気孔および微細気孔)からなる金属組織を呈する鉄銅系焼結合金を用いる。
(1) Sintered oil-impregnated bearing (1-1) Composition of sintered alloy The overall composition of the sintered alloy constituting the sintered oil-impregnated bearing is copper: 10% or more and 59% or less, tin: 0 in terms of mass ratio. A metallographic structure consisting of an iron phase, a copper alloy (Cu—Sn alloy) phase, and pores (interparticle pores and fine pores), which contains 5.5% or more and 3.0% or less, and the balance is composed of iron and unavoidable impurities. The iron-copper-based sintered alloy to be presented is used.
鉄は後述する多孔質鉄粉末の形態で付与され、鉄相を形成して軸受の強度の向上に寄与するとともに、鉄相内に分散する微細気孔により有効多孔率を高くして含油能力を高くする。 Iron is applied in the form of porous iron powder, which will be described later, and forms an iron phase to contribute to the improvement of bearing strength, and the fine porosity dispersed in the iron phase increases the effective porosity to increase the oil-containing capacity. To do.
銅は、軟質な銅系合金(Cu−Sn)相を形成し、軸とのなじみ性の改善および焼き付きの抑制に寄与する。全体組成中の銅の量が10質量%以上であると、前述の効果を有し、全体組成中の銅の量が59質量以下であると、鉄相内に分散する微細気孔を十分確保できる。この結果、有効多孔率を高くして含油能力を十分確保できる。これらのことから、全体組成中の銅の量を10質量%以上59質量%以下とする。 Copper forms a soft copper-based alloy (Cu—Sn) phase, which contributes to improvement of compatibility with the shaft and suppression of seizure. When the amount of copper in the total composition is 10% by mass or more, the above-mentioned effect is obtained, and when the amount of copper in the total composition is 59% by mass or less, fine pores dispersed in the iron phase can be sufficiently secured. .. As a result, the effective porosity can be increased and the oil-containing capacity can be sufficiently secured. From these facts, the amount of copper in the total composition is set to 10% by mass or more and 59% by mass or less.
錫は、銅と共晶液相を発生して焼結を促進する作用、および銅と合金化して銅系合金相を強化して銅系合金相の耐摩耗性を向上する作用を有する。全体組成中の錫の量が0.5質量%に満たないと、前述の作用が乏しい。一方、全体組成中の錫の量が3.0質量%を超えると、銅系合金相の硬さが増加しすぎて軸とのなじみ性が損なわれることとなる。これらのことから、全体組成中の錫の量を0.5質量%以上3.0質量%以下とする。 Tin has an action of generating a eutectic liquid phase with copper to promote sintering, and an action of alloying with copper to strengthen the copper-based alloy phase and improving the wear resistance of the copper-based alloy phase. If the amount of tin in the total composition is less than 0.5% by mass, the above-mentioned action is poor. On the other hand, if the amount of tin in the overall composition exceeds 3.0% by mass, the hardness of the copper-based alloy phase increases too much and the compatibility with the shaft is impaired. From these facts, the amount of tin in the total composition is set to 0.5% by mass or more and 3.0% by mass or less.
亜鉛及びニッケルは、銅合金相を強化して銅合金相の耐摩耗性の向上に寄与する作用を有するので、亜鉛及びニッケルの少なくとも1種を焼結合金の成分として有していてもよい。ただし、これらの元素の量が過大になると、軸の摩耗が増加し易くなる。このため、亜鉛及びニッケルの少なくとも1種を成分として有する場合は、亜鉛およびはニッケルの総量を全体組成の5質量%以下とする。 Since zinc and nickel have an action of strengthening the copper alloy phase and contributing to the improvement of wear resistance of the copper alloy phase, at least one of zinc and nickel may be contained as a component of the sintered alloy. However, if the amount of these elements is excessive, the wear of the shaft tends to increase. Therefore, when at least one of zinc and nickel is contained as a component, the total amount of zinc and nickel is 5% by mass or less of the total composition.
(1−2)気孔の面積率
軸受内周面の気孔面積率は、20%以上50%以下とする。軸受内周面の気孔面積率が20%に満たないと、気孔の数が少なく充分な潤滑効果が得られない。一方、軸受内周面の気孔面積率が50%を超えると、焼結含油軸受の強度の低下が著しくなる。
(1-2) Pore area ratio The pore area ratio of the inner peripheral surface of the bearing shall be 20% or more and 50% or less. If the pore area ratio of the inner peripheral surface of the bearing is less than 20%, the number of pores is small and a sufficient lubrication effect cannot be obtained. On the other hand, when the pore area ratio of the inner peripheral surface of the bearing exceeds 50%, the strength of the sintered oil-impregnated bearing is significantly reduced.
(1−3)気孔総数
焼結含油軸受の内周面に露出する気孔(粒子間気孔および微細気孔)の総数は、乏しいと有効多孔率が少なくなって含油能力が乏しくなるとともに、潤滑油の供給能力が乏しくなるため、気孔の総数を800個/mm2以上とする。
(1-3) Total number of pores If the total number of pores (interparticle pores and fine pores) exposed on the inner peripheral surface of the sintered oil-impregnated bearing is poor, the effective porosity will be low and the oil-containing capacity will be poor, and the lubricating oil will be poor. Since the supply capacity becomes poor, the total number of pores is set to 800 / mm 2 or more.
(1−4)気孔分布
焼結含油軸受の内周面に露出する気孔総数の大部分は微細気孔であり、この微細気孔により有効多孔率を高くして含油能力を高くしている。一方、通気度を小さくしようとするあまり粒子間気孔まで小さくすると、潤滑油の供給能力が低下して充分な量の潤滑油が供給できず、適切な油膜の形成が損なわれる。このため、大きめの気孔を所定割合で配置するとともに中程度の大きさの粒子間気孔の数を抑制することにより、通気度の増加を抑制したまま潤滑油の供給能力を向上させ、低温環境下においても鳴き音の発生を抑制することができる。
(1-4) Pore distribution Most of the total number of pores exposed on the inner peripheral surface of the sintered oil-impregnated bearing are fine pores, and the effective porosity is increased by these fine pores to increase the oil-containing capacity. On the other hand, if the interparticle pores are made too small to reduce the air permeability, the lubricating oil supply capacity is lowered and a sufficient amount of lubricating oil cannot be supplied, and the formation of an appropriate oil film is impaired. For this reason, by arranging large pores at a predetermined ratio and suppressing the number of medium-sized interparticle pores, the lubricating oil supply capacity is improved while suppressing the increase in air permeability, and in a low temperature environment. It is also possible to suppress the generation of squealing noise.
大きめの気孔としては、円相当径で100μmを超える粒子間気孔の数を気孔総数の0.5%を超え1.0%以下であるよう配置する。本明細書等において、「円相当径」とは、一つの気孔の面積を、同じ面積の一つの円の面積とした場合の円の直径のことをいう。円相当径で100μmを超える粒子間気孔の数が気孔総数の0.5%以下であると、大きめの気孔の数が乏しく、低温環境下において潤滑油の供給能力の改善が果たされなくなる。一方、円相当径で100μmを超える粒子間気孔の数が気孔総数の1.0%を超えると、連通する気孔の数が増加して焼結含油軸受の通気度が増加し、低温環境下において潤滑油の漏洩が生じ、かえって騒音レベルが増加する。 As the large pores, the number of interparticle pores having a diameter equivalent to a circle and exceeding 100 μm is arranged so as to be more than 0.5% and 1.0% or less of the total number of pores. In the present specification and the like, the "circle equivalent diameter" means the diameter of a circle when the area of one pore is the area of one circle having the same area. If the number of interparticle pores having a diameter equivalent to a circle and exceeding 100 μm is 0.5% or less of the total number of pores, the number of large pores is small and the lubricating oil supply capacity cannot be improved in a low temperature environment. On the other hand, when the number of interparticle pores having a diameter equivalent to a circle exceeding 100 μm exceeds 1.0% of the total number of pores, the number of communicating pores increases and the air permeability of the sintered oil-impregnated bearing increases, and in a low temperature environment. Lubricating oil leaks and the noise level increases.
また、前述のように大きめの気孔を配置しても、中程度の大きさの気孔が存在すると、焼結含油軸受の通気度が過度に増加するため、円相当径で80〜100μmである粒子間気孔の数が気孔総数の1.5%以下とし、さらに円相当径で60〜80μmである粒子間気孔の数が気孔総数の1.0%以下、および円相当径で40〜60μmである粒子間気孔の数が気孔総数の3.0%以下とする。 Further, even if large pores are arranged as described above, if medium-sized pores are present, the air permeability of the sintered oil-impregnated bearing increases excessively, so that particles having a diameter equivalent to a circle of 80 to 100 μm. The number of interstitial pores is 1.5% or less of the total number of pores, and the number of interparticle pores having a circle-equivalent diameter of 60 to 80 μm is 1.0% or less of the total number of pores, and the circle-equivalent diameter is 40 to 60 μm. The number of interparticle pores shall be 3.0% or less of the total number of pores.
なお、円相当径で40μm以下である粒子間気孔は、気孔総数のうち前述の残部として形成され、焼結含油軸受の含油能力に寄与する。 The interparticle pores having a circle-equivalent diameter of 40 μm or less are formed as the above-mentioned balance of the total number of pores, and contribute to the oil-containing capacity of the sintered oil-impregnated bearing.
(1−5)通気度
焼結含油軸受の通気度は、摺動音と密接な関係があり、通気度と騒音レベルの関係は二次関数に近似していて通気度が高いと騒音レベルも高くなる。このため、焼結含油軸受の通気度は30×10−11cm2以下であることが好ましい。一方、焼結含油軸受の通気度は、潤滑油の供給能力に影響し、通気度が1×10−11cm2に満たないと、潤滑油の供給が阻害されて良好な摺動特性が発揮できなくなる。これらのことから、焼結含油軸受の通気度は、1×10−11cm2以上30×10−11cm2以下であることが好ましい。
(1-5) Air permeability The air permeability of the sintered oil-impregnated bearing is closely related to the sliding noise, and the relationship between the air permeability and the noise level is close to a quadratic function. It gets higher. Therefore, the air permeability of the sintered oil-impregnated bearing is preferably 30 × 10-11 cm 2 or less. On the other hand, the air permeability of the sintered oil-impregnated bearing affects the supply capacity of the lubricating oil, and if the air permeability is less than 1 × 10-11 cm 2 , the supply of the lubricating oil is hindered and good sliding characteristics are exhibited. become unable. From these facts, it is preferable that the air permeability of the sintered oil-impregnated bearing is 1 × 10-11 cm 2 or more and 30 × 10-11 cm 2 or less.
(2)焼結含油軸受の製造方法
(2−1)原料粉末
原料粉末は、多数の微細孔を有する海綿状の多孔質鉄粉末に、銅粉末、および錫粉末と銅錫合金粉末のうちの少なくとも一種の粉末を添加して混合した混合粉末を用いる。
(2) Method for manufacturing sintered oil-impregnated bearing (2-1) Raw material powder The raw material powder is a spongy porous iron powder having a large number of micropores, copper powder, and tin powder and copper-tin alloy powder. A mixed powder in which at least one kind of powder is added and mixed is used.
(2−2)多孔質鉄粉末A
鉄粉末は、二種類の鉄粉末を混合して用いる。このうちの一種は、例えば、表面から内部にわたり多数の微細孔を有する海綿状で気体吸着法(BET法−ISO 9277)による比表面積が110m2/kg以上500m2/kg以下の多孔質鉄粉末Aを用いることができる。当該多孔質鉄粉末Aの微細孔が焼結含油軸受の微細気孔を形成する。ここで、気体吸着法による比表面積が110m2/kgに満たない鉄粉末は微細孔が少なく、鉄粉末により得られる焼結合金の鉄相の微細気孔が少なくなって、焼結含油軸受の含油能力が著しく低下する。一方、比表面積が500m2/kgを超える鉄粉末は微粉の量が多くなり易く、粒子間気孔が閉鎖気孔として形成され易くなり、潤滑油供給能力が著しく低下する。本発明の実施形態に用いることができる多孔質鉄粉末Aとしては、例えば、ヘガネス社製商品名LD80(比表面積が約200m2/kg)、商品名P100(比表面積が約175m2/kg)、および商品名R12(比表面積が約225m2/kg)等が挙げられる。
(2-2) Porous iron powder A
The iron powder is used by mixing two types of iron powder. One of them is, for example, a spongy iron powder having a large number of micropores from the surface to the inside and having a specific surface area of 110 m 2 / kg or more and 500 m 2 / kg or less by a gas adsorption method (BET method-ISO 9277). A can be used. The fine pores of the porous iron powder A form fine pores of the sintered oil-impregnated bearing. Here, the iron powder having a specific surface area of less than 110 m 2 / kg by the gas adsorption method has few fine pores, and the fine pores of the iron phase of the sintered alloy obtained by the iron powder are reduced, so that the sintered oil-impregnated bearing is oil-impregnated. The ability is significantly reduced. On the other hand, iron powder having a specific surface area of more than 500 m 2 / kg tends to have a large amount of fine powder, and interparticle pores are likely to be formed as closed pores, resulting in a significant decrease in lubricating oil supply capacity. Examples of the porous iron powder A that can be used in the embodiment of the present invention include a product name LD80 (specific surface area of about 200 m 2 / kg) and a product name P100 (specific surface area of about 175 m 2 / kg) manufactured by Heganes. , And trade name R12 (specific surface area is about 225 m 2 / kg) and the like.
多孔質鉄粉末Aは、微細な粉末ばかりであると鉄相の微細気孔を有効に形成することが難しくなる。一方、粗大な粉末ばかりであると、粗大な粉末どうしがブリッジングを生じて、これが大きな粒子間気孔を形成し、焼結含油軸受の通気度の増加を招く。このため、多孔質鉄粉末Aは、ある程度の大きさのものを適当量含む粒度分布とする必要がある。この観点より、多孔質鉄粉末Aの粒度分布を、140メッシュ篩上の粉末が14%以上29%以下、140メッシュ篩下かつ325メッシュ篩上の粉末が45%以上64%以下、325メッシュ篩下の粉末が残部となる粒度分布とする。これらの粒度分布のうち、いずれかが逸脱すると上記の微細気孔を得ることが難しくなる。なお、前述のとおり粗大な粉末はブリッジングの発生要因となるため、80メッシュ篩上の粉末は1%未満とすることが好ましい。 If the porous iron powder A is only a fine powder, it becomes difficult to effectively form fine pores in the iron phase. On the other hand, if only coarse powders are used, the coarse powders cause bridging, which forms large interparticle pores, which leads to an increase in air permeability of the sintered oil-impregnated bearing. Therefore, the porous iron powder A needs to have a particle size distribution including an appropriate amount of the porous iron powder A having a certain size. From this point of view, the particle size distribution of the porous iron powder A is as follows: powder on 140 mesh sieve is 14% or more and 29% or less, powder under 140 mesh sieve and on 325 mesh sieve is 45% or more and 64% or less, 325 mesh sieve. The particle size distribution is such that the powder below is the balance. If any of these particle size distributions deviates, it becomes difficult to obtain the above-mentioned fine pores. As described above, since the coarse powder causes bridging, the powder on the 80 mesh sieve is preferably less than 1%.
(2−3)多孔質鉄粉末B
粗大な粉末どうしがブリッジングを生じて大きな粒子間気孔を形成されるため、90メッシュ篩上の粉末が5%を超え10%未満となる粒度分布とすることにより、円相当径で100μmを超える粒子間気孔の数を気孔総数の0.5%を超え1.0%以下に調整する。
(2-3) Porous iron powder B
Since the coarse powders bridge each other to form large interparticle pores, the particle size distribution of the powder on the 90-mesh sieve is more than 5% and less than 10%, so that the equivalent circle diameter exceeds 100 μm. The number of interparticle pores is adjusted to more than 0.5% and 1.0% or less of the total number of pores.
また、鉄粉末として前述の多孔質鉄粉末Aのみを用いた場合、中程度の気孔は、原料粉末を成形したときの原料粉末間の隙間が焼結後に形成される粒子間気孔のみであり、中程度の気孔の数が少なく、通気度が過少となり、潤滑油の供給能力が低下する。このため、内部にある程度の大きさの気孔を有する中空状で、気体吸着法による比表面積が80m2/kg以上110m2/kg以下の多孔質鉄粉末Bを用い、当該多孔質鉄粉末Bの内部に存在するある程度の大きさの気孔により、焼結含油軸受の中程度の大きさの気孔を形成する。 Further, when only the above-mentioned porous iron powder A is used as the iron powder, the medium pores are only the interparticle pores formed after sintering the gaps between the raw material powders when the raw material powder is molded. The number of medium pores is small, the air permeability is low, and the lubricating oil supply capacity is reduced. Therefore, a porous iron powder B having a hollow shape having pores of a certain size inside and having a specific surface area of 80 m 2 / kg or more and 110 m 2 / kg or less by the gas adsorption method is used, and the porous iron powder B is used. The pores of a certain size existing inside form medium-sized pores of the sintered oil-impregnated bearing.
気体吸着法による多孔質鉄粉末Bの比表面積が80m2/kgに満たない場合は、鉄粉末はある程度の大きさの気孔が少なく、この鉄粉末により得られる焼結合金の中程度の気孔の数が少なくなって、通気度が低下する。また、多孔質鉄粉末Bの比表面積が110m2/kgを超える場合も、微細気孔が増加してある程度の大きさの気孔の数が少なくなって通気度が低下する。なお、多孔質鉄粉末Bの内部のある程度の大きさの気孔は、一部で多孔質鉄粉末Bの表面と連通する開放気孔として形成される。本発明の実施形態に用いることができる多孔質鉄粉末Bとして、例えば、DOWA IPクリエイション株式会社製商品名DHC−250(比表面積が約100m2/kg)等が挙げられる。 When the specific surface area of the porous iron powder B by the gas adsorption method is less than 80 m 2 / kg, the iron powder has few pores of a certain size, and the medium pores of the sintered alloy obtained by this iron powder The number is reduced and the air permeability is reduced. Further, when the specific surface area of the porous iron powder B exceeds 110 m 2 / kg, the number of fine pores increases, the number of pores having a certain size decreases, and the air permeability decreases. The pores having a certain size inside the porous iron powder B are partially formed as open pores communicating with the surface of the porous iron powder B. Examples of the porous iron powder B that can be used in the embodiment of the present invention include DHC-250 (specific surface area of about 100 m 2 / kg) manufactured by DOWA IP Creation Co., Ltd.
多孔質鉄粉末Bは、内部に存在するある程度の大きさの気孔により中程度の大きさの気孔を形成する必要があることから、微細な粉末ばかりであると中程度の大きさの気孔の形成が難しくなる。一方、粗大な粉末ばかりであると、粗大な粉末どうしがブリッジングを生じて、これが粗大な粒子間気孔を形成し、焼結含油軸受の通気度の増加を招く。このため、多孔質鉄粉末Bについても、ある程度の大きさのものを適当量含む粒度分布とする必要がある。 Since it is necessary for the porous iron powder B to form medium-sized pores by the pores having a certain size inside, if only fine powder is used, medium-sized pores are formed. Becomes difficult. On the other hand, if only coarse powders are used, the coarse powders cause bridging, which forms coarse interparticle pores and causes an increase in air permeability of the sintered oil-impregnated bearing. Therefore, it is necessary for the porous iron powder B to have a particle size distribution that includes an appropriate amount of the porous iron powder B having a certain size.
このため多孔質鉄粉末Bは、90メッシュ篩上の粉末が5%を超え10%以下、90メッシュ篩下かつ140メッシュ篩上の粉末が20%以上35%以下、140メッシュ篩下の粉末が残部となる粒度分布として構成する。また、90メッシュ篩上の粉末は、内部に50μm以上の気孔を有する粉末が50%以上80%未満、90メッシュ篩下かつ140メッシュ篩上の粉末は、内部に40μm以上60μm以下の気孔を有する粉末が50%以上80%未満含まれるようにする。多孔質鉄粉末Bをこのように構成することで、焼結後に得られる焼結合金の大きめの気孔および中程度の気孔を上記範囲に調整することができる。これらの粒度分布および粉末に含まれる気孔の大きさのうち、いずれかが逸脱すると上記の粒度分布の大きめの気孔および中程度の気孔を得ることが難しくなる。 Therefore, in the porous iron powder B, the powder on the 90 mesh sieve is more than 5% and 10% or less, the powder under the 90 mesh sieve and the powder on the 140 mesh sieve is 20% or more and 35% or less, and the powder under the 140 mesh sieve is. It is constructed as the remaining particle size distribution. Further, the powder on the 90 mesh sieve has 50% or more and less than 80% of the powder having pores of 50 μm or more inside, and the powder under the 90 mesh sieve and on the 140 mesh sieve has pores of 40 μm or more and 60 μm or less inside. The powder should be contained in an amount of 50% or more and less than 80%. By constructing the porous iron powder B in this manner, it is possible to adjust the large pores and the medium pores of the sintered alloy obtained after sintering to the above range. If any of these particle size distributions and the size of the pores contained in the powder deviates, it becomes difficult to obtain large pores and medium pores having the above particle size distribution.
なお、多孔質鉄粉末Aと同じく、多孔質鉄粉末Bにおいても、80メッシュ篩上の粉末のような粗大な粉末はブリッジングの発生要因となるため、80メッシュ篩上の粉末は1%未満とすることが好ましい。 As with the porous iron powder A, in the porous iron powder B, a coarse powder such as a powder on an 80 mesh sieve causes bridging, so that the powder on the 80 mesh sieve is less than 1%. Is preferable.
(2−4)多孔質鉄粉末Aと多孔質鉄粉末Bの割合
多孔質鉄粉末Aが鉄粉末全体(多孔質鉄粉末Aと多孔質鉄粉末Bの合計量)に占める割合が質量比で80%以上であると、微細気孔の数を十分確保でき、含油能力が向上する。また、多孔質鉄粉末Aが鉄粉末全体に占める割合が質量比で95%以下であると、中程度の大きさの気孔の数を十分確保でき、通気度が向上する。この結果、潤滑油の供給能力が向上する。このため、多孔質鉄粉末Aが鉄粉末全体に占める割合を質量比で80%以上95%以下とし、当該範囲で多孔質鉄粉末Aと多孔質鉄粉末Bを添加したものを鉄粉末として用いる。
(2-4) Ratio of Porous Iron Powder A and Porous Iron Powder B The ratio of the porous iron powder A to the total iron powder (total amount of the porous iron powder A and the porous iron powder B) is the mass ratio. When it is 80% or more, a sufficient number of fine pores can be secured and the oil-containing capacity is improved. Further, when the ratio of the porous iron powder A to the total iron powder is 95% or less in terms of mass ratio, a sufficient number of pores having a medium size can be sufficiently secured, and the air permeability is improved. As a result, the lubricating oil supply capacity is improved. Therefore, the ratio of the porous iron powder A to the total iron powder is 80% or more and 95% or less in terms of mass ratio, and the iron powder to which the porous iron powder A and the porous iron powder B are added is used as the iron powder. ..
(2−5)銅粉末
原料粉末の組成における銅の量は、前述した理由により10質量%以上59質量%以下とする。原料粉末中の銅の量は、後述する銅錫合金粉末を用いる場合の銅錫合金粉末による銅以外は、銅粉末として付与する。
(2-5) Copper powder The amount of copper in the composition of the raw material powder is 10% by mass or more and 59% by mass or less for the reason described above. The amount of copper in the raw material powder is given as the copper powder except for the copper produced by the copper-tin alloy powder when the copper-tin alloy powder described later is used.
当該銅粉末は、全量を箔状銅粉末として付与することができる。箔状銅粉末の形態で銅粉末を付与すると、箔状の銅粉末が多孔質鉄粉末の周囲をくるむように配置されるため、添加量の割に軸受内周面に露出する銅量を多くしたり、僅かではあるが存在する多孔質粉末内部の連通孔をブロックして通気度を低くすることができる。一方、箔状銅粉末は、通常用いられる電解銅粉末に比して高価であるため、銅粉末添加量が多い場合には、銅粉末の一部を電解銅粉末の形態で付与することがコスト上好ましい。しかし、この場合でも、箔状銅粉末を用いると上記の効果が得られるので、箔状銅粉末の添加量は原料粉末全体に対し少なくとも2質量%以上を用いることが好ましい。 The entire amount of the copper powder can be applied as a foil-like copper powder. When copper powder is applied in the form of foil-like copper powder, the foil-like copper powder is arranged so as to wrap around the porous iron powder, so that the amount of copper exposed on the inner peripheral surface of the bearing is increased for the amount of addition. Alternatively, the air permeability can be reduced by blocking the communication holes inside the porous powder, which is present in a small amount. On the other hand, since foil-shaped copper powder is more expensive than the commonly used electrolytic copper powder, it is costly to add a part of the copper powder in the form of electrolytic copper powder when the amount of copper powder added is large. Above preferred. However, even in this case, since the above effect can be obtained by using the foil-shaped copper powder, it is preferable to use at least 2% by mass or more of the amount of the foil-shaped copper powder added with respect to the entire raw material powder.
なお、銅粉末の一部は錫とCu−Sn共晶液相を発生して焼結を促進させるが、銅粉末として大きいものを用いると、粗大な流出孔が形成されて通気度が増加するおそれがある。このため、箔状銅粉末の場合は粒度が100メッシュ篩下のものを用いるとよく、電解銅粉末を用いる場合には、粒度が200メッシュ篩下のものを用いるとよい。 A part of the copper powder generates a tin and Cu—Sn eutectic liquid phase to promote sintering, but if a large copper powder is used, coarse outflow holes are formed and the air permeability is increased. There is a risk. Therefore, in the case of foil-like copper powder, it is preferable to use one having a particle size under a sieve of 100 mesh, and when using electrolytic copper powder, it is preferable to use one having a particle size under a sieve of 200 mesh.
(2−6)錫粉末および銅錫合金粉末のうち少なくとも1種の粉末
錫は、錫粉末および銅錫合金粉末のうち少なくとも1種の粉末の形態で付与される。上記のように全体組成中の錫の量は0.5質量%以上3質量%以下であるため、錫粉末および銅錫合金粉末のうち少なくとも1種の粉末は、原料粉末の組成において錫の量が0.5質量%以上3質量%以下となるよう添加する。
(2-6) At least one powder of tin powder and copper-tin alloy powder Tin is provided in the form of at least one powder of tin powder and copper-tin alloy powder. Since the amount of tin in the overall composition is 0.5% by mass or more and 3% by mass or less as described above, at least one of the tin powder and the copper-tin alloy powder is the amount of tin in the composition of the raw material powder. Is added so as to be 0.5% by mass or more and 3% by mass or less.
錫はCu−Sn共晶液相を発生して焼結を促進する作用、および銅と合金化して銅系合金相を強化して銅系合金相の耐摩耗性を向上する作用を有するが、これらの作用を焼結合金に均一に及ぼすため、錫粉末および銅錫合金粉末のうち少なくとも1種の粉末は、325メッシュ篩下の微細な粉末を用いるとよい。また、本発明の実施形態においては、銅錫合金粉末により中程度の大きさの粒子間気孔を形成するが、錫粉末および銅錫合金粉末のうち少なくとも1種の粉末をある程度の大きさの粉末とすると、これらの粉末からも流出孔として中程度の大きさの粒子間気孔が形成されるため、気孔分布の制御が難しくなる。この点からも、上記のように、錫粉末および銅錫合金粉末のうち少なくとも1種の粉末は、325メッシュ篩下の微細な粉末を用いるとよい。 Tin has the effect of generating a Cu—Sn eutectic liquid phase to promote sintering, and the effect of alloying with copper to strengthen the copper-based alloy phase and improve the wear resistance of the copper-based alloy phase. In order to exert these actions uniformly on the sintered alloy, it is preferable to use a fine powder under a 325 mesh sieve as the powder of at least one of the tin powder and the copper-tin alloy powder. Further, in the embodiment of the present invention, the copper-tin alloy powder forms medium-sized interparticle pores, but at least one of the tin powder and the copper-tin alloy powder is used as a powder having a certain size. Then, since interparticle pores having a medium size are formed as outflow pores from these powders, it becomes difficult to control the pore distribution. From this point as well, as described above, it is preferable to use a fine powder under a 325 mesh sieve as the powder of at least one of the tin powder and the copper-tin alloy powder.
なお、銅錫合金粉末を用いる場合、焼結温度で液相を発生する必要があり、このため銅錫合金粉末としては、錫の量が50質量%以上の銅錫合金粉末を用いることが好ましい。 When a copper-tin alloy powder is used, it is necessary to generate a liquid phase at the sintering temperature. Therefore, it is preferable to use a copper-tin alloy powder having a tin content of 50% by mass or more as the copper-tin alloy powder. ..
焼結合金の成分として亜鉛およびニッケルの少なくとも1種を付与する場合、亜鉛を単味粉末の形態で付与すると焼結時に揮発し易く、またニッケルを単味粉末の形態で付与すると銅合金相に拡散し難い。このため、亜鉛およびニッケルの少なくとも1種を付与する場合、いずれの場合も銅合金粉末の形態で付与するとよい。前述のように、亜鉛およびニッケルの少なくとも1種を付与する場合、亜鉛およびニッケルの少なくとも1種の量(総量)は5質量%以下であるため、銅亜鉛合金粉末および銅ニッケル合金粉末の少なくとも1種の粉末は、原料粉末の組成において、亜鉛およびニッケルの少なくとも1種の量(総量)が5質量%以下となるよう添加する。また、これらの銅合金粉末を用いる場合、これらの銅合金粉末に含有される銅の量の分だけ上記の銅粉末の添加量を調整する必要がある。 When at least one of zinc and nickel is added as a component of the sintered alloy, if zinc is added in the form of a simple powder, it easily volatilizes during sintering, and if nickel is added in the form of a simple powder, it becomes a copper alloy phase. Hard to spread. Therefore, when at least one of zinc and nickel is applied, it is preferable to apply in the form of copper alloy powder in either case. As described above, when at least one of zinc and nickel is added, the amount (total amount) of at least one of zinc and nickel is 5% by mass or less, and therefore at least one of the copper-zinc alloy powder and the copper-nickel alloy powder. The seed powder is added so that the amount (total amount) of at least one of zinc and nickel is 5% by mass or less in the composition of the raw material powder. When these copper alloy powders are used, it is necessary to adjust the amount of the copper powder added according to the amount of copper contained in the copper alloy powders.
(2−7)成形
前述の原料粉末は、通常の焼結含油軸受を製造する場合と同様に、成形体の外周形状を造形する型孔を有するダイと、成形体の下端面形状を造形する下パンチと、成形体の内周形状を造形するコアロッドとにより形成されるダイキャビティに充填され、成形体の上端面形状を造形する上パンチと該下パンチとにより圧縮成形されて略円筒形の成形体に成形される。このとき成形体密度は、通常の焼結含油軸受の成形体密度と同様に、5.5Mg/m3以上6.8Mg/m3以下の範囲に成形される。しかしながら、本発明の実施形態に用いることができる原料粉末においては、鉄粉末として前述の多孔質鉄粉末を用いており、通常のアトマイズ鉄粉末に比べて見掛け密度が低いことから、通常の焼結含油軸受の成形体に比して、粉末粒子間の隙間は小さく形成される。
(2-7) Molding The raw material powder described above forms a die having a mold hole for forming the outer peripheral shape of the molded body and the shape of the lower end surface of the molded body, as in the case of manufacturing a normal sintered oil-impregnated bearing. The die cavity formed by the lower punch and the core rod that forms the inner peripheral shape of the molded body is filled, and the upper punch that forms the upper end surface shape of the molded body and the lower punch are compression-molded to form a substantially cylindrical shape. It is molded into a molded body. At this time, the molded body density is formed in the range of 5.5 Mg / m 3 or more and 6.8 Mg / m 3 or less, which is the same as the molded body density of a normal sintered oil-impregnated bearing. However, in the raw material powder that can be used in the embodiment of the present invention, the above-mentioned porous iron powder is used as the iron powder, and the apparent density is lower than that of the ordinary atomized iron powder. The gap between the powder particles is formed smaller than that of the molded body of the oil-impregnated bearing.
(2−8)焼結
得られた成形体は、通常の焼結含油軸受を製造する場合と同様に、非酸化性雰囲気中で加熱して焼結するとよい。焼結温度が760℃に満たないと、焼結が進行せず焼結体の強度が低下する。その一方で、焼結温度が810℃を超えると、Cu−Sn共晶液相の発生量が過多となって銅錫合金粉末により形成した粒子間気孔にCu−Sn共晶液相が滲出し、所望の気孔分布を得ることが難しくなる。このため、焼結における焼結温度を760℃以上810℃以下とする。
(2-8) Sintering The obtained molded product may be heated and sintered in a non-oxidizing atmosphere in the same manner as in the case of manufacturing a normal sintered oil-impregnated bearing. If the sintering temperature is less than 760 ° C., sintering does not proceed and the strength of the sintered body decreases. On the other hand, when the sintering temperature exceeds 810 ° C., the amount of Cu—Sn eutectic liquid phase generated becomes excessive, and the Cu—Sn eutectic liquid phase exudes into the interparticle pores formed by the copper-tin alloy powder. , It becomes difficult to obtain the desired pore distribution. Therefore, the sintering temperature in sintering is set to 760 ° C. or higher and 810 ° C. or lower.
(3)その他の実施形態
前述の焼結含油軸受において、従来の焼結含油軸受と同様に、黒鉛、二硫化モリブデン、硫化マンガン、弗化カルシウムのうち少なくとも1種の固体潤滑剤成分を付与してもよい。これらの固体潤滑剤成分を用いると、軸と摺動する際の摩擦係数を低減できる。これらの固体潤滑剤成分は焼結合金の鉄相や銅合金相と反応せず、粒子間気孔の内部に分散する。これらの固体潤滑剤成分を用いる場合、鉄系焼結合金100質量部に対して0.2質量部未満では効果が乏しく、2質量部を超えると軸受の強度の低下が顕著となる。このため、固体潤滑剤成分を用いる場合、固体潤滑剤成分の総量は、鉄系焼結合金100質量部に対して0.2質量部以上2質量部以下の範囲とする。このような固体潤滑剤成分を用いる場合、上記の原料粉末100質量部に対し0.2質量部以上2質量部以下の固体潤滑剤成分の粉末を添加すればよい。
(3) Other Embodiments In the above-mentioned sintered oil-impregnated bearing, at least one solid lubricant component of graphite, molybdenum disulfide, manganese sulfide, and calcium fluoride is added as in the case of the conventional sintered oil-impregnated bearing. You may. By using these solid lubricant components, the coefficient of friction when sliding with the shaft can be reduced. These solid lubricant components do not react with the iron phase or copper alloy phase of the sintered alloy and are dispersed inside the interparticle pores. When these solid lubricant components are used, the effect is poor if the amount is less than 0.2 parts by mass with respect to 100 parts by mass of the iron-based sintered alloy, and if it exceeds 2 parts by mass, the strength of the bearing is significantly reduced. Therefore, when the solid lubricant component is used, the total amount of the solid lubricant component is in the range of 0.2 parts by mass or more and 2 parts by mass or less with respect to 100 parts by mass of the iron-based sintered alloy. When such a solid lubricant component is used, the powder of the solid lubricant component of 0.2 parts by mass or more and 2 parts by mass or less may be added to 100 parts by mass of the above-mentioned raw material powder.
前述の焼結含油軸受の製造方法においては、従来の焼結含油軸受と同様に、焼結後の焼結体に、軸受の寸法を強制するサイジング等の再圧縮処理を行うことができる。また、特公昭63−067047号公報等に記載のような軸受内周面へのテーパ付与を行う再圧縮処理についても行うことができる。 In the method for manufacturing a sintered oil-impregnated bearing described above, similarly to the conventional sintered oil-impregnated bearing, the sintered body after sintering can be recompressed by sizing or the like forcing the dimensions of the bearing. Further, the recompression process for applying a taper to the inner peripheral surface of the bearing as described in Japanese Patent Publication No. 63-067047 can also be performed.
原料粉末として次の(1)乃至(5)の粉末を用意した。
(1)多孔質鉄粉末A:比表面積:200m2/kg、140メッシュ篩上:19.2%、140メッシュ篩下かつ325メッシュ篩上:54.7%、および325メッシュ篩下:26.1%の粒度分布
(2)多孔質鉄粉末B
(b−1):比表面積:100m2/kg、90メッシュ篩上:5.5%、90メッシュ篩下かつ140メッシュ篩上:32.0%、および140メッシュ篩下:62.5%の粒度分布、90メッシュ篩上の粉末の内部の50μm以上の気孔を有する粉末の該粉末に対する割合:70%、90メッシュ篩下かつ140メッシュ篩上の粉末の内部の40μm以上60μm未満の気孔を有する粉末の該粉末に対する割合:70%
(3)電解銅粉末:200メッシュ篩下の粉末が90質量%
(4)箔状銅粉末:100メッシュ篩下の粉末が90質量%
(5)錫粉末:325メッシュ篩下
The following powders (1) to (5) were prepared as raw material powders.
(1) Porous iron powder A: Specific surface area: 200 m 2 / kg, 140 mesh sieve: 19.2%, 140 mesh sieve and 325 mesh sieve: 54.7%, and 325 mesh sieve: 26. 1% particle size distribution (2) Porous iron powder B
(B-1): Specific surface area: 100 m 2 / kg, 90 mesh sieve: 5.5%, 90 mesh sieve and 140 mesh sieve: 32.0%, and 140 mesh sieve: 62.5%. Particle size distribution, ratio of powder having pores of 50 μm or more inside the powder on the 90 mesh sieve to the powder: 70%, having pores of 40 μm or more and less than 60 μm inside the powder under the 90 mesh sieve and on the 140 mesh sieve. Ratio of powder to the powder: 70%
(3) Electrolytic copper powder: 90% by mass of powder under a 200 mesh sieve
(4) Foil-like copper powder: 90% by mass of powder under 100 mesh sieve
(5) Tin powder: under a 325 mesh sieve
上述の多孔質鉄粉末Aと多孔質鉄粉末Bとの割合(質量%)を多孔質鉄粉末A:多孔質鉄粉末B=90:10とし、当該鉄粉末に上記の電解銅粉末5質量%、箔状銅粉末6質量%、および錫粉末1質量%を添加し、これらの粉末の合計100質量部に対し成形潤滑剤であるステアリン酸亜鉛粉末0.5質量部を添加して混合し原料粉末を用意した。 The ratio (mass%) of the above-mentioned porous iron powder A and the above-mentioned porous iron powder B is set to porous iron powder A: porous iron powder B = 90:10, and the above-mentioned electrolytic copper powder is added to the above-mentioned electrolytic copper powder by 5% by mass. , 6% by mass of foil-like copper powder, and 1% by mass of tin powder are added, and 0.5 parts by mass of zinc stearate powder, which is a molding lubricant, is added to a total of 100 parts by mass of these powders and mixed. The powder was prepared.
得られた原料粉末を用いて成形体密度6.6Mg/m3の成形体試料を作製し、得られた成形体試料を分解アンモニアガス雰囲気中、790℃に加熱して焼結を行い、外径10.30mm、内径7.31mmおよび高さ6.63mmの円筒形焼結体試料を作製した後、得られた円筒形焼結体試料を同一の再圧金型を用い、同一の圧力で再圧縮して外径10.22mm、内径7.32mmおよび高さ6.50mmに加工して、試料番号1の焼結体試料を作製した。 Using the obtained raw material powder, a molded product sample having a molded product density of 6.6 Mg / m 3 was prepared, and the obtained molded product sample was heated to 790 ° C. in a decomposed ammonia gas atmosphere to be sintered, and then outside. After preparing a cylindrical sintered body sample having a diameter of 10.30 mm, an inner diameter of 7.31 mm and a height of 6.63 mm, the obtained cylindrical sintered body sample was used in the same re-pressing die and at the same pressure. It was recompressed and processed to an outer diameter of 10.22 mm, an inner diameter of 7.32 mm, and a height of 6.50 mm to prepare a sintered sample of sample number 1.
また、表1に記載の比率を使用した以外は試料番号01の焼結体試料と同様の操作で、試料番号2−6の焼結体試料を作製した。試料番号1で使用していない表1に記載の多孔質鉄粉末B(b−2)は以下に表されるものである。
(b−2):比表面積:100m2/kg、90メッシュ篩上の粉末の内部の50μm以上の気孔を有する粉末の該粉末に対する割合:80%、90メッシュ篩下かつ140メッシュ篩上の粉末の内部の40μm以上60μm未満の気孔を有する粉末の該粉末に対する割合:65%
Further, a sintered sample of sample number 2-6 was prepared by the same operation as the sintered sample of sample number 01 except that the ratios shown in Table 1 were used. The porous iron powder B (b-2) shown in Table 1, which is not used in Sample No. 1, is represented below.
(B-2): Specific surface area: 100 m 2 / kg, ratio of powder having pores of 50 μm or more inside powder on 90 mesh sieve to the powder: 80%, powder under 90 mesh sieve and on 140 mesh sieve Ratio of powder having pores of 40 μm or more and less than 60 μm inside the sieve to the powder: 65%
これらの焼結体試料について、軸方向に切断し、光学顕微鏡により内周面を観察するとともに、画像分析ソフトウエア(イノテック株式会社製 Quick Grain Standard Video)を用いて、気孔の面積、気孔の総数、および各気孔の円相当径およびその分布を調査するとともに、各気孔分布の範囲に属する気孔数が気孔総数に占める割合について調査した。これらの結果を表1に併せて示す。 These sintered body samples are cut in the axial direction, the inner peripheral surface is observed with an optical microscope, and the area of pores and the total number of pores are measured using image analysis software (Quick Grain Standard Video manufactured by Innotek Co., Ltd.). , And the equivalent circle diameter of each pore and its distribution were investigated, and the ratio of the number of pores belonging to the range of each pore distribution to the total number of pores was investigated. These results are also shown in Table 1.
さらに、これらの焼結体試料について、潤滑油として商品名アンデロール465(アンデロールジャパン製)を真空含浸して焼結含油軸受試料とし、電動機のモータシャフトの軸受として装着して該電動機を低温(−45℃)で運転したときの摩擦係数を測定した。この摩擦係数測定結果についても、表1に併せて示す。なお、電動機は、シャフトが直径7.29mmで、滑り速度が101m/分、PV値が110MPa・m/分である。 Further, these sintered body samples are vacuum-impregnated with the trade name Anderol 465 (manufactured by Anderol Japan) as lubricating oil to prepare a sintered oil-impregnated bearing sample, which is mounted as a bearing of a motor shaft of an electric motor to lower the temperature of the electric motor. The friction coefficient when operated at (−45 ° C.) was measured. The results of this friction coefficient measurement are also shown in Table 1. The motor has a shaft having a diameter of 7.29 mm, a sliding speed of 101 m / min, and a PV value of 110 MPa · m / min.
なお、表1中の「−#nnn」はnnnメッシュ篩下、「+#mmm」はmmmメッシュ篩上の粉末を意味する。 In Table 1, "-# nnn" means the powder under the nnn mesh sieve, and "+ # mmm" means the powder on the mmm mesh sieve.
表1の試料番号1−6の結果より、円相当径で100μmを超える粒子間気孔の数が気孔総数の0.5%を超え1.0%以下である試料1及び試料2において、低温での摩擦係数が小さくなることが確認された。また、原料粉末として90メッシュ篩上の粉末の内部に50μm以上の気孔を有する粉末が該粉末に対して50%以上80%未満含まれる多孔質鉄粉B(b−1)のなかで、90メッシュ篩上の粉末が5%を超え10%未満である粉末を用いる試料1及び試料2において、低温での摩擦係数が小さくなることが確認された。 From the results of sample numbers 1-6 in Table 1, the number of interparticle pores having a circular equivalent diameter of more than 100 μm exceeds 0.5% of the total number of pores and is 1.0% or less in Samples 1 and 2 at low temperatures. It was confirmed that the coefficient of friction of was reduced. Further, 90 of the porous iron powder B (b-1) containing 50% or more and less than 80% of the powder having pores of 50 μm or more inside the powder on the 90 mesh sieve as the raw material powder. It was confirmed that the friction coefficient at low temperature was small in Sample 1 and Sample 2 in which the powder on the mesh sieve was more than 5% and less than 10%.
本発明の実施形態の焼結含油軸受は、低温環境下においても自動車のパワーウインド用モータの軸受のような、間欠的かつ短時間使用される電装用モータの軸受に好適である。
The sintered oil-impregnated bearing of the embodiment of the present invention is suitable for bearings of electric motors that are used intermittently and for a short time, such as bearings of motors for power windows of automobiles even in a low temperature environment.
Claims (6)
軸受内周面の気孔面積率が20%以上50%以下であり、
気孔総数が800個/mm2以上であり、および
気孔分布が、
円相当径で100μmを超える気孔の数が気孔総数の0.5%を超え1.0%以下、
円相当径で80μmを超え100μm以下である気孔の数が気孔総数の1.5%以下、
円相当径で60μmを超え80μm以下である気孔の数が気孔総数の1.0%以下、
円相当径で40μmを超え60μm以下である気孔の数が気孔総数の3.0%以下、および
円相当径で40μm以下の気孔が気孔総数の残部である、焼結含油軸受。 An iron-based sintered alloy containing copper: 10% or more and 59% or less and tin: 0.5% or more and 3.0% or less in terms of mass ratio, and the balance being iron and unavoidable impurities.
The pore area ratio of the inner peripheral surface of the bearing is 20% or more and 50% or less.
The total number of pores is 800 / mm 2 or more, and the pore distribution is
The number of pores with a diameter equivalent to a circle exceeding 100 μm exceeds 0.5% of the total number of pores and 1.0% or less.
The number of pores with a diameter equivalent to a circle exceeding 80 μm and 100 μm or less is 1.5% or less of the total number of pores.
The number of pores with a diameter equivalent to a circle exceeding 60 μm and 80 μm or less is 1.0% or less of the total number of pores.
A sintered oil-impregnated bearing in which the number of pores having a circle-equivalent diameter of more than 40 μm and 60 μm or less is 3.0% or less of the total number of pores, and the pores having a circle-equivalent diameter of 40 μm or less are the remainder of the total number of pores.
前記原料粉末の組成が、質量比で、銅:10%以上59%以下、錫:0.5%以上3.0%以下、を含み、残部が鉄と不可避不純物からなり、
前記鉄粉末として、
表面から内部にわたり微細孔を有する海綿状で、気体吸着法による比表面積が110m2/kg以上500m2/kg以下であり、140メッシュ篩上の粉末が14%以上29%以下、140メッシュ篩下かつ325メッシュ篩上の粉末が45%以上64%以下、325メッシュ篩下の粉末が残部である粒度分布を有する多孔質鉄粉Aと、
内部に気孔を有する中空状で、気体吸着法による比表面積が80m2/kg以上110m2/kg以下であり、90メッシュ篩上の粉末が5%を超え10%未満、90メッシュ篩下かつ140メッシュ篩上の粉末が20%以上35%以下、140メッシュ篩下の粉末が残部である粒度分布を有し、前記90メッシュ篩上の粉末の内部に50μm以上の気孔を有する粉末が該粉末に対して50%以上80%未満含まれ、かつ前記90メッシュ篩下かつ140メッシュ篩上の粉末の内部に40μm以上60μm以下の気孔を有する粉末が該粉末に対して50%以上80%未満含まれる多孔質鉄粉Bとからなる多孔質粉末であり、
前記多孔質鉄粉末Aが多孔質鉄粉末に占める割合が、80%以上95%以下である鉄粉末を用い、
前記錫粉末および前記銅錫合金粉末からなる群より選択される少なくとも1種の粉末として325メッシュ篩下の粉末を用い、
前記銅錫合金粉末による銅以外の銅粉末として、100メッシュ篩下の箔状銅粉末、もしくは、前記原料粉末全量に対して2質量%以上の100メッシュ篩下の箔状銅粉末を含み残部が200メッシュ篩下の電解銅粉末を用い、
前記焼結における焼結温度が760℃以上810℃以下である、焼結含油軸受の製造方法。 Using a raw material powder obtained by mixing copper powder with iron powder and at least one powder selected from the group consisting of tin powder and copper-tin alloy powder, the raw material powder is compression-molded to have a density of 5.5 Mg / molding the m 3 or more 6.8 mg / m 3 or less of the range moldings, a process for the preparation of oil-impregnated sintered bearings of sintering the resulting molded body,
The composition of the raw material powder contains copper: 10% or more and 59% or less, tin: 0.5% or more and 3.0% or less in terms of mass ratio, and the balance is composed of iron and unavoidable impurities.
As the iron powder
It is spongy with fine pores from the surface to the inside, has a specific surface area of 110 m 2 / kg or more and 500 m 2 / kg or less by the gas adsorption method, and the powder on the 140 mesh sieve is 14% or more and 29% or less, under the 140 mesh sieve. And the porous iron powder A having a particle size distribution in which the powder on the 325 mesh sieve is 45% or more and 64% or less and the powder under the 325 mesh sieve is the balance.
Hollow with pores inside, specific surface area by gas adsorption method is 80 m 2 / kg or more and 110 m 2 / kg or less, powder on 90 mesh sieve is more than 5% and less than 10%, under 90 mesh sieve and 140 The powder on the mesh sieve has a particle size distribution of 20% or more and 35% or less, the powder under the 140 mesh sieve is the balance, and the powder having pores of 50 μm or more inside the powder on the 90 mesh sieve is the powder. On the other hand, 50% or more and less than 80% of the powder is contained, and 50% or more and less than 80% of the powder having pores of 40 μm or more and 60 μm or less is contained inside the powder under the 90 mesh sieve and on the 140 mesh sieve. It is a porous powder composed of a porous iron powder B, and is
Using an iron powder in which the ratio of the porous iron powder A to the porous iron powder is 80% or more and 95% or less.
A powder under a 325 mesh sieve was used as at least one powder selected from the group consisting of the tin powder and the copper-tin alloy powder.
As the copper powder other than copper by the copper-tin alloy powder, the foil-like copper powder under a 100-mesh sieve or the foil-like copper powder under a 100-mesh sieve in an amount of 2% by mass or more based on the total amount of the raw material powder is contained and the balance is Using electrolytic copper powder under a 200 mesh sieve,
A method for manufacturing a sintered oil-impregnated bearing, wherein the sintering temperature in the sintering is 760 ° C. or higher and 810 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019231338A JP2021099134A (en) | 2019-12-23 | 2019-12-23 | Sintered oil-impregnated bearing and manufacturing method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019231338A JP2021099134A (en) | 2019-12-23 | 2019-12-23 | Sintered oil-impregnated bearing and manufacturing method of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021099134A true JP2021099134A (en) | 2021-07-01 |
Family
ID=76541037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019231338A Pending JP2021099134A (en) | 2019-12-23 | 2019-12-23 | Sintered oil-impregnated bearing and manufacturing method of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021099134A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264994A1 (en) | 2021-06-15 | 2022-12-22 | 三菱瓦斯化学株式会社 | Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device |
WO2023048082A1 (en) * | 2021-09-23 | 2023-03-30 | Ntn株式会社 | Filter and filter assembly |
CN116480689A (en) * | 2023-04-07 | 2023-07-25 | 南通鸿明新材料有限公司 | A kind of oil-free bearing and preparation method thereof |
-
2019
- 2019-12-23 JP JP2019231338A patent/JP2021099134A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264994A1 (en) | 2021-06-15 | 2022-12-22 | 三菱瓦斯化学株式会社 | Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device |
WO2023048082A1 (en) * | 2021-09-23 | 2023-03-30 | Ntn株式会社 | Filter and filter assembly |
CN116480689A (en) * | 2023-04-07 | 2023-07-25 | 南通鸿明新材料有限公司 | A kind of oil-free bearing and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5772498B2 (en) | Sintered oil-impregnated bearing and manufacturing method thereof | |
JP6011805B2 (en) | Sintered oil-impregnated bearing and manufacturing method thereof | |
JP5247329B2 (en) | Iron-based sintered bearing and manufacturing method thereof | |
JP4380274B2 (en) | Method for producing ferrous copper-based sintered oil-impregnated bearing alloy | |
CN101251152B (en) | Oil impregnated sintered bearing and method for manufacturing same | |
JP2021099134A (en) | Sintered oil-impregnated bearing and manufacturing method of the same | |
JP6921046B2 (en) | Manufacturing method of sintered bearing | |
JP6816079B2 (en) | Vibration motor | |
JP6760807B2 (en) | Copper-based sintered alloy oil-impregnated bearing | |
JP2011127742A (en) | Oil-impregnated sintered bearing and method for manufacturing the same | |
JP3613569B2 (en) | Composite metal powder for sintered bearing and sintered oil-impregnated bearing | |
JP6302259B2 (en) | Manufacturing method of sintered bearing | |
JP6424983B2 (en) | Iron-based sintered oil-impregnated bearing | |
JPS60197832A (en) | Self oil supplying sintered bush and manufacture | |
JP3973074B2 (en) | Sintered oil-impregnated bearing for electric motor and manufacturing method thereof | |
KR102331498B1 (en) | Sintered bearing and its manufacturing method | |
JPS6347762B2 (en) | ||
JP2009007433A (en) | Copper-based oil-containing sintered sliding member and method for producing the same | |
EP3424623A1 (en) | Cu-BASED SINTERED SLIDING MATERIAL, AND PRODUCTION METHOD THEREFOR | |
JPS6237681B2 (en) | ||
JP4029176B2 (en) | Sintered oil-impregnated bearing | |
JPH02290905A (en) | Greasefree sliding material and manufacture thereof | |
JP2631146B2 (en) | Sintered metal body and method for producing the same | |
JP6855194B2 (en) | Sintered bearings and their manufacturing methods | |
JP6571230B2 (en) | Sintered bearing |