JPH045745B2 - - Google Patents
Info
- Publication number
- JPH045745B2 JPH045745B2 JP18836083A JP18836083A JPH045745B2 JP H045745 B2 JPH045745 B2 JP H045745B2 JP 18836083 A JP18836083 A JP 18836083A JP 18836083 A JP18836083 A JP 18836083A JP H045745 B2 JPH045745 B2 JP H045745B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- iron
- alloy
- sintered
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
Description
本発明は焼結合金軸受及びその製造法に係り、
鉄系焼結合金軸受において有効な耐食性その他の
特性を有せしめ、更には斯様な焼結合金軸受につ
いての工学的に有利な製造法を提供し、低コスト
に斯様な特質性を具備した各種軸受を提供しよう
とするものである。
低コストでしかも強度的に優れた焼結合金軸受
としては鉄系のものが広く利用されている。即ち
この種焼結合金軸受としてはその他に銅系や青銅
系のものも実用化されているが原料費として鉄系
のものは比較的低廉な青銅系のものに比較しても
数分の1以下であり、しかも強度的に優れている
ことから特に高荷重用焼結機械部品に関しては鉄
系のものとせざるを得ない実情である。ところが
このような鉄系焼結合金においては腐食し易いと
いう決定的な不利点を有しており、このため黒化
処理や蒸気処理の如き防錆処理を施すことが必要
で、しかも必ずしも有効な防錆結果が得られず、
又軸受のような防錆処理を採用し得ないような用
途において防錆を必要とする場合には利用され難
いなどの欠点を有している。
本発明は上記したような実情に鑑みて検討を重
ねて創案されたものであつて、低廉でしかも好ま
しい耐食性を有し、又機械的強度に優れていると
共に高潤滑性を有していて前記軸受として適切に
利用することのできる焼結合金を得ることに成功
した。
即ちこのような本発明によるものは、wt%
(以下単に%とする)で、Fe:28〜70%、Cu:15
〜60%、Ni:3〜15%、Zn:3〜20%を含有し、
残部が不可避的不純物より成ることを特徴とした
粉末冶金法による焼結合金を提案するものであつ
て、場合によつては上記基本成分組成のものに対
してPb:10%以下、黒鉛3%以下の何れか1種
又は2種およびこれにSn:5%以下を含有させ
ることができる。又その製造法としてはCu、Ni、
Znの3元合金を一方の母材とし、これに他方の
鉄粉を配合したものを圧粉成形し焼結処理するも
ので、その焼結工程において脱亜鉛を防止するた
め圧粉体を耐熱性(金属を含む)容器に装入して
焼結処理する。
上記したような本発明について更に説明する
と、本発明によるものは鉄と、銅、ニツケル、亜
鉛の4元素を基本成分とするもので、具体的製造
に際しては、前記Cu、Ni、Znの粉末を各別に調
整して準備することを頗る煩雑で、コストアツプ
となる傾向を有するが、これらのCu、Ni、Znを
共に含有した合金粉末として準備することによ
り、充分な簡易性と低コスト化を図り得る。即ち
Cu、Ni、Znの3元系合金材は洋白又は洋銀と称
されるもので、家具などにおける各種装飾用、食
器、楽器その他の器具や貨幣などとして広く利用
されているものであつて、このように器具等とし
て利用されていた合金材を粉末化して利用すると
鉄粉に対して単にこの3元系合金粉末を添加配合
するだけで簡易に調整することができる。然して
この3元系合金についてはそのZn分が高くなる
と(α+β)組織になり、粘性が低く、加工性が
劣ると云われているが、本発明のような粉末冶金
法では焼結時においてその蒸化量を抑制すれば何
等問題なく、逆に亜鉛の被覆作用により、防錆、
防食効果が顕著に発揮されて鉄系焼結合金におけ
る耐食性を充分に向上し得る。ところで本発明者
等は前記したような3元素合金に対して4元素焼
結合金とする場合について、そのFe配分合量の
上限および下限についての実験検討を行つた結果
28〜70%であることを知つた。即ち鉄粉が70%以
上も配合されたものにおいては耐食性が急激に低
下し、折角の3元素合金粉末配合によつても好ま
しい耐酸化性を確保できず、しかも摺動性その他
が劣化する。又鉄粉が28%未満では3元合金粉末
の必要量が大となり、鉄系焼結合金に準じた低廉
性を得ようとする本発明の目的を達し得ない。
Cuは、15〜60%であつて、このCuが15%未満
の場合には軸受としての回転軸に対するなじみ性
が適切に得られず、又防錆性なども劣化する。ま
た、このCuが60%超えでは軸受体としての機械
的強度が不充分となり、特に高荷重軸受目的に採
用し難い。
Niは、3〜15%であり、3%未満では不動態
性酸化膜の形成などによる酸化防止効果が不充分
であり、一方このNiが15%を超えると酸化防止
効果が飽和すると共に高価となる。
Znは、3〜20%であつて、3%に達しないよ
うな場合にはこのZnによる防錆、防食効果が有
効に得られないこととなる。これに対してZn分
が20%を超えるような場合には焼結時における蒸
化を防止することが困難となり、なじみ性や加工
性なども劣化するのでこれを上限とする。
上記のような組成に対して、更に添加される
Pbは10%以下であり、10%超では機械的強度が
低下する。同様に黒鉛についても3%以下であつ
て3%以上も含有すると製品の強度が低下し鉄粉
をベースとした軸受材の高強度性が損われる。
又上記のようにPbを含有せしめたような場合
に併用されるSnは5%を上限とし、5%を超え
て添加してもその効果が飽和し、又コスト高とな
るので、これを上限とする。
本発明の製造方法における焼結温度について
は、Fe70%(3元合金30%)およびFe28〜30%
(3元合金70〜72%)の場合もFe50%(3元合金
50%)の場合と同じに900℃の同じ条件で実施す
ることができる。即ち元来は鉄量が50%を超過す
るに従い900℃より徐々に高温とし、又反対に鉄
量が50%以下となると900℃より徐々に低温とす
ることが必要と考えられるが、鉄量50%の場合と
同一温度としても焼結し得る。然しこの焼結温度
を高目調製することにより、特に鉄粉配合量の高
い場合に耐圧力向上を図り得、反対にFe28〜30
%のような場合には低目とすべきで最適温度はこ
の場合には実験的に850〜860℃である。焼結時に
洋白に含有されたZnの気散損失を防止すべく適
当な容器を用いることは特に洋白配合量の高い場
合に枢要であつて、このような脱亜鉛防止は鉄粒
子表面に効率高くZnを被覆せしめ強度を大なら
しめると共に粒子表面をZnが被覆して耐食性の
向上に寄与する。
ニツケルは特有の耐酸性を有し、又外部からの
腐食作用に対して不動態性酸化膜を形成するので
腐食の進行を阻止する作用をなし、このものは前
記合金体としては勿論、鉄地に固溶して合金体と
なることにより酸化防止効果を著しく大とするこ
とができ、従つて焼結合金として3%以上を含有
することが必要である。
本発明においては基本成分系に対しPb及びSn、
黒鉛を適宜添加することは上記の通りである。即
ち、Pb及び黒鉛の適加により軸受としての摩擦
係数低減を図り、潤滑性を向上する。然してこの
ようなPb添加時において錫の添加は合金全体の
強度向上に寄与すると共に鉛の鉛汗反応を抑え
る。つまりこのような場合における錫の添加は経
済的には不利であるが鉛を含有した洋白合金粉を
得るには不可欠に近く、この洋白中の鉛は軸受な
どにおける摺動性を向上すると共に耐食性をも向
上し、更には切削性などを良好とするもので、斯
うした特性を必要とする場合にはSn、Pbの適量
添加は頗る有意である。
更に本発明による前記黒鉛の添加は特に含油軸
受として使用する場合に上記潤滑性と共に軸受の
温度上昇を抑制する効果を有する。然して用いら
れる黒鉛粉末は通常325メツシユアンダーであり、
適用される金属粉に対して同一重量で容積比は4
〜5倍となるため3%以下で充分な潤滑効果を得
ることができ、特に高荷重用途においては耐摩耗
性も大きいものとなる。但しこの黒鉛の添加は耐
圧力において低目となるから、洋白配合率の高い
ものに添加することが好ましい。
本発明によるものの具体的な実施例について説
明すると以下の如くである。
次の第1表のような本発明の配合による各原料
粉を用い、内径8mm、外径12mmで長さ12mmの焼結
軸受を夫々製造した。
The present invention relates to a sintered alloy bearing and a method for manufacturing the same.
The present invention provides effective corrosion resistance and other characteristics in iron-based sintered alloy bearings, provides an engineering-advantageous manufacturing method for such sintered alloy bearings, and provides such characteristics at low cost. The aim is to provide various types of bearings. Iron-based bearings are widely used as sintered alloy bearings that are low in cost and have excellent strength. In other words, although copper-based and bronze-based bearings are also in practical use as this type of sintered alloy bearing, the raw material cost of iron-based bearings is a fraction of that of bronze-based bearings, which are relatively inexpensive. In fact, iron-based materials have no choice but to be used especially for high-load sintered machine parts because of their excellent strength. However, such iron-based sintered alloys have the decisive disadvantage of being easily corroded, and for this reason, it is necessary to apply rust prevention treatments such as blackening treatment and steam treatment, and it is not always effective. No rust prevention results were obtained.
It also has the disadvantage that it is difficult to use in applications where rust prevention is required, such as bearings, where rust prevention treatment cannot be applied. The present invention was devised after repeated studies in view of the above-mentioned circumstances, and is inexpensive, has preferable corrosion resistance, has excellent mechanical strength, and has high lubricity. We succeeded in obtaining a sintered alloy that can be appropriately used as a bearing. That is, such a product according to the present invention has a wt%
(hereinafter simply referred to as %), Fe: 28-70%, Cu: 15
~60%, Ni: 3~15%, Zn: 3~20%,
We propose a sintered alloy made by powder metallurgy, in which the remainder consists of unavoidable impurities, and in some cases, Pb: 10% or less and graphite 3% for the above basic composition. Any one or two of the following and Sn: 5% or less can be contained therein. Also, the manufacturing method is Cu, Ni,
One base material is a ternary Zn alloy, and the other is iron powder, which is then compacted and sintered.In order to prevent dezincing during the sintering process, the compact is heat-resistant. The material is charged into a steel (including metal) container and sintered. To further explain the present invention as described above, the present invention has four elements as basic components: iron, copper, nickel, and zinc, and in concrete production, the above-mentioned Cu, Ni, and Zn powders are used. Although it is complicated to adjust and prepare each component separately, which tends to increase costs, it is possible to achieve sufficient simplicity and cost reduction by preparing an alloy powder containing Cu, Ni, and Zn together. obtain. That is,
The ternary alloy material of Cu, Ni, and Zn is called nickel silver or nickel silver, and is widely used for various decorative purposes such as furniture, tableware, musical instruments, other utensils, and coins. By pulverizing the alloy material used for appliances and the like in this manner, it is possible to easily adjust the ternary alloy powder by simply adding and blending the ternary alloy powder to the iron powder. However, it is said that when this ternary alloy has a high Zn content, it becomes an (α+β) structure, resulting in low viscosity and poor workability, but in the powder metallurgy method of the present invention, this structure is If the amount of evaporation is suppressed, there will be no problem; on the other hand, the coating effect of zinc will prevent rust.
The anticorrosion effect is significantly exhibited, and the corrosion resistance of iron-based sintered alloys can be sufficiently improved. By the way, the present inventors have conducted an experimental study on the upper and lower limits of the Fe content in the case of making a four-element sintered alloy from the three-element alloy as described above.
I learned that it is 28-70%. In other words, when iron powder is mixed in an amount of 70% or more, the corrosion resistance rapidly decreases, and even if a three-element alloy powder is blended, a desirable oxidation resistance cannot be ensured, and furthermore, sliding properties and other properties deteriorate. Furthermore, if the iron powder content is less than 28%, the required amount of ternary alloy powder becomes large, and the object of the present invention, which is to obtain a low cost similar to that of iron-based sintered alloys, cannot be achieved. Cu is 15 to 60%, and if the Cu content is less than 15%, proper compatibility with the rotating shaft as a bearing cannot be obtained, and rust prevention properties are also deteriorated. Furthermore, if the Cu content exceeds 60%, the mechanical strength of the bearing body will be insufficient, making it particularly difficult to use it for high-load bearing purposes. Ni is 3 to 15%; if it is less than 3%, the oxidation prevention effect is insufficient due to the formation of a passive oxide film, while if it exceeds 15%, the oxidation prevention effect is saturated and it becomes expensive. Become. The Zn content is 3 to 20%, and if it does not reach 3%, the antirust and anticorrosion effects of Zn cannot be effectively obtained. On the other hand, if the Zn content exceeds 20%, it becomes difficult to prevent evaporation during sintering, and conformability and workability deteriorate, so this is the upper limit. Further added to the above composition
Pb content is 10% or less, and if it exceeds 10%, mechanical strength decreases. Similarly, if the graphite content is less than 3% and more than 3%, the strength of the product will decrease and the high strength of the iron powder-based bearing material will be impaired. Also, as mentioned above, the upper limit for Sn used in combination with Pb is 5%; even if it is added in excess of 5%, the effect will be saturated and the cost will increase, so this upper limit should be set. shall be. Regarding the sintering temperature in the manufacturing method of the present invention, Fe70% (ternary alloy 30%) and Fe28-30%
(ternary alloy 70-72%) and Fe50% (ternary alloy
(50%) can be carried out under the same conditions of 900 °C as in the case. In other words, originally it would be necessary to gradually raise the temperature from 900℃ as the iron content exceeds 50%, and conversely, it would be necessary to gradually lower the temperature from 900℃ when the iron content becomes less than 50%. It can be sintered even at the same temperature as in the case of 50%. However, by adjusting this sintering temperature to a high value, it is possible to improve the pressure resistance especially when the content of iron powder is high;
%, the temperature should be lower, and the optimum temperature in this case is experimentally 850-860°C. The use of an appropriate container to prevent the loss of Zn contained in nickel silver during sintering is particularly important when the content of nickel silver is high. Zn is coated with high efficiency to increase strength, and Zn coats the particle surface, contributing to improved corrosion resistance. Nickel has unique acid resistance and forms a passive oxide film against external corrosion, which acts to prevent corrosion from progressing. By forming a solid solution in the alloy to form an alloy, the antioxidant effect can be significantly increased, and therefore it is necessary to contain 3% or more as a sintered alloy. In the present invention, for the basic component system, Pb and Sn,
The appropriate addition of graphite is as described above. That is, by adding Pb and graphite, the coefficient of friction as a bearing is reduced and the lubricity is improved. However, when such Pb is added, the addition of tin contributes to improving the strength of the entire alloy and suppresses the lead sweat reaction of lead. In other words, the addition of tin in such cases is economically disadvantageous, but it is almost indispensable to obtain a nickel silver alloy powder containing lead, and the lead in this nickel silver improves the sliding properties of bearings, etc. At the same time, it also improves corrosion resistance and improves machinability, etc. When such properties are required, the addition of appropriate amounts of Sn and Pb is extremely significant. Furthermore, the addition of graphite according to the present invention has the effect of suppressing the temperature rise of the bearing as well as the above-mentioned lubricity, especially when used as an oil-impregnated bearing. However, the graphite powder used is usually 325 mesh under.
The volume ratio is 4 at the same weight for the applied metal powder.
Since the amount is ~5 times as large, a sufficient lubricating effect can be obtained with a content of 3% or less, and wear resistance is also high, especially in high-load applications. However, since the addition of graphite lowers the pressure resistance, it is preferable to add it to a product with a high proportion of nickel silver. Specific embodiments of the present invention will be described below. Sintered bearings having an inner diameter of 8 mm, an outer diameter of 12 mm, and a length of 12 mm were manufactured using raw material powders according to the composition of the present invention as shown in Table 1 below.
【表】
又それらとは別に鉄粉のみによる原料粉と、
Cuが90%で、Snが10%の割合による青銅系原料
粉を用い、上記同様の寸法による圧粉成形焼結軸
受を製造した。焼結軸受の気孔率は軸受標準に従
い何れも20%であり、焼結温度については900℃
の一定温度とした。焼結に際しては焼結温度の上
昇に従い本発明によるものの場合亜鉛分が一部蒸
化気散し、一部は蒸化しながら隣接する鉄粒子表
面に滲透溶着するものであるから気散量を縮減す
るように圧粉成形体を小孔を配設した容器に収容
して実施した。この方法は洋白配合量が50%を超
えるような場合においてその気散低減を顕著に図
るものであり、洋白量が30%又はそれ以下のよう
な場合においては開放状態で焼結したものとの間
に実質的な差が認められない。
なお黒鉛を0.5〜2.5%添加した〜のものに
おいて、該黒鉛は325メツシユ以下の微粉であり、
この黒鉛量に相当した分だけ鉄粉の配合量を低減
したものである。
また、鉛または鉛と錫を添加した〜のもの
においては洋白または洋白と鉄粉の配合量をそれ
ら鉛単独または鉛と錫の添加量に見合つた量だけ
低減したものである。
上記のようにして得られた各焼結合金につい
て、それらの耐圧力、3000rpmで全加重を10Kgと
した試験条件による温度上昇および5%食塩水に
浸漬し放置して発錆時間を求める発錆試験をそれ
ぞれ実施した結果を要約して示すと次の第2表の
通りである。[Table] Apart from these, raw material powder made only of iron powder,
A powder-molded sintered bearing with the same dimensions as above was manufactured using bronze-based raw material powder containing 90% Cu and 10% Sn. The porosity of the sintered bearings is 20% according to the bearing standard, and the sintering temperature is 900℃.
The temperature was set at a constant temperature. During sintering, as the sintering temperature rises, in the case of the method according to the present invention, some of the zinc content evaporates and evaporates, and while evaporating, some of the zinc content permeates and welds to the surface of adjacent iron particles, reducing the amount of evaporation. The compacted powder compact was housed in a container provided with small holes. This method significantly reduces the diffusion of nickel silver when the content exceeds 50%, and when the content of nickel silver is 30% or less, sintering is performed in an open state. There is no substantial difference between the two. In addition, in ~ with 0.5 to 2.5% graphite added, the graphite is a fine powder of 325 mesh or less,
The amount of iron powder blended is reduced by an amount corresponding to this amount of graphite. In addition, in those containing lead or lead and tin, the amount of nickel silver or nickel silver and iron powder is reduced by an amount commensurate with the amount of lead alone or lead and tin added. For each sintered alloy obtained as above, its pressure resistance, temperature rise under test conditions of 3000 rpm with a total load of 10 kg, and rusting time determined by immersing it in 5% saline solution and leaving it for rusting. The results of each test are summarized in Table 2 below.
【表】
即ち本発明によつものは耐圧力において、洋白
配合量を高めることにより従来の鉄系焼結合金材
に相当した強度を得しめており、又温度上昇値に
おいては何れも鉄系のもの以下で、特に黒鉛を配
合したものにおいては青銅系のものよりも優れた
値すら得しめている。発錆試験結果は何れの比較
材よりも良好で、特に鉄系比較材に対しては10倍
以上、数十倍に達する卓越した耐食性を有するこ
とが確認された。なおこの耐食性については一般
的には鉄粉量に反比例することになるがZn分も
大きく影響し、のものは鉄粉量が高いに拘わ
らず最高状態の耐食性を示しており、これらのも
のは鉄粉がZn分により充分に被覆されたことに
よるものと認められる。
以上説明したような本発明によるときは鉄系焼
結合金においてその好まし強度を確保せしめつつ
優れた耐食性を発揮し得るものであり、更には潤
滑性などをも良好に維持して軸受などとして採用
した場合の温度上昇を低減し得るなどの作用効果
を有しており、工業的にその効果の大きい発明で
ある。[Table] In other words, in terms of pressure resistance, the products of the present invention have achieved strength equivalent to that of conventional iron-based sintered alloy materials by increasing the content of nickel silver, and in terms of temperature rise values, they have achieved a strength comparable to that of conventional iron-based sintered alloy materials. In particular, those containing graphite have even achieved better values than bronze-based ones. The rusting test results were better than any of the comparative materials, and in particular, it was confirmed that it had excellent corrosion resistance that was ten times or more than tens of times higher than that of the iron-based comparative materials. Although this corrosion resistance is generally inversely proportional to the amount of iron powder, the Zn content also has a large effect, and these materials show the highest corrosion resistance even though the amount of iron powder is high. It is recognized that this is because the iron powder was sufficiently covered with Zn. According to the present invention as explained above, it is possible to exhibit excellent corrosion resistance while ensuring the desired strength in iron-based sintered alloys, and furthermore, it can be used as a bearing etc. by maintaining good lubricity etc. This invention has effects such as being able to reduce temperature rise when adopted, and is an invention that has great industrial effects.
Claims (1)
3〜15wt%、Zn:3〜20wt%、を含有し、残部
が不可避的不純物より成ることを特徴とした粉末
冶金法による焼結合金軸受。 2 Fe:28〜70wt%、Cu:15〜60wt%、Ni:
3〜15wt%、Zn:3〜20wt%、を含有すると共
に、 Pb:10wt%以下、黒鉛:3wt%以下、の何れ
か1種又は2種と、 Sn:5wt%以下、 を含有し、残部が不可避的不純物より成ることを
特徴とした焼結合金軸受。 3 銅、ニツケルおよび亜鉛の3元合金による母
材を用いた粉末と鉄粉とをFe:28〜70wt%、
Cu:15〜60wt%、Ni:3〜15wt%、Zn:3〜
20wt%となるように混合し、圧粉成形して焼結
することを特徴とする焼結合金の製造法。[Claims] 1 Fe: 28 to 70 wt%, Cu: 15 to 60 wt%, Ni:
A sintered alloy bearing produced by a powder metallurgy method, characterized in that it contains Zn: 3 to 15 wt%, Zn: 3 to 20 wt%, and the remainder consists of unavoidable impurities. 2 Fe: 28-70wt%, Cu: 15-60wt%, Ni:
Contains 3 to 15 wt%, Zn: 3 to 20 wt%, and one or two of Pb: 10 wt% or less, graphite: 3 wt% or less, and Sn: 5 wt% or less, with the balance A sintered alloy bearing characterized in that the sintered alloy bearing consists of unavoidable impurities. 3 Fe: 28 to 70 wt%, iron powder and powder using a base material of a ternary alloy of copper, nickel, and zinc.
Cu: 15~60wt%, Ni: 3~15wt%, Zn: 3~
A method for producing a sintered alloy, which is characterized by mixing to a concentration of 20wt%, compacting, and sintering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18836083A JPS6082646A (en) | 1983-10-11 | 1983-10-11 | Sintered alloy and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18836083A JPS6082646A (en) | 1983-10-11 | 1983-10-11 | Sintered alloy and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6082646A JPS6082646A (en) | 1985-05-10 |
JPH045745B2 true JPH045745B2 (en) | 1992-02-03 |
Family
ID=16222256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18836083A Granted JPS6082646A (en) | 1983-10-11 | 1983-10-11 | Sintered alloy and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6082646A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01136944A (en) * | 1987-11-20 | 1989-05-30 | Isamu Kikuchi | Sintered metallic material |
JP2617334B2 (en) * | 1988-05-09 | 1997-06-04 | 菊池 勇 | Sintered alloy material and method for producing the same |
JPH01283346A (en) * | 1988-05-09 | 1989-11-14 | Isamu Kikuchi | Sintered alloy material and its production |
KR100909245B1 (en) | 2008-12-29 | 2009-07-27 | 이세균 | Metal alloy material and its manufacturing method |
KR101020491B1 (en) * | 2009-05-13 | 2011-03-09 | 이세균 | metal alloy material composition and preparing method thereof |
JP5975604B2 (en) * | 2011-03-29 | 2016-08-23 | 株式会社神戸製鋼所 | Method for producing copper alloy for electromagnetic shielding material |
-
1983
- 1983-10-11 JP JP18836083A patent/JPS6082646A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6082646A (en) | 1985-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2652866B2 (en) | Sintered material for oil-impregnated bearing and method for producing the same | |
JP5613973B2 (en) | Copper-based sintered sliding member | |
JP4941236B2 (en) | Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder | |
CN107245601B (en) | Sintered alloy with excellent wear resistance | |
JP2009007650A (en) | Mixed powder for sintered aluminum-containing copper alloy, and method for producing the same | |
JP2918292B2 (en) | Sliding material | |
JP3613569B2 (en) | Composite metal powder for sintered bearing and sintered oil-impregnated bearing | |
US3461069A (en) | Self-lubricating bearing compositions | |
JPH04198440A (en) | Sliding member having sintered copper alloy layer | |
JPH045745B2 (en) | ||
JPH0995759A (en) | Oil-impregnated sintered bearing and its production | |
JPS58189361A (en) | Oil-impregnated bearing made of Fe-based sintered alloy with excellent conformability and lubricity | |
JP4109023B2 (en) | Manufacturing method of iron-based sintered sliding member and iron-based sintered sliding member | |
GB2067221A (en) | Sintered Alloys | |
JP2009007433A (en) | Copper-based oil-containing sintered sliding member and method for producing the same | |
JPS6346140B2 (en) | ||
JPS6253580B2 (en) | ||
JPH01230740A (en) | Sintered alloy material for oiliness bearing and its manufacture | |
JPS6346138B2 (en) | ||
JP2001131660A (en) | Alloy powder for copper series high strength sintered parts | |
JPS63282221A (en) | Manufacture of composite sintered material | |
JPS6111308B2 (en) | ||
JPH04124248A (en) | Sintered alloy for oilless bearing and its production | |
JPH01283346A (en) | Sintered alloy material and its production | |
JPS591781B2 (en) | Porous aluminum sintered alloy sliding member |