[go: up one dir, main page]

JPS6253580B2 - - Google Patents

Info

Publication number
JPS6253580B2
JPS6253580B2 JP54172496A JP17249679A JPS6253580B2 JP S6253580 B2 JPS6253580 B2 JP S6253580B2 JP 54172496 A JP54172496 A JP 54172496A JP 17249679 A JP17249679 A JP 17249679A JP S6253580 B2 JPS6253580 B2 JP S6253580B2
Authority
JP
Japan
Prior art keywords
powder
parts
brass
iron
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54172496A
Other languages
Japanese (ja)
Other versions
JPS5696001A (en
Inventor
Tatsunosuke Kikuchi
Isamu Kikuchi
Masanori Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17249679A priority Critical patent/JPS5696001A/en
Priority to GB8037929A priority patent/GB2067221B/en
Publication of JPS5696001A publication Critical patent/JPS5696001A/en
Publication of JPS6253580B2 publication Critical patent/JPS6253580B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は焼結合金の製造法に係り、強度、靭
性、耐食性に優れていると共にばらつきの少い安
定した性能を有し、しかも摩擦係数その他の軸受
機能において卓越した特性を示す新規な焼結合金
の製造法を得ようとするものである。 軸受材その他として用いられる焼結合金として
は従来から種々のものが知られているが、これを
大別すると銅系と鉄系とがあり、銅系にはCu−
Sn、Cu−Sn−C、Cu−Sn−Pb−C合金など
が、又鉄系にはFe−C、Fe−Pb−C、Fe−
Cu、Fe−Cu−C合金などが多様に提案され又実
用化されている。しかしこのような従来のものに
おいて、鉄系のものは銅系のものに比較して硬度
が高いので軸材などに対するなじみが必ずしも好
ましいものとなし得ず、又耐食性などにおいても
劣るが、その機械的性質が優れ、したがつて薄肉
化が可能であると共に比較的安価であるなどのメ
リツトを有し、これらの特性に関しては銅系のも
のが対称的な関係を有している。なおこれらの中
間的なものとして鉄に対し銅のみを5〜30%の範
囲で添加した鉄−銅系のものがあるが、このもの
は鉄、銅の単味粒子が軸受面に露出した組織とな
り易く、銅粒子が軸面と接着剥離して摩擦係数を
高め発熱などして軸受寿命を短縮するなどの不利
がある。 なお後述するように亜鉛などを含有し焼結中に
気化脱出する成分を含有した圧粉成形体の焼結に
当つて炭素粉末中に装入し、あるいは金属ケース
内に入れて蓋を施して気化脱出を低減すること
は、本出願人による特公昭27−2956号公報、
昭和39年7月25日日刊工業新聞社発行、粉末冶金
技術協会編「粉末冶金技術講座」第8巻135頁、
昭和42年6月1日技術書院発行、粉体粉末冶金
協会編「焼結機械部品の設計要覧」47頁、昭和
46年5月30日コロナ社発行「非鉄金属材料」26頁
などに夫々記載されていて周知である。 本発明は上記したような実情に鑑み検討を重ね
て創案されたものであつて、鉄粉70〜30重量部に
対し黄銅粉末30〜70重量部を添加混合したものに
対し、この混合粉100重量部に対し3〜20重量部
の青銅粉を配合した配合金属粉(必要に応じて6
重量部以下の黒鉛粉又は0〜3部のモリブデン又
は二硫化モリブデンの何れか一方又は双方を混
合)を圧粉成形し焼結することを提案するもので
ある。 即ち斯かる本発明について更に説明すると、本
発明者は上記したような技術構想に立脚して鉄、
銅及び亜鉛の如きを用いた各種焼結合金について
仔細な検討をなした結果、その銅及び亜鉛を単体
として配合した場合とそれを合金とした黄銅とし
て利用した場合においては焼結時の挙動を異にす
ることを発見した。蓋しこの黄銅は一般的に
Cu:59〜88%、Pb,Sn,Al,Feの何れか1種又
は2種以上を夫々1%以下の範囲で含有し残部が
Znの組成を有し(Znは一般的に10〜39%)たも
のであつて、このような範囲内においても夫々の
成分%範囲が種々に異ることによりそれなりに異
つた特性が得られるとしても、斯かる黄銅は何れ
にしても銅単体の場合よりは相当に融点の低いも
のとなる。然して上記のように鉄、銅、亜鉛の各
粉末を配合した場合にはZnが約420℃程度のよう
な比較的低融点のものであるのに対し、Cuは
1083℃、Feは1539℃と夫々に融点が高く、この
ような3種の金属粉末を単に混合成形して焼結さ
せてもZnの偏析の如きを発生してZn含有量の高
いβ相の如きを形成することがあると共にZn単
体として添加混合した場合は固より黄銅として添
加した場合においてもそのZn分が気散し、この
気散を低減する木炭粉中への埋装や鉄箱内収納に
よる焼結をなしてもこの気散を有効に防止できな
くて黄銅を添加したことによる後述するような好
ましい安定した特性が得られないこととなり好ま
しい軸材などとのなじみ性その他に欠けるものと
ならざるを得ないのに対し、そのCuとZnとを一
旦合金化させて得られる黄銅粉末を主体として用
い、しかもこのFe粉との混合物100重量部に青銅
粉を3〜20重量部添加したものにおいては成程
Fe粉末が主体として用いられているとしても一
般的にFe系焼結金属において採用される1100℃
前後より相当に低い温度で焼結せしめられるだけ
でなしに焼結時において黄銅中に含有されたZn
分の気散を有効に防止し、その焼結時に黄銅成分
の一部が鉄と共晶して黄銅−鉄の合金組成を作る
こととなり、特にこのような黄銅−鉄の合金組成
によつて鉄粒子表面を被覆する傾向が認められる
と共にZnによる耐食性を発揮せしめ、相当量の
鉄粉を配合したものにおいても黄銅焼結合金に近
い色彩、感覚を呈することとなつて組成が均一
で、鉄−銅焼結品において不可避的な偏析などを
見ることがなく、又安定した性能的にばらつきの
少い焼結合金を得しめる。このように均一で偏析
がないと共にZnの気散を防止し、Fe粒子表面を
黄銅−鉄の合金で被覆しZnによる防食を確保し
たものは充分な耐食性を示すことは明かであり、
又Fe粒子が中核に存在し、それがZnの気散を抑
止した黄銅質合金で被覆された本発明のものは従
来の鉄系焼結合金と同等ないしそれ以上の機械的
強度を有することとなり、しかもその黄銅質およ
び青銅質被覆層によつて軸材等に対するなじみも
好ましいものとして得られる。 Fe粉末と前記黄銅粉末との配合割合について
は、黄銅粉末を30〜70重量部とFe粉末70〜30重
量部の範囲内で適宜に変更して実施することがで
きる。即ち黄銅粉末が30重量部未満で鉄粉が70重
量部以上の場合には単なる鉄系焼結体に近いよう
なものとなつて黄銅との合金層も充分に得られな
いことから前記した本発明の特性を有効に得るこ
とができない。又黄銅粉末が70重量部以上で鉄粉
が30重量部未満のようなことでは前記したような
Fe粒子による中核的作用が得られず、その機械
的強度等が劣ることとなる。又このような鉄粉と
黄銅粉を混合したものを圧縮成形して焼結する際
のZn分の気散を防止するには鉄箱内に収容し、
あるいは炭素粉中に埋めるだけではなしに該混合
粉100重量部に対して少くとも3重量部の青銅粉
を添加することが必要であり、それによつて焼結
時のZn分気散を適切に防止することができる。
該青銅粉の上限については20重量部であつて、こ
のような限度を超えて添加することは経済的でな
いと共にCu分が高くなつてその機械的強度など
が若干低下する傾向がある。 焼結温度については上記したような範囲内での
黄銅粉末配合量如何によつてそれなりに調整すべ
きであり、例えば黄銅粉末が30重量部で鉄粉が70
重量部のような場合には約900℃前後であり、又
この黄銅粉末が70重量部で鉄粉が30重量部のよう
な場合には820℃程度を採用することが上記した
ような本発明の特性を有効に発揮する所以であ
り、それらの間の中間的配合関係の場合にはその
程度に応じて焼結温度を調整し操業する。 又上記したような主体粉末100重量部に対し場
合によつては黒鉛質粉末を6重量部以下、モリブ
デン又は二硫化モリブデン粉末を3重量部以下の
範囲で添加することによりその性能をより改善す
ることができる。 本発明によるものの具体的な製造例について説
明すると以下の如くである。 製造例 1 Cu:60.5%、Zn:38.5%で残部がPb,Sn,
Al,Feを夫々0.5%以下と不可避不純物より成る
黄銅鋳物を溶融してから噴霧処理し得られた60〜
350メツシユの黄銅粉末(市販の所謂6,4黄銅
粉)と、150〜250メツシユの還元鉄粉および
Sn:10%の噴霧青銅粉(100メツシユ以下)を準
備し、これらの金属粉を次の第1表のように配合
した。 即ちA−1〜A−6は本発明によるもので、イ
−1〜イ−6は比較材であり、XはFe90−Cu10
材、YはCu90−Sn10材である。
The present invention relates to a method for manufacturing sintered alloys, and is a novel sintered alloy that has excellent strength, toughness, and corrosion resistance, and has stable performance with little variation, as well as excellent properties in terms of coefficient of friction and other bearing functions. This is an attempt to obtain a method for producing gold. Various sintered alloys have been known for use as bearing materials and other materials, but they can be roughly divided into copper-based and iron-based.
Sn, Cu-Sn-C, Cu-Sn-Pb-C alloys, etc., and iron-based alloys such as Fe-C, Fe-Pb-C, Fe-
Various types of alloys such as Cu and Fe-Cu-C alloys have been proposed and put into practical use. However, in such conventional products, iron-based products have higher hardness than copper-based products, so they do not necessarily fit well with shaft materials, etc., and are inferior in corrosion resistance, etc., but the machine Copper-based materials have the advantage of having excellent physical properties, allowing for thin walls, and being relatively inexpensive. Copper-based materials have a symmetrical relationship with respect to these properties. As an intermediate between these, there is an iron-copper system in which only copper is added in the range of 5 to 30% to iron, but this type has a structure in which simple particles of iron and copper are exposed on the bearing surface. This has disadvantages such as copper particles adhering to the shaft surface and peeling off, increasing the coefficient of friction and generating heat, shortening the life of the bearing. As will be described later, when sintering a powder compact containing components such as zinc that vaporize and escape during sintering, the compacted body may be charged into carbon powder or placed in a metal case and covered with a lid. Reducing vaporization escape is disclosed in Japanese Patent Publication No. 27-2956 by the present applicant,
Published by Nikkan Kogyo Shimbun on July 25, 1962, edited by Powder Metallurgy Technology Association, “Powder Metallurgy Technology Course”, Volume 8, p. 135,
Published by Gijutsu Shoin on June 1, 1962, edited by Powder and Powder Metallurgy Association, “Design Handbook of Sintered Machinery Parts”, page 47, Showa
They are well-known as they are described in "Nonferrous Metal Materials", page 26, published by Corona Publishing on May 30, 1946. The present invention was devised after repeated studies in view of the above-mentioned circumstances. Mixed metal powder containing 3 to 20 parts by weight of bronze powder (if necessary, 6 parts by weight)
It is proposed to compact and sinter 1 part by weight of graphite powder or 0 to 3 parts of molybdenum or molybdenum disulfide (or a mixture of both). That is, to further explain the present invention, based on the technical concept as described above, the present inventor has developed an iron,
As a result of detailed studies on various sintered alloys using copper and zinc, we found that the behavior during sintering differs when copper and zinc are combined as single substances and when they are used as an alloy of brass. I discovered something different. The brass lid is generally made of brass.
Cu: 59 to 88%, containing one or more of Pb, Sn, Al, and Fe in a range of 1% or less each, with the remainder
It has a composition of Zn (Zn is generally 10 to 39%), and even within this range, different properties can be obtained by varying the percentage range of each component. However, the melting point of such brass is considerably lower than that of pure copper. However, when iron, copper, and zinc powders are mixed as described above, Zn has a relatively low melting point of about 420℃, whereas Cu has a relatively low melting point of about 420℃.
Their melting points are high at 1083℃ and Fe at 1539℃, respectively, and even if these three types of metal powder are simply mixed and molded and sintered, segregation of Zn will occur and the β phase with high Zn content will be formed. In addition, when Zn is added as a single substance and mixed, even if it is added as a solid brass, the Zn will be diffused, and it is necessary to bury it in charcoal powder or in an iron box to reduce this dispersion. Even if it is sintered by storage, this dispersion cannot be effectively prevented, and the preferable and stable characteristics described later due to the addition of brass cannot be obtained, and the product lacks compatibility with the preferred shaft material, etc. However, brass powder obtained by once alloying Cu and Zn is used as the main ingredient, and 3 to 20 parts by weight of bronze powder is added to 100 parts by weight of the mixture with this Fe powder. In the case of
1100℃, which is generally adopted for Fe-based sintered metals, even if Fe powder is mainly used.
The Zn contained in the brass during sintering is not only sintered at a considerably lower temperature than the before and after.
During sintering, part of the brass component becomes eutectic with iron to create a brass-iron alloy composition, and especially with such a brass-iron alloy composition. Zn has a tendency to coat the surface of iron particles, and exhibits corrosion resistance due to Zn. Even when a considerable amount of iron powder is mixed, the color and feel are similar to those of brass sintered alloys, and the composition is uniform, making it more durable than iron. - There is no unavoidable segregation in copper sintered products, and a stable sintered alloy with little variation in performance can be obtained. It is clear that a material that is uniform, has no segregation, prevents Zn from dispersing, and coats the surface of Fe particles with a brass-iron alloy to ensure corrosion protection by Zn exhibits sufficient corrosion resistance.
In addition, the material of the present invention, in which Fe particles exist in the core and is coated with a brassy alloy that suppresses the diffusion of Zn, has a mechanical strength equal to or greater than that of conventional iron-based sintered alloys. Furthermore, due to the brass and bronze coating layers, good conformability to the shaft material etc. can be obtained. The mixing ratio of the Fe powder and the brass powder can be changed as appropriate within the range of 30 to 70 parts by weight of the brass powder and 70 to 30 parts by weight of the Fe powder. In other words, if the brass powder is less than 30 parts by weight and the iron powder is more than 70 parts by weight, it will become similar to a mere iron-based sintered body and a sufficient alloy layer with brass will not be obtained. The characteristics of the invention cannot be effectively obtained. In addition, if the brass powder is 70 parts by weight or more and the iron powder is less than 30 parts by weight, the above-mentioned
The core effect of Fe particles cannot be obtained, and the mechanical strength etc. are inferior. In addition, to prevent the Zn from escaping when a mixture of iron powder and brass powder is compressed and sintered, it must be stored in an iron box.
Alternatively, it is necessary to add at least 3 parts by weight of bronze powder to 100 parts by weight of the mixed powder instead of just burying it in the carbon powder, thereby properly dispersing the Zn content during sintering. It can be prevented.
The upper limit of the bronze powder is 20 parts by weight; adding more than this limit is not economical and tends to increase the Cu content, resulting in a slight decrease in mechanical strength. The sintering temperature should be adjusted accordingly depending on the amount of brass powder mixed within the above range. For example, if the brass powder is 30 parts by weight and the iron powder is 70 parts by weight,
In the case of the present invention as described above, the temperature is around 900°C, and when the brass powder is 70 parts by weight and the iron powder is 30 parts by weight, the temperature is around 820°C. This is the reason why these characteristics can be effectively exhibited, and in the case of an intermediate composition relationship between them, the sintering temperature is adjusted according to the degree of the relationship. Furthermore, the performance can be further improved by adding graphite powder in an amount of 6 parts by weight or less and molybdenum or molybdenum disulfide powder in an amount of 3 parts by weight or less to 100 parts by weight of the above-mentioned main powder. be able to. A specific manufacturing example of the product according to the present invention will be described below. Production example 1 Cu: 60.5%, Zn: 38.5%, balance Pb, Sn,
60~ obtained by melting and spraying a brass casting consisting of 0.5% or less of Al and Fe and unavoidable impurities.
350 mesh brass powder (commercially available so-called 6,4 brass powder), 150 to 250 mesh reduced iron powder, and
Sprayed bronze powder (100 mesh or less) containing Sn: 10% was prepared, and these metal powders were mixed as shown in Table 1 below. That is, A-1 to A-6 are according to the present invention, A-1 to E-6 are comparative materials, and X is Fe90-Cu10.
The material and Y are Cu90-Sn10 material.

【表】【table】

【表】 上記のように配合されたものは何れも外径10
mm、内径4mmで高さが8mmであり、気孔率約20%
の軸受材に形成され、それを上述した周知手法の
1つである鉄箱内に収容すると共に蓋を施しアン
モニア分解ガス中で前記したような鉄粉と黄銅粉
の配合割合を考慮した820〜900℃の温度により30
分間の焼結処理をなし、更にサイジングして製品
としたが、このようにして得られた軸受材につい
て配合時および焼結後におけるZn分測定結果を
Feおよび黄銅の配合比が同じもの毎に区分して
示すと次の第2表の如くである。
[Table] All of the above formulations have an outer diameter of 10
mm, inner diameter 4mm, height 8mm, porosity approximately 20%
It is formed into a bearing material of 30 due to temperature of 900℃
The bearing material obtained in this way was subjected to a sintering process for several minutes and then sized to produce a product.
The results are shown in Table 2 below, categorized by those with the same blending ratio of Fe and brass.

【表】【table】

【表】 即ち青銅を用いない比較材イ−1、イ−2、イ
−3のものは鉄箱内に収容して気散防止条件下で
あつても何れも焼結によつてZn分が2%以上も
減少しているのに対して、本発明によるものは僅
かに3%の青銅添加によつてもこのZn減量を少
くとも3分の1以下と大きく低減させ、20%の添
加では7分の1程度に低減することができる。 なお上記のような焼結に際し鉄箱内に収容する
ことなく、あるいは炭素粉中に埋装せず、しかも
青銅を用いない場合においては「焼結時の減量
Zn%」が4〜6%台に達することになり、焼結
後のZn%は(a)群で6〜7%、(b)群で10〜12%、
(c)群では17〜19%程度となるものである。 又これらの製品についての各30個の圧環強度を
測定した結果の平均値と偏差値は第2表に併せて
示す通りであつて、本発明材は青銅を用いない比
較材に対し平均値で相当に高い値を示すだけでな
く、偏差値においても半減に近いものであつて、
これは焼結時における亜鉛分揮散が有効に阻止さ
れたことを示すことは明かである。 軸受性能についての摩擦係数と温度上昇は第1
〜3図として夫々示す如くであつて、摩擦係数は
特に高荷重、高PV値領域において優れ、温度上
昇は従来の高価な銅系焼結金属体(錫10%程度含
有)の場合に準じたものであることが確認され
た。 更に圧環強さの気孔率変化に対する変動状態は
第4図に示す通りであつて、何れにしても優質の
製品であることが確認された。 製造例 2 製造例1におけると同じ黄銅粉および鉄粉を用
い、黄銅粉50部、鉄粉48部、黒鉛粉末2部の割合
に配合した比較例ロ−1と、このものに青銅粉20
部を更に配合した本発明例B−1を準備した。 又これとは別に同じ黄銅粉および鉄粉を用い、
黄銅粉50部、鉄粉50部、黒鉛粉末2部の割合に配
合した比較例ロ−2と、このものに青銅粉3部を
更に配合した本発明例B−2を準備した。 然して、これら本発明例および比較例のもの
は、前記した製造例1におけると同じに成形し、
焼結させた。 更にこのような本発明例および比較例のものに
対し、それとをは更に別に、Fe系焼結合金とし
て鉄粉90部に銅粉10部を配合成形したものを従来
例Xとし、又銅粉90部に錫粉10部の割合で配合し
てから成形し、800℃で焼結させたものを従来例
Yとして製造した。 又これらの本発明例B−1、B−2、比較例ロ
−1、ロ−2および従来例X,Yの各焼結合金に
夫々同じタービン油系の潤滑油を含浸させたもの
について、その軸受性能を試験測定した結果は第
5図に示す通りであり、本発明によるものが荷重
15Kg/mm2以上(PV値1000以上)において従来の
銅系軸受よりも軸受性能の改善を得ていることが
確認され、勿論鉄系のものよりも全領域に亘つて
好ましい特性のものであつて、比較例のものより
も更に好ましいものであることを知つた。 又上記したような本発明製造例及び比較例と従
来例のものについてその機械的強度を検討し、即
ち圧縮成形、焼結後の気孔率を種々に調整したも
のについてその圧環強度を測定した結果は第6図
に示す通りであり、本発明によるものが如何なる
気孔率のものにおいても従来例より卓越した機械
的強度を示し、比較例よりも更に良好なものであ
ることが確認された。 なお本発明者等は上記した黄銅粉末として、別
に次のような成分組成のものについても夫々検討
したが、何れも同様な結果を得ることができた。 本発明範囲内でZn分が低目のCu:83〜88
%、Zn:22〜27%、Pb:0.5%以下、Sn,Al,
Feの合計値が1.0%以下。 本発明範囲内でZn分が中間的なCu:65〜70
%、Zn:30〜35%、Pb:0.5〜3%、Sn:1%
以下、Al:0.5%以下、Fe:0.8%以下。 又その製品としても上記したような範囲内でそ
の配合比および成形密度、焼結温度を適宜に変更
することにより歯車や電動機部品、バルブ材など
の各種機械部品を製造することができる。 以上説明したような本発明によるときは黄銅を
用い、しかも適量の青銅粉を用いることにより該
黄銅中のZn分の気散を適切に防止して軸材など
に対するなじみや耐食性において従来の銅系焼結
合金と同等ないしそれ以上であり、しかもその機
械的強度においては従来の鉄系焼結合金に準ずる
優れた特質性を有し、加うるにばらつきの少い品
質的に安定した特性を有する新規な焼結合金を的
確に提供し得るわけであり、その圧縮成形に当つ
ても従来の鉄系焼結合金の場合より金型の摩耗が
少いなどの特質を有するものであつて、工業的に
その効果の大きい発明である。
[Table] In other words, the comparative materials I-1, I-2, and I-3, which do not use bronze, lose their Zn content through sintering even when they are housed in an iron box and under conditions to prevent diffusion. In contrast, in the case of the present invention, even with just 3% bronze addition, this Zn loss is significantly reduced to at least one-third or less, and with 20% addition, Zn decreases by more than 2%. It can be reduced to about 1/7. In addition, if bronze is not used during sintering without being housed in an iron box or embedded in carbon powder, and bronze is not used,
The Zn% reached the 4-6% range, and the Zn% after sintering was 6-7% in group (a), 10-12% in group (b),
In group (c), it is about 17-19%. In addition, the average value and deviation value of the results of measuring the radial crushing strength of 30 pieces of each of these products are shown in Table 2. Not only does it show a considerably high value, but the deviation value is almost halved,
This clearly indicates that the volatilization of zinc during sintering was effectively prevented. Friction coefficient and temperature rise are the first factors regarding bearing performance.
As shown in Figure 3, the friction coefficient is particularly excellent in the high load and high PV value range, and the temperature rise is similar to that of conventional expensive copper-based sintered metal bodies (containing about 10% tin). It was confirmed that it was. Furthermore, the fluctuation state of the radial crushing strength with respect to the change in porosity is as shown in FIG. 4, and in any case, it was confirmed that the product was of excellent quality. Production Example 2 Comparative Example Ro-1 was prepared using the same brass powder and iron powder as in Production Example 1, and was mixed in a ratio of 50 parts of brass powder, 48 parts of iron powder, and 2 parts of graphite powder, and this was mixed with 20 parts of bronze powder.
Example B-1 of the present invention was prepared by further blending the following parts. Apart from this, using the same brass powder and iron powder,
Comparative Example Ro-2 was prepared by mixing 50 parts of brass powder, 50 parts of iron powder, and 2 parts of graphite powder, and Invention Example B-2 was prepared by further adding 3 parts of bronze powder. However, these inventive examples and comparative examples were molded in the same manner as in Production Example 1 described above,
Sintered. Furthermore, in addition to these examples of the present invention and comparative examples, there is a conventional example Conventional Example Y was prepared by mixing 90 parts of tin powder with 10 parts of tin powder, molding it, and sintering it at 800°C. Furthermore, regarding the sintered alloys of Examples B-1 and B-2 of the present invention, Comparative Examples Ro-1 and Ro-2, and Conventional Examples X and Y, each impregnated with the same turbine oil-based lubricating oil, The results of testing and measuring the bearing performance are as shown in Figure 5.
It was confirmed that bearing performance was improved over conventional copper-based bearings at 15 kg/mm 2 or more (PV value of 1000 or more), and of course it had more favorable characteristics over the entire range than iron-based bearings. I found that it was even more preferable than the comparative example. In addition, the mechanical strength of the production examples of the present invention, comparative examples, and conventional examples as described above was examined, that is, the results of measuring the radial crushing strength of the products with various porosity adjustments after compression molding and sintering. As shown in FIG. 6, it was confirmed that the material according to the present invention exhibited superior mechanical strength than the conventional example regardless of the porosity, and was even better than the comparative example. The inventors of the present invention also studied other brass powders having the following component compositions as described above, and were able to obtain similar results with all of them. Cu with low Zn content within the range of the present invention: 83 to 88
%, Zn: 22-27%, Pb: 0.5% or less, Sn, Al,
The total value of Fe is 1.0% or less. Cu with intermediate Zn content within the range of the present invention: 65 to 70
%, Zn: 30-35%, Pb: 0.5-3%, Sn: 1%
Below, Al: 0.5% or less, Fe: 0.8% or less. Moreover, various mechanical parts such as gears, electric motor parts, valve materials, etc. can be manufactured by appropriately changing the compounding ratio, molding density, and sintering temperature within the above-mentioned ranges. According to the present invention as explained above, brass is used, and by using an appropriate amount of bronze powder, the dispersion of Zn in the brass is appropriately prevented, and in terms of conformability to shaft materials and corrosion resistance, compared to conventional copper-based It is equivalent to or better than sintered alloys, and its mechanical strength is comparable to that of conventional iron-based sintered alloys.In addition, it has stable characteristics with little variation in quality. It is possible to accurately provide a new sintered alloy, and it has characteristics such as less mold wear during compression molding than conventional iron-based sintered alloys, making it suitable for industrial use. This is a highly effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであつ
て、第1図から第3図は本発明の製造例1による
焼結合金についての軸受性能を従来例と共に測定
した結果を示す図表、第4図はその代表例につい
ての機械的性能に関し従来例および比較例と共に
測定した結果を示す図表、第5図は本発明におけ
る製造例2について第1〜3図と同様な関係を示
した図表、第6図はその機械的性能についいて第
4図と同様な関係を示した図表である。
The drawings show the technical contents of the present invention, and FIGS. 1 to 3 are charts showing the results of measuring the bearing performance of the sintered alloy according to Production Example 1 of the present invention together with the conventional example, and FIG. Figure 5 is a diagram showing the results of measuring the mechanical performance of a representative example together with conventional examples and comparative examples. FIG. 6 is a chart showing the same relationship as FIG. 4 regarding the mechanical performance.

Claims (1)

【特許請求の範囲】[Claims] 1 Cu:59〜88%とPb,Sn,Al,Feの何れか1
種又は2種以上を夫々1%以下の範囲で含有し、
残部がZnより成る黄銅粉末30〜70重量部と鉄粉
70〜30重量部を主体とし、これらの粉末100重量
部に対して3〜20重量部の青銅粉を配合し、該配
合金属粉を圧粉成形してから焼結処理することを
特徴とする焼結合金の製造法。
1 Cu: 59-88% and any one of Pb, Sn, Al, Fe
Containing one species or two or more species in a range of 1% or less each,
30 to 70 parts by weight of brass powder, the balance of which is Zn, and iron powder
Mainly containing 70 to 30 parts by weight, 3 to 20 parts by weight of bronze powder is blended to 100 parts by weight of these powders, and the blended metal powder is compacted and then sintered. Manufacturing method of sintered alloy.
JP17249679A 1979-12-22 1979-12-29 Sintered alloy Granted JPS5696001A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17249679A JPS5696001A (en) 1979-12-29 1979-12-29 Sintered alloy
GB8037929A GB2067221B (en) 1979-12-22 1980-11-26 Sintered alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17249679A JPS5696001A (en) 1979-12-29 1979-12-29 Sintered alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13186987A Division JPS6324040A (en) 1987-05-29 1987-05-29 Production of sintered alloy

Publications (2)

Publication Number Publication Date
JPS5696001A JPS5696001A (en) 1981-08-03
JPS6253580B2 true JPS6253580B2 (en) 1987-11-11

Family

ID=15943045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17249679A Granted JPS5696001A (en) 1979-12-22 1979-12-29 Sintered alloy

Country Status (1)

Country Link
JP (1) JPS5696001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169523A (en) * 1993-12-16 1995-07-04 Nec Corp Connector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283346A (en) * 1988-05-09 1989-11-14 Isamu Kikuchi Sintered alloy material and its production
JPH03199348A (en) * 1989-12-28 1991-08-30 Isamu Kikuchi Sintered alloy bearing
CN108436073A (en) * 2018-03-07 2018-08-24 金川集团股份有限公司 A kind of production method of low-apparent-density brass powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944842A (en) * 1972-09-05 1974-04-27
JPS5755927A (en) * 1980-09-18 1982-04-03 Sanyo Chem Ind Ltd Production of polyether

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944842A (en) * 1972-09-05 1974-04-27
JPS5755927A (en) * 1980-09-18 1982-04-03 Sanyo Chem Ind Ltd Production of polyether

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169523A (en) * 1993-12-16 1995-07-04 Nec Corp Connector

Also Published As

Publication number Publication date
JPS5696001A (en) 1981-08-03

Similar Documents

Publication Publication Date Title
JP2652866B2 (en) Sintered material for oil-impregnated bearing and method for producing the same
EP1434665A1 (en) Lead-free bearing
US5346668A (en) Copper based alloy for wear resistant sliding layer and sliding member
JP2918292B2 (en) Sliding material
GB2333779A (en) Composite metal powder for sintered bearing, and sintered oil-retaining bearing
JPH01275735A (en) Sintered alloy material and its manufacture
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JPS6253580B2 (en)
JPS58189361A (en) Oil-impregnated bearing made of Fe-based sintered alloy with excellent conformability and lubricity
GB2067221A (en) Sintered Alloys
JPH01255631A (en) Sintered alloy material and its manufacture
JPH01136944A (en) Sintered metallic material
US3728089A (en) Aluminum-silicon base sintered porous bearing metals
JPS6346138B2 (en)
JPH045745B2 (en)
JPH01230740A (en) Sintered alloy material for oiliness bearing and its manufacture
JP3214862B2 (en) Self-lubricating sliding material and lubrication-free bearing using the same
JPH0146580B2 (en)
JPS59107006A (en) Two-layered oil-impregnated bearing made of sintered fe material and its production
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
JPH01283346A (en) Sintered alloy material and its production
JP2631146B2 (en) Sintered metal body and method for producing the same
JPS6346139B2 (en)
JP2617334B2 (en) Sintered alloy material and method for producing the same
JPS61210155A (en) Iron-brass sintered sliding material