[go: up one dir, main page]

JPH01225749A - Sintered material for oilless bearing and production thereof - Google Patents

Sintered material for oilless bearing and production thereof

Info

Publication number
JPH01225749A
JPH01225749A JP63048633A JP4863388A JPH01225749A JP H01225749 A JPH01225749 A JP H01225749A JP 63048633 A JP63048633 A JP 63048633A JP 4863388 A JP4863388 A JP 4863388A JP H01225749 A JPH01225749 A JP H01225749A
Authority
JP
Japan
Prior art keywords
powder
ferrous metal
iron
oil
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63048633A
Other languages
Japanese (ja)
Other versions
JP2652866B2 (en
Inventor
Isamu Kikuchi
勇 菊池
Masanori Kikuchi
菊池 眞紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63048633A priority Critical patent/JP2652866B2/en
Priority to GB8904487A priority patent/GB2216545B/en
Publication of JPH01225749A publication Critical patent/JPH01225749A/en
Priority to HK768/91A priority patent/HK76891A/en
Application granted granted Critical
Publication of JP2652866B2 publication Critical patent/JP2652866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To stably produce a sintered material for oilless bearing having excellent strength, corrosion resistance and wear resistance and small coefficient of friction and good thermal conductivity by compacting and sintering powdery body coating the specific quantity of non-ferrous metal to iron powder and executing sizing to the above. CONSTITUTION:The powdery body coating 18-50wt.% the non-ferrous metal to the iron powder is compacted. The above non-ferrous metal is used with, for example, silver, copper, tin, etc., and it is desirable to coat substantially on the whole circumferential surface of the iron powder with electroplating, etc. Further, in the above green compact, to 100wt. parts of the coated powdery body, 11-240wt. parts of the non-ferrous metal and further, 0.3-4.5% solid lubricating material powder can be added. Successively, the above green compact is sintered and the bearing material composing of 45-82% Fe and the balance the non-ferrous metal and if necessary, containing the solid lubricating material and having good compactibility with 15-28vol.% porocity and bearing to high load without segregation and excellent various characteristic, is obtd.

Description

【発明の詳細な説明】 「発明の目的」 本発明は焼結金属軸受およびその製造法に係り、鉄粉に
非鉄金属を被覆したるかために圧縮成形性が良好で、高
負荷に耐え、耐食性や耐摩耗性に優れていると共に偏析
を的確に防止し、摩擦係数が小で熱伝導性などにも優れ
た軸受材およびその製造法を提供しようとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a sintered metal bearing and a method for manufacturing the same. It is an object of the present invention to provide a bearing material that has excellent corrosion resistance and wear resistance, accurately prevents segregation, has a small coefficient of friction, and has excellent thermal conductivity, and a method for manufacturing the same.

(産業上の利用分野) 各種軸受目的に適した焼結金属軸受およびその製造技術
(Industrial Application Field) Sintered metal bearings and their manufacturing technology suitable for various bearing purposes.

(従来の技術) 焼結合金材は含油軸受その他に広く利用されており、軸
受に関してはJIS規格においても家庭用電気機器、音
響機器、事務用機器、農業機械、運搬荷役用機器などに
関して種々に規定され、その成分組成としても純鉄系、
鉄−銅系、鉄−炭素系、鉄−銅一炭素系、鉄−銅一鉛系
、青銅系、銅系、鉛−青銅系など多様の材質、種類が規
定されている。
(Prior art) Sintered alloy materials are widely used in oil-impregnated bearings and other products, and the JIS standards for bearings also specify various types of bearings for household electrical equipment, audio equipment, office equipment, agricultural machinery, transportation equipment, etc. regulated, and its composition is pure iron,
Various materials and types are specified, including iron-copper, iron-carbon, iron-copper-carbon, iron-copper-lead, bronze, copper, and lead-bronze.

なお例えば特開昭56−51554号公報においては鉄
粉と黄銅粉を用いた圧粉体を焼結することが発表されて
おり、更に本発明者等によっても特開昭60−2009
27号公報において鉄粉、黄銅粉および洋白粉を用い、
それらの混合粉による圧粉成形体を還元性雰囲気で焼結
処理することを提案している。
For example, JP-A No. 56-51554 discloses sintering a green compact using iron powder and brass powder, and the present inventors also published JP-A No. 60-2009.
In Publication No. 27, using iron powder, brass powder and nickel silver powder,
It is proposed to sinter a compacted body made of these mixed powders in a reducing atmosphere.

(発明が解決しようとする問題点) 上記したような従来のものにおいては、その成分組成の
如何により夫々の特性が得られるとしても、−船釣に強
度を重視する場合には鉄粉を用いることが不可欠的であ
る。しかしこの鉄粉を用いたものにおいては耐食性に劣
り、摩擦係数が大であって相手部材を損耗するなどの欠
点がある。
(Problems to be Solved by the Invention) In the conventional products as described above, although each characteristic can be obtained depending on the component composition, iron powder is used when strength is important for boat fishing. It is essential that However, those using this iron powder have disadvantages such as poor corrosion resistance, high coefficient of friction, and wear on the mating member.

このような鉄粉を用いたものの不利をカバーするものが
銅粉を用いた焼結材であるが、この銅系のものにおいて
は強度的に充分でないと共に高価であるなどの不利を有
している。
A sintered material using copper powder compensates for the disadvantages of using iron powder, but this copper-based material has disadvantages such as not having sufficient strength and being expensive. There is.

そこでこれらの関係を調和するものとして、鉄粉と銅粉
を共に用い、あるいは青銅、黄銅、鉛、洋白の如きを併
用した上述のような軸受材となるわけであるけれども、
このような各金属または合金粉を併用した従来の軸受に
おいては原料粉の調整、取扱い上において偏析を生じ易
く、又鉄系粉が比較的大量に用いられたものにおいては
鉄系軸受としての上記欠点が顕われ、一方銅または銅系
合金が比較的大量に用いられたものにおいては高価とな
ると共に銅系軸受における前記不利を避は得ないことと
なる。
Therefore, in order to harmonize these relationships, the above-mentioned bearing materials use both iron powder and copper powder, or bronze, brass, lead, and nickel silver.
Conventional bearings that use a combination of these types of metal or alloy powders tend to cause segregation during the preparation and handling of raw material powders, and those that use relatively large amounts of iron-based powders tend to suffer from the above-mentioned problems as iron-based bearings. On the other hand, bearings in which a relatively large amount of copper or copper-based alloys are used are expensive and the disadvantages described above in copper-based bearings are unavoidable.

このような従来のものにおける具体的な製品の1例は第
4図に示す如くであって、このものは3〇wt%の銅粉
を混合した圧粉成形体についてその表面を顕微鏡観察し
拡大して示したものであるが、鉄粒子(1)と銅粒子(
2)とが略その重量配合比に準じた混合状態で分布した
ものとなっており、成程肉眼的観察においては配合銅粉
による感覚がそれなりに得られるとしてもミクロ的には
明かに鉄粉の露出が主体をなしていることは明確である
。即ち銅粉による耐食性やなじみ性、あるいは摩擦係数
低減効果がそれなりに得られるとしても鉄粉部分におい
ては従来一般の鉄粉軸受焼結材としての不利が残ること
とならざるを得ない。
A specific example of such a conventional product is shown in Figure 4, which shows the surface of a powder compact mixed with 30 wt% copper powder, which was observed under a microscope and enlarged. The iron particle (1) and the copper particle (
2) are distributed in a mixed state roughly according to their weight blending ratio, and even though macroscopic observation gives a certain feeling of blended copper powder, microscopically it is clearly iron powder. It is clear that the exposure of That is, even if the copper powder provides a certain degree of corrosion resistance, conformability, or friction coefficient reduction effect, the iron powder portion remains disadvantageous as a conventional sintered material for iron powder bearings.

なお上記したような従来のものにおいては、特に鉄粉を
主体としたものにおいてその焼結前において所定の形態
を得るための圧粉成形性が必ずしも好ましいものでなく
、このため成形圧をそれなりに大きくし、あるいは固体
潤滑材を配合して圧縮成形を円滑に行うようにすること
が必要である。
In addition, in the conventional products as described above, especially those made mainly of iron powder, the compactability to obtain a predetermined shape before sintering is not necessarily favorable, and therefore the compacting pressure must be adjusted to a certain degree. It is necessary to increase the size or add a solid lubricant to ensure smooth compression molding.

この圧縮成形圧を高くするならば圧縮成形金型の損耗が
加速度的に大となって充分な耐用性が得られないことと
なり、一方固体潤滑材を配合した製品は強度的に劣るこ
ととならざるを得ない。
If this compression molding pressure is increased, the wear and tear of the compression molding mold will increase at an accelerated rate, making it impossible to obtain sufficient durability.On the other hand, products containing solid lubricants will be inferior in strength. I have no choice but to.

「発明の構成」 (課題を解決するための手段) 1、鉄が45〜82wt%と非鉄金属より成り、前記鉄
が粉粒状をなし、しかも該粉粒状鉄の実質的全周面が上
記した非鉄金属により被覆された状態で相互に焼結結合
せしめられ、その気孔率が15〜28容量%とされたこ
とを特徴とする含油軸受用焼結材。
"Structure of the Invention" (Means for Solving the Problems) 1. Iron is made of 45 to 82 wt% of non-ferrous metal, the iron is in the form of granules, and substantially the entire circumferential surface of the granular iron is as described above. A sintered material for an oil-impregnated bearing, characterized in that the sintered material is sintered and bonded to each other while being coated with a non-ferrous metal, and has a porosity of 15 to 28% by volume.

2、鉄が45〜82wt%、黒鉛または二硫化モリブデ
ンのような固体潤滑材粉末の1種または2種以上が0.
3〜4.5wt%で残部が非鉄金属より成り、気孔率が
15〜28容量%でリング状に成形された前項に記載の
含油軸受用焼結材。
2. 45 to 82 wt% of iron, 0.0% of one or more solid lubricant powders such as graphite or molybdenum disulfide.
The sintered material for oil-impregnated bearings according to the above item, which is formed into a ring shape with a porosity of 15 to 28% by volume, with the remainder being non-ferrous metal at 3 to 4.5 wt%.

3、非鉄金属が銅または銅系合金である前項または前々
項の何れか1つに記載の含油軸受用焼結材。
3. The sintered material for oil-impregnated bearings according to any one of the preceding item or the item before the previous item, wherein the nonferrous metal is copper or a copper-based alloy.

4、w4が18〜49.5wt%、錫が0.5〜6wt
%と45〜82wt%の鉄よりなり、しかも前記鉄が粉
粒状をなしていて、該粉粒状鉄の実質的全周面が前記銅
および錫により被覆された状態で焼結せしめられ、気孔
率が15〜28容量%とされたことを特徴とする含油軸
受用焼結材。
4. W4 is 18-49.5wt%, tin is 0.5-6wt
% and 45 to 82 wt% of iron, and the iron is in the form of powder and granules, and is sintered with substantially the entire circumferential surface of the granular iron coated with the copper and tin, and the porosity is A sintered material for oil-impregnated bearings, characterized in that the amount of oil is 15 to 28% by volume.

5、銅が6〜40wt%で、亜鉛が0.8〜14.8w
t%と50〜82ivt%の鉄よりなり、しかも前記鉄
が粉粒状をなしていて、該粉粒状鉄の実質的全周面が前
記銅および亜鉛により被覆された状態で焼結せしめられ
、気孔率が15〜28容量%とされたことを特徴とする
含油軸受用焼結材。
5. Copper is 6-40wt%, zinc is 0.8-14.8w
t% and 50 to 82 ivt% of iron, and the iron is in the form of powder and granules, and is sintered with substantially the entire circumferential surface of the granular iron coated with the copper and zinc. A sintered material for oil-impregnated bearings, characterized in that the ratio is 15 to 28% by volume.

6、銅が6〜37.5wt%、亜鉛が0.8〜14.8
wt%、ニッケルが0.8〜9.0wt%と45〜82
wt%の鉄よりなり、しかも前記鉄が粉粒状をなしてい
て、該粉粒状鉄の実質的全周面が前記銅、亜鉛およびニ
ッケルにより被覆された状態で焼結せしめられ、気孔率
が15〜25容量%とされたことを特徴とする含油軸受
用焼結材。
6. Copper: 6-37.5 wt%, zinc: 0.8-14.8
wt%, nickel is 0.8 to 9.0 wt% and 45 to 82
wt% of iron, and the iron is in the form of powder particles, and is sintered with substantially the entire circumferential surface of the powder iron coated with the copper, zinc, and nickel, and the porosity is 15. A sintered material for oil-impregnated bearings, characterized in that the oil content is 25% by volume.

7、鉄粉に重量比で非鉄金属を18〜50wt%被覆し
た粉体を圧粉成形してから焼結し、サイジングすること
を特徴とする含油軸受用焼結材の製造法。
7. A method for producing a sintered material for oil-impregnated bearings, which comprises compacting a powder obtained by coating iron powder with 18 to 50 wt % of a non-ferrous metal, followed by sintering and sizing.

8、鉄粉に重量比で非鉄金属を18〜50−1%被覆し
た粉粒体100重量部に更に非鉄金属粉11〜240重
量部を添加した原料粉を圧粉成形してから焼結し、サイ
ジングすることを特徴とする含油軸受用焼結材の製造法
8. Raw material powder made by adding 11 to 240 parts by weight of non-ferrous metal powder to 100 parts by weight of granules in which iron powder is coated with 18 to 50-1% by weight of non-ferrous metal is compacted and then sintered. , a method for producing a sintered material for oil-impregnated bearings, characterized by sizing.

9、黒鉛、二硫化モリブデン、鉛のような固体潤滑材粉
末の1種または2種以上を重量比で0.5〜5%添加し
た原料粉を用いる前々項または前項の何れか1つに記載
の含油軸受用焼結材の製造法。
9. In any one of the two preceding paragraphs or the preceding paragraph using raw material powder to which 0.5 to 5% by weight of one or more solid lubricant powders such as graphite, molybdenum disulfide, and lead are added. The method for producing the described sintered material for oil-impregnated bearings.

10、鉄粉に被覆される非鉄金属が銀、銅、錫、鉛、亜
鉛、ニッケル、アルミニウム、コバルト、クロム、モリ
ブデン、チタン、マンガン、タングステンの何れかおよ
びそれらの2種以上より成る合金ならびに該合金にリン
や硫黄などをも含有したものによる電気メッキ、溶融メ
ッキ、無電解メッキ、溶射、ドライプレーティングの何
れかである前記7項から9項の何れか1つに記載の含油
軸受用焼結材の製造法。
10. The non-ferrous metal coated on the iron powder is silver, copper, tin, lead, zinc, nickel, aluminum, cobalt, chromium, molybdenum, titanium, manganese, tungsten, and alloys consisting of two or more of these. Sintering for oil-impregnated bearings according to any one of items 7 to 9 above, which is performed by electroplating, hot-dip plating, electroless plating, thermal spraying, or dry plating using an alloy containing phosphorus, sulfur, etc. Manufacturing method of wood.

11、鉄粉に被覆される非鉄金属が銅と亜鉛を主体とし
た合金としての黄銅である前項に記載の含油軸受用焼結
材の製造法。
11. The method for producing a sintered material for oil-impregnated bearings according to the preceding item, wherein the non-ferrous metal coated on the iron powder is brass as an alloy mainly composed of copper and zinc.

12、鉄粉に被覆される非鉄金属が銅と錫を主体とした
合金としての青銅である前記10項に記載の含油軸受用
焼結材の製造法。
12. The method for producing a sintered material for oil-impregnated bearings according to item 10 above, wherein the nonferrous metal coated on the iron powder is bronze as an alloy mainly composed of copper and tin.

13、鉄粉に被覆される非鉄金属が銅と亜鉛ニッケルを
主体とした合金としての洋白である前記10項に記載の
含油軸受用焼結材の製造法。
13. The method for producing a sintered material for oil-impregnated bearings according to item 10 above, wherein the non-ferrous metal coated on the iron powder is nickel silver as an alloy mainly composed of copper and zinc-nickel.

14、非鉄金属を被覆した鉄粉に対し更に添加される非
鉄金属粉がAgz C11% Sns pb、 Zns
 Ni、A2、Crs  MO%  Tts  Mns
  W  、 Sb、  八SX 88%  81% 
 B  s  Inの何れか、またはそれらの合金また
はそれらの酸化物若しくはP.Sをも含有した粉末であ
る前記7項から13項の何れか1つに記載の含油軸受用
焼結材の製造法。
14. The non-ferrous metal powder that is further added to the iron powder that coats the non-ferrous metal is Agz C11% Sns pb, Zns
Ni, A2, Crs MO% Tts Mns
W, Sb, 8SX 88% 81%
B s In, or alloys thereof, or oxides thereof or P.S. The method for producing a sintered material for oil-impregnated bearings according to any one of items 7 to 13 above, which is a powder that also contains S.

15、非鉄金属を被覆した鉄粉に対し更に添加される非
鉄金属粉が銅と亜鉛を主体とした合金としての黄銅粉で
ある前項に記載の含油軸受用焼結材の製造法。
15. The method for producing a sintered material for oil-impregnated bearings according to the above item, wherein the non-ferrous metal powder further added to the iron powder coating the non-ferrous metal is brass powder as an alloy mainly composed of copper and zinc.

16、非鉄金属を被覆した鉄粉に対し更に添加される非
鉄金属粉が銅と錫を主体とした合金としての青銅粉であ
る前記14項に記載の含油軸受用焼結材の製造法。
16. The method for producing a sintered material for oil-impregnated bearings according to item 14, wherein the non-ferrous metal powder further added to the iron powder coating the non-ferrous metal is bronze powder as an alloy mainly composed of copper and tin.

17、非鉄金属を被覆した鉄粉に対し更に添加される非
鉄金属粉が銅と亜鉛ニッケルを主体とした合金としての
洋白粉である前記14項に記載の含油軸受用焼結材の製
造法。
17. The method for producing a sintered material for oil-impregnated bearings according to item 14 above, wherein the non-ferrous metal powder further added to the iron powder coating the non-ferrous metal is nickel silver powder as an alloy mainly composed of copper and zinc-nickel.

1B、 Niを3.5〜8.0%に低下した洋白粉を用
いる前項に記載の含油軸受用焼結材の製造法。
1B, the method for producing a sintered material for oil-impregnated bearings as described in the preceding paragraph using nickel silver powder with Ni content reduced to 3.5 to 8.0%.

19、非鉄金属を被覆した鉄粉に対し非鉄金属酸化物粉
末を更に添加し、還元性雰囲気で前記非鉄金属酸化物粉
末を還元し焼結する前記7項に記載の含油軸受用焼結材
の製造法。
19. The sintered material for oil-impregnated bearings according to item 7, wherein a non-ferrous metal oxide powder is further added to the iron powder coated with a non-ferrous metal, and the non-ferrous metal oxide powder is reduced and sintered in a reducing atmosphere. Manufacturing method.

20、非鉄金属酸化物が酸化鉛である前項に記載の含油
軸受用焼結材の製造法。
20. The method for producing a sintered material for oil-impregnated bearings according to the above item, wherein the nonferrous metal oxide is lead oxide.

(作用) 鉄粉に非鉄金属を被覆した粉体を用いることにより、鉄
粉自体の強度特性、耐荷重性を確保しながらその耐蝕性
、摩擦係数などの特性を非鉄金属の被覆層において得し
める。
(Function) By using a powder in which iron powder is coated with a non-ferrous metal, the properties such as corrosion resistance and friction coefficient can be obtained in the coating layer of the non-ferrous metal while ensuring the strength and load-bearing properties of the iron powder itself. .

被覆する非鉄金属量が18wt%以下では被覆非鉄金属
層による前記特性を有効に得ることが困難となり、一方
50wt%を超えて非鉄金属を被覆せしめたものにおい
ては鉄粉を骨格として得られる強度ないし耐荷重性を充
分に得難くなると共に高価となる。
If the amount of non-ferrous metal to be coated is less than 18 wt%, it will be difficult to effectively obtain the above-mentioned properties by the coated non-ferrous metal layer, while on the other hand, if the amount of non-ferrous metal to be coated exceeds 50 wt%, the strength or strength that can be obtained using iron powder as a skeleton will be reduced. It becomes difficult to obtain sufficient load resistance and it becomes expensive.

前記のように非鉄金属で被覆された鉄粉は一般的に圧粉
成形性を良好とする。
As mentioned above, iron powder coated with a non-ferrous metal generally has good compactability.

鉄粉粒を被覆する非鉄金属としては銀、亜鉛、錫、銅、
鉛、ニッケル、アルミニウム、クローム、マンガン、モ
リブデン、タングステン、チタンなどの何れでもよく、
又これらの2種以上より成る合金、更には燐やシリコン
などをも含有したものを採用することができる。
Nonferrous metals that coat iron powder particles include silver, zinc, tin, copper,
May be any of lead, nickel, aluminum, chromium, manganese, molybdenum, tungsten, titanium, etc.
Also, an alloy consisting of two or more of these, or even one containing phosphorus, silicon, etc., can be used.

銅はそれ自体の粉粒が焼結金属用として従来から用いら
れていることは前述の如くで、この銅またはその他の非
鉄金属(それらの合金を含む)を鉄粉粒に被覆したもの
を採用することにより一般的に鉄系焼結金属材と銅系焼
結金属材の如きとの有している有利点を略完全状態に具
備した材質のものとなる。
As mentioned above, copper powder itself has traditionally been used as a sintered metal, and iron powder particles coated with copper or other non-ferrous metals (including their alloys) are used. This results in a material that generally has almost all of the advantages of iron-based sintered metal materials and copper-based sintered metal materials.

又鉄粉粒を被覆する合金体としてこの銅と他の金属との
合金を採用することにより、上記銅自体の場合以上にそ
れぞれの特質性をもたらすことができる。
Moreover, by employing an alloy of this copper and other metals as an alloy body for coating iron powder grains, it is possible to bring out the respective characteristics more than in the case of the above-mentioned copper itself.

又上記のような銅などの非鉄金属被覆鉄粉に対し更に他
の非鉄金属または合金粉末を添加することにより特性改
善をなし得る。例えば上記非鉄金属被覆鉄粉にSn粉そ
の他の非鉄金属粉を添加することにより摩擦係数その他
の特性を一層低下または改善することができる。この場
合のSn粉などの非鉄金属粉の添加量は上記した非鉄金
属被覆鉄粉100重量部に対し0.5重量部未満ではそ
の添加による摩擦係数低下その他の特性改善が不充分で
あり、一方67重量部を超えてもその効果が飽和し、又
高価となってコスト的に不利となる。
Furthermore, properties can be improved by adding other non-ferrous metals or alloy powders to the above-mentioned iron powder coated with non-ferrous metals such as copper. For example, by adding Sn powder or other nonferrous metal powder to the nonferrous metal-coated iron powder, the coefficient of friction and other properties can be further reduced or improved. In this case, if the amount of non-ferrous metal powder such as Sn powder added is less than 0.5 parts by weight per 100 parts by weight of the above-mentioned non-ferrous metal coated iron powder, the reduction in the coefficient of friction and other improvements in properties due to its addition will be insufficient; Even if it exceeds 67 parts by weight, the effect will be saturated and it will become expensive, which is disadvantageous in terms of cost.

特にSn粉の場合には含有する銅分に対し0.5重量部
未満、青銅粉の場合にはそのSn含有量によって異るが
、−船釣に10重量部未満ではその添加による摩擦係数
低下を有効に得難く、Sn粉が7重量部、青銅粉が67
重量部を超えて多量となってもその効果が飽和し、又高
価となる。黄銅粉は非鉄金属被覆鉄粉100重量部に対
し11重量部−以上で強度を高めることができ、67重
量部を超えるとその効果が飽和し、コストアップとなる
。洋白粉も11重量部以上で強度をより高めると共に耐
食性向上効果などをもたらし、一方67重量部以上では
その効果が飽和し、鉄粉を主体とした低コスト性が失わ
れる。
In particular, in the case of Sn powder, it is less than 0.5 parts by weight based on the copper content, and in the case of bronze powder, it varies depending on the Sn content, but if it is less than 10 parts by weight for boat fishing, the friction coefficient decreases due to its addition. It is difficult to obtain effectively, Sn powder is 7 parts by weight, bronze powder is 67 parts by weight.
If the amount exceeds 1 part by weight, the effect will be saturated and the price will increase. Brass powder can increase the strength by using 11 parts by weight or more based on 100 parts by weight of nonferrous metal-coated iron powder, but if it exceeds 67 parts by weight, the effect is saturated and the cost increases. At 11 parts by weight or more, nickel silver powder also increases the strength and has the effect of improving corrosion resistance. On the other hand, at 67 parts by weight or more, the effect is saturated and the low cost properties of iron powder as the main ingredient are lost.

銅などの非鉄金属被覆鉄粉に対し更に添加される他の非
鉄金属粉末として銅−錫一鉛を部分合金化したものの粉
末を用いることにより軸受性能を著しく向上することが
できる。即ちこのような軸受において鉛を含有させるこ
とによりその軸受性能の改善されること自体は知られて
いるが、従来法でこの鉛を充分に添加すると焼結時に鉛
の滲み出しが起り好ましい製品が得られない。本発明に
おいて上記のような銅−錫一鉛の部分合金化粉末を用い
ることにより上記のような鉛の滲み出しを解消低減し、
しかも骨格的に鉄粉を主体としたものとなるので強度と
軸受性能を共に高めた軸受体が得られる。
Bearing performance can be significantly improved by using a partially alloyed copper-tin-lead powder as another non-ferrous metal powder added to the iron powder coated with a non-ferrous metal such as copper. In other words, it is known that adding lead to such bearings improves their bearing performance, but if sufficient lead is added using conventional methods, lead oozes out during sintering, making it difficult to produce desirable products. I can't get it. In the present invention, by using the above-mentioned copper-tin-lead partially alloyed powder, the above-mentioned leaching of lead can be eliminated and reduced,
Moreover, since the skeleton is mainly made of iron powder, a bearing body with improved strength and bearing performance can be obtained.

銅が鉄粉に対する被覆として用いられている本発明のも
のにおいては上記のような鉛含有軸受を得るに当り、錫
と鉛の合金粉を用い、焼結時に鉄粉を被覆している銅と
該合金粉との合金化を行わせ得る。又添加される鉛分を
酸化鉛として採用し還元性雰囲気で焼結することにより
該酸化鉛を還元して鉛ないしその銅、錫との合金として
含有させることができる。何れにしても鉄粉による強度
と、銅−錫一鉛の合金化による軸受性能向上を十二分に
得しめることが可能となる。なおこれらの場合の焼結温
度としては500〜780℃であり、500℃未満では
好ましい焼結が得られず、一方780℃以上では強度が
低下し、又成形体における寸法変化が大きくなるなどの
不利が認められる。
In the present invention, in which copper is used as a coating for iron powder, in order to obtain the above-mentioned lead-containing bearing, an alloy powder of tin and lead is used, and during sintering, the copper coating the iron powder is mixed with the copper that coats the iron powder. Alloying with the alloy powder can be performed. Further, by employing the added lead as lead oxide and sintering it in a reducing atmosphere, the lead oxide can be reduced and contained as lead or its alloy with copper and tin. In any case, it is possible to fully obtain the strength provided by the iron powder and the bearing performance improvement provided by the copper-tin-lead alloy. In addition, the sintering temperature in these cases is 500 to 780°C, and if it is less than 500°C, favorable sintering cannot be obtained, while if it is higher than 780°C, the strength may decrease and dimensional changes in the molded product may increase. Disadvantage is recognized.

勿論これらの場合において45%以上が鉄粉である本発
明のものは製品全体に対する鉛などの含有量は少いもの
で充分なそれらの効果を得しめるし、又低コストにこの
ような卓越した製品を得しめる。
Of course, in these cases, the product of the present invention, in which 45% or more is iron powder, can achieve sufficient effects even though the content of lead etc. in the entire product is small, and such an outstanding product can be produced at a low cost. Acquire.

黒鉛、二硫化モリブデンのような固体潤滑材粉末の1種
または2種以上を添加することにより圧粉成形をより容
易とし、又潤滑性能を向上して摩擦係数を低減すること
ができる。この場合の添加量は上記銅被覆鉄粉またはこ
れに他の金属若しくは合金粉を添加した原料粉の0.5
4%以上であって、0.5%未満ではその添加効果を適
切に得ることができず、一方5wt%を超えて添加する
と強度などを確保し難い。
By adding one or more solid lubricant powders such as graphite and molybdenum disulfide, powder compaction can be made easier, and the lubrication performance can be improved and the coefficient of friction can be reduced. In this case, the amount added is 0.5 of the copper-coated iron powder or the raw material powder obtained by adding other metal or alloy powder to it.
If it is 4% or more and less than 0.5%, the effect of addition cannot be obtained appropriately, while if it is added in excess of 5wt%, it is difficult to ensure strength.

合金成分としてZn分のような焼結温度より低い温度で
気化する成分を含有した原料粉の場合には圧粉成形体を
耐熱性容器に装入し、施蓋して還元雰囲気中で焼結する
ことにより上記成分の気散を適切に抑制して焼結製品を
得しめる。
In the case of raw material powder containing alloying components such as Zn that vaporize at a temperature lower than the sintering temperature, the compacted powder is placed in a heat-resistant container, covered and sintered in a reducing atmosphere. By doing so, a sintered product can be obtained by appropriately suppressing the diffusion of the above-mentioned components.

焼結体をサイジングすることにより所定寸法の製品とす
る。即ち焼結によってそれなりに歪みを与えることは明
かで、これをサイジングし目的の寸法製品とすると共に
歪み、変形を矯正する。このサイジング時における矯正
のための圧縮量は焼結体容積の15〜35%程度であり
、15%未満では上記のような矯正効果を充分に得難い
し、又35%以上であると焼結によって折角形成された
焼結構造が損われ、特に軸受体などとして含油せしめた
製品とする場合においては含油量が僅少となり所期する
ような潤滑性および耐用性を求め難いこととなる。
By sizing the sintered body, it is made into a product with a predetermined size. That is, it is clear that sintering causes a certain amount of distortion, and this is sized to produce a product with the desired dimensions, and distortions and deformations are corrected. The amount of compression for straightening during this sizing is about 15 to 35% of the volume of the sintered body, and if it is less than 15%, it is difficult to obtain the above straightening effect, and if it is more than 35%, it will be difficult to obtain the straightening effect due to sintering. The painstakingly formed sintered structure will be damaged, and especially when the product is made into an oil-impregnated product such as a bearing body, the oil content will be so small that it will be difficult to obtain the desired lubricity and durability.

(実施例) 上記したような本発明によるものの具体的な実施態様に
ついて説明すると、本発明においては既述のように非鉄
金属(合金を含む)を被覆した鉄粉を用いるもので、こ
のような鉄粉に対する銅の被覆はメッキ法の如きにより
、その通電量と時間を適当に選ぶことにより適宜の程度
に行い得る。
(Example) To explain the specific embodiment of the present invention as described above, the present invention uses iron powder coated with non-ferrous metals (including alloys) as described above. The iron powder can be coated with copper to an appropriate degree by appropriately selecting the amount and time of energization using a plating method or the like.

このような非鉄金属の被覆量は重量比で18〜55%で
あることは前記の通りであるが、より好ましい範囲とし
ては25〜45%程度であり、後述するように更に非鉄
金属粉を添加する場合には20%でも充分である。斯う
した非鉄金属被覆により鉄粉粒子の周面は完全状態に非
鉄金属で被包されることになり、又鉄粉粒子表面に非鉄
金属の軟質層が凹凸に形成されたものとして得られるか
ら圧粉成形が容易化される。
As mentioned above, the coating amount of such non-ferrous metal is 18 to 55% by weight, but a more preferable range is about 25 to 45%, and as described later, non-ferrous metal powder may be added. In this case, even 20% is sufficient. Due to such non-ferrous metal coating, the peripheral surface of the iron powder particles is completely covered with the non-ferrous metal, and a soft layer of non-ferrous metal is formed on the surface of the iron powder particles in an uneven manner. Powder compaction is facilitated.

なお原材たる鉄粉粒子の大きさについては特に制限され
ないが、純鉄系焼結体製造のために従来−i的に採用さ
れている+80〜−320メソシユ(320メソシユ以
下も含む)程度より更に拡大した粒子範囲のものを採用
することができる。
There are no particular restrictions on the size of the iron powder particles used as the raw material, but the size is about +80 to -320 meso (including less than 320 meso), which is conventionally used for manufacturing pure iron sintered bodies. A further expanded particle range can be employed.

即ち比較的細粒のものでも銅被覆によって増径され粒径
的に従来−船釣範囲のものと同様に処理することが可能
であるし、上記のように圧粉成形が容易となることから
従来普通の粒径範囲を超えて大径のものであっても従来
法同然の圧粉成形処理で同等ないしそれより容易に成形
することができる。
In other words, even relatively fine grains can be increased in diameter by copper coating and can be processed in the same way as those in the conventional - boat fishing range, and as mentioned above, compaction is easier. Even if the particle size is larger than the conventional conventional particle size range, it can be molded equally or more easily by the same powder molding process as the conventional method.

具体的な鉄粉粒子表面に対する非鉄金属被覆として代表
的に銅を電気めっきして被覆したものの断面は第1.2
図に示す如くであるが、鉄粉粒子表面が銅被膜により有
効に被包され、少くとも85wt%以上、一般的に90
%以上が被包されたものとなり、第1図に示すように球
状に近い断面をもった粒子1はその周面に若干の凹凸を
示す被覆2aとなるが、この被覆2aは非鉄金属であり
、又微細性からして圧粉成形を有利にするものである。
The cross section of a typical non-ferrous metal coating on the surface of a specific iron powder particle is shown in Section 1.2.
As shown in the figure, the surface of the iron powder particles is effectively encapsulated by the copper film, which is at least 85 wt% or more, generally 90 wt%.
% or more are encapsulated, and as shown in FIG. 1, the particle 1 with a nearly spherical cross section becomes a coating 2a with slight irregularities on its circumferential surface, but this coating 2a is made of a non-ferrous metal. Also, due to its fineness, it is advantageous for powder compaction.

粒子自体が長目で、しかも凹凸のある第2図のような鉄
粉粒子1の場合においても銅のような非鉄金属による被
覆2aは有効且つ完全状態になされることはこの顕微鏡
写真の明かにする如くであって鉄粉粒子の露出部分が実
質的に残らない状態のものとして得られる。なおこれら
第1.2図のものは銅被覆量が鉄粉粒子の30wt%程
度のものであるが、被覆量がこれより少い場合にも同様
に被包され、一般的に18wt%以上の被覆量で鉄粉粒
子表面を完全に近い状態に被包すると共に安定な被覆と
することができ、好ましくは20wt%以上、より好ま
しくは25wt%以上である。
It is clear from this photomicrograph that even in the case of iron powder particles 1 as shown in Fig. 2, which are long and have irregularities, the coating 2a with non-ferrous metal such as copper is effective and complete. The iron powder particles are obtained in such a manner that substantially no exposed portions of the iron powder particles remain. In addition, although the amount of copper coating in these Fig. 1.2 is about 30 wt% of the iron powder particles, even if the amount of copper coating is smaller than this, it is encapsulated in the same way, and generally more than 18 wt%. The coating amount can nearly completely cover the surface of the iron powder particles and provide a stable coating, and is preferably 20 wt% or more, more preferably 25 wt% or more.

上記のように非鉄金属で被包された鉄粉粒子はそのまま
で圧粉成形されてよいことは当然であるが、又本発明に
おいては得られる焼結金属体の特°性をより改善、向上
するために更に非鉄金属粉を添加することについては前
述した通りであり、このようにして鉄粉粒子を主体とし
た焼結金属材であっても複合した非鉄金属による改質が
得られる。
It goes without saying that the iron powder particles encapsulated with nonferrous metal as described above may be compacted as they are, but in the present invention, the properties of the obtained sintered metal body can be further improved. The addition of non-ferrous metal powder for this purpose is as described above, and in this way even a sintered metal material mainly composed of iron powder particles can be modified by the composite non-ferrous metal.

この更に添加される非鉄金属粉としては上記のように鉄
粉粒子を被包した非鉄金属と同一または同系の金属もし
くは合金でよいことは当然であるが、又異った非鉄金属
またはその合金を用いることができる。被包非鉄金属と
同一または同系の金属もしくは合金の場合においては焼
結の組織を安定化する傾向が大であり、一方異った非鉄
金属または合金の場合においては異った特性を与えるこ
とができる。例えば銅系金属は一般的に親油性であるの
に対し、アルミニウム系は親水性であり、その細化学的
、電気的、機械的強度その他の物理的特性などに夫々異
質のものがあり、それらの特性を複合して得しめること
ができる。
It goes without saying that the non-ferrous metal powder to be further added may be the same or similar metal or alloy as the non-ferrous metal that encapsulates the iron powder particles as described above, but it may also be a different non-ferrous metal or its alloy. Can be used. In the case of metals or alloys that are the same or similar to the encapsulated nonferrous metal, there is a strong tendency to stabilize the sintered structure, while in the case of different nonferrous metals or alloys, different properties may be imparted. can. For example, copper-based metals are generally lipophilic, while aluminum-based metals are hydrophilic, and they each have different chemical, electrical, mechanical strength, and other physical properties. can be obtained by combining the characteristics of

このように非鉄金属被覆鉄粉に対して更に添加される粉
体としては非鉄金属の酸化物であってもよい。即ち焼結
が一般的に還元雰囲気で行われるものであることから焼
結時に該酸化物を還元することが可能であり、更には合
金化することができる。例えば酸化鉛を添加し焼結時に
還元することによって鉛分またはその合金として含有さ
せることができ、それによって軸受性能を向上すること
ができる。又鉄粉を主体とし、このような方式などで鉛
を添加することによって比較的少い鉛分で好ましい軸受
性能の向上が得られ、あるいは焼結時の鉛分浸出を制御
し得る。
The powder further added to the non-ferrous metal-coated iron powder in this way may be an oxide of a non-ferrous metal. That is, since sintering is generally performed in a reducing atmosphere, the oxide can be reduced during sintering, and furthermore, it can be alloyed. For example, by adding lead oxide and reducing it during sintering, it can be contained as lead or an alloy thereof, thereby improving bearing performance. Furthermore, by using iron powder as the main component and adding lead in such a manner, it is possible to obtain preferable improvement in bearing performance with a relatively small lead content, or to control lead content leaching during sintering.

なお非鉄金属被覆鉄粉は圧粉成形後の焼結時において収
縮傾向が認められるのに対し、混合粉方式のものを圧粉
成形焼結することでバルキング現象が認められ、これら
の双方を併用することにより焼結時における膨膨収縮を
制御し緩和することが可能となる。特に18%以上の非
鉄金属被覆鉄粉は前記焼結時の収縮が大で混合粉の膨膨
とよくバランスさせ得る。用いられる鉄粉としては噴霧
法、還元法、電解法、カルボニル法、粉砕法などの何れ
によったものでもよい。即ちこれらの鉄粉製造法が異る
ことにより、鉄粉の具体的形状はそれなりに異るが、該
鉄粉を完全状態に非鉄金属または合金で被覆する本発明
の場合においては鉄粉形状の異同はその作用効果に影響
するところが非常に少い。
In addition, nonferrous metal-coated iron powder tends to shrink during sintering after compaction, whereas a bulking phenomenon is observed when powder compaction and sintering is performed using a mixed powder method. By doing so, it becomes possible to control and moderate expansion and contraction during sintering. In particular, iron powder coated with a non-ferrous metal of 18% or more has a large shrinkage during sintering and can be well balanced with the expansion and expansion of the mixed powder. The iron powder used may be produced by any of the spraying method, reduction method, electrolytic method, carbonyl method, pulverization method, etc. In other words, the specific shape of the iron powder varies depending on the method of producing the iron powder, but in the case of the present invention, in which the iron powder is completely coated with a non-ferrous metal or alloy, the shape of the iron powder is different. Differences and similarities have very little influence on its effects.

上記鉄粉に対する非鉄金属またはその合金の被覆操作は
電気メッキ、溶融メッキ、無電解メッキ、溶射、ドライ
プレーティングなどの手法で適切に実施し得る。その被
覆量ないし被覆状態については電気メッキの場合におい
ては通電量、通電時間により適宜に選ぶことができるし
、溶融メッキの場合においても溶融温度あるいは鉄粉の
予熱温度の如きを制御して適切な範囲に被覆することが
できる。その他の場合においてもその処理条件如何で任
意の被覆状態が形成されることは明がである。
The operation of coating the above-mentioned iron powder with a non-ferrous metal or its alloy can be appropriately carried out by methods such as electroplating, hot-dip plating, electroless plating, thermal spraying, and dry plating. In the case of electroplating, the amount of coating or the state of the coating can be appropriately selected depending on the amount of current applied and the time of energization, and in the case of hot-dip plating, it can be selected appropriately by controlling the melting temperature or the preheating temperature of the iron powder. The range can be covered. It is obvious that in other cases as well, any coating state can be formed depending on the processing conditions.

焼結のための圧粉成形は、一般的に気孔率23〜38v
o1%、特に26〜32シo1%程度であって、26v
oβ%未満、特に23vo1%未満では焼結後に行われ
るサイジングのための適正な圧縮代を確保し、且つこの
サイジング後において含油軸受などとされる場合に目的
の含油率を得るための気孔率を得ることが困難となる。
Powder compacting for sintering generally has a porosity of 23 to 38v.
o1%, especially about 26 to 32 o1%, 26v
If it is less than oβ%, especially less than 23vo1%, it is necessary to ensure an appropriate compression allowance for the sizing performed after sintering, and after this sizing, to obtain the desired oil content when used as an oil-impregnated bearing. difficult to obtain.

これに対しこの気孔率が32vo1%を超え、特に38
voffi%を超えるような大きな気孔率のものでは圧
粉成形後の取扱いないし焼結処理中において部分的欠損
ないし破壊の可能性が高くなり、好まくない。
On the other hand, this porosity exceeds 32vo1%, especially 38vo1%.
A material having a large porosity exceeding voffi% is not preferred because it increases the possibility of partial loss or destruction during handling or sintering after compaction.

なお本発明によるものは前記のように非鉄金属で被包さ
れた鉄粉として、一般的には路間−の被覆率のものを採
用するが、場合によっては異った被覆率のものを混合し
て採用することができる。
In addition, as mentioned above, iron powder encapsulated with non-ferrous metal according to the present invention generally employs iron powder with a coverage ratio of 100 to 300 ml, but in some cases, iron powders with different coverage ratios may be mixed. and can be adopted.

例えば銅被覆率10%のものと20%または30%のも
のを混合した原料粉を用いることができ、その他の非鉄
金属被覆の場合も同じである。
For example, a raw material powder with a copper coverage of 10% and one with a copper coverage of 20% or 30% can be used, and the same applies to other non-ferrous metal coatings.

前述のように圧粉成形されたものは一般的に還元性ない
し不活性雰囲気において焼結される。この焼結温度は一
般的に700〜1050℃であるが、青銅粉、黄銅粉、
洋白粉、あるいはマンガン青銅粉、燐青銅粉なども用い
られる場合においてはそれなりに異った焼結温度とする
ことが好ましい。例えば青銅粉も用いられる場合は75
0℃〜900℃、黄銅粉も用いられる場合は800〜9
50℃、洋白粉をも用いられる場合も800〜950℃
、マンガン青銅粉も用いられるときも800〜950℃
、燐青銅粉をも採用するときは750〜950℃で焼結
する。錫粉をも混合された場合には700〜850℃で
焼結し、錫と共に鉛分をも含有した粉体を用いる場合に
は500〜780℃で焼結することにより鉄粉表面にお
ける銅被覆層に対しSn分またはSn分とpb分が適切
に合金化される。
As mentioned above, the compacted material is generally sintered in a reducing or inert atmosphere. This sintering temperature is generally 700 to 1050°C, but bronze powder, brass powder,
When nickel silver powder, manganese bronze powder, phosphor bronze powder, or the like is also used, it is preferable to set the sintering temperature to be different. For example, if bronze powder is also used, 75
0℃~900℃, 800~9 if brass powder is also used
50℃, 800-950℃ if nickel flour is also used
, 800-950℃ when manganese bronze powder is also used.
When phosphor bronze powder is also used, sintering is performed at 750 to 950°C. When tin powder is also mixed, it is sintered at 700 to 850°C, and when powder containing lead as well as tin is used, it is sintered at 500 to 780°C to form a copper coating on the surface of the iron powder. The Sn or Sn and Pb components are suitably alloyed for the layer.

上記した焼結温度の下限に達しない焼結温度は好ましい
焼結構造ないし合金化を得ることができないことになり
、一方その上限を超えたような高温の焼結処理はエネル
ギー的および設備的に不利であると共に折角鉄粉粒子表
面に形成された銅その他の非鉄金属による薄層被覆を流
動化ないし損耗する。なお焼結時間は30分〜60分程
度の範囲で適宜に実施することができる。
A sintering temperature below the lower limit of the sintering temperature mentioned above will result in the inability to obtain the desired sintered structure or alloying, while a sintering process at a high temperature exceeding the upper limit is energetically and equipment-efficient. This is disadvantageous and causes fluidization or loss of the thin coating of copper or other non-ferrous metals formed on the surface of the iron powder particles. Note that the sintering time can be suitably carried out within a range of about 30 minutes to 60 minutes.

前記のような焼結後にサイジング処理して目的の寸法お
よび気孔率をもった製品とするもので、このようなサイ
ジングのための圧縮代は一般的に前記焼結前気孔率の2
0〜35%程度であらて、サイジング後に得られる製品
の気孔率は15〜28%のものとして得られる。15%
未満では軸受の如きとして用いるに当って好ましい含油
量が得られないことになり、一方28%以上では強度的
に劣った製品とな・る。より好ましい製品気孔率として
は18〜24%であって、適切な強度、含油率などを得
しめる。
After sintering as described above, sizing is performed to produce a product with desired dimensions and porosity, and the compression allowance for such sizing is generally 2 times the porosity before sintering.
The porosity of the product obtained after sizing is approximately 0 to 35%, and is 15 to 28%. 15%
If it is less than 28%, it will not be possible to obtain a desirable oil content for use as bearings, while if it is more than 28%, the product will be inferior in strength. A more preferable product porosity is 18 to 24%, which provides appropriate strength, oil content, etc.

前記した青銅は一般的にSnを5〜15%、Cuを85
〜95%含有したものであって、更にZnを適宜に含有
しており、黄銅はCu:60〜80%、Zn:20〜4
0%、Sn:1〜3%程度を含有しているが、場合によ
ってはそのZn量を10%程度、Culを90%程度ま
で変更調整したものを採用することができる。洋白はZ
n : 5.5〜32.5%とNi:8.5〜19.5
%を含有し、残部がCuより成るものであって、このよ
うな洋白粉をそのまま利用してよいが、好ましい洋白粉
としてはそのNi分を前記範囲より更に低下せしめるよ
う調整し、Ni:35、〜8.0%程度としたものであ
る。例えば75%Cu−21%Zn−4%Niの如きが
望ましく、又ZnとNiを用途に応じて調整した洋白粉
なども適宜に準備することができる。
The above-mentioned bronze generally contains 5 to 15% Sn and 85% Cu.
-95%, and further contains Zn appropriately, and brass contains Cu: 60-80%, Zn: 20-4
0% and Sn: about 1 to 3%, but depending on the case, the Zn content may be adjusted to about 10% and the Cu content may be adjusted to about 90%. Nickel silver is Z
n: 5.5-32.5% and Ni: 8.5-19.5
% and the balance is Cu, and such nickel white flour may be used as is, but as a preferred nickel white powder, the Ni content is adjusted to be further lower than the above range, and Ni: 35 , ~8.0%. For example, 75% Cu-21% Zn-4% Ni is preferable, and nickel silver powder with Zn and Ni adjusted according to the purpose can also be prepared as appropriate.

これらの銅系合金以外に鉛、亜鉛、アルミニウム、クロ
ム、マンガンモリブデンその他の非鉄金属またはその合
金更にはP、Sなどを含有したものが鉄粉粒子に対する
被包層または被包鉄粉粒子に対して更に添加される金属
または合金粉に採用されることは前述した如くでそれに
よって得られる焼結金属材の機械的、物理的、化学的、
電気的のような特性を種々に変更調節したものを得しめ
る。
In addition to these copper-based alloys, those containing lead, zinc, aluminum, chromium, manganese molybdenum, other non-ferrous metals, or their alloys, as well as P, S, etc. As mentioned above, it is used as a metal or alloy powder to be added to the mechanical, physical, chemical, etc. of the resulting sintered metal material.
It is possible to obtain variously modified and adjusted electrical and other characteristics.

なお黄銅粉や洋白粉のようにZn分を相当高度に含有し
た合金粉を用いる場合においてはその焼結時におけるZ
n分の気化散逸を防止することが必要であって、このた
めには戻粉中に埋装した焼結も考えられるが、より好ま
しい手法として圧粉成形体を耐熱容器に装入し、施蓋し
て実施する。即ちこのようにすることにより焼結時にお
ける気化Znは蒸気圧が容器内で高められ銅および鉄分
への拡散浸透を良好にし、物理的変動幅の少いものとし
て得ることができる。
In addition, when using an alloy powder containing a considerable amount of Zn, such as brass powder or nickel silver powder, the Z at the time of sintering is
It is necessary to prevent vaporization and dissipation of n minutes, and for this purpose, sintering by embedding it in the returned powder can be considered, but a more preferable method is to charge the compacted compact into a heat-resistant container and perform the process. Cover and carry out. That is, by doing so, the vapor pressure of vaporized Zn during sintering is increased in the container, and diffusion and penetration into copper and iron are improved, resulting in a product with a small range of physical fluctuation.

銅被覆鉄粒子に対し錫粉をも添加して焼結することによ
り銅被覆層は青銅化し、鉄粒子が50%以上も用いられ
たものにおいても全体を青銅粉としたものと同じ軸受性
能が得られ、しかも強度的に優れたものとなる。洋白に
含有されるNiは耐酸化性や耐アルカリ性などにおいて
非常に優れたものであって外部からの腐食に対して不動
態性酸化膜を形成するので耐食性向上に寄与するところ
が大であり、Zn分についても前記した通り蒸気化し鉄
粒子に拡散浸透することによって優れた耐食性をもたら
す。又例えば10%Snの青銅は焼結温度850℃で液
相が出現することからCu −Zn −N i粒子やF
e粒子への拡散浸透が図られると同時に粒子間に存在し
て摺動特性を良好にする。
By adding tin powder to the copper-coated iron particles and sintering them, the copper-coated layer becomes bronze, and even bearings containing more than 50% iron particles can achieve the same bearing performance as bearings made entirely of bronze powder. obtained, and also has excellent strength. Ni contained in nickel silver has excellent oxidation resistance and alkali resistance, and forms a passive oxide film against external corrosion, which greatly contributes to improving corrosion resistance. As mentioned above, the Zn content also vaporizes and diffuses into the iron particles, thereby providing excellent corrosion resistance. In addition, for example, bronze containing 10% Sn exhibits a liquid phase at a sintering temperature of 850°C, so Cu-Zn-Ni particles and F
e It diffuses into the particles and at the same time exists between the particles to improve the sliding characteristics.

固体潤滑材としての黒鉛、二硫化モリブデンなどは粉末
として添加されることは当然であるが、黒鉛のような固
体潤滑材は鉄粉、洋白粉、青銅粉の何れに対しても比重
が小であって、このような黒鉛の如きを単に混合しても
他の原料粉に対し均一状態に分散させることが困難であ
り、しかも搬送荷役中およびプレスホッパーへの入替え
、圧粉成形時などにおいて黒鉛粉の浮上、片寄りなどに
よる偏析が発生する。そこでこのような黒鉛の如き固体
潤滑材に関し比較的粗粉のものを採用し、しかもその微
粉分を分級して除去したものを用いると有効であること
が実験により確認された。即ち上記黒鉛粉末として一般
的に市販されているものが1〜30μm、あるいは1〜
50μmの如きであるのに対し本発明者等が好ましい固
体潤滑材としての黒鉛は10〜150μm、特に20〜
100μmとされ、粗粉であると共に10μmまたは2
0μm以下の微粉分をカットしたものであリ、それによ
って均一分散を容易化し、また荷役その他の取扱時にお
ける偏析発生を可及的に防止し得る。前記のような10
μm未満、あるいは20μm未満のような微粉分は液中
での分級処理で粉塵の発生がなく、しかも適切に分級し
得る。
It is natural that solid lubricants such as graphite and molybdenum disulfide are added in the form of powder, but solid lubricants such as graphite have a low specific gravity compared to iron powder, nickel silver powder, and bronze powder. Therefore, even if such graphite is simply mixed, it is difficult to uniformly disperse it in other raw material powders, and furthermore, graphite may be mixed during transportation, transfer to the press hopper, compaction, etc. Segregation occurs due to floating of powder, unevenness, etc. Therefore, it has been confirmed through experiments that it is effective to use a solid lubricant such as graphite that is a relatively coarse powder, and to use one in which the fine powder has been classified and removed. That is, the graphite powder that is generally commercially available has a diameter of 1 to 30 μm, or 1 to 30 μm.
50 μm, whereas graphite as a solid lubricant preferred by the present inventors has a diameter of 10 to 150 μm, particularly 20 to 150 μm.
100μm, coarse powder and 10μm or 2
The fine particles of 0 μm or less are cut, which facilitates uniform dispersion and prevents segregation as much as possible during cargo handling and other handling. 10 as above
Fine particles less than .mu.m or less than 20 .mu.m can be classified appropriately without generating dust by classification treatment in liquid.

本発明によるものの具体的な製造例について代表的に銅
被覆および銅系粉を用いた場合を説明すると以下の如く
である。
A specific manufacturing example of the product according to the present invention, in which a copper coating and a copper-based powder are typically used, is as follows.

製造例1 粒径が100メツシユ以下の鉄粉に対し銅メッキ処理し
、その処理時間を含む通電条件を選び銅被覆量が20%
、30%および40%とされた3種の銅被覆層、粉をY
#備した。
Production example 1 Copper plating is applied to iron powder with a particle size of 100 mesh or less, and the energization conditions including the processing time are selected so that the amount of copper coating is 20%.
, three copper coating layers of 30% and 40%, powder Y
# Prepared.

然してこれらの銅被覆鉄粉のみを用いたリング状の軸受
体としての圧粉成形体■〜■、このものに1.8%、2
.7%および3.6%のSn粉を添加したものによる圧
粉成形体■〜■、同じくこれらの銅被覆鉄粉に25%の
青銅粉を添加したものによる圧粉成形体■〜■、黄銅粉
25%を添加したものによる圧粉成形体@1〜0、洋白
粉を同じく25%添加したものによる圧粉成形体◎〜[
相]を製造した。
However, these compacted compacts as ring-shaped bearing bodies using only copper-coated iron powder were mixed with 1.8% and 2%.
.. Powder compacts ■~■ made by adding 7% and 3.6% Sn powder, similarly powder compacts ■~■ made by adding 25% bronze powder to these copper-coated iron powders, brass. Powder compacts made by adding 25% of powder @ 1 to 0, compacts made by adding 25% of nickel silver powder ◎~[
phase] was produced.

これらの圧粉体についてはその密度比を70〜75%の
範囲内で夫々3種のものを準備すると共に焼結温度につ
いても150〜250℃の範囲内で50℃毎に異った温
度とし、更にこのようにして得られた焼結体に対するサ
ンジングについては18〜24von%の範囲に2%毎
に変化した気孔率のものとした。
Three types of these green compacts were prepared, each with a density ratio within the range of 70 to 75%, and the sintering temperature was also varied in steps of 50 °C within the range of 150 to 250 °C. Furthermore, the porosity of the sintered body thus obtained was varied in 2% increments within the range of 18 to 24 von%.

得られた本発明製品および比較材の中で、代表的に前記
■の本発明焼結金属体におけるサイジング面を拡大して
示しているのが第3図であって、サイジング処理により
一部の鉄粉粒子において銅被覆層の磨滅した部分がある
としても少くとも90%以上(約98%)は有効な被覆
状態を形成していることが確認される。これに対し従来
からの技術による鉄粉にCu粉を30i%配合して同じ
に圧粉成形、サイジングし、第3図と同様に拡大して示
したものが第4図であり、鉄粉はそのまま露出し、それ
ら鉄粉の間に銅粉が散在したものとして得られる。即ち
鉄粉粒子の露出面積は配合された鉄分の比率に比例した
ものであって、特に銅被覆による微細な凹凸粒子的表面
性状が第3図の場合においては前記第1.2図に明らか
とした如く全般的に認められるのに対し第4図のものに
おいてはこのような状態を求め得ない。第3図に示すよ
うに殆んど全般が銅被覆でしかも第1.2図のような微
細な凹凸構造をもつ表面性状は含油軸受として用いられ
た場合において油分の貯留に寄与するものと推定される
ことは明かである。
Among the obtained products of the present invention and comparative materials, FIG. 3 shows an enlarged view of the sizing surface of the sintered metal body of the present invention described in (1) above, and shows that some parts of the sintered metal body were enlarged due to the sizing treatment. It is confirmed that even if there are parts of the iron powder particles where the copper coating layer is worn away, at least 90% or more (approximately 98%) of the copper coating layer forms an effective coating state. On the other hand, Fig. 4 is an enlarged view similar to Fig. 3 when 30i% of Cu powder is mixed with iron powder using conventional technology, compacted and sized in the same way. The iron powder is exposed as it is, with copper powder scattered between the iron powder. In other words, the exposed area of the iron powder particles is proportional to the proportion of iron added, and in particular, in the case of the fine uneven particle-like surface texture due to the copper coating as shown in Fig. 3, it is clearly seen in Fig. 1.2. While this is generally recognized as such, such a state cannot be found in the case shown in FIG. As shown in Figure 3, almost all of the surface is coated with copper, and the surface texture, which has a fine uneven structure as shown in Figure 1.2, is estimated to contribute to the accumulation of oil when used as an oil-impregnated bearing. It is clear that it will be done.

然してこれらの圧粉成形体■〜■における製造条件と得
られた製品の特性値を要約して示すと、第1表の如くで
あって、摩擦係数および回転試験温度上昇値については
含油せしめた状態で、PV値I Q Q Q kg/c
nI−m/minで回転を40分継続した状態における
測定結果を示すものである。
However, Table 1 summarizes the manufacturing conditions and characteristic values of the obtained products for these compacted compacts ■ to ■. condition, PV value I Q Q Q kg/c
This figure shows the measurement results obtained when rotation was continued for 40 minutes at nI-m/min.

上記した第1表の結果について、更にその若干について
の仔細を示すと、試料隘■〜■のものは次の第2表の如
くである。
Some of the details of the results in Table 1 above are shown in Table 2 below for samples 1 to 2.

又第1表における■〜■のものについての具体的データ
は代表的に次の第3表の如くであるが、第1表における
■〜[相]のものについても同様な具体的データに基い
て要約されたものである。
In addition, the specific data for the items from ■ to ■ in Table 1 are typically as shown in Table 3 below, but the items from ■ to [phase] in Table 1 are also based on the same specific data. This is a summary.

製造例2 製造例1におけると同じ40wt%のCuを被覆した鉄
粉60重量部に、Snを9%含有した青銅粉を40重量
部配合したもの(理論成分値、Fe:36wt%、Cu
 : 60.4wt%、Sn:3.6wt%)を成形密
度比65%、70%および75%とし、焼結温度を80
0℃および850℃として焼結した製品についての測定
結果を要約して示すと次の第4表の如くである。
Production Example 2 40 parts by weight of bronze powder containing 9% Sn was blended with 60 parts by weight of iron powder coated with 40 wt% Cu, the same as in Production Example 1 (theoretical component values, Fe: 36 wt%, Cu
: 60.4wt%, Sn: 3.6wt%) with molding density ratios of 65%, 70% and 75%, and the sintering temperature was 80%.
The measurement results for products sintered at 0°C and 850°C are summarized in Table 4 below.

なお上記じたところは代表的に銅被覆鉄粉についての具
体例を示したものであるが、本発明によるものは完全被
覆状態に鉄粉を非鉄金属で被覆することに本質があり、
それによる特質は鉄粉の耐食性を完全状態に解消し、全
量が銅その他の非鉄金属の場合と同等な耐食性を得しめ
るものであって、このような効果はアルミニウム、亜鉛
、錫などの他の非鉄金属で被覆させた場合においても同
様に得られることが確認されている。又A6.Snの如
きを被覆させたものにおいては焼結温度の低下をCuの
場合以上に得しめ、成形性や取扱時における割れないし
欠損をなからしめる効果、更には軸材に対するなじみ性
などに関してもCu被覆鉄粉を用いた場合に準じた結果
を得しめることができる。
Although the above description is a typical example of copper-coated iron powder, the essence of the present invention is to completely coat iron powder with a non-ferrous metal.
The characteristic of this is that it completely eliminates the corrosion resistance of iron powder and allows the entire amount to achieve corrosion resistance equivalent to that of copper and other non-ferrous metals. It has been confirmed that similar results can be obtained even when coated with a non-ferrous metal. Also A6. Products coated with a material such as Sn can lower the sintering temperature more than Cu, and are also effective in preventing moldability and cracking or chipping during handling, as well as in terms of conformability to the shaft material. Results similar to those obtained using coated iron powder can be obtained.

「発明の効果」 以上説明したような本発明によるときは鉄粉を主体とし
適切な強度を有しており、しかも耐食性や耐摩耗性に優
れ、軸材に対するなじみ性が良好であると共に摩擦係数
が小で、又熱伝導性などにおいて好ましい特性をもった
軸受材およびその成形性や焼結温度が低(比較的平易で
欠損などをみることのない安定した製造法を提供し得る
ものであって、工業的にその効果の大きい発明である。
"Effects of the Invention" As explained above, the present invention is made mainly of iron powder and has appropriate strength, has excellent corrosion resistance and wear resistance, has good conformability to the shaft material, and has a low friction coefficient. Bearing materials with low dimensional stability and favorable characteristics such as thermal conductivity, as well as their formability and low sintering temperature (relatively simple and stable manufacturing method that does not show defects etc.) can be provided. This is an invention with great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
と第2図は本発明において用いる非鉄金属被覆鉄粉の各
1例についての切断面を顕微鏡写真として拡大したもの
の断面図、第3図は本発明による焼結合金軸受について
同じく拡大して示した平面図、第4図は鉄分と銅分の比
率を第3図のものと同じとした従来の焼結合金軸受の第
3図と同様な拡大断面図である。 然してこれらの図面において、1は鉄粉粒子、2は銅粉
粒子、2aは非鉄金属被覆、3は非鉄金属微細粉を示す
ものである。 第 J 圓 第 4 圓 手続ネ甫正書印発) 平成元年5月29日 特許庁長官 吉 1)文 毅 殿 1、事件の表示 昭和63年特許願第48633号 2、発明の名称 含油軸受用焼結材およびその製造法 3、補正をする者 事件との関係  特許出願人 4、代理人 補正の内容 ■1本願明細書中東27頁16〜17行目中に「Snを
5〜15%、Cuを85〜95%」とあるのを’Snを
5〜50%、Cuを50〜95%」と訂正する。 2、同34頁「第1表」を別紙のように訂正する。
The drawings show the technical contents of the present invention, and FIGS. 1 and 2 are cross-sectional views of enlarged micrographs of cut surfaces of each example of nonferrous metal-coated iron powder used in the present invention, FIG. 3 is an enlarged plan view of the sintered alloy bearing according to the present invention, and FIG. It is an enlarged sectional view similar to the figure. In these drawings, 1 indicates iron powder particles, 2 indicates copper powder particles, 2a indicates non-ferrous metal coating, and 3 indicates non-ferrous metal fine powder. May 29, 1989 Director General of the Japan Patent Office Yoshi 1) Takeshi Moon 1, Indication of the case 1986 Patent Application No. 48633 2, Name of the invention Oil-impregnated bearing Sintered material for use and its manufacturing method 3. Relationship with the case of the person making the amendment. Patent applicant 4. Contents of the amendment by the agent. , Cu: 85-95%'' is corrected to 'Sn: 5-50%, Cu: 50-95%''. 2. ``Table 1'' on page 34 is corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 1、鉄が45〜82wt%と非鉄金属より成り、前記鉄
が粉粒状をなし、しかも該粉粒状鉄の実質的全周面が上
記した非鉄金属により被覆された状態で相互に焼結結合
せしめられ、その気孔率が15〜28容量%とされたこ
とを特徴とする含油軸受用焼結材。 2、鉄が45〜82wt%、黒鉛または二硫化モリブデ
ンのような固体潤滑材粉末の1種または2種以上が0.
3〜4.5wt%で残部が非鉄金属より成り、気孔率が
15〜28容量%でリング状に成形された請求項1に記
載の含油軸受用焼結材。 3、鉄粉を被覆する非鉄金属が銅または銅系合金である
請求項1または2の何れか1つに記載の含油軸受用焼結
材。 4、銅が18〜49.5wt%、錫が0.5〜6wt%
と45〜82wt%の鉄よりなり、しかも前記鉄が粉粒
状をなしていて、該粉粒状鉄の実質的全周面が前記銅お
よび錫により被覆された状態で焼結せしめられ、気孔率
が15〜28容量%とされたことを特徴とする含油軸受
用焼結材。 5、銅が6〜40wt%で、亜鉛が0.8〜14.8w
t%と50〜82wt%の鉄よりなり、しかも前記鉄が
粉粒状をなしていて、該粉粒状鉄の実質的全周面が前記
銅および亜鉛により被覆された状態で焼結せしめられ、
気孔率が15〜28容量%とされたことを特徴とする含
油軸受用焼結材。 6、銅が6〜37.5wt%、亜鉛が0.8〜14.8
wt%、ニッケルが0.8〜9.0wt%と45〜82
wt%の鉄よりなり、しかも前記鉄が粉粒状をなしてい
て、該粉粒状鉄の実質的全周面が前記銅、亜鉛およびニ
ッケルにより被覆された状態で焼結せしめられ、気孔率
が15〜28容量%とされたことを特徴とする含油軸受
用焼結材。 7、鉄粉に重量比で非鉄金属を18〜50wt%被覆し
た粉体を圧粉成形してから焼結し、サイジングすること
を特徴とする含油軸受用焼結材の製造法。 8、鉄粉に重量比で非鉄金属を18〜50wt%被覆し
た粉粒体100重量部に更に非鉄金属粉11〜240重
量部を添加した原料粉を圧粉成形してから焼結し、サイ
ジングすることを特徴とする含油軸受用焼結材の製造法
。 9、黒鉛、二硫化モリブデン、鉛のような固体潤滑材粉
末の1種または2種以上を重量比で0.3〜4.5%添
加した原料粉を用いる請求項7または8の何れか1つに
記載の含油軸受用焼結材の製造法。 10、鉄粉に被覆される非鉄金属が銀、銅、錫、鉛、亜
鉛、ニッケル、アルミニウム、コバルト、クロム、モリ
ブデン、チタン、マンガン、タングステンの何れかおよ
びそれらの2種以上より成る合金ならびに該合金にリン
や硫黄などをも含有したものによる電気メッキ、溶融メ
ッキ、無電解メッキ、溶射、ドライプレーティングの何
れかである請求項7〜9の何れか1つに記載の含油軸受
用焼結材の製造法。 11、鉄粉に被覆される非鉄金属が銅と亜鉛を主体とし
た合金としての黄銅である請求項10に記載の含油軸受
用焼結材の製造法。 12、鉄粉に被覆される非鉄金属が銅と錫を主体とした
合金としての青銅である請求項10に記載の含油軸受用
焼結材の製造法。 13、鉄粉に被覆される非鉄金属が銅とニッケル亜鉛を
主体とした合金としての洋白である請求項10に記載の
含油軸受用焼結材の製造法。 14、非鉄金属を被覆した鉄粉に対し更に添加される非
鉄金属粉がAg、Cu、Sn、Pb、Zn、Ni、Al
、Cr、Mo、Ti、Mn、W、Sb、As、Be、B
i、B、Inの何れか、またはそれらの合金またはそれ
らの酸化物若しくはP.Sをも含有した粉末である請求
項7から13の何れか1つに記載の含油軸受用焼結材の
製造法。 15、非鉄金属を被覆した鉄粉に対し更に添加される非
鉄金属粉が銅と亜鉛を主体とした合金としての黄銅粉で
ある請求項14に記載の含油軸受用焼結材の製造法。 16、非鉄金属を被覆した鉄粉に対し更に添加される非
鉄金属粉が銅と錫を主体とした合金としての青銅粉であ
る請求項14に記載の含油軸受用焼結材の製造法。 17、非鉄金属を被覆した鉄粉に対し更に添加される非
鉄金属粉が銅とニッケル亜鉛を主体とした合金としての
洋白粉である請求項14に記載の含油軸受用焼結材の製
造法。 18、Niを3.5〜8.0%に低下した洋白粉を用い
る請求項17に記載の含油軸受用焼結材の製造法。 19、非鉄金属を被覆した鉄粉に対し非鉄金属酸化物粉
末を更に添加し、還元性雰囲気で前記非鉄金属酸化物粉
末を還元し焼結する請求項7に記載の含油軸受用焼結材
の製造法。20、非鉄金属酸化物が酸化鉛である請求項
19に記載の含油軸受用焼結材の製造法。
[Scope of Claims] 1. Iron is composed of 45 to 82 wt% of non-ferrous metal, the iron is in the form of powder and granules, and substantially the entire circumferential surface of the granular iron is coated with the above-mentioned non-ferrous metal. A sintered material for an oil-impregnated bearing, characterized in that the sintered material is sintered and bonded to each other and has a porosity of 15 to 28% by volume. 2. 45 to 82 wt% of iron, 0.0% of one or more solid lubricant powders such as graphite or molybdenum disulfide.
2. The sintered material for oil-impregnated bearings according to claim 1, wherein the sintered material is formed into a ring shape with a porosity of 15 to 28% by volume, with the remainder being non-ferrous metal. 3. The sintered material for oil-impregnated bearings according to claim 1 or 2, wherein the nonferrous metal covering the iron powder is copper or a copper-based alloy. 4. Copper 18-49.5wt%, tin 0.5-6wt%
and 45 to 82 wt% of iron, and the iron is in the form of powder and granules, and the granular iron is sintered with substantially the entire circumferential surface covered with the copper and tin, and the porosity is reduced. A sintered material for oil-impregnated bearings, characterized in that the oil content is 15 to 28% by volume. 5. Copper is 6-40wt%, zinc is 0.8-14.8w
t% and 50 to 82 wt% iron, and the iron is in the form of powder and granules, and is sintered with substantially the entire circumferential surface of the granular iron coated with the copper and zinc,
A sintered material for oil-impregnated bearings, characterized in that the porosity is 15 to 28% by volume. 6. Copper: 6-37.5 wt%, zinc: 0.8-14.8
wt%, nickel is 0.8 to 9.0 wt% and 45 to 82
wt% of iron, and the iron is in the form of powder particles, and is sintered with substantially the entire circumferential surface of the powder iron coated with the copper, zinc, and nickel, and the porosity is 15. A sintered material for oil-impregnated bearings, characterized in that the oil-impregnated sintered material has a content of ~28% by volume. 7. A method for producing a sintered material for oil-impregnated bearings, which comprises compacting a powder obtained by coating iron powder with 18 to 50 wt % of a non-ferrous metal, followed by sintering and sizing. 8. Raw material powder made by adding 11 to 240 parts by weight of non-ferrous metal powder to 100 parts by weight of granules in which iron powder is coated with 18 to 50 wt% of non-ferrous metal by weight is compacted, then sintered, and sized. A method for producing a sintered material for oil-impregnated bearings, characterized by: 9. Either one of claims 7 or 8, wherein raw material powder is used, to which 0.3 to 4.5% by weight of one or more solid lubricant powders such as graphite, molybdenum disulfide, and lead are added. A method for producing a sintered material for oil-impregnated bearings as described in . 10. The non-ferrous metal coated on the iron powder is silver, copper, tin, lead, zinc, nickel, aluminum, cobalt, chromium, molybdenum, titanium, manganese, tungsten, and alloys consisting of two or more of these. The sintered material for oil-impregnated bearings according to any one of claims 7 to 9, which is any one of electroplating, hot-dip plating, electroless plating, thermal spraying, and dry plating using an alloy containing phosphorus or sulfur. manufacturing method. 11. The method for producing a sintered material for oil-impregnated bearings according to claim 10, wherein the non-ferrous metal coated on the iron powder is brass as an alloy mainly composed of copper and zinc. 12. The method for producing a sintered material for oil-impregnated bearings according to claim 10, wherein the non-ferrous metal coated on the iron powder is bronze as an alloy mainly composed of copper and tin. 13. The method for producing a sintered material for oil-impregnated bearings according to claim 10, wherein the non-ferrous metal coated on the iron powder is nickel silver as an alloy mainly composed of copper and nickel-zinc. 14. The non-ferrous metal powder added to the iron powder coated with the non-ferrous metal is Ag, Cu, Sn, Pb, Zn, Ni, Al.
, Cr, Mo, Ti, Mn, W, Sb, As, Be, B
i, B, In, their alloys, their oxides, or P. The method for producing a sintered material for oil-impregnated bearings according to any one of claims 7 to 13, wherein the powder also contains S. 15. The method for producing a sintered material for oil-impregnated bearings according to claim 14, wherein the non-ferrous metal powder further added to the iron powder coating the non-ferrous metal is brass powder as an alloy mainly composed of copper and zinc. 16. The method for producing a sintered material for oil-impregnated bearings according to claim 14, wherein the non-ferrous metal powder further added to the iron powder coating the non-ferrous metal is bronze powder as an alloy mainly composed of copper and tin. 17. The method for producing a sintered material for oil-impregnated bearings according to claim 14, wherein the non-ferrous metal powder further added to the iron powder coating the non-ferrous metal is nickel silver powder as an alloy mainly composed of copper and nickel-zinc. 18. The method for producing a sintered material for oil-impregnated bearings according to claim 17, wherein nickel silver powder with Ni content reduced to 3.5 to 8.0% is used. 19. The sintered material for oil-impregnated bearings according to claim 7, wherein a non-ferrous metal oxide powder is further added to the iron powder coated with the non-ferrous metal, and the non-ferrous metal oxide powder is reduced and sintered in a reducing atmosphere. Manufacturing method. 20. The method for producing a sintered material for oil-impregnated bearings according to claim 19, wherein the nonferrous metal oxide is lead oxide.
JP63048633A 1988-03-03 1988-03-03 Sintered material for oil-impregnated bearing and method for producing the same Expired - Lifetime JP2652866B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63048633A JP2652866B2 (en) 1988-03-03 1988-03-03 Sintered material for oil-impregnated bearing and method for producing the same
GB8904487A GB2216545B (en) 1988-03-03 1989-02-28 Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy
HK768/91A HK76891A (en) 1988-03-03 1991-10-03 Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048633A JP2652866B2 (en) 1988-03-03 1988-03-03 Sintered material for oil-impregnated bearing and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01225749A true JPH01225749A (en) 1989-09-08
JP2652866B2 JP2652866B2 (en) 1997-09-10

Family

ID=12808779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048633A Expired - Lifetime JP2652866B2 (en) 1988-03-03 1988-03-03 Sintered material for oil-impregnated bearing and method for producing the same

Country Status (3)

Country Link
JP (1) JP2652866B2 (en)
GB (1) GB2216545B (en)
HK (1) HK76891A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150330A (en) * 1989-11-07 1991-06-26 Sankyo Seiki Mfg Co Ltd Manufacture of bearing
JP2002173704A (en) * 2000-12-01 2002-06-21 Nikko Materials Co Ltd Composite metal powder for powder metallurgy, sintered body obtained by sintering the powder and bearing consisting of the sintered body
KR20020073647A (en) * 2001-03-15 2002-09-28 이우천 Wear-resistant sliding bearing for heavy load
JP2004036745A (en) * 2002-07-03 2004-02-05 Pooraito Kk Sintered oil-bearing gear
WO2004073909A1 (en) * 2003-02-21 2004-09-02 Miyata Co., Ltd. Porous material and method for producing porous material
JP2012241728A (en) * 2011-05-16 2012-12-10 Ntn Corp Sintered bearing and fluid dynamic pressure bearing device including the same
WO2014065316A1 (en) * 2012-10-24 2014-05-01 Ntn株式会社 Sintered bearing
JP2014211227A (en) * 2013-04-22 2014-11-13 日立化成株式会社 Oil-impregnated sintered bearing and method of manufacturing the same
JP2015218344A (en) * 2014-05-14 2015-12-07 大同メタル工業株式会社 Sliding member
JP2016017195A (en) * 2014-07-07 2016-02-01 大同メタル工業株式会社 Sliding member
WO2018181706A1 (en) * 2017-03-30 2018-10-04 Ntn株式会社 Sintered bearing and method for manufacturing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573375B2 (en) * 1989-08-29 1997-01-22 日立粉末冶金株式会社 Manufacturing method of sintered parts
US5453293A (en) * 1991-07-17 1995-09-26 Beane; Alan F. Methods of manufacturing coated particles having desired values of intrinsic properties and methods of applying the coated particles to objects
US6042781A (en) * 1991-12-04 2000-03-28 Materials Innovation, Inc. Ambient temperature method for increasing the green strength of parts
US5318746A (en) * 1991-12-04 1994-06-07 The United States Of America As Represented By The Secretary Of Commerce Process for forming alloys in situ in absence of liquid-phase sintering
US6001289A (en) * 1991-12-04 1999-12-14 Materials Innovation, Inc. Acid assisted cold welding and intermetallic formation
EP0579365A3 (en) * 1992-05-27 1994-06-15 David Peter Yaged Method of improving wear-resistance characteristics of a porous metal machine part
JP3537286B2 (en) * 1997-03-13 2004-06-14 株式会社三協精機製作所 Sintered oil-impregnated bearing and motor using the same
US6663344B2 (en) * 2001-03-28 2003-12-16 Mitsubishi Materials Corporation Copper-based sintered alloy bearing and motor fuel pump
MX2009007010A (en) 2006-12-29 2009-07-09 Hoeganaes Ab Powder, method of manufacturing a component and component.
ES2356222B1 (en) * 2011-02-15 2012-05-31 Sinterizados Y Metalurgia De Solsona, S.A. PROCEDURE FOR THE MANUFACTURE OF SINTERED SLIDING BEARINGS.
CN102689013A (en) * 2012-06-06 2012-09-26 海安县鹰球集团有限公司 High-toughness oil-retaining bearing for iron-base power metallurgy and manufacturing method thereof
CN103521757B (en) * 2013-10-22 2015-10-28 东南大学 Containing powder metallurgy iron copper base oil-containing antifriction material and the preparation method of rare earth oxide
DE102020202738A1 (en) * 2020-03-04 2021-09-09 Mahle International Gmbh Plain bearing, method for producing a plain bearing, internal combustion engine with plain bearing and electrical machine with plain bearing
CN115095604A (en) * 2022-07-15 2022-09-23 江苏徐工工程机械研究院有限公司 A kind of powder metallurgy oil-impregnated bearing and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129486A (en) * 1974-09-02 1976-03-12 Otsuka Pharma Co Ltd * 33 arukiruamino 22 hidorokishi * purohokishi 3 44 jihidorokarubosuchirirujudotai no seizoho
JPS59182944A (en) * 1983-04-01 1984-10-17 Tatsuro Kuratomi Hard carbide composite sintered high speed steel and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129486A (en) * 1974-09-02 1976-03-12 Otsuka Pharma Co Ltd * 33 arukiruamino 22 hidorokishi * purohokishi 3 44 jihidorokarubosuchirirujudotai no seizoho
JPS59182944A (en) * 1983-04-01 1984-10-17 Tatsuro Kuratomi Hard carbide composite sintered high speed steel and its production

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150330A (en) * 1989-11-07 1991-06-26 Sankyo Seiki Mfg Co Ltd Manufacture of bearing
JP2002173704A (en) * 2000-12-01 2002-06-21 Nikko Materials Co Ltd Composite metal powder for powder metallurgy, sintered body obtained by sintering the powder and bearing consisting of the sintered body
JP4703843B2 (en) * 2000-12-01 2011-06-15 Jx日鉱日石金属株式会社 Composite metal powder for powder metallurgy, sintered body obtained by sintering the powder, and bearing comprising the sintered body
KR20020073647A (en) * 2001-03-15 2002-09-28 이우천 Wear-resistant sliding bearing for heavy load
JP2004036745A (en) * 2002-07-03 2004-02-05 Pooraito Kk Sintered oil-bearing gear
WO2004073909A1 (en) * 2003-02-21 2004-09-02 Miyata Co., Ltd. Porous material and method for producing porous material
JP2012241728A (en) * 2011-05-16 2012-12-10 Ntn Corp Sintered bearing and fluid dynamic pressure bearing device including the same
WO2014065316A1 (en) * 2012-10-24 2014-05-01 Ntn株式会社 Sintered bearing
US10590990B2 (en) 2012-10-24 2020-03-17 Ntn Corporation Sintered bearing
US11248653B2 (en) 2012-10-24 2022-02-15 Ntn Corporation Sintered bearing
JP2014211227A (en) * 2013-04-22 2014-11-13 日立化成株式会社 Oil-impregnated sintered bearing and method of manufacturing the same
JP2015218344A (en) * 2014-05-14 2015-12-07 大同メタル工業株式会社 Sliding member
JP2016017195A (en) * 2014-07-07 2016-02-01 大同メタル工業株式会社 Sliding member
WO2018181706A1 (en) * 2017-03-30 2018-10-04 Ntn株式会社 Sintered bearing and method for manufacturing same

Also Published As

Publication number Publication date
GB2216545B (en) 1991-05-01
GB8904487D0 (en) 1989-04-12
GB2216545A (en) 1989-10-11
JP2652866B2 (en) 1997-09-10
HK76891A (en) 1991-10-11

Similar Documents

Publication Publication Date Title
JPH01225749A (en) Sintered material for oilless bearing and production thereof
JP3859344B2 (en) Sliding material, sliding member and method of manufacturing the sliding member
EP0872296B1 (en) Self-lubricating sintered sliding material and method for manufacturing the same
US4406857A (en) Alloy for antifriction bearing layer and process of forming an antifriction layer on steel supporting strip
JPH0270032A (en) Graphite-containing lead bronze double layer sliding material and its manufacture
JP2918292B2 (en) Sliding material
GB2264336A (en) Bearings.
GB2333779A (en) Composite metal powder for sintered bearing, and sintered oil-retaining bearing
JPH01275735A (en) Sintered alloy material and its manufacture
JPH079046B2 (en) Copper-based sintered body
JPH01255631A (en) Sintered alloy material and its manufacture
JPH01136944A (en) Sintered metallic material
GB2067221A (en) Sintered Alloys
JPH01230740A (en) Sintered alloy material for oiliness bearing and its manufacture
JPS6253580B2 (en)
JPH05240252A (en) Heavy-duty multilayered lead bronze bearing
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
JP3214862B2 (en) Self-lubricating sliding material and lubrication-free bearing using the same
JPS63282221A (en) Manufacture of composite sintered material
JP2904355B2 (en) Manufacturing method of sintered sliding material
JPH01283346A (en) Sintered alloy material and its production
JPH045745B2 (en)
JP2631146B2 (en) Sintered metal body and method for producing the same
JPS6346138B2 (en)
JPH01283345A (en) Sintered alloy material and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term