[go: up one dir, main page]

JPS60236004A - Measuring method of line width - Google Patents

Measuring method of line width

Info

Publication number
JPS60236004A
JPS60236004A JP9214384A JP9214384A JPS60236004A JP S60236004 A JPS60236004 A JP S60236004A JP 9214384 A JP9214384 A JP 9214384A JP 9214384 A JP9214384 A JP 9214384A JP S60236004 A JPS60236004 A JP S60236004A
Authority
JP
Japan
Prior art keywords
light
film
prism
refractive index
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9214384A
Other languages
Japanese (ja)
Inventor
Shinya Hasegawa
晋也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9214384A priority Critical patent/JPS60236004A/en
Publication of JPS60236004A publication Critical patent/JPS60236004A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To determine exactly the width of a working line by emitting the spectra of the light made incident on the light transmittable material film on a substrate through a prism from another prism, determining the refractive index and thickness of the film and making the similar measurement after working. CONSTITUTION:Light 5 is made incident via a prism 4 on the thin film 1 consisting of the light transmittable material coated on the substrate 2 and the light separated to the spectra is emitted from the prism 6, by which the thickness and refractive index of the film are determined. The width of the film 1 is worked to a desired shape and thereafter the refractive index is determined by making the measurement similar to the above-mentioned measurement. The line width of the thin film is determined from the change in the refractive index. The line width of the pattern is thus exactly determined simply by measuring the exit angle of the light projected to the pattern before and after working.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細加工によシ加工されたパターンの線巾測定
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the line width of a pattern processed by microfabrication.

(従来技術とその問題点) 従来、微細加工によシ得られ之ノターンの線巾を測定す
るKは、ノ々ターン上方から集光した光を照射し、・!
ターン各部からの光の反射率を6111定することによ
り行なわれてきた。しかし、光の反射率ハノ!ター、ン
・エツジにおいて急峻には変化せず、このために得られ
た・9ターン線[11の測定値が嵐の・ぐターン線巾と
は等しくならないという欠点があったO (発明の目的) 本発明の目的は、上記のような欠点を除去し九線巾測定
方法を提供することにある。
(Prior art and its problems) Conventionally, K, which measures the line width of the notaturn obtained by microfabrication, irradiates condensed light from above the notaturn, and...!
This has been done by determining the reflectance of light from each part of the turn. However, the reflectance of light is so low! There was a drawback that the measured value of the 9-turn line [11] obtained for this reason was not equal to the 9-turn line width of the storm. ) An object of the present invention is to eliminate the above-mentioned drawbacks and provide a nine-line width measuring method.

(発明の構成) すなわち、本発明は基板上の町透光性材質膜に、プリズ
ムを通して導波せしめた光を線膜からプリズムを通して
出射せしめ、波長の異なる光の出射角の測定値から線膜
の屈折率と膜厚とをめ、これらの値と、線膜を所望の形
状に加工した後に、加工された線膜にプリズムを通して
光を4波せしめ、次に、線膜からプリズムを通して出射
せ[7めた光の出射角の測定値とを演算して加工された
膜の加工線巾をめることを特徴とする線[1]測定方法
である。
(Structure of the Invention) That is, the present invention allows light guided through a prism to a light-transmitting material film on a substrate to be emitted from the line film through the prism, and the line film is determined based on the measured values of the emission angles of the light having different wavelengths. After determining the refractive index and film thickness of the film and processing these values into the desired shape, the processed wire film is passed through a prism to produce four waves of light, and then the light is emitted from the film through the prism. [7] Line [1] measurement method is characterized in that the processing line width of the processed film is determined by calculating the measured value of the emission angle of the light.

(本発明の作用・原jlり 以下に、本発明の原理を図面を参照しながら説明する。(Effects of the present invention/original details) The principle of the present invention will be explained below with reference to the drawings.

第1図に示すように、屈折率n4、厚さtの膜1が屈折
率n2の物質2と屈折率n。の物質(例えば空気・液体
)3との間にはさまれている場合において、まず膜1上
に密着して置かれた屈折率n′Pのプリズム4を通して
波長λ1の光5と膜1中に導波させる。
As shown in FIG. 1, a film 1 having a refractive index n4 and a thickness t is mixed with a material 2 having a refractive index n2 and a refractive index n. When the light 5 of the wavelength λ1 and the light 5 in the film 1 are sandwiched between the film 1 and the film 1, the light 5 with the wavelength to guide the wave.

次に、膜l上に置かれた屈折率n、のプリズム6をdし
て九を出射させ、プリズム6からの光の出射角θ11を
測定する。なお、np+npはともにn。。
Next, the prism 6 with a refractive index of n placed on the film l is d to emit light, and the emission angle θ11 of the light from the prism 6 is measured. Note that np+np are both n. .

n2より大きいことが必要である。この時TE波につい
て各変数間には式(1)から(4)の関係が成り立つ。
It is necessary that it be larger than n2. At this time, the relationships of equations (1) to (4) hold between each variable regarding the TE wave.

β1 ” k I n p 8tnθ、1 ・・・・・
(2)k、=2π/λ1 ・・・・・・(3)n o/
 n p ” sin (θ2.−α)/s石θ、 、
 ==−(41但し、αはプリズムの尤出射I用と1リ
ズムが横1と接する面とのなす角度。
β1 ” k I n p 8tnθ, 1...
(2) k, = 2π/λ1 ...... (3) no/
n p ” sin (θ2.-α)/s stone θ, ,
==-(41 However, α is the angle between the potential output I of the prism and the surface where 1 rhythm touches horizontal 1.

また、TM波についてtま、式(2)z島ら(5)の開
法が成り立つ。
Furthermore, for TM waves, the equations (2), z, and (5) hold true.

次に、プリズム4を通して波長λ2の光5を膜1中に導
波させ、プリズム6を通して光を出射させ光出射角θ1
2を測定する。
Next, the light 5 with a wavelength λ2 is guided into the film 1 through the prism 4, and the light is emitted through the prism 6 at a light exit angle θ1.
Measure 2.

この時、TE波について、各変数間にけ武(6)から(
9)の関係が成り立つ。
At this time, for the TE wave, between each variable, Take (6) to (
9) holds true.

(以下ソ) (O) β2−に2np sinθP 2 ・−・(7)k2−
2π/λ2 ・・・・・・(8)n o/ n p ”
 s石(θP2−α)/5IrIθI2 ・曲−(9)
また、TM波については式(7)から00の関係が成り
立つ。
(S) (O) 2np sin θP 2 on β2- (7) k2-
2π/λ2 ・・・・・・(8) no/n p”
s stone (θP2-α)/5IrIθI2 ・Song-(9)
Further, regarding the TM wave, the relationship 00 holds from equation (7).

従って異なる波長の光を用いて、TE波又FiTM波に
ついて出射角θ14.θ12の測定を折々い、式(1)
から(4)又は式(2)から(5)、及び式(6)から
(9)又は式(7)から(1(参を解くことにより、膜
1の屈折率n、及び(5) (4) 厚さtをめる。
Therefore, using light of different wavelengths, the emission angle θ14. After measuring θ12 from time to time, formula (1)
By solving (4) or equations (2) to (5), and equations (6) to (9) or equations (7) to (1), the refractive index n of the film 1, and (5) ( 4) Add thickness t.

次に、第2図に7ドしたように、線11」wに加工され
た膜1にプリズム4を通して光5を導波さVると、プリ
ズム6を通して元が出射さrしる。このプリズム6から
の光出射角θ1を測定する。この時、TE波について、
式0υから0搬が成り立つ。
Next, as shown in FIG. 2, when the light 5 is guided through the prism 4 through the film 1 processed into a line 11'', the light 5 is emitted through the prism 6. The light emission angle θ1 from this prism 6 is measured. At this time, regarding the TE wave,
From the formula 0υ, 0 carrier holds true.

また、TM波については式03から01Gが成り31つ
Also, regarding TM waves, 01G is obtained from equation 03, and there are 31.

(6) 1道って、式Uから04又は式01からθQを解くこと
により・Pターンの1飯巾Wをめることができる。
(6) By solving θQ from equation U or equation 01, one step width W of P turn can be calculated.

(実施例) 以下、本発明の実施例金示す。(Example) Examples of the present invention are shown below.

屈折率1,46の石英ガラス上にポリメチルメタアクリ
ル酸(PMMA )を塗布し、空気(屈折率1.000
)中より、重クラウンガラスプリズム全通して波長63
28Xのヘリウムネオンレーザ光?!−PMMA中に導
波させ、屈折率1.587の重クラウンがラスプリズム
(α−45°)から出光する光の出射角をが11定した
ところ、TE波の出射角は4o、t3+tであった。
Polymethyl methacrylic acid (PMMA) is coated on quartz glass with a refractive index of 1.46, and air (refractive index 1.000
) Wavelength 63 throughout the heavy crown glass prism from inside
28X helium neon laser light? ! - When the light was guided in PMMA and the double crown with a refractive index of 1.587 set the output angle of the light emitted from the Las prism (α-45°) to 11, the output angle of the TE wave was 4o, t3+t. Ta.

また波長11523Xのヘリウムネオンレーデ光全同様
に導波石せ、TEθにの出射角を61す定し7たところ
38.42度であった。従って、式(1)から(4)及
び式(6)から(9)よりPMhllAの膜厚は1.6
μm、屈折率は1.49となる。次に、PMMA ’i
 1j4Jc 、9ターンに加工後1重りラウンガラス
プリズム金通して波長6328Xのヘリウムネオンレー
デ光t−))MMA中に導波δせ、重クラウンガラスプ
リズムから出光した光の出射角を測定したところ、Ta
1c波の出射角は25.37度であった。従って、弐〇
〇から04より請求めることによって、加工後のPMM
A ノeターンの線11tはO5μmであることが判っ
た。
In addition, as with all helium neon LED light with a wavelength of 11,523X, a waveguide was set, and the output angle at TEθ was set at 61 degrees, which was 38.42 degrees. Therefore, from equations (1) to (4) and equations (6) to (9), the film thickness of PMhlA is 1.6
μm, and the refractive index is 1.49. Next, PMMA'i
1j4Jc, after being processed into 9 turns, helium neon led light with a wavelength of 6328X was passed through a single weight round glass prism (t-)) into MMA, and the output angle of the light emitted from the heavy crown glass prism was measured. , Ta
The emission angle of the 1c wave was 25.37 degrees. Therefore, by requesting from 200 to 04, PMM after processing
It was found that the line 11t of the A-e turn was O5 μm.

(発明の効果) したがって、本発明によれば、プリズム上用いて加工前
後の・9ターンに投影した光の出射角を測定するのみで
、・母ターンの線巾を正確にめることができる効果金有
するものである。
(Effects of the Invention) Therefore, according to the present invention, the line width of the main turn can be determined accurately by simply measuring the emission angle of the light projected onto the prism in the nine turns before and after processing. It has a benefit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は膜の屈折率及び厚さ全測定する方法を表わす模
式図、第2図は膜の加工後の線巾を測定する方法ヲ表わ
す模式図である。 l・・・膜、2・・・屈折率nsの物質、3・・・屈折
率IJ1の物質、4・・・入射プリズム、5・・・光、
6・・・出射プリズム。 (9)
FIG. 1 is a schematic diagram showing a method for measuring the total refractive index and thickness of a film, and FIG. 2 is a schematic diagram showing a method for measuring the line width after processing of the film. l... Film, 2... Substance with refractive index ns, 3... Substance with refractive index IJ1, 4... Incident prism, 5... Light,
6... Output prism. (9)

Claims (1)

【特許請求の範囲】[Claims] (1)基板上の可透光性材w模に、プリズムを通して導
波せしめ次光を線膜からプリズムを通して出射せしめ、
波長の異なる光の出射角の測定値から該膜の屈折率と膜
厚とをめ、これらの値と、線膜を所望の形状に加工し友
後、加工された線膜にプリズムを通して光を導波せしめ
、次に、線膜からプリズムを通して出射せしめた光の出
射角の測定値とを演算して加工された膜の加工線巾をめ
ること全特徴とする線中測定方法。
(1) Guide the light through a prism through a translucent material on the substrate, and emit the light from the line film through the prism,
Determine the refractive index and film thickness of the film from the measured values of the emission angle of light of different wavelengths, process these values and the wire film into the desired shape, and then pass the light through a prism through the processed wire film. A method for measuring lines in a line, which is characterized in that the processed line width of the processed film is calculated by guiding the wave, and then calculating the measured value of the emission angle of the light emitted from the line film through a prism.
JP9214384A 1984-05-09 1984-05-09 Measuring method of line width Pending JPS60236004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9214384A JPS60236004A (en) 1984-05-09 1984-05-09 Measuring method of line width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9214384A JPS60236004A (en) 1984-05-09 1984-05-09 Measuring method of line width

Publications (1)

Publication Number Publication Date
JPS60236004A true JPS60236004A (en) 1985-11-22

Family

ID=14046213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9214384A Pending JPS60236004A (en) 1984-05-09 1984-05-09 Measuring method of line width

Country Status (1)

Country Link
JP (1) JPS60236004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125740A (en) * 1989-03-17 1992-06-30 Hitachi, Ltd. Method and apparatus for measuring optical constants of a thin film as well as method and apparatus for fabricating a thin film utilizing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125740A (en) * 1989-03-17 1992-06-30 Hitachi, Ltd. Method and apparatus for measuring optical constants of a thin film as well as method and apparatus for fabricating a thin film utilizing same

Similar Documents

Publication Publication Date Title
JP3852557B2 (en) Film thickness measuring method and film thickness sensor using the method
JPS60236004A (en) Measuring method of line width
CN2911757Y (en) Intelligent optical membrane full automatic monitoring system
JP2003042722A (en) Film-thickness measuring method
US8879065B1 (en) Systems and methods for localized surface plasmon resonance sensing
JP2935412B2 (en) Method and apparatus for measuring thickness of thin film and method for manufacturing optical filter
Lerondel et al. Quantitative analysis of the light scattering effect on porous silicon optical measurements
JPS6190185A (en) Holographic exposure method
JPS60236006A (en) Measuring method of line width
JPS6435306A (en) Incidence angle determining method for refractive index and film thickness measurement
US20070014017A1 (en) Method for generating electromagnetic field distributions
JPS614905A (en) Measuring method of line width
JP2003279324A (en) Film thickness measuring method and device thereof
JPS6064203A (en) Wire-width measuring method
JPS5918647B2 (en) How do you know how to use light and light?
CN104536081B (en) One kind makes the weak reflectivity optical fiber optical grating array device and method of High-precision multi-wavelength
CN204514758U (en) A kind of nano particle counting and detecting device
dos Santos et al. From localized to propagating surface plasmon resonances in Au nanoparticle-coated optical fiber sensors and its implications in biosensing
JPS60233505A (en) Line width measuring method
ATE395632T1 (en) METHOD FOR DETERMINING AN OPTIMAL RESIST THICKNESS
JPS63243836A (en) Method for measuring surface orientability of high-polymer material and instrument used therefor
SU1151869A1 (en) Method of determination of metal refractive index real part
JPS61265514A (en) Method for measuring processing accuracy
JPS61265515A (en) Method for measuring processing accuracy
JPS5831859B2 (en) Method and device for measuring propagation characteristics of optical waveguides