JPS63243836A - Method for measuring surface orientability of high-polymer material and instrument used therefor - Google Patents
Method for measuring surface orientability of high-polymer material and instrument used thereforInfo
- Publication number
- JPS63243836A JPS63243836A JP7937987A JP7937987A JPS63243836A JP S63243836 A JPS63243836 A JP S63243836A JP 7937987 A JP7937987 A JP 7937987A JP 7937987 A JP7937987 A JP 7937987A JP S63243836 A JPS63243836 A JP S63243836A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength dispersion
- polarizer
- orientation
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 23
- 239000002861 polymer material Substances 0.000 title abstract description 7
- 239000006185 dispersion Substances 0.000 claims abstract description 29
- 230000010287 polarization Effects 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims abstract description 10
- 229920000642 polymer Polymers 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 27
- 230000008033 biological extinction Effects 0.000 claims description 12
- 238000010521 absorption reaction Methods 0.000 abstract description 13
- 238000002310 reflectometry Methods 0.000 abstract 3
- 238000001228 spectrum Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000002197 infrared dichroism spectroscopy Methods 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は高分子材料の表面配向性の新規な測定方法、及
びそれに用いる装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel method for measuring surface orientation of polymeric materials and an apparatus used therefor.
さら(二詳しくいえば、本発明は、高分子材料の表面に
おける光反射を利用して、フィルムのみならず、厚いシ
ートや成形品などの高分子材料の表面配向性を効率よく
、正確に測定する方法、及びそれ(二用いる装置に関す
るものである。(2) More specifically, the present invention utilizes light reflection on the surface of polymeric materials to efficiently and accurately measure the surface orientation of not only films but also polymeric materials such as thick sheets and molded products. The method of doing so, and the equipment used.
従来の技術
高分子材料の性質や機能を正確(=把握するために、そ
の表面配向性を測定することは、機能性高分子材料の開
発や、新規用途の開拓などにとって極めて重要なことで
ある。Conventional technology Measuring the surface orientation of polymeric materials in order to accurately understand their properties and functions is extremely important for the development of functional polymeric materials and the development of new applications. .
従来、高分子材料(=おける配向性を測定する方法とし
ては、例えばX線回折法、赤外二色性法、染色二色性法
、偏光けい光性、複屈折法、音波弾性率法などが知られ
ている。しかしながら、これらの方法においては、いず
れも試料全体の平均的な配向性を評価するためのもので
あって、表面の配向性を評価する方法ではなく、また、
X線回折法は結晶領域の配向性のみ、染色二色性法及び
偏光けい光性は非晶領域の配向性のみを評価する方法で
あり、さらに赤外二色性法など吸収スペクトルの測定に
基づく方法は、高分子材料として薄いフィルムを必要と
し、厚いシートや成形品には適用できないなどの問題が
ある。Conventionally, methods for measuring orientation in polymeric materials include X-ray diffraction, infrared dichroism, dye dichroism, polarized fluorescence, birefringence, sonic modulus However, all of these methods are for evaluating the average orientation of the entire sample, and are not methods for evaluating the surface orientation.
The X-ray diffraction method evaluates only the orientation of crystalline regions, the dyeing dichroism method and polarized light fluorescence evaluate only the orientation of amorphous regions, and the infrared dichroism method and other methods evaluate absorption spectra. The method based on this method requires a thin film as the polymer material, and has problems such as being inapplicable to thick sheets or molded products.
このように、従来の方法は、高分子材料の表面配向性を
測定する方法としては、必ずしも満足しうるものではな
く、フィルムはもとよシ、厚いシートや成形品などの高
分子材料の表面配向性を効率よく、正確に測定する方法
の開発が望まれていた0
発明が解決しようとする問題点
本発明は、仁のような要望:二こたえ、種々の形状を有
する表面平滑な高分子材料の表面配向性を効率よく、正
確:二測定する方法、及びそれに用いる装置を提供する
ことを目的としてなされたものである。As described above, the conventional methods are not necessarily satisfactory as methods for measuring the surface orientation of polymeric materials. There has been a desire to develop a method for efficiently and accurately measuring orientation.Problems to be Solved by the InventionThe present invention addresses the following demands: The purpose of this invention is to provide a method for efficiently and accurately measuring the surface orientation of a material, and an apparatus for use therein.
問題点を解決するための手段
本発明者らは、前記目的を達成するために鋭意研究を重
ねた結果、表面平滑な高分子材料の表面に、はぼ垂直方
向から偏光方向の異なる光を投射して、偏光反射率の波
長分散を測定し、この測定結果から屈折率又は吸光係数
を求めたのち、その異方性から表面の配向関数を求める
ことによシ、効率よく該表面配向性を測定しうろこと、
及び前記偏光反射率の波長分散の測定は、特定の装置を
用いることによシ容易(二行いうろことを見い出し、こ
の知見に基づいて本発明を完成する(二至った。Means for Solving the Problems In order to achieve the above object, the inventors of the present invention have conducted extensive research and have developed a method for projecting light with different polarization directions from a direction approximately perpendicular to the surface of a polymeric material having a smooth surface. The surface orientation can be efficiently determined by measuring the wavelength dispersion of the polarized reflectance, determining the refractive index or extinction coefficient from this measurement result, and determining the surface orientation function from the anisotropy. Measuring scales,
The wavelength dispersion of the polarized light reflectance can be easily measured by using a specific device.
すなわち、本発明は、表面平滑な高分子材料の表面配向
性を測定する方法において、
0)高分子材料の平滑表面に、偏光子を通した光をほぼ
垂直方向から投射し、偏光反射率の波長分散を測定する
段階、
(ロ)偏光子を回転させて前記(イ)と異なる偏光方向
の光を用いて前記(イ)を繰り返す段階、te (イ
)及び(→の測定結果を、式及び式
n==(1−R)/(1+R−2aosφVT)・・(
ri)又は
k == −28inφJY/(1+ R−2cos
(v’π) −(110(ただし、ω、ω0は光の周
波数、R((ロ)は周波数ω(=おける反射率)
(−従って屈折率n又は吸光係数にの波長分散に変ある
いは、屈折率nの波長分散における最大値と最小値の差
を検知し、各偏光についての吸収強度辱及びA↓を求め
る段階、
(ホ)に)段階で検知された桜4とA、から、式
%式%
及び式
f=(D−1)(Do +2)/(D+2 ) (D、
−1)・・・(至)
(ただし、4=icot2r’ γは遷移モーメントと
高分子鎖とのなす角)
に従って配向関数fを求める段階
からなることを特徴とする表面配向性測定方法、及び偏
光方向の異なる光を得るための偏光面の回転が可能な偏
光子1、偏光子1を通過してきた光を受けて、被測定材
料3の表面に偏光を投射するための回転可能な平面鏡2
、被測定材料3からの波長分散を測定するための検知器
官から構成された構造を有する高分子材料の表面配向性
測定装置を提供するものである。That is, the present invention provides a method for measuring the surface orientation of a polymeric material with a smooth surface, which includes: 0) projecting light through a polarizer onto the smooth surface of the polymeric material from a substantially perpendicular direction; a step of measuring wavelength dispersion, (b) a step of rotating the polarizer and repeating the above (a) using light with a polarization direction different from the above (a); and the formula n==(1-R)/(1+R-2aosφVT)...(
ri) or k == -28inφJY/(1+R-2cos
(v'π) - (110 (however, ω, ω0 is the frequency of light, R ((b) is the reflectance at frequency ω (=)) (- Therefore, it changes to wavelength dispersion due to refractive index n or extinction coefficient, The step of detecting the difference between the maximum value and the minimum value in the wavelength dispersion of the refractive index n and calculating the absorption intensity and A↓ for each polarized light. From the cherry blossoms 4 and A detected in step (e), the formula % formula% and formula f = (D-1) (Do +2) / (D+2) (D,
-1) ... (to) (where 4=icot2r' γ is the angle between the transition moment and the polymer chain) A method for measuring surface orientation, comprising the step of determining an orientation function f according to A polarizer 1 whose polarization plane can be rotated to obtain light with different polarization directions, and a rotatable plane mirror 2 which receives the light that has passed through the polarizer 1 and projects the polarized light onto the surface of the material to be measured 3.
, provides a surface orientation measurement device for a polymeric material having a structure including a detection organ for measuring wavelength dispersion from a material to be measured 3.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明方法において、表面配向性を測定するのに用いら
れる高分子材料については、平滑表面を有し、かつ測定
可能な波長領域に吸収をもつ高分子材料であればよく、
特に制限はない、例えば、フィルムはもちろん、厚いシ
ートや成形品など植種の形状の材料に適用可能である。In the method of the present invention, the polymeric material used to measure the surface orientation may be any polymeric material that has a smooth surface and absorbs in a measurable wavelength region.
There are no particular limitations; for example, it can be applied to materials in the form of seeds, such as films, thick sheets, and molded products.
表情表面を有する高分子材料としては、例えばカットオ
フ値0.8nにおける中心線平均粗さくRIM:)がj
an以下で、かつカットオフ値D 、 Q B mmに
おけるRa値が0.1p以下であるような平滑表面を有
するものが好ましく用いられる。As a polymer material having an expression surface, for example, the center line average roughness RIM:) at a cutoff value of 0.8n is j
A material having a smooth surface with an Ra value of 0.1 p or less at the cutoff value D and Q B mm is preferably used.
一方、測定に用いる光の波長領域としては、紫外から遠
赤外領域まで適用可能でアリ、また、表面配向性の程度
を示す前記一般式(ト)で示される配向関数には、定数
として、被測定材料における遷移モーメントと高分子鎖
とのなす角が用いられるが、該遷移は電子遷移であって
もよいし、振動遷移であってもよい。On the other hand, the wavelength range of light used for measurement is applicable from the ultraviolet to the far infrared region, and the orientation function represented by the above general formula (g), which indicates the degree of surface orientation, has a constant: The angle between the transition moment in the material to be measured and the polymer chain is used, but the transition may be an electronic transition or a vibrational transition.
次に、本発明の測定方法を添付図面に従って説明すると
、第1図は本発明の測定方法に用いる装置の構造の1例
を示す概略図であって、まず、偏光面の回転可能な偏光
子1(二元を入射して所望の偏光方向としたのち、この
偏光を回転可能な平面鏡2を介して、被測定材料3の平
滑表面(二、入射角が20″以内(二なるようにほぼ垂
直方向から投射波長分散を測定する。Next, the measurement method of the present invention will be explained with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing an example of the structure of an apparatus used in the measurement method of the present invention. 1. After making the desired polarization direction by inputting two components, this polarized light is transmitted to the smooth surface of the material to be measured 3 (2. The angle of incidence is within 20" (approximately 2. Measure the projected chromatic dispersion from the vertical direction.
長分散を測定する。Measure long dispersion.
また、透明又は半透明紙料では、測定された反射率(=
、裏面からの反射による多重反射が寄与しているので、
例えば、公知の方法〔「ジャーナル・オブ・フィジカル
°ソサエティ°ジャパン(J。In addition, for transparent or translucent stock, the measured reflectance (=
, multiple reflections from the back surface contribute, so
For example, a known method [Journal of Physical Society Japan (J.
Ph7a、 Soc、 Jpn、) J第16巻、第2
525ページ(1961年)〕などに従って、多重反射
の影響を除き、表面からの反射率を求めることが肝要で
ある0
第2図は、偏光方向の異なる2種の光を用いて測定した
、多重反射の補正後の偏光反射率の波長分散の例を示す
スペクトル図であシ、横軸が波長、縦軸が偏光反射率で
ある。Ph7a, Soc, Jpn,) J Volume 16, No. 2
525 (1961)], it is important to remove the influence of multiple reflections and calculate the reflectance from the surface. Figure 2 shows multiple reflections measured using two types of light with different polarization directions. 2 is a spectrum diagram showing an example of wavelength dispersion of polarized light reflectance after correction of reflection, where the horizontal axis is wavelength and the vertical axis is polarized light reflectance.
次に、このようにして、偏光方向の異なる2種の光を用
いて得られた、前記の偏光反射率の波長分散の結果を、
式
及び式
n=(1−R)/(t+R−2cosφ4./f )
−(II)又は
k =−28i ntlsJR/(1+ R−2CO8
吋f> −([)(ただし、ω、ω。は光の
周波数、R(→は周波数ωにおける反射率である)
(二従って、屈折率n又は吸光係数にの波長分散に変換
する。前記式(II)及び(2)は、いわゆるフレネル
の式である。Next, the results of the wavelength dispersion of the polarized light reflectance obtained using two types of light with different polarization directions are as follows:
Formula and formula n=(1-R)/(t+R-2cosφ4./f)
-(II) or k = -28i ntlsJR/(1+ R-2CO8
吋f>−([) (where ω, ω. is the frequency of light, R (→ is the reflectance at the frequency ω) (2) Therefore, the refractive index n or extinction coefficient is converted into wavelength dispersion. Formulas (II) and (2) are the so-called Fresnel equations.
このようにして得られた光学定数である屈折率n及び吸
光係数にの波長分散スペクトルの例を、それぞれ第3図
及び第4図(二示す。各図において、実線及び破線は、
第2図の偏光反射率の波長分散スペクトルにおける実線
及び破線にそれぞれ対応するものである。Examples of wavelength dispersion spectra for the refractive index n and extinction coefficient, which are the optical constants obtained in this way, are shown in FIGS. 3 and 4, respectively. In each figure, solid lines and broken lines are
These correspond to the solid line and broken line in the wavelength dispersion spectrum of polarized light reflectance in FIG. 2, respectively.
次に、前記のようにして得られた吸光係数にのピーク値
、あるいは屈折率nの波長分散における最大値と最小値
との差を検知し、各偏光方向について吸収強度A7及び
A、 を求め、式
%式%()
に従って、A、とAi との比を求めたのち、式
%式%(7)
各偏光ごとの吸収強度は屈折率n又は吸光係数にの波長
分散スペクトルから、例えば第5図に示すように、↓の
値を求めて検知することができる。Next, detect the peak value of the extinction coefficient obtained as described above or the difference between the maximum value and the minimum value of the wavelength dispersion of the refractive index n, and calculate the absorption intensities A7 and A for each polarization direction. After finding the ratio of A and Ai according to the formula % formula % (7), the absorption intensity for each polarized light is calculated from the wavelength dispersion spectrum of the refractive index n or extinction coefficient, for example, by As shown in Figure 5, it can be detected by finding the value of ↓.
第5図(a)及び(b)は、それぞれ屈折率n及び吸光
係数にの波長分散スペクトルのモデル図である。FIGS. 5(a) and 5(b) are model diagrams of wavelength dispersion spectra with respect to refractive index n and extinction coefficient, respectively.
前記の配向関数は、高分子鎖と延伸方向のなす角をθと
すると
式
%式%(
(ただし、く〉は空間平均を意味する)として表わすこ
とができるので、前記式(′I)で得られた配向関数が
1の場合は、高分子鎖が延伸方向へ完全1=配向した状
態を示し、一方0の場合は無配向状態を示す。また−A
の場合は、高分子鎖が延伸方向と垂直方向とに完全に配
向した状態を示す。The above orientation function can be expressed as the formula % (where 〉 means the spatial average), where θ is the angle between the polymer chain and the stretching direction, so the above formula ('I) can be expressed as: When the obtained orientation function is 1, it indicates that the polymer chains are completely oriented in the stretching direction, whereas when it is 0, it indicates that there is no orientation.
In the case of , the polymer chains are completely oriented in the direction perpendicular to the stretching direction.
なお、検知器5で得られた偏光反射率の波長分散を処理
して、配向関数を求める操作は、コンピューターで自動
的(二処理するのが有利である。Note that the operation of processing the wavelength dispersion of the polarized light reflectance obtained by the detector 5 to obtain the orientation function is preferably performed automatically (two times) by a computer.
発明の効果
本発明の測定方法によると、フィルムはもとよシ、厚い
シートや成形品など、種々の形状を有する高分子材料の
表面配向性を、効率よく正確に測定することができるの
で、該測定方法は、機能性高分子材料の開発や新規用途
の開拓などにおいて、極めて有用である。Effects of the Invention According to the measuring method of the present invention, the surface orientation of polymeric materials having various shapes such as films, thick sheets, and molded products can be efficiently and accurately measured. This measurement method is extremely useful in the development of functional polymer materials and the exploration of new applications.
実施例
次に実施例によυ本発明をさらに詳細に説明するが、本
発明はこれらの例(=よってなんら限定されるものでは
ない。EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these examples in any way.
例
被測定材料として、80℃で5.3倍に延伸したボリエ
テレンテレフタレー) (PET )の厚さ0.2nの
フィルムを用いた。このものは、カットオフ値0.8
ffにおけるRa値が0.1μm1カツトオフ値0.0
8mにおけるRa値が0.01μmであッテ、極めて平
滑な表面を有するものである。また、表面配向性の測定
には、第1図に示す装置を用いた。Example A 0.2 nm thick film of polyethylene terephthalate (PET) stretched 5.3 times at 80° C. was used as the material to be measured. This one has a cutoff value of 0.8
Ra value at ff is 0.1μm1 Cutoff value is 0.0
The Ra value at 8 m is 0.01 μm, and the surface is extremely smooth. Moreover, the apparatus shown in FIG. 1 was used to measure the surface orientation.
まず、偏光面と試料の延伸方向が平行(=なるように、
偏光子1を調整し、この偏光子1を通過した光を、平面
鏡2を介して、試料3の表面に投射し、その反射光を平
面鏡を介して、検知器5に送シ、偏光反射率の波長分散
を求めた。First, make sure that the plane of polarization and the stretching direction of the sample are parallel (=
Adjust the polarizer 1, project the light that has passed through the polarizer 1 onto the surface of the sample 3 via the plane mirror 2, send the reflected light to the detector 5 via the plane mirror, and measure the polarization reflectance. The wavelength dispersion of was determined.
次に、偏光面と試料の延伸方向が垂直(=なるように、
偏光子1を調整し、この偏光子1を通過した光を、前記
と同様にして、試料3の表面に投射し、その反射光を検
知器8(二速υ、偏光反射率の波長分散を求めた。これ
らの結果を第2図に示す。Next, make sure that the polarization plane and the stretching direction of the sample are perpendicular (=
The polarizer 1 is adjusted, and the light that has passed through the polarizer 1 is projected onto the surface of the sample 3 in the same manner as described above. These results are shown in Figure 2.
第2図は偏光反射率の波長分散スペクトル図であり、図
において、実線は偏光面と試料の延伸方向とが平行な場
合、破線は偏光面と試料の延伸方向とが垂直な場合であ
る。なお、これらのスペクトル図は、参照光による補正
及び多重反射の補正を行ったのちのものである。FIG. 2 is a wavelength dispersion spectrum diagram of polarized light reflectance. In the figure, the solid line indicates the case where the plane of polarization is parallel to the stretching direction of the sample, and the broken line indicates the case when the plane of polarization and the stretching direction of the sample are perpendicular. Note that these spectral diagrams are obtained after correction using the reference light and correction for multiple reflections.
前記の偏光反射率の波長分散データーから、前記式(I
)、Ql)及び紐)から、屈折率n及び吸光係数にの波
長分散を求め、そのスペクトルをそれぞれ第3図及び第
4図に示す。各図において、実線及び破線は、それぞれ
第2図(=おける実線及び破線(=対応するデーターで
ある。From the wavelength dispersion data of the polarized reflectance, the formula (I
), Ql) and string), the wavelength dispersion in the refractive index n and extinction coefficient is determined, and the spectra thereof are shown in FIGS. 3 and 4, respectively. In each figure, the solid line and the broken line are the data corresponding to the solid line and the broken line in FIG.
第4図から分かるように、280〜300nm及び24
0〜25Onm付近の波長域で2つの吸収帯が観測され
た。これは、それぞれPETのベンゼン環の第一π8−
π遷移と、第二π−π遷移に帰属される。As can be seen from Figure 4, 280-300 nm and 24
Two absorption bands were observed in the wavelength range around 0 to 25 Onm. This is the first π8− of the benzene ring of PET, respectively.
It is assigned to the π transition and the second π-π transition.
*
配向関数は、第二π−π遷移の遷移の遷移モーメントと
高分子鎖とのなす角γの理論値22.8’を用いて求め
た。* The orientation function was determined using the theoretical value of 22.8' for the angle γ between the transition moment of the second π-π transition and the polymer chain.
この吸光係数にのピーク値から、吸収強度比D(’?/
Am)を求めたところ、3.35であυ、この値及び前
記のγ値から求めた配向関数では0.57であった。一
方、屈折率nの最大値と最小値との差から、吸収強度比
D (2/At)を求めたところ、5.21であシ、こ
の値及び前記のγ値から求めた配向関数fは0.76で
あった。From the peak value of this extinction coefficient, the absorption intensity ratio D('?/
Am) was found to be 3.35, υ, and the orientation function found from this value and the above-mentioned γ value was 0.57. On the other hand, when the absorption intensity ratio D (2/At) was calculated from the difference between the maximum value and the minimum value of the refractive index n, it was found to be 5.21, and the orientation function f calculated from this value and the above γ value. was 0.76.
これらの配向関数の差は、吸収帯の重なシに由来するが
、延伸したPETフィルムの表面が延伸方向に良く配向
していることが判明した。Although the difference in these orientation functions is due to the overlapping absorption bands, it was found that the surface of the stretched PET film was well oriented in the stretching direction.
第1図は、本発明で用いる装置の構造の1例を示す概略
図であシ、図中符号1は偏光子、2.4は平面鏡、5は
検知器である。
第2図、第3図及び第4図は、それぞれ実施例における
偏光反射率の波長分散スペクトル図、屈折率の波長分散
スペクトル図及び吸光係数の波長分散スペクトル図であ
υ、第5図(a)及び(b)は、それぞれ屈折率及び吸
光係数の波長分散から吸収強度の求め方を示すモデル図
である。FIG. 1 is a schematic diagram showing an example of the structure of an apparatus used in the present invention. In the figure, reference numeral 1 is a polarizer, 2.4 is a plane mirror, and 5 is a detector. Figures 2, 3, and 4 are wavelength dispersion spectra of polarized reflectance, refractive index, and extinction coefficient in Examples, respectively. ) and (b) are model diagrams showing how to obtain absorption intensity from wavelength dispersion of refractive index and extinction coefficient, respectively.
Claims (1)
において、 (イ)高分子材料の平滑表面に、偏光子を通した光をほ
ぼ垂直方向から投射し、偏光反射率の波長分散を測定す
る段階、 (ロ)偏光子を回転させて前記(イ)と異なる偏光方向
の光を用いて前記(イ)を繰り返す段階、(ハ)(イ)
及び(ロ)の測定結果を、式 ▲数式、化学式、表等があります▼ 及び式 n=(1−R)/(1+R−2cosφ√R)又は k=−2sinφ√R/(1+R−2cosφ√R)(
ただし、ω、ω_0は光の周波数、R(ω)は周波数ω
における反射率) に従って屈折率n又は吸光係数kの波長分散に変換する
段階、 (ニ)(ロ)段階で得られた吸光係数Rのピーク値ある
いは屈折率nの波長分散における最大値と最小値の差を
検知し、各偏光についての吸収強度A_■及びA_⊥を
求める段階、 (ホ)(ニ)段階で検知されたA_■とA_⊥から、式 D=A_■/A_⊥ 及び式 f=(D−1)(D_0+2)/(D+2)(D_0−
1)(ただしD_0=2cot^2γ、γは遷移モーメ
ントと高分子鎖とのなす角) に従って配向関数fを求める段階 からなることを特徴とする表面配向性測定方法。 2 偏光方向の異なる光を得るための偏光面の回転が可
能な偏光子(1)、偏光子(1)を通過してきた光を受
けて、被測定材料(3)の表面に偏光を投射するための
平面鏡(2)、被測定材料(3)からの反射光を検知器
(5)に送るために設けられた平面鏡(4)及び平面鏡
(4)からの光を受けて、偏光反射率の波長分散を測定
するための検知器(5)から構成された構造を有する高
分子材料の表面配向性測定装置。[Claims] 1. A method for measuring the surface orientation of a polymeric material with a smooth surface, including (a) projecting light through a polarizer onto the smooth surface of the polymeric material from a substantially perpendicular direction, and detecting the polarized light reflection. (b) rotating the polarizer and repeating (b) using light with a polarization direction different from that in (b); (c) (b)
The measurement results of R)(
However, ω, ω_0 are the frequencies of light, and R(ω) is the frequency ω
the peak value of the extinction coefficient R or the maximum and minimum values of the wavelength dispersion of the refractive index n obtained in step (d) (b) (e) From A_■ and A_⊥ detected in step (d), the formula D=A_■/A_⊥ and the formula f are obtained. =(D-1)(D_0+2)/(D+2)(D_0-
1) (where D_0=2cot^2γ, γ is the angle formed between the transition moment and the polymer chain) A method for measuring surface orientation, comprising the step of determining an orientation function f according to the following. 2. Polarizer (1) capable of rotating the plane of polarization to obtain light with different polarization directions; receives the light that has passed through the polarizer (1) and projects the polarized light onto the surface of the material to be measured (3) A plane mirror (2) is provided to send the reflected light from the material to be measured (3) to the detector (5). An apparatus for measuring surface orientation of a polymeric material having a structure comprising a detector (5) for measuring wavelength dispersion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7937987A JPS63243836A (en) | 1987-03-31 | 1987-03-31 | Method for measuring surface orientability of high-polymer material and instrument used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7937987A JPS63243836A (en) | 1987-03-31 | 1987-03-31 | Method for measuring surface orientability of high-polymer material and instrument used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63243836A true JPS63243836A (en) | 1988-10-11 |
Family
ID=13688237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7937987A Expired - Lifetime JPS63243836A (en) | 1987-03-31 | 1987-03-31 | Method for measuring surface orientability of high-polymer material and instrument used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63243836A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5141110A (en) * | 1990-02-09 | 1992-08-25 | Hoover Universal, Inc. | Method for sorting plastic articles |
JP2001341198A (en) * | 2000-06-02 | 2001-12-11 | Unitika Ltd | Biaxially stretched polyamide film and method for manufacturing the same |
US6734967B1 (en) | 1995-01-19 | 2004-05-11 | Kla-Tencor Technologies Corporation | Focused beam spectroscopic ellipsometry method and system |
JP2015152673A (en) * | 2014-02-12 | 2015-08-24 | コニカミノルタ株式会社 | Fixing member, fixing apparatus, and image forming apparatus |
-
1987
- 1987-03-31 JP JP7937987A patent/JPS63243836A/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5141110A (en) * | 1990-02-09 | 1992-08-25 | Hoover Universal, Inc. | Method for sorting plastic articles |
US6734967B1 (en) | 1995-01-19 | 2004-05-11 | Kla-Tencor Technologies Corporation | Focused beam spectroscopic ellipsometry method and system |
JP2001341198A (en) * | 2000-06-02 | 2001-12-11 | Unitika Ltd | Biaxially stretched polyamide film and method for manufacturing the same |
JP2015152673A (en) * | 2014-02-12 | 2015-08-24 | コニカミノルタ株式会社 | Fixing member, fixing apparatus, and image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI221901B (en) | Thin-film inspection method and device | |
US6172752B1 (en) | Method and apparatus for simultaneously interferometrically measuring optical characteristics in a noncontact manner | |
US5864403A (en) | Method and apparatus for measurement of absolute biaxial birefringence in monolayer and multilayer films, sheets and shapes | |
US4631408A (en) | Method of simultaneously determining gauge and orientation of polymer films | |
US4453828A (en) | Apparatus and methods for measuring the optical thickness and index of refraction of thin, optical membranes | |
JPH10332533A (en) | Birefringence evaluation system | |
CN113008426B (en) | A dual-frequency quantitative photoelasticity measuring instrument and measuring method | |
JPH0470582B2 (en) | ||
CN1155652A (en) | Method and apparatus for measuring thickness of birefringence layer | |
TW440737B (en) | Method and apparatus for measuring cell gap of vertical alignment liquid crystal panel | |
JPS63243836A (en) | Method for measuring surface orientability of high-polymer material and instrument used therefor | |
US5434671A (en) | Birefringent member cell gap measurement method and instrument | |
US2412074A (en) | Device for testing light polarizing elements | |
CN107589076A (en) | Infrared polarization binary channels spectral measurement system | |
US9019484B2 (en) | Combining normal-incidence reflectance and transmittance with non-normal-incidence reflectance for model-free characterization of single-layer films | |
US2986066A (en) | Polarimetric apparatus | |
JP3246040B2 (en) | Birefringence measurement device | |
JP2000227310A (en) | Instrument and method for measuring film thickness and refractive index | |
JP3944641B2 (en) | Gap thickness measuring device, gap thickness measuring method, and liquid crystal device manufacturing method | |
JPH02118406A (en) | Liquid crystal cell gap measuring device | |
JPS6326763Y2 (en) | ||
JPH01113626A (en) | Measuring method for optical wavelength | |
JPH11211656A (en) | Method and apparatus for measuring retardation | |
Utkin et al. | Spectropolarimetric device for determination of optical anisotropic parameters of crystals | |
Larena et al. | Iterative method for the optical characterization of biaxially oriented poly (ethyleneterephthalate) films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |