[go: up one dir, main page]

JPH10332533A - Birefringence evaluation system - Google Patents

Birefringence evaluation system

Info

Publication number
JPH10332533A
JPH10332533A JP9145462A JP14546297A JPH10332533A JP H10332533 A JPH10332533 A JP H10332533A JP 9145462 A JP9145462 A JP 9145462A JP 14546297 A JP14546297 A JP 14546297A JP H10332533 A JPH10332533 A JP H10332533A
Authority
JP
Japan
Prior art keywords
birefringence
sample
optical system
light
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9145462A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takawa
宏行 高和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIE OPT KK
Original Assignee
UNIE OPT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNIE OPT KK filed Critical UNIE OPT KK
Priority to JP9145462A priority Critical patent/JPH10332533A/en
Publication of JPH10332533A publication Critical patent/JPH10332533A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N2021/216Polarisation-affecting properties using circular polarised light

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To configure a high speed high accuracy birefringence evaluation system by picking up a birefringence image through an observation optical system as an analyzable image data using a sharp color plate method. SOLUTION: When a sample SP is inserted between a first polarizer 13 and a full wavelength plate 22, an optical signal is subjected to phase difference equal to the combined phase difference of the sample SP and the full wavelength plate 22. Consequently, the wavelength of the light subjected to phase difference is shifted from the reference wavelength by an amount corresponding to the birefringence of the sample SP. Consequently, the hue being observed is varied as the spectral transmittance of an optical signal LB passing through a second polarizer 23 varies and the birefringence can be estimated with higher sensitivity than the cross Nicol method. More specifically, a birefringence image representative of variation in the hue of the sample SP is picked up by means of a color image pickup element 24 and delivered to a data acquisition system 2. It is presented on a display in real time and subjected to a required processing in parallel with image observation on the monitor 40, as required.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、複屈折評価装置
に係り、とくに試料の複屈折位相差の分布を視覚を通し
て直観的に認識可能な鋭敏色板法に基づく複屈折像とし
て偏光観察する観察光学系及びその画像処理の工夫に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating birefringence, and more particularly to an observation apparatus for observing the polarization of a birefringence phase difference of a sample as a birefringence image based on a sensitive color plate method which can be intuitively recognized through the eyes. The present invention relates to an optical system and a device for image processing.

【0002】[0002]

【従来の技術】近年、レンズ、プリズム、光ディスク及
び光学的位相膜等の光学素子を搭載する光エロクトロニ
クス機器では、その急速な発展に伴って光学素子の高品
質化、例えば光学的均一性を高めることが必要とされて
いる。従って、これらの光デバイスの品質を高精度で検
査、評価したり、それに要する時間を短縮して生産性を
向上させる技術が特に量産現場では重要とされている。
2. Description of the Related Art In recent years, with the rapid development of optical erotronics equipment equipped with optical elements such as lenses, prisms, optical disks and optical phase films, the quality of optical elements has been increased, for example, optical uniformity. There is a need to increase. Therefore, a technique for inspecting and evaluating the quality of these optical devices with high accuracy and shortening the time required for the improvement in productivity to improve productivity is particularly important in mass production sites.

【0003】例えば、光ディスク基板等の光学素子とし
て、近年、特に軽量性、成形性、衝撃耐性に優れ且つ比
較的低コストに提供できるプラスチック等の高分子材料
が多く使用されているが、これらの材料では、その成形
時に形成される分子配向による複屈折を示すものが多い
ため、その分子配向を制御して性能劣化を防止すること
が重要課題の1つとなっている。
For example, in recent years, polymer materials such as plastics, which are excellent in light weight, moldability, impact resistance and can be provided at a relatively low cost, are often used as optical elements such as optical disk substrates. Since many materials exhibit birefringence due to the molecular orientation formed at the time of molding, controlling the molecular orientation to prevent performance degradation is one of the important issues.

【0004】また、液晶ディスプレイ基板上に貼り付け
られる広角視野用の高分子フィルムでは、液晶分子によ
る複屈折を相殺させるための複屈折性が要求されるた
め、フィルム内の分子の三次元的な配向の様子や、面内
の複屈折均一性が重要な品質評価項目となっている。
In addition, a polymer film for a wide-angle view, which is attached to a liquid crystal display substrate, is required to have birefringence for canceling birefringence caused by liquid crystal molecules. The state of orientation and the in-plane birefringence uniformity are important quality evaluation items.

【0005】このような光ディスク基板や高分子フィル
ムでは、その品質を評価する上で分子配向の様子を三次
元的に精度よく把握する必要がある。そこで、このよう
な品質評価法の一つとして、例えばエリプソメータ等を
用いて試料の三次元的な分子配向の様子を屈折率楕円体
として求める複屈折測定法などが知られている。この測
定法では、光を試料の測定面に対して垂直方向だけでな
く、斜め方向にも入射させ、この斜め入射を複数方向か
ら行うことにより、入射方向を変えたときの試料の複屈
折を測定する。
[0005] In such an optical disk substrate or a polymer film, it is necessary to grasp the state of molecular orientation three-dimensionally with high accuracy in order to evaluate the quality. Therefore, as one of such quality evaluation methods, for example, a birefringence measurement method in which a three-dimensional molecular orientation of a sample is determined as a refractive index ellipsoid using an ellipsometer or the like is known. In this measurement method, light is incident not only perpendicularly to the measurement surface of the sample but also in an oblique direction, and the oblique incidence is performed from a plurality of directions to reduce the birefringence of the sample when the incident direction is changed. Measure.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た従来例の複屈折測定法では、試料の屈折率楕円体が求
まる利点があるものの、1点ずつ測定していく点計測法
であるために試料全体をカバーするには膨大な測定デー
タを得る必要がある。従って、この方法では計測時間の
短縮化に限度があり、特に迅速な品質評価が要求される
量産現場などでは殆ど実用化できないといった問題があ
った。
However, the above-described conventional birefringence measuring method has an advantage that the refractive index ellipsoid of the sample can be obtained, but it is a point measuring method in which measurement is performed one point at a time. To cover the whole, it is necessary to obtain a huge amount of measurement data. Therefore, this method has a limitation in shortening the measurement time, and there is a problem that it cannot be practically used especially in a mass production site where quick quality evaluation is required.

【0007】ところで一方、複屈折量を定量評価する複
屈折測定法としては、従来、例えばバビネ補償器法、セ
ナルモン法等も知られているが、いずれの方法も上述と
同様に1点ずつの計測法であり、上述の品質評価に関す
るニーズを意識したものではない。
On the other hand, as a birefringence measuring method for quantitatively evaluating the amount of birefringence, for example, the Babinet compensator method, the Senarmont method and the like are conventionally known. It is a measurement method and is not conscious of the above-mentioned needs for quality evaluation.

【0008】このことは、最近提案されている複屈折測
定法、例えばセナルモン光学系を応用し、その偏光素子
を回転させてこれをCCDカメラで受光し、その後に画
像処理を行う方法(例えば、野口他、「複屈折空間分布
測定法」、光技術コンタクト、Vol.31、No.
5)や、位相変調素子と旋光手段を用いて位相シフトア
ルゴリズムから複屈折量を求める方法(例えば、大谷
他、「位相シフト法による2次元複屈折分布測定」、光
学、第21巻、第10号)等でも同様である。
[0008] This means that a recently proposed birefringence measurement method, for example, a method of applying a Senarmont optical system, rotating the polarizing element, receiving the light with a CCD camera, and then performing image processing (for example, Noguchi et al., "Birefringence Spatial Distribution Measurement Method", Optical Technology Contact, Vol.
5) and a method of obtaining the amount of birefringence from a phase shift algorithm using a phase modulation element and an optical rotation means (for example, Otani et al., “Measurement of two-dimensional birefringence distribution by phase shift method”, Optics, Vol. 21, No. 10) No.) and the like.

【0009】即ち、この2つの方法では、光学素子を回
転させるための機構が必要であると共に、複数枚の画像
を逐次パソコンに取り込み、それらの画像データから複
屈折を演算するためにパソコンに大容量のメモリも必要
であり、さらに測定時間の短縮化にはおのずと限界があ
る。従って、上述と同様に品質評価の迅速化を殆ど期待
できず、装置自体も複雑かつ比較的高価なものになる。
In other words, these two methods require a mechanism for rotating the optical element, and take a plurality of images into a personal computer sequentially and calculate the birefringence from the image data. A memory with a large capacity is required, and there is a natural limit to shortening the measurement time. Therefore, similar to the above, it is hardly expected to speed up the quality evaluation, and the device itself becomes complicated and relatively expensive.

【0010】この発明は、このような従来の問題を改善
するもので、品質評価に必要な精度で試料の複屈折分布
を迅速に評価するシステム構成を比較的簡素に構築する
ことを、目的とする。
The present invention has been made to solve such a conventional problem, and has as its object to relatively simply construct a system configuration for quickly evaluating the birefringence distribution of a sample with the accuracy required for quality evaluation. I do.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に、本発明者は、主に文献等に基づく検討を重ねてきた
結果、上述の現場ニーズに応じて複屈折評価の迅速化を
図るためには、複屈折の定量測定法では精度はともかく
として、計測時間の短縮化やシステム構成の簡素化にお
のずと限度があることが分かった。
In order to achieve this object, the present inventor has made repeated studies mainly based on literatures and the like, and as a result, aims to speed up birefringence evaluation according to the above-mentioned field needs. For this reason, it turned out that there is a natural limit in shortening the measurement time and simplifying the system configuration, although the accuracy is low in the quantitative measurement method of birefringence.

【0012】そこで本発明者は、このような複屈折量の
定量測定法に代わる対策として、例えば古くから偏光顕
微鏡等の観察原理として利用されている偏光観察法に着
目した。この偏光観察法は、 1):単色光源および白色光源のいずれか一方と、2つ
の偏光板をその光透過軸を互いに直交させて配置したク
ロスニコルとを使用し、このクロスニコル間に試料を挿
入し、その複屈折の変化を光の明暗として観察する方法
(以下「クロスニコル法」)、 2):1)と同様の光源およびクロスニコルのほか、そ
のクロスニコル間に2つの四分の一波長板を配置させ、
その四分の一波長板間に試料を挿入し、その複屈折の変
化を光の明暗として観察する方法(以下「円偏光
法」)、 3):光源として白色光源だけを使用し、1)と同様の
クロスニコル間に一波長板を配置させ、クロスニコル内
の光源側に配置される偏光板と一波長板の間に試料を挿
入し、その複屈折の変化を色の変化に置き換えて観察す
る方法(以下「鋭敏色板法」)の3つに大別される。
Therefore, the present inventor focused on a polarization observation method which has long been used as an observation principle of a polarization microscope or the like as a countermeasure in place of such a quantitative measurement method of birefringence. This polarization observation method is as follows: 1): Either a monochromatic light source or a white light source and a crossed Nicol in which two polarizing plates are arranged with their light transmission axes orthogonal to each other are used, and a sample is placed between the crossed Nicols. 2) A method of observing a change in birefringence as light brightness (hereinafter referred to as “crossed Nicol method”). 2) A light source and a crossed Nicol similar to 1), and two quarters between the crossed Nicols. Arrange one wave plate,
A method of inserting a sample between the quarter-wave plates and observing the change in birefringence as light brightness (hereinafter, “circular polarization method”). 3): Using only a white light source as a light source, 1) A single-wavelength plate is placed between the crossed Nicols and a sample is inserted between the polarizing plate and the one-wavelength plate placed on the light source side in the crossed Nicols, and the change in birefringence is replaced with a change in color for observation. Methods (hereinafter referred to as “sensitive color plate method”).

【0013】いずれの方法においても、予め複屈折量の
分かっている基準サンプルと比較しながら、試料の二次
元的な複屈折分布を視覚を通じて直感的に評価できるた
め、上述の定量評価法と比べると、比較的簡単な装置で
複屈折評価の迅速化を期待できる利点がある。ただし、
この方法では、評価基準がオペレータの主観に強く依存
し、熟練度や作業による慣れ、疲労状態等で変化する恐
れがあるため、精度上の問題が残る。
In any method, the two-dimensional birefringence distribution of the sample can be intuitively evaluated visually while comparing with a reference sample whose birefringence is known in advance. This has the advantage that the evaluation of birefringence can be speeded up with a relatively simple device. However,
In this method, the evaluation criterion strongly depends on the subjectivity of the operator, and may vary depending on the skill level, the familiarity with the work, the fatigue state, and the like.

【0014】そこで本発明者は、上述の3つの方法の中
でも特に見た瞬間に複屈折分布を理解しやすく、経験の
慣れによっては複屈折位相差が1nm程度の微小な変化
でも認識可能といった最も精度向上が期待される「鋭敏
色板法」の利用を基本とすることが望ましいと、考え
た。その結果、試料の複屈折分布を瞬時に直感的に精度
よく評価できるシステム構成を比較的簡素に構築できる
と共に、鋭敏色板法に特有のカラー画像情報に基づく定
量評価やその評価情報の記録、保存等に関するシステム
拡張性にも優れた新規な装置を発明するに至った。
Therefore, the present inventor can easily understand the birefringence distribution at the moment when he or she looks at it, especially among the above three methods, and depending on experience, it is possible to recognize even a small change of birefringence phase difference of about 1 nm. We thought that it would be desirable to basically use the "sensitive color plate method", which is expected to improve accuracy. As a result, a system configuration that can instantaneously and intuitively and accurately evaluate the birefringence distribution of the sample can be constructed relatively simply, and quantitative evaluation based on color image information unique to the sensitive color plate method, recording of the evaluation information, We have invented a new device that is also excellent in system expandability for storage and the like.

【0015】即ち、この発明に係る複屈折評価装置は、
試料の検査部の複屈折像を鋭敏色板法を用いて偏光観察
する観察光学系と、この観察光学系による上記複屈折像
を上記検査部を評価する解析可能な画像データとして取
得するデータ取得手段とを備えたことを特徴とする。
That is, the birefringence evaluation apparatus according to the present invention comprises:
Observation optical system for observing the birefringence image of the inspection part of the sample using polarized color plate method, and data acquisition for acquiring the birefringence image by this observation optical system as analyzable image data for evaluating the inspection part Means.

【0016】前記データ取得手段は、好ましくは前記画
像データを予め設定された基準試料の複屈折像に関する
画像データと共にモニタに表示させる手段を備える。
The data acquisition means preferably includes means for displaying the image data on a monitor together with image data relating to a preset birefringence image of a reference sample.

【0017】前記データ取得手段は、さらに好ましくは
前記検査部の少なくとも複屈折量を予め設定された基準
試料に関するデータに基づいて解析する手段を備える。
The data acquisition means preferably further comprises means for analyzing at least the amount of birefringence of the inspection section based on data on a preset reference sample.

【0018】前記観察光学系は、好ましくは前記検査部
の透過光および反射光の少なくとも1つを偏光観察する
光学系とする。
The observation optical system is preferably an optical system for observing at least one of the transmitted light and the reflected light of the inspection section with polarized light.

【0019】別の態様として、前記観察光学系は、前記
検査部の透過散乱光および反射散乱光の少なくとも1つ
を偏光観察する光学系とする。
In another aspect, the observation optical system is an optical system for observing at least one of the transmitted scattered light and the reflected scattered light of the inspection section with polarization.

【0020】この発明で好ましくは、前記観察光学系
は、前記試料に向けて光を発する光源と、この光源の出
射側の上記試料を挟む光路上に直交ニコルの配置を成す
2つの偏光子と、この2つの偏光子間の上記試料からの
光を受ける光路上に配置される一波長板と、上記2つの
偏光子の出射側の光路上に配置される撮像系とを備えて
いる。
Preferably, in the present invention, the observation optical system includes: a light source that emits light toward the sample; and two polarizers that form an orthogonal Nicol arrangement on an optical path sandwiching the sample on the emission side of the light source. A one-wavelength plate disposed on an optical path for receiving light from the sample between the two polarizers; and an imaging system disposed on an optical path on the emission side of the two polarizers.

【0021】前記観察光学系は、好ましくは前記2つの
偏光子の内の前記光源側の偏光子と前記試料との間の光
路上に四分の一波長板を備えている。
The observation optical system preferably includes a quarter-wave plate on an optical path between the light source side polarizer of the two polarizers and the sample.

【0022】この発明の1つの側面として、前記一波長
板は、白色光に対して一波長分の位相差を示す複屈折性
素子で構成され、前記撮像系は、カラー撮像素子を備え
ている。
As one aspect of the present invention, the one-wavelength plate is formed of a birefringent element that exhibits a phase difference of one wavelength with respect to white light, and the imaging system includes a color imaging element. .

【0023】この発明の別の側面として、前記一波長板
は、赤外光に対して一波長分の位相差を示す複屈折性素
子で構成され、前記撮像系は、赤外光を予め設定された
画像合成用の3つの波長域に分解して抽出する光学系
と、この光学系により抽出される赤外光を撮像する赤外
撮像素子とを備えている。
As another aspect of the present invention, the one-wavelength plate is constituted by a birefringent element showing a phase difference of one wavelength with respect to infrared light, and the imaging system sets infrared light in advance. An optical system for decomposing and extracting the image into three wavelength ranges for image synthesis, and an infrared imaging device for imaging infrared light extracted by the optical system.

【0024】例えば、前記光学系は、前記3つの波長域
に応じて透過率が異なる赤外透過フィルタを備えてい
る。
For example, the optical system includes an infrared transmission filter having different transmittances according to the three wavelength ranges.

【0025】[0025]

【発明の実施の形態】以下、この発明に係る複屈折評価
装置の具体的な実施形態を図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific embodiment of a birefringence evaluation apparatus according to the present invention will be described with reference to the drawings.

【0026】(第1実施形態)図1に示す複屈折評価装
置は、試料SPの複屈折変化の様子を鋭敏色板法に基づ
く色合いの変化を示す複屈折像として偏光観察するため
の鋭敏色板観察光学系(以下、単に「光学系」と呼ぶ)
1と、この光学系1で偏光観察される試料SPの複屈折
像をその画像表示や必要な画像解析が可能な画像データ
として取得するデータ取得システム2とを備えている。
(First Embodiment) The birefringence evaluation apparatus shown in FIG. 1 uses a sensitive color for observing the state of birefringence change of the sample SP as a birefringent image showing a change in color based on a sensitive color plate method. Plate observation optical system (hereinafter simply referred to as "optical system")
1 and a data acquisition system 2 for acquiring a birefringent image of the sample SP, which is polarized and observed by the optical system 1, as image data capable of displaying the image and performing necessary image analysis.

【0027】光学系1は、試料SPに向けて光信号LB
を入射させる入射光学系10と、その光信号LBを試料
SPを介して受ける検出光学系20とで構成されてい
る。この光学系10、20間には、例えば試料SPを自
動または手動で空間的に様々な方向に傾けたり、回転さ
せたり、移動させる等の機構を有するX−Y方向の面内
移動ステージ、θ−φ−ψの回転、及びアオリステージ
等の搭載ステージ9 (観測者自らの手で試料SPを保
持しても観察に支障がない場合には省略可能)が配置さ
れる。
The optical system 1 transmits an optical signal LB to the sample SP.
, And a detection optical system 20 that receives the optical signal LB via the sample SP. Between the optical systems 10 and 20, for example, an in-plane moving stage in the XY direction having a mechanism for automatically or manually tilting, rotating, or moving the sample SP in various directions automatically, θ A rotation stage of −φ−ψ and a mounting stage 9 such as a tilt stage (which can be omitted if the observer does not hinder the observation even if the sample SP is held by his own hand) are arranged.

【0028】入射光学系10は、白色光(連続スペクト
ルまたは発振スペクトルのいずれでもよい)を発する光
源(タングステン電球、ハロゲン電球、蛍光灯等)1
1、この光源11の照射側で検出光学系20による観察
視野の明るさを均一に保つ拡散板(オパールガラス、薄
紙のスクリーン、またはレンズやミラー等の複合体な
ど)12、および直線偏光子(以下、便宜上「第1偏光
子」と呼ぶ)13を備えている。
The incident optical system 10 includes a light source (tungsten bulb, halogen bulb, fluorescent lamp, etc.) 1 that emits white light (either a continuous spectrum or an oscillation spectrum).
1. A diffuser plate (such as an opal glass, a thin paper screen, or a complex such as a lens or a mirror) 12 that keeps the brightness of the observation visual field by the detection optical system 20 uniform on the irradiation side of the light source 11, and a linear polarizer ( Hereinafter, it is referred to as a “first polarizer” for convenience) 13.

【0029】この内、第1偏光子13は、直交ニコル配
置の光源側の偏光子として適用されるもので、その偏光
透過軸の方位が光軸に直交する面内で任意に設定される
(以下、便宜上、この第1偏光子13の透過軸の方位を
システム全体の「基準軸」の0度方位とする)。この第
1偏光子13は、拡散板12からの光信号をその偏光透
過軸に沿って振動する偏光成分だけを透過させ、これを
試料SPに入射させる。この入射光は、試料SPの複屈
折分布を反映した光信号となって検出光学系20に送ら
れる。
Among them, the first polarizer 13 is applied as a polarizer on the light source side in the orthogonal Nicol arrangement, and the direction of its polarization transmission axis is arbitrarily set within a plane perpendicular to the optical axis ( Hereinafter, for convenience, the azimuth of the transmission axis of the first polarizer 13 is referred to as the 0-degree azimuth of the “reference axis” of the entire system. The first polarizer 13 transmits only the polarization component that vibrates the optical signal from the diffusion plate 12 along its polarization transmission axis, and makes this incident on the sample SP. This incident light is sent to the detection optical system 20 as an optical signal reflecting the birefringence distribution of the sample SP.

【0030】検出光学系20は、試料SPからの光信号
を受ける光路上に四分の一波長板21及びその回転機構
(ステッピングモータ等)21a、一波長板22、直線
偏光子(以下、便宜上「第2偏光子」と呼ぶ)23、お
よびカラー撮像素子24をそれぞれ備えている。この
内、四分の一波長板21とその回転機構21aは、一波
長板22の作動誤差を補償したり、その基準波長を微調
整したり、鋭敏色の色合いを調整したりする等の必要に
応じて任意に設置される。
The detection optical system 20 includes a quarter-wave plate 21 and its rotating mechanism (stepping motor or the like) 21a, a single-wave plate 22, and a linear polarizer (hereinafter referred to as “convenient”) on an optical path for receiving an optical signal from the sample SP. ), And a color image sensor 24. Among them, the quarter-wave plate 21 and its rotating mechanism 21a are required to compensate for the operation error of the single-wave plate 22, fine-tune the reference wavelength, and adjust the hue of the sensitive color. It is arbitrarily installed according to.

【0031】一波長板22は、それ自身がちょうど白色
光に対する1波長分(ここでは、人間の視感度の中央付
近とされる530nm〜550nmの間に予め設定され
た1基準波長分)の位相差を示す複屈折性の素子、例え
ば複屈折において波長依存性を有する高分子フィルムや
光学結晶(水晶など)等の光学素子で構成され、その複
屈折主軸の方位が上記の基準軸に対して例えば45度と
なる状態で配置されている。この一波長板22は、試料
SPから四分の一波長板21を介して入射される光信号
の偏光状態の位相をその波長に応じて回転させ、これを
第2偏光子23に送る。
The one-wavelength plate 22 itself is positioned at exactly one wavelength with respect to white light (here, one reference wavelength preset between 530 nm and 550 nm, which is near the center of human visibility). A birefringent element showing a phase difference, for example, an optical element such as a polymer film or an optical crystal (such as quartz) having a wavelength dependence in birefringence, and the direction of the main axis of the birefringence with respect to the reference axis For example, they are arranged at 45 degrees. The one-wave plate 22 rotates the phase of the polarization state of the optical signal incident from the sample SP via the quarter-wave plate 21 according to the wavelength, and sends this to the second polarizer 23.

【0032】第2偏光子23は、直交ニコルの検出側の
偏光子として適用されるもので、その透過軸方位が第1
偏光子の偏光軸(基準軸)に対して90度の角度となる
ように配置される。この第2偏光子23を通過した光信
号は、カラー撮像素子24に送られる。
The second polarizer 23 is used as a polarizer on the detection side of orthogonal Nicols, and its transmission axis azimuth is the first.
The polarizer is disposed so as to have an angle of 90 degrees with respect to the polarization axis (reference axis). The optical signal that has passed through the second polarizer 23 is sent to the color image sensor 24.

【0033】カラー撮像素子24は、例えばCCDカメ
ラ及びそのドライバ等の画像取得機器で構成され、第2
偏光子23からの光信号をその撮像面に投影される画像
信号として検出し、これをデータ取得システム2に送
る。
The color image pickup device 24 comprises an image acquisition device such as a CCD camera and its driver.
The optical signal from the polarizer 23 is detected as an image signal projected on the imaging surface, and is sent to the data acquisition system 2.

【0034】ここで、光学系1による鋭敏色板法を用い
た偏光観察の原理を説明する。
Here, the principle of polarized light observation using the sharp color plate method by the optical system 1 will be described.

【0035】まず、一波長板22を用いないクロスニコ
ル法の場合には、直交ニコルの配置を成す2つの偏光子
13、23間に試料SPを挿入する前には、第1偏光子
13からの光信号が第2偏光子23を通過できないた
め、得られる像はほぼ暗黒となるが、試料挿入後では試
料の複屈折状態によって色付く。
First, in the case of the crossed Nicols method in which the single-wavelength plate 22 is not used, before inserting the sample SP between the two polarizers 13 and 23 forming an orthogonal Nicol arrangement, the first polarizer 13 is turned off. Since the light signal cannot pass through the second polarizer 23, the obtained image is almost dark, but is colored by the birefringence state of the sample after the sample is inserted.

【0036】なぜならば、試料SPに入射される光信号
は、その通過時に試料の2つの複屈折主軸の屈折率差に
起因して生じる位相ズレにより楕円偏光化し、このとき
の位相差が光信号中の各波長成分によって一般に異な
り、この位相差を受けた楕円偏光成分だけが第2偏光子
23を透過し、その透過光の分光成分が均一でなくなる
ためである。従って、試料SPに大きな複屈折の波長依
存性がある場合には、光信号は色付いて観察される。
The reason is that the optical signal incident on the sample SP is elliptically polarized due to a phase shift caused by the difference in the refractive index between the two birefringent principal axes of the sample when passing through the optical signal. This is because generally the elliptically polarized light component having received the phase difference passes through the second polarizer 23, and the spectral component of the transmitted light is not uniform. Therefore, when the sample SP has a large wavelength dependence of birefringence, the optical signal is observed with coloring.

【0037】これに対して、一波長板22を用いる鋭敏
色板法の場合には、試料挿入前では、光源11から第1
偏光子12を通過した光信号は、一波長板22によって
複屈折に起因する位相差を受ける。例えば、基準波長は
位相差がちょうど360度変化するため、位相の周期性
により偏光状態が変化せず、その結果、第2偏光子23
を通過困難となるが、その他の波長成分は0度〜360
度の中間の位相差を受けるため、その位相差分が偏光子
23を通過する。
On the other hand, in the case of the sensitive color plate method using the single-wavelength plate 22, before the sample is inserted, the first
The optical signal that has passed through the polarizer 12 receives a phase difference caused by birefringence by the one-wave plate 22. For example, since the phase difference of the reference wavelength changes exactly 360 degrees, the polarization state does not change due to the periodicity of the phase.
But it is difficult to pass through other wavelength components from 0 degree to 360 degrees.
The phase difference passes through the polarizer 23 to receive a phase difference between the degrees.

【0038】図2は、この様子を横軸に波長、縦軸に透
過率を示すグラフで説明するものである。肉眼の観察領
域(識別色)で考えれば、横軸の左端(波長400nm
程)が青色、右側(波長約700nm程)が赤色、両者
の中央付近が緑色に相当する。従って、一波長板22を
通して第2偏光子23を透過する光信号は、基準波長
(緑色)で透過率が最小となるため、得られる観察視野
が紫色となる。この紫色が鋭敏色と呼ばれる。
FIG. 2 is a graph for explaining the above-mentioned situation, with the horizontal axis representing wavelength and the vertical axis representing transmittance. Considering the observation region (identification color) of the naked eye, the left end of the horizontal axis (wavelength 400 nm)
Blue), the right side (about 700 nm wavelength) is red, and the center near both is green. Therefore, the optical signal transmitted through the second polarizer 23 through the one-wavelength plate 22 has the minimum transmittance at the reference wavelength (green), and the observation field of view obtained is purple. This purple color is called the sensitive color.

【0039】そこで、第1偏光子13と一波長板22と
の間に試料SPを挿入したときに光信号が受ける位相差
量は、試料SPと一波長板22との合成値となるため、
一波長の位相差を生じる光の波長は、基準波長よりも試
料SPの複屈折量に見合う分だけ移動する。
Then, when the sample SP is inserted between the first polarizer 13 and the one-wavelength plate 22, the amount of phase difference received by the optical signal is a combined value of the sample SP and the one-wavelength plate 22,
The wavelength of the light that causes a phase difference of one wavelength moves by an amount corresponding to the amount of birefringence of the sample SP from the reference wavelength.

【0040】従って、第2偏光子23を通り抜ける光信
号LSの分光透過率の変化により、観察される色合いに
も変化が生じ、上述のクロスニコル法の場合よりも複屈
折量が感度よく推測できる。なぜならば、人間の目は単
純な明暗の弁別よりも色彩の変化に敏感に反応しやすい
ためである。
Therefore, a change in the spectral transmittance of the light signal LS passing through the second polarizer 23 causes a change in the observed color, and the amount of birefringence can be estimated with higher sensitivity than in the case of the cross Nicol method described above. . This is because the human eye is more responsive to color changes than simple discrimination between light and dark.

【0041】このように第2偏光子23を介して観察さ
れる試料SPの色合いの変化を示す複屈折像は、カラー
撮像素子24で撮像され、そこからデータ取得システム
2に送られる。
The birefringent image showing the change in the hue of the sample SP observed through the second polarizer 23 is captured by the color image sensor 24 and sent to the data acquisition system 2 therefrom.

【0042】データ取得システム2は、例えば予め設定
された画像処理アルゴリズム等を実行するCPU30を
要部に搭載した汎用性が高いパーソナルコンピュータ、
画像取り込み置、画像データベース、画像観察用モニタ
40等で構成され、カラー撮像素子24からの画像信号
をコンピュータのディスプレイにリアルタイムに表示す
るほか、この画像信号を必要に応じてモニタ40に送る
ことにより、画像観察と並行して別の処理も同時に実行
する。
The data acquisition system 2 includes, for example, a highly versatile personal computer equipped with a CPU 30 for executing a preset image processing algorithm and the like in its main part.
It is composed of an image capturing device, an image database, an image observation monitor 40, and the like. In addition to displaying an image signal from the color image sensor 24 on a computer display in real time, the image signal is sent to the monitor 40 as necessary. In addition, other processing is executed simultaneously with the image observation.

【0043】ここで、このデータ取得システム2の動作
を図3に基づいて説明する。
Here, the operation of the data acquisition system 2 will be described with reference to FIG.

【0044】まず、システム起動に際し、CPU30は
ステップS1で基準試料のデータが画像データベース内
に登録されている否かを判断する。この判断でYES
(データあり)の場合にステップS2に移行し、NO
(データなし)の場合は同ステップS2への移行前の処
理として、ステップS1aで必要な基準試料の画像デー
タを画像データベースに登録する処理を実行する。
First, when the system is started, the CPU 30 determines in step S1 whether data of a reference sample is registered in the image database. YES in this judgment
If (data exists), the process proceeds to step S2,
In the case of (no data), a process of registering the necessary image data of the reference sample in the image database is executed in step S1a as a process before shifting to step S2.

【0045】このデータベースに登録すべき基準試料に
ついては、1つのサンプルに限定されるものではなく、
例えば通常の品質管理工程で使用される良品見本、限度
見本、不良品見本などの複数のサンプルでもよい。基準
試料の種類は、被測定試料と同質の試料が好ましいが、
これに限定されず、あらかじめ別の方法で複屈折量が定
量的に評価されている試料であれば、異質のものでもよ
い。その他の試料でも、別の評価方法で基準となること
が予め判明している場合には、基準試料としてもよい。
The reference sample to be registered in this database is not limited to one sample.
For example, a plurality of samples such as a good product sample, a limit product sample, and a defective product sample used in a normal quality control process may be used. The type of the reference sample is preferably a sample of the same quality as the sample to be measured,
The sample is not limited to this, and may be a different sample as long as the sample has been quantitatively evaluated for the amount of birefringence in advance by another method. Other samples may be used as reference samples if it is known in advance that the reference will be obtained by another evaluation method.

【0046】上記の処理が終了すると、オペレータの指
示を受けてステップS2で基準試料の画像データを表示
するか否かを判断する。この判断でNO(表示しない)
の場合には、ステップS2aにて被評価試料の画像のみ
を表示させる一方、YES(表示する)の場合はステッ
プS3にて基準試料の画像データを光学系1にて得られ
る被評価試料の画像データと同時にデータ取得システム
2のコンピュータのディスプレイまたはモニタ40に表
示させる。
When the above processing is completed, it is determined in step S2 whether or not to display the image data of the reference sample in response to an instruction from the operator. NO in this judgment (not displayed)
In the case of (1), only the image of the sample to be evaluated is displayed in step S2a. On the other hand, in the case of YES (display), the image data of the sample to be evaluated is obtained by the optical system 1 in step S3. The data is displayed on the display or monitor 40 of the computer of the data acquisition system 2 simultaneously with the data.

【0047】そこで、オペレータは同一モニタ上で基準
試料と現在評価中の試料との両画像の色合いを観察して
比較することにより、試料の複屈折量を評価する。この
とき、撮像レンズの拡大率を変更して被評価試料の評価
部を拡大表示させたり、あるいは基準試料の画像データ
として品質評価工程における限度サンプル、良品サンプ
ル、不良サンプルの各データを同時に同一画面上に表示
させることにより、オペレータの熟練度や、慣れ、疲労
による評価基準の変動を未然に抑制し、オペレータの記
憶や写真に基づく比較などによらない安定した評価を行
える。
Therefore, the operator evaluates the birefringence of the sample by observing the colors of the images of the reference sample and the sample under evaluation on the same monitor and comparing them. At this time, the magnification of the imaging lens is changed so that the evaluation part of the sample to be evaluated is enlarged and displayed, or the data of the limit sample, the non-defective sample, and the defective sample in the quality evaluation process are simultaneously displayed on the same screen as the image data of the reference sample. By displaying the information above, fluctuations in the evaluation criteria due to the skill level, familiarity, and fatigue of the operator can be suppressed beforehand, and stable evaluation can be performed without depending on the operator's memory or comparison based on photographs.

【0048】上記ステップS2aまたはS3の処理が終
了すると、オペレータの指示を受けてステップS4にて
評価された試料の画像情報をシステム2内の画像データ
ベースに保存、登録するか否かを判断する。この判断で
YESの場合はステップS5にて被評価試料の画像情報
を保存又はこれを新たに基準試料として設定登録する。
このとき、試料の姿勢を変化させながら、それに応じて
変化する複屈折量の様子を逐次保存してもよい。このよ
うに保存された画像情報は必要に応じてプリンタで印刷
され、又はFD等の記録媒体に出力される。
When the processing in step S2a or S3 is completed, it is determined whether or not the image information of the sample evaluated in step S4 is stored and registered in the image database in the system 2 in response to an instruction from the operator. If the determination is YES, the image information of the sample to be evaluated is stored or newly set and registered as a reference sample in step S5.
At this time, while changing the attitude of the sample, the state of the amount of birefringence that changes accordingly may be sequentially stored. The image information stored in this manner is printed by a printer or output to a recording medium such as an FD as necessary.

【0049】上記ステップS4の判断でNOの場合又は
ステップS5の処理が終了すると、ステップS6にてオ
ペレータの指示を受けて次の被評価試料があるか否かを
判断し、この判断でYESの場合は上記の一連の処理を
繰り返し、NOの場合は動作終了となる。
When the determination in step S4 is NO or when the process in step S5 is completed, an instruction from the operator is received in step S6 to determine whether or not there is a next sample to be evaluated. In this case, the above series of processing is repeated, and in the case of NO, the operation ends.

【0050】従って、この実施形態によれば、従来例と
比べて試料の複屈折を短時間にかつ精度よく評価でき
る。二次的効果としては、試料の姿勢を光学系内におい
て自由に変更できるため、観察に際しても最適な姿勢を
直感的に決定できるだけでなく、試料の傾きに応じて変
化する複屈折の様子から試料内部の屈折率楕円体の様子
を直ちに理解できるといった利点もある。
Therefore, according to this embodiment, the birefringence of the sample can be evaluated in a shorter time and more accurately than in the conventional example. As a secondary effect, the posture of the sample can be freely changed in the optical system, so not only can the intuitive determination of the optimum posture during observation be made, but also the birefringence that changes according to the tilt of the sample There is also an advantage that the state of the internal refractive index ellipsoid can be immediately understood.

【0051】(第2実施形態)図4に示す複屈折評価装
置は、上記構成に加え、入射光学系10内の第1偏光子
13と試料SPとの間に四分の一波長板14を備え、こ
の四分の一波長板14を上述の基準軸に対して45度の
方位で配置したものである。この四分の一波長板14を
加えれば、試料SPに入射すべき光信号の偏光状態は、
上述の場合の直線偏光ではなく、円偏光となる。
(Second Embodiment) In the birefringence evaluation apparatus shown in FIG. 4, in addition to the above configuration, a quarter-wave plate 14 is provided between the first polarizer 13 and the sample SP in the incident optical system 10. The quarter-wave plate 14 is disposed at an azimuth of 45 degrees with respect to the reference axis. If this quarter wave plate 14 is added, the polarization state of the optical signal to be incident on the sample SP becomes
Instead of linearly polarized light in the above case, circularly polarized light is used.

【0052】従って、直線偏光の場合には、複屈折を正
確に評価するために試料の主軸方位を45度に調整する
必要があるが、この実施形態によれば、上記効果に加
え、円偏光を用いることで試料の方位調整工程が省け、
評価効率をより一層高める利点がある。
Therefore, in the case of linearly polarized light, it is necessary to adjust the principal axis direction of the sample to 45 degrees in order to accurately evaluate the birefringence. By using, the sample orientation adjustment step can be omitted,
There is an advantage that the evaluation efficiency is further improved.

【0053】(第3実施形態)図5に示す複屈折評価装
置は、光透過性を有しない試料SPの場合に適用したも
ので、検出光学系20を透過光軸上ではなく、反射光軸
上に配置したものである。その他の構成は上記と同様で
ある。
(Third Embodiment) The birefringence evaluation apparatus shown in FIG. 5 is applied to the case of a sample SP having no light transmissivity, and the detection optical system 20 is not on the transmission optical axis but on the reflection optical axis. It is arranged above. Other configurations are the same as above.

【0054】このように反射光を検出する構成にすれ
ば、光透過性を有する試料だけでなく、例えばプラスチ
ックの片面に金属蒸着膜が付けられた試料や、2枚のプ
ラスチック基板間に金属膜を挟むDVDディスク等の光
透過性を有しない試料でも、上記と同様に複屈折を有効
に評価できる利点がある。なお、図6に示すように入射
光学系10に上記の四分の一波長板14を加えてもよ
い。
According to the configuration for detecting the reflected light as described above, not only a sample having a light transmitting property but also, for example, a sample in which a metal vapor-deposited film is provided on one side of a plastic, or a metal film between two plastic substrates. In the same manner as described above, there is an advantage that the birefringence can be effectively evaluated even for a sample having no light transmittance, such as a DVD disk sandwiching the. As shown in FIG. 6, the above-described quarter-wave plate 14 may be added to the incident optical system 10.

【0055】(第4実施形態)図7に示す複屈折評価装
置は、反射光を利用する場合のバリエーションの1つで
あり、試料SPとの間の反射光を受ける位置にビーム・
スプリッタ(キューブ形状やハーフミラーに類する板状
等で構成)15を配置したものである、この場合には、
入射光学系10からの光信号をビームスプリッタ15を
介して試料SPに垂直に入射させると共に、この試料S
Pの複屈折の影響を受けた後の反射光を再びビーム・ス
プリッタ15に入射させ、ここで垂直入射とは異なる方
向の検出光学系20側に光路を変更させるようになって
いる。
(Fourth Embodiment) The birefringence evaluation apparatus shown in FIG. 7 is one of the variations in the case of using reflected light.
A splitter (configured in a cube shape or a plate shape similar to a half mirror) 15 is disposed. In this case,
The optical signal from the incident optical system 10 is perpendicularly incident on the sample SP via the beam splitter 15 and the sample S
The reflected light that has been affected by the birefringence of P is made incident on the beam splitter 15 again, where the optical path is changed to the detection optical system 20 in a direction different from the normal incidence.

【0056】従って、この実施形態によれば、斜め入射
だけでなく、垂直入射の場合でも反射光を検出できる利
点がある。なお、図8に示すように入射光学系10に四
分の一波長板14を加えてもよい。
Therefore, according to this embodiment, there is an advantage that reflected light can be detected not only at oblique incidence but also at vertical incidence. Note that a quarter-wave plate 14 may be added to the incident optical system 10 as shown in FIG.

【0057】(第5実施形態)図9に示す複屈折評価装
置は、光を拡散反射および透過させる試料の場合に適用
したもので、上記構成に加え、検出光学系20を試料位
置を中心にして空間的に自在に傾斜させたり、回動させ
たり等の移動機構24と、試料SPを自在に傾斜させる
機構を有する傾斜ステージ9aとを備え、任意の入射角
で任意方向の散乱光に対する複屈折の様子を偏光観察で
きる。傾斜ステージ9aは、オペレータの手で試料を保
持する場合には必ずしも必要なものではない。
(Fifth Embodiment) The birefringence evaluation apparatus shown in FIG. 9 is applied to the case of a sample that diffuses and reflects light, and in addition to the above-described configuration, the detection optical system 20 is set around the sample position. And a tilting stage 9a having a mechanism for tilting the sample SP freely. The tilting stage 9a has a mechanism for tilting the sample SP freely. Polarization observation of refraction is possible. The tilt stage 9a is not always necessary when the sample is held by the operator's hand.

【0058】従って、この実施形態によれば、光散乱性
をもつ試料でも複屈折を簡便かつ迅速に評価できる。ま
た、試料に対する光の入射角を任意に設定できるため、
試料のもつ複屈折特性や、屈折率楕円体の状態などを簡
単に把握することが可能となる。なお、図10に示すよ
うに入射光学系10に四分の一波長板13を加えてもよ
い。
Therefore, according to this embodiment, the birefringence can be easily and quickly evaluated even for a sample having a light scattering property. In addition, since the incident angle of light with respect to the sample can be set arbitrarily,
It is possible to easily grasp the birefringence characteristics of the sample and the state of the refractive index ellipsoid. Note that a quarter-wave plate 13 may be added to the incident optical system 10 as shown in FIG.

【0059】また、この実施形態では反射散乱光を検出
する光学配置としてあるが、これに限らず、透過散乱光
を検出する構成、即ち検出光学系を光源とは反対側に配
置してもよい。この場合には、検出光学系を反射側と透
過側との間で自在に移動させる機構を加えてもよい。
In this embodiment, an optical arrangement for detecting reflected scattered light is used. However, the present invention is not limited to this, and a configuration for detecting transmitted scattered light, that is, a detection optical system may be arranged on the side opposite to the light source. . In this case, a mechanism for freely moving the detection optical system between the reflection side and the transmission side may be added.

【0060】(第6実施形態)鋭敏色板法に基づく評価
は、上述の如く、複屈折像の色合いの変化を観察するこ
とが基本となる。そこで、この色合いの変化を定量化す
るため、この実施形態では、複屈折像を光の3原色であ
る赤、青、緑の3つに分解して解析し、その各色の比率
で複屈折量を求める解析アルゴリズムを採用する。
(Sixth Embodiment) The evaluation based on the sensitive color plate method is basically based on observing a change in the hue of the birefringent image as described above. Therefore, in order to quantify the change in hue, in this embodiment, the birefringence image is separated into the three primary colors of light, red, blue, and green, and analyzed, and the birefringence amount is determined by the ratio of each color. Adopt an analysis algorithm that seeks

【0061】図11は、このアルゴリズムの一例を説明
するものである。まず、複屈折が既知の試料の色情報、
即ち光の強度を画像データベースに複数枚登録するか、
シミュレーション計算を行う(この場合には波長板の材
料における複屈折の波長依存性も考慮する)等により、
図示の如く、複屈折の大きさ(複屈折量)と色との関係
を色データベース(参照テーブル)に登録しておく。以
下、3色の内の任意の1色を例に挙げて説明する。
FIG. 11 illustrates an example of this algorithm. First, the color information of the sample whose birefringence is known,
That is, whether to register multiple light intensities in the image database,
By performing simulation calculations (in this case, also consider the wavelength dependence of birefringence in the material of the wave plate)
As shown, the relationship between the magnitude of birefringence (the amount of birefringence) and the color is registered in a color database (reference table). Hereinafter, an explanation will be given by taking an arbitrary one of the three colors as an example.

【0062】次いで、試料の色を測定してその光の強度
を求める。即ち、この試料の色が色データベースに登録
されたどの色と等しいか、あるいはどの色とどの色との
間にどの程度の比率で位置するのかを計算することによ
り、複屈折量を求める。例えば、試料の色が図中の複屈
折量40と50とに対応する2つの色の間に位置し、そ
の比率が1:4であれば、試料の複屈折量は42とな
る。
Next, the color of the sample is measured to determine the light intensity. That is, the amount of birefringence is determined by calculating which color of this sample is equal to which color registered in the color database, or which ratio is located between which color and which color. For example, if the color of the sample is located between two colors corresponding to the birefringence amounts of 40 and 50 in the figure and the ratio is 1: 4, the birefringence amount of the sample is 42.

【0063】これと同様の処理を3色全てについて実施
すれば、任意の複屈折量の定量評価が可能となる。ま
た、同様の処理を試料に対して異なった入射角で行え
ば、屈折率楕円体も求めることができる。
If the same processing is performed for all three colors, quantitative evaluation of an arbitrary amount of birefringence becomes possible. If the same processing is performed on the sample at different incident angles, a refractive index ellipsoid can be obtained.

【0064】なお、上記の各実施形態では、各装置を個
別に構築するように説明してあるが、それぞれを複合的
にシステム化できることは言うまでもない。
In each of the above embodiments, each device has been described as being individually constructed. However, it is needless to say that each device can be systematically combined.

【0065】(第7実施形態)上述した複屈折評価装置
によれば、可視光を透過する試料の場合には内部応力の
様子を光弾性効果に基づく複屈折として観察できるが、
半導体ウェハ(シリコンや化合物半導体など)等の可視
光を透過しない試料の場合にはその観察が困難となる。
(Seventh Embodiment) According to the above-described birefringence evaluation apparatus, in the case of a sample that transmits visible light, the state of internal stress can be observed as birefringence based on the photoelastic effect.
In the case of a sample that does not transmit visible light, such as a semiconductor wafer (silicon or compound semiconductor), it is difficult to observe the sample.

【0066】例えば、このような可視光を透過しない試
料の内部応力の測定法としては、一般には電歪センサを
用いた破壊試験、また半導体ウェハの場合には干渉計に
よるウェハたわみ(変形)量の測定法等が知られている
が、電歪センサの場合では量産試験には向かず、干渉計
の場合では計測時間が長く、装置も比較的高価なものに
なる等の問題があった。
For example, as a method for measuring the internal stress of a sample that does not transmit visible light, a destructive test using an electrostrictive sensor is generally used, and in the case of a semiconductor wafer, the amount of wafer deflection (deformation) by an interferometer is used. However, in the case of an electrostrictive sensor, it is not suitable for a mass production test, and in the case of an interferometer, there are problems such as a long measurement time and relatively expensive equipment.

【0067】そこで、この実施形態では、上述の鋭敏色
板法を用いた複屈折評価装置の利点を最大限に活用しつ
つ、その応用例として半導体ウェハに代表される可視光
を透過しない試料の場合でも、上述の可視光を透過する
試料の場合と同様に内部応力を非接触かつ非破壊で簡便
に観察可能な構成を工夫した。
Thus, in this embodiment, while maximizing the advantages of the birefringence evaluation apparatus using the above-described sensitive color plate method, as an application example, a sample that does not transmit visible light, such as a semiconductor wafer, is used. In such a case, as in the case of the above-described sample that transmits visible light, a configuration was devised in which the internal stress could be easily observed in a non-contact and non-destructive manner.

【0068】具体的には、可視光を透過しない半導体な
どの材料の多くは、その透過波長域は赤外域(波長1μ
m以上)であるため、その検出対象とすべき使用波長域
を可視光域の代わりに赤外域とした光学系及びその偏光
解析用の画像処理アルゴリズムを採用する。以下、この
一例を図12及び図13に基づいて説明する。
Specifically, most of materials such as semiconductors that do not transmit visible light have a transmission wavelength range of an infrared range (wavelength of 1 μm).
m or more), an optical system in which the wavelength region to be detected is an infrared region instead of a visible light region and an image processing algorithm for its polarization analysis are employed. Hereinafter, this example will be described with reference to FIGS.

【0069】図12に示す複屈折評価装置は、上記構成
の内の検出光学系10およびデータ取得システム2の一
部を変更したものである。即ち、検出光学系10は、上
記構成と比べると、一波長板22aの基準波長を赤外域
内(後述の3つの赤外透過フィルタの内の中心波長域)
に設定し、この一波長板22aから第2偏光子23を介
して光を検出する側にカラー撮像素子の代わりに赤外光
を分解して抽出する赤外抽出部50と、その分解された
赤外光を撮像する赤外撮像素子51とを備えた点が相違
する。
The birefringence evaluation apparatus shown in FIG. 12 is obtained by changing a part of the detection optical system 10 and the data acquisition system 2 in the above configuration. That is, as compared with the above configuration, the detection optical system 10 sets the reference wavelength of the one-wavelength plate 22a within the infrared region (the central wavelength region among three infrared transmission filters described later).
And an infrared extraction unit 50 for decomposing and extracting infrared light instead of the color image sensor on the side for detecting light from the one-wavelength plate 22a via the second polarizer 23, The difference is that an infrared imaging device 51 for imaging infrared light is provided.

【0070】赤外抽出部50は、上述のカラー撮像素子
の場合のR、G、Bの各色に相当する波長域として、赤
外撮像素子51の撮像可能な赤外域内に予め疑似的に
R、G、B用として割り当てた3つの互いに異なる波長
域、例えばB用の1000nm〜1150nm、G用の
1150nm〜1300nm、R用の1300nm〜1
450nmの赤外光をそれぞれ透過させる3つの赤外透
過フィルタ(バンドパスフィルタ)(以下、便宜上、透
過させる赤外光の波長域の長いものから順に赤外用R、
G、Bフィルタ52、53、54と呼ぶ)と、この3つ
のフィルタ52…54を第2偏光子23と赤外撮像素子
51との間の光路上を横切る方向にレール状に並べた状
態で保持し、そのレール方向に自在に移動させるレール
機構を搭載したレール状治具55とを備えている。
The infrared extraction section 50 simulates the R, G, and B wavelength ranges corresponding to the colors R, G, and B in the case of the above-described color image sensor in advance in the infrared region in which the infrared image sensor 51 can image. , G, and B for three different wavelength ranges, for example, 1000 nm to 1150 nm for B, 1150 nm to 1300 nm for G, and 1300 nm to 1 for R.
Three infrared transmission filters (band-pass filters) that respectively transmit 450 nm infrared light (hereinafter referred to as “R” for infrared,
G, B filters 52, 53, and 54) and these three filters 52... 54 are arranged in a rail shape in a direction crossing the optical path between the second polarizer 23 and the infrared imaging element 51. And a rail jig 55 having a rail mechanism for holding and freely moving in the rail direction.

【0071】この内、赤外用R、G、Bフィルタ52…
54は、図13に示すように、可視域の場合のR、G、
Bフィルタと同様に互いの透過率が異なるパターンで設
定されている。
Of these, infrared R, G, B filters 52.
54, as shown in FIG. 13, R, G,
As in the case of the B filter, the transmittances are set in different patterns.

【0072】この赤外抽出部50は、レール状治具55
にて赤外用R、G、Bフィルタ52…54をそのレール
方向に移動させることにより、第2偏光子23からの赤
外光を疑似的にR、G、Bに相当する画像信号として分
解し、これらを赤外撮像素子51に送る。ここで撮像さ
れるR、G、B用の画像信号は、データ取得システム2
の画像処理に供せられる。
The infrared extraction unit 50 is provided with a rail-shaped jig 55
By moving the infrared R, G, B filters 52... 54 in the rail direction, the infrared light from the second polarizer 23 is decomposed into pseudo R, G, B image signals. These are sent to the infrared imaging element 51. The image signals for R, G, and B captured here are output to the data acquisition system 2.
For image processing.

【0073】即ち、データ取得システム2は、赤外撮像
素子51からのR、G、B用の画像信号をフレームメモ
リ60のR、G、B用の各領域に個別に記録させ、この
3枚の画像から通常のカラー画像処理と同様の色合成処
理を疑似的に行い、この合成画像を赤外のカラー画像と
してモニタ61に表示させる。
That is, the data acquisition system 2 records the R, G, and B image signals from the infrared imaging element 51 individually in the R, G, and B areas of the frame memory 60, The color synthesis processing similar to the normal color image processing is performed in a pseudo manner from the image (1), and the synthesized image is displayed on the monitor 61 as an infrared color image.

【0074】例えば、1000nm〜1150nmのB
フィルタ52を透過した画像を「青」、1150nm〜
1300nmのGフィルタ53を透過した画像を
「緑」、1300nm〜1450nmのRフィルタ54
を透過した画像を「赤」とし、モニタ61への表示波長
を置き換えて設定しておけば、あたかも上述の可視域を
用いた場合の鋭敏色板法に基づくカラー画像の如く、赤
外のカラー画像がモニタ61に表示される。
For example, B of 1000 nm to 1150 nm
The image transmitted through the filter 52 is referred to as “blue”,
The image transmitted through the G filter 53 of 1300 nm is “green”, and the R filter 54 of 1300 nm to 1450 nm.
If the image transmitted through is set as “red” and the display wavelength on the monitor 61 is replaced and set, an infrared color image can be obtained as if a color image based on the sensitive color plate method using the visible region described above. The image is displayed on the monitor 61.

【0075】従って、この実施形態によれば、上述した
量産現場でも迅速に検査でき、若干の変更で定量評価も
可能であり、非破壊で作業者が直観的に製品の良否を判
別できる等の効果に加え、従来では光学観察が殆ど不可
能であった半導体ウェハに代表される試料についても、
可視光を透過する試料の場合と同様に鋭敏色板法に基づ
く偏光観察法を利用して内部応力を複屈折として観察で
き、圧縮または引張り等の内部応力状態を容易に判別で
きる等の応力構造解析用としても有効に活用できる利点
がある。
Therefore, according to this embodiment, it is possible to quickly inspect even the mass production site described above, perform quantitative evaluation with a slight change, and intuitively judge the quality of the product in a non-destructive manner. In addition to the effects, even for samples represented by semiconductor wafers, which were almost impossible to observe optically in the past,
As in the case of a sample that transmits visible light, the internal stress can be observed as birefringence using the polarization observation method based on the sensitive color plate method, and the internal stress state such as compression or tension can be easily determined. There is an advantage that it can be effectively used for analysis.

【0076】また、光弾性効果による光の透過状態を観
察するため、原理が単純で基本的には計測部に機械駆動
部を殆ど必要せず、また煩雑な解析装置も不要であるこ
とから、装置全体を比較的簡素に構築でき、そのメンテ
ナンス性にも優れる等の利点もある。
Since the transmission state of light due to the photoelastic effect is observed, the principle is simple and basically no mechanical drive unit is required in the measurement unit, and no complicated analysis device is required. There are also advantages such as that the entire apparatus can be constructed relatively simply and its maintenance is excellent.

【0077】なお、この実施形態によれば、レール機構
を用いた赤外抽出部を含む検出光学系を用いてあるが、
この発明はこれに限定されるものではない。以下、この
一例を図14〜図19に基づいて説明する。
According to this embodiment, the detection optical system including the infrared extraction unit using the rail mechanism is used.
The present invention is not limited to this. Hereinafter, this example will be described with reference to FIGS.

【0078】図14に示す赤外抽出部50は、フィルタ
用の円盤状治具56を採用し、この治具56の側面に周
方向に所定間隔に上述の3つのフィルタ52…54を配
置した構成で、円盤状治具56を回転させることによ
り、各フィルタ52…54を順次通る赤外用のR、G、
Bの各画像信号を個別に抽出するものである。
The infrared extraction section 50 shown in FIG. 14 employs a disc-shaped jig 56 for filters, and the above-mentioned three filters 52... 54 are arranged on the side surface of this jig 56 at predetermined intervals in the circumferential direction. By rotating the disc-shaped jig 56 in the configuration, infrared R, G,
The B image signals are individually extracted.

【0079】図15に示す検出光学系10は、赤外撮像
素子として3台の赤外カメラ51a、51b、51cを
採用し、その各カメラ51a…51cに上述の3つのフ
ィルタ52…54を個別に割り当てたものである。この
場合には、フィルタを移動させなくてもよいため、より
一層リアルタイムに画像を撮像できる利点もある。
The detection optical system 10 shown in FIG. 15 employs three infrared cameras 51a, 51b, and 51c as infrared imaging elements, and the three filters 52... Is assigned to In this case, since the filter does not need to be moved, there is an advantage that an image can be captured in more real time.

【0080】図16に示す検出光学系10は、上述の3
つの赤外カメラ51a…51cを用いた場合の変形例と
して、第2偏光子23の出射側の光路上に2つのビーム
・スプリッタ57a、57bを配置し、これを用いて赤
外光を分離して各フィルタ52…54に送り、これを各
カメラ51a…51cで撮像するものである。
The detection optical system 10 shown in FIG.
As a modified example using two infrared cameras 51a to 51c, two beam splitters 57a and 57b are arranged on the optical path on the exit side of the second polarizer 23, and the infrared light is separated using the beam splitters 57a and 57b. 54 to the respective filters 52... 54, and the images are captured by the cameras 51 a.

【0081】図17に示す検出光学系10は、同様に3
つの赤外カメラ51a…51cを用いた場合の別の変形
例として、第2偏光子23の出射側の光路上に2段のダ
イクロイック・ミラー58a、58bを配置し、その各
ミラー58a、58bの反射透過特性を用いて波長を分
け、これを各カメラ51a…51cで個別に撮像するも
のである。この場合のダイクロイック・ミラー58a、
58bの反射透過特性を図18および図19に示す。
The detection optical system 10 shown in FIG.
As another modified example using two infrared cameras 51a to 51c, two stages of dichroic mirrors 58a and 58b are arranged on the optical path on the emission side of the second polarizer 23, and each of the mirrors 58a and 58b is The wavelengths are divided using the reflection / transmission characteristics, and the wavelengths are individually captured by the cameras 51a to 51c. In this case, the dichroic mirror 58a,
The reflection and transmission characteristics of 58b are shown in FIGS.

【0082】この内、前段のミラー58aは、図18に
示すように上述のBフィルタの透過波長域に相当する赤
外光を反射し、上述のG、Rフィルタの透過波長域に相
当する赤外光を透過する。また後段のミラー58bは、
図19に示すように上述のGフィルタの透過波長域に相
当する赤外光を反射し、上述のRフィルタの透過波長域
に相当する赤外光を透過する。
The mirror 58a at the front stage reflects infrared light corresponding to the transmission wavelength range of the above-described B filter, as shown in FIG. 18, and red light corresponding to the transmission wavelength range of the above-described G and R filters, as shown in FIG. Transmits external light. Also, the mirror 58b at the subsequent stage
As shown in FIG. 19, the infrared light corresponding to the transmission wavelength range of the G filter is reflected, and the infrared light corresponding to the transmission wavelength range of the R filter is transmitted.

【0083】従って、前段のミラー反射側のカメラ51
aでは、Bフィルタを用いた場合と同様の画像、また後
段のミラー反射側のカメラ51bでは、Gフィルタを用
いた場合と同様の画像、さらに後段のミラー透過側のカ
メラ51cでは、Rフィルタを用いた場合と同様の画像
がそれぞれ得られる。
Accordingly, the camera 51 on the mirror reflection side in the preceding stage
In a, the same image as when the B filter is used, the same image as when the G filter is used in the camera 51b on the rear mirror reflection side, and the R filter in the camera 51c on the mirror transmission side in the subsequent stage. An image similar to that used is obtained.

【0084】なお、将来的にRGBフィルタを配置した
CCD等のカラー撮像素子と同様のカラー赤外撮像素子
の製品化が可能であれば、これを上述の赤外抽出部及び
赤外撮像素子の代わりに用いてもよい。
If it is possible to commercialize a color infrared imaging device similar to a color imaging device such as a CCD in which RGB filters are arranged in the future, the color infrared imaging device may be replaced with the infrared extraction unit and infrared imaging device described above. It may be used instead.

【0085】[0085]

【発明の効果】以上説明したように、この発明によれ
ば、複屈折性試料における面内の複屈折分布特性や屈折
率楕円体の様子を直感的に把握でき、特に予め登録した
基準試料を用いて比較したり、色合いの変化を画像処理
して定量評価することにより、迅速で精度の高い複屈折
評価を比較的簡単に行え、複屈折量および屈折率楕円体
の定量解析も可能となる。
As described above, according to the present invention, the in-plane birefringence distribution characteristics and the state of the refractive index ellipsoid in the birefringent sample can be intuitively grasped. By using and comparing, or performing image processing and quantitative evaluation of color change, birefringence evaluation can be performed quickly and accurately relatively easily, and quantitative analysis of birefringence and refractive index ellipsoids is also possible. .

【0086】この効果は、近年大きな市場を形成し且つ
そこで扱われる製品の生産量が大幅に増加する傾向にあ
る光関連分野に適用した場合に最大限に発揮させること
ができる。即ち、光ディスク基板等の製品に関する品質
を迅速かつ正確に評価し、例えばディスク基板内の分子
配向の様子を従来よりも簡単な処理で測定でき、その結
果、生産における品質安定性を高めると共に、製造コス
トを大幅に低下させることができる。
This effect can be maximized when it is applied to an optical-related field in which a large market has been formed in recent years and the production volume of products handled there tends to greatly increase. That is, the quality of a product such as an optical disk substrate can be quickly and accurately evaluated, and for example, the state of molecular orientation in the disk substrate can be measured by a simpler process than before, thereby improving the quality stability in production and manufacturing The cost can be significantly reduced.

【0087】また、検出波長域として赤外域を用いる場
合には、従来では光学観察が殆ど不可能であった半導体
ウェハに代表される試料でも、可視光を透過する試料の
場合と同様に鋭敏色板法に基づく偏光観察でその内部応
力を複屈折として観察でき、圧縮または引張り等の内部
応力状態を容易に判別できる等の応力構造解析用として
有効に活用できる優れた利点がある。
When an infrared region is used as a detection wavelength region, even a sample typified by a semiconductor wafer, which has been almost impossible to observe optically in the past, has a sharp color like a sample transmitting visible light. There is an excellent advantage that the internal stress can be observed as birefringence by polarized light observation based on the plate method, and that it can be effectively used for stress structure analysis such that the internal stress state such as compression or tension can be easily determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る複屈折評価装置の全体構成を示
す概念図。
FIG. 1 is a conceptual diagram showing the overall configuration of a birefringence evaluation device according to the present invention.

【図2】鋭敏色板法に基づく偏光観察の原理を説明する
グラフ。
FIG. 2 is a graph illustrating the principle of polarized light observation based on a sensitive color plate method.

【図3】データ取得システムの動作を説明する概略フロ
ーチャート。
FIG. 3 is a schematic flowchart illustrating the operation of the data acquisition system.

【図4】入射光学系に四分の一波長板を加えた場合の要
部構成を示す概念図。
FIG. 4 is a conceptual diagram showing a configuration of a main part when a quarter-wave plate is added to the incident optical system.

【図5】検出光学系を反射光軸上に配置した場合の要部
構成を示す概念図。
FIG. 5 is a conceptual diagram showing a main part configuration when a detection optical system is arranged on a reflection optical axis.

【図6】検出光学系を反射光軸上に配置した他の態様を
示す概念図。
FIG. 6 is a conceptual diagram showing another embodiment in which a detection optical system is arranged on a reflection optical axis.

【図7】ビーム・スプリッタを用いた場合の要部構成を
示す概念図。
FIG. 7 is a conceptual diagram showing a configuration of a main part when a beam splitter is used.

【図8】ビーム・スプリッタを用いた他の態様を示す概
念図。
FIG. 8 is a conceptual diagram showing another embodiment using a beam splitter.

【図9】反射散乱光を検出する場合の要部構成を示す概
念図。
FIG. 9 is a conceptual diagram showing a configuration of a main part when detecting reflected scattered light.

【図10】反射散乱光を検出する他の態様を示す概念
図。
FIG. 10 is a conceptual diagram showing another mode for detecting reflected scattered light.

【図11】試料の複屈折量を解析する場合の説明図。FIG. 11 is an explanatory diagram when analyzing the birefringence of a sample.

【図12】赤外域の光を利用する場合の要部構成を示す
概念図。
FIG. 12 is a conceptual diagram showing a configuration of a main part when light in an infrared region is used.

【図13】赤外透過フィルタの透過特性を説明するグラ
フ。
FIG. 13 is a graph illustrating transmission characteristics of an infrared transmission filter.

【図14】円盤状治具にフィルタを配置した場合の要部
構造を示す概念図。
FIG. 14 is a conceptual diagram showing a main part structure when a filter is arranged on a disk-shaped jig.

【図15】3台の赤外カメラを用いる場合の要部構成を
示す概念図。
FIG. 15 is a conceptual diagram showing a configuration of a main part when three infrared cameras are used.

【図16】ビーム・スプリッタを配置した場合の要部構
成を示す概念図。
FIG. 16 is a conceptual diagram showing a main configuration when a beam splitter is arranged.

【図17】ダイクロイック・ミラーを配置した場合の要
部構成を示す概念図。
FIG. 17 is a conceptual diagram showing a main configuration when a dichroic mirror is arranged.

【図18】前段のダイクロイック・ミラーの反射透過特
性を説明するグラフ。
FIG. 18 is a graph illustrating the reflection and transmission characteristics of the dichroic mirror in the preceding stage.

【図19】後段のダイクロイック・ミラーの反射透過特
性を説明するグラフ。
FIG. 19 is a graph illustrating the reflection and transmission characteristics of a dichroic mirror at the subsequent stage.

【符号の説明】[Explanation of symbols]

1 鋭敏色板観察光学系 2 データ取得システム 9 搭載ステージ 9a 傾斜ステージ 10 入射光学系 11 光源 12 拡散板 13 直線偏光子(第1偏光子) 14 四分の一波長板 15 ビーム・スプリッタ 20 検出光学系 21 四分の一波長板 21a 回転機構 22 一波長板 23 直線偏光子(第2偏光子) 24 カラー撮像素子 30 CPU 40 画像観察用モニタ 50 赤外抽出部 51、51a、51b、51c 赤外撮像素子 52 赤外用Rフィルタ 53 赤外用Gフィルタ 54 赤外用Bフィルタ 55 レール状治具 56 円盤状治具 57a、57b ビーム・スプリッタ 58a、58b ダイクロイック・ミラー 60 フレームメモリ 61 モニタ DESCRIPTION OF SYMBOLS 1 Sensitive color plate observation optical system 2 Data acquisition system 9 Mounting stage 9a Tilt stage 10 Incident optical system 11 Light source 12 Diffusion plate 13 Linear polarizer (first polarizer) 14 Quarter wave plate 15 Beam splitter 20 Detection optics System 21 Quarter-wave plate 21a Rotating mechanism 22 Single-wave plate 23 Linear polarizer (second polarizer) 24 Color imaging device 30 CPU 40 Monitor for image observation 50 Infrared extractor 51, 51a, 51b, 51c Infrared Image sensor 52 Infrared R filter 53 Infrared G filter 54 Infrared B filter 55 Rail jig 56 Disk jig 57a, 57b Beam splitter 58a, 58b Dichroic mirror 60 Frame memory 61 Monitor

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 試料の検査部の複屈折像を鋭敏色板法を
用いて偏光観察する観察光学系と、この観察光学系によ
る上記複屈折像を上記検査部を評価する解析可能な画像
データとして取得するデータ取得手段とを備えたことを
特徴とする複屈折評価装置。
1. An observation optical system for observing a birefringence image of an inspection part of a sample in a polarized state using a sensitive color plate method, and image data capable of analyzing the birefringence image by the observation optical system for evaluating the inspection part. A birefringence evaluation device, comprising:
【請求項2】 前記データ取得手段は、前記画像データ
を予め設定された基準試料の複屈折像に関する画像デー
タと共にモニタに表示させる手段を備えた請求項1記載
の複屈折評価装置。
2. The birefringence evaluation apparatus according to claim 1, wherein said data acquisition means includes means for displaying said image data on a monitor together with image data relating to a preset birefringence image of a reference sample.
【請求項3】 前記データ取得手段は、前記検査部の少
なくとも複屈折量を予め設定された基準試料に関するデ
ータに基づいて解析する手段を備えた請求項1または2
記載の複屈折評価装置。
3. The data acquisition means according to claim 1, further comprising means for analyzing at least a birefringence amount of the inspection section based on data on a preset reference sample.
The birefringence evaluation device described in the above.
【請求項4】 前記観察光学系は、前記検査部の透過光
および反射光の少なくとも1つを利用して上記検査部の
複屈折像を偏光観察する光学系である請求項1から3ま
でのいずれか1項記載の複屈折評価装置。
4. The observation optical system according to claim 1, wherein the observation optical system is an optical system that performs polarization observation of a birefringent image of the inspection unit using at least one of transmitted light and reflected light of the inspection unit. The birefringence evaluation device according to claim 1.
【請求項5】 前記観察光学系は、前記検査部の透過散
乱光および反射散乱光の少なくとも1つを利用して上記
検査部を偏光観察する光学系である請求項4記載の複屈
折評価装置。
5. The birefringence evaluation device according to claim 4, wherein the observation optical system is an optical system that observes the polarization of the inspection unit using at least one of the transmitted scattered light and the reflected scattered light of the inspection unit. .
【請求項6】 前記観察光学系は、前記試料に向けて光
を発する光源と、この光源の出射側の上記試料を挟む光
路上に直交ニコルの配置を成す2つの偏光子と、この2
つの偏光子間の上記試料からの光を受ける光路上に配置
される一波長板と、上記2つの偏光子の出射側の光路上
に配置される撮像系とを備えた請求項4または5記載の
複屈折評価装置。
6. The observation optical system includes: a light source that emits light toward the sample; two polarizers arranged in an orthogonal Nicols on an optical path between the light source and the sample on the emission side;
6. The apparatus according to claim 4, further comprising: a one-wavelength plate disposed on an optical path between the two polarizers for receiving light from the sample; and an imaging system disposed on an optical path on an output side of the two polarizers. Birefringence evaluation device.
【請求項7】 前記観察光学系は、前記2つの偏光子の
内の前記光源側の偏光子と前記試料との間の光路上に四
分の一波長板を備えた請求項6記載の複屈折評価装置。
7. The multiple optical system according to claim 6, wherein the observation optical system includes a quarter-wave plate on an optical path between the light source side polarizer of the two polarizers and the sample. Refraction evaluation device.
【請求項8】 前記一波長板は、白色光に対して一波長
分の位相差を示す複屈折性素子で構成され、前記撮像系
は、カラー撮像素子を備えた請求項6または7記載の複
屈折評価装置。
8. The one-wavelength plate according to claim 6, wherein the one-wavelength plate includes a birefringent element that exhibits a phase difference of one wavelength with respect to white light, and the imaging system includes a color imaging element. Birefringence evaluation device.
【請求項9】 前記一波長板は、赤外光に対して一波長
分の位相差を示す複屈折性素子で構成され、前記撮像系
は、赤外光を予め設定された画像合成用の3つの波長域
に分解して抽出する光学系と、この光学系により抽出さ
れる赤外光を撮像する赤外撮像素子とを備えた請求項6
または7記載の複屈折評価装置。
9. The one-wavelength plate is formed of a birefringent element that exhibits a phase difference of one wavelength with respect to infrared light, and the imaging system is configured to convert infrared light into a predetermined image combining signal. 7. An optical system comprising: an optical system for decomposing and extracting light into three wavelength ranges; and an infrared imaging device for imaging infrared light extracted by the optical system.
Or the birefringence evaluation apparatus according to 7.
【請求項10】 前記光学系は、前記3つの波長域に応
じて透過率が異なる赤外透過フィルタを備えた請求項9
記載の複屈折評価装置。
10. The optical system according to claim 9, wherein the optical system includes an infrared transmission filter having different transmittances according to the three wavelength ranges.
The birefringence evaluation device described in the above.
JP9145462A 1997-06-03 1997-06-03 Birefringence evaluation system Pending JPH10332533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9145462A JPH10332533A (en) 1997-06-03 1997-06-03 Birefringence evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9145462A JPH10332533A (en) 1997-06-03 1997-06-03 Birefringence evaluation system

Publications (1)

Publication Number Publication Date
JPH10332533A true JPH10332533A (en) 1998-12-18

Family

ID=15385804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9145462A Pending JPH10332533A (en) 1997-06-03 1997-06-03 Birefringence evaluation system

Country Status (1)

Country Link
JP (1) JPH10332533A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665059B2 (en) 2000-02-14 2003-12-16 Fuji Electric Co., Ltd. Method of measuring an inner stress state of disk substrate
WO2006120982A1 (en) * 2005-05-06 2006-11-16 National University Corpration Nagoya University Catheter surgery simulation
JP2007017929A (en) * 2005-05-06 2007-01-25 Univ Nagoya Catheter surgery simulator
CN1311229C (en) * 2004-08-11 2007-04-18 哈尔滨工业大学 Method for measuring retaining stress double-refraction value of stress deflection fibre-optical
JP2007121811A (en) * 2005-10-31 2007-05-17 Univ Nagoya Catheter surgery simulator
WO2007083755A1 (en) * 2006-01-20 2007-07-26 Sumitomo Electric Industries, Ltd. Analyzer, authenticity judging device, authenticity judging method, and underground searching method
JP2007298443A (en) * 2006-05-01 2007-11-15 Konica Minolta Holdings Inc Method and device for estimating structure of microstructure and mold manufacturing method
JP2008256591A (en) * 2007-04-06 2008-10-23 Fujifilm Corp Phase difference measuring device using a spectroscope
JP2008256590A (en) * 2007-04-06 2008-10-23 Fujifilm Corp Phase difference measuring method and apparatus
WO2009063756A1 (en) * 2007-11-12 2009-05-22 Asahi Glass Company, Limited Glass plate manufacturing method and residual stress measurement method for glass article
JP2009229284A (en) * 2008-03-24 2009-10-08 Yamatake Corp Optical axis azimuth measuring apparatus, optical axis azimuth measuring method, spherical surface acoustic wave device manufacturing apparatus, and spherical surface acoustic wave device manufacturing method
JP2010066176A (en) * 2008-09-12 2010-03-25 Kao Corp Method of evaluating internal state and device for evaluating internal state of hair
JP2011112493A (en) * 2009-11-26 2011-06-09 Eto Co Ltd Double refraction measuring device of non-planar-shaped sample
JP2016080473A (en) * 2014-10-15 2016-05-16 日本ゼオン株式会社 Phase difference measuring method for optical films, optical film manufacturing method, phase difference measuring device for optical films, and optical film manufacturing device
WO2017134086A1 (en) * 2016-02-03 2017-08-10 Glaxosmithkline Biologicals S.A. Apparatus and method for detecting a crack in an optically transparent article
JP2020085770A (en) * 2018-11-29 2020-06-04 株式会社日立ビルシステム Scattered light detection device and nondestructive inspection device using the same
WO2021106244A1 (en) * 2019-11-27 2021-06-03 シンクロア株式会社 Optical unit
JPWO2021125333A1 (en) * 2019-12-20 2021-06-24
JP2022069005A (en) * 2020-10-23 2022-05-11 レーザーテック株式会社 Measurement device and measurement method
US11899038B2 (en) 2019-12-20 2024-02-13 Resonac Corporation Acceleration sensor, acceleration evaluation method using same, and load provided with acceleration sensor

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665059B2 (en) 2000-02-14 2003-12-16 Fuji Electric Co., Ltd. Method of measuring an inner stress state of disk substrate
CN1311229C (en) * 2004-08-11 2007-04-18 哈尔滨工业大学 Method for measuring retaining stress double-refraction value of stress deflection fibre-optical
WO2006120982A1 (en) * 2005-05-06 2006-11-16 National University Corpration Nagoya University Catheter surgery simulation
JP2007017929A (en) * 2005-05-06 2007-01-25 Univ Nagoya Catheter surgery simulator
JP2007121811A (en) * 2005-10-31 2007-05-17 Univ Nagoya Catheter surgery simulator
WO2007083755A1 (en) * 2006-01-20 2007-07-26 Sumitomo Electric Industries, Ltd. Analyzer, authenticity judging device, authenticity judging method, and underground searching method
JP2007298443A (en) * 2006-05-01 2007-11-15 Konica Minolta Holdings Inc Method and device for estimating structure of microstructure and mold manufacturing method
KR101497695B1 (en) * 2007-04-06 2015-03-02 후지필름 가부시키가이샤 Apparatus for measuring phase difference using spectrometer
JP2008256590A (en) * 2007-04-06 2008-10-23 Fujifilm Corp Phase difference measuring method and apparatus
JP2008256591A (en) * 2007-04-06 2008-10-23 Fujifilm Corp Phase difference measuring device using a spectroscope
WO2009063756A1 (en) * 2007-11-12 2009-05-22 Asahi Glass Company, Limited Glass plate manufacturing method and residual stress measurement method for glass article
JPWO2009063756A1 (en) * 2007-11-12 2011-03-31 旭硝子株式会社 Method for producing glass plate and method for measuring residual stress in glass article
JP2009229284A (en) * 2008-03-24 2009-10-08 Yamatake Corp Optical axis azimuth measuring apparatus, optical axis azimuth measuring method, spherical surface acoustic wave device manufacturing apparatus, and spherical surface acoustic wave device manufacturing method
JP2010066176A (en) * 2008-09-12 2010-03-25 Kao Corp Method of evaluating internal state and device for evaluating internal state of hair
JP2011112493A (en) * 2009-11-26 2011-06-09 Eto Co Ltd Double refraction measuring device of non-planar-shaped sample
JP2016080473A (en) * 2014-10-15 2016-05-16 日本ゼオン株式会社 Phase difference measuring method for optical films, optical film manufacturing method, phase difference measuring device for optical films, and optical film manufacturing device
US20190049390A1 (en) * 2016-02-03 2019-02-14 Glaxosmithkline Biologicals S.A. Novel Device
WO2017134086A1 (en) * 2016-02-03 2017-08-10 Glaxosmithkline Biologicals S.A. Apparatus and method for detecting a crack in an optically transparent article
US10883943B2 (en) 2016-02-03 2021-01-05 Glaxosmithkline Biologicals Sa Method and apparatus for detecting a crack in a transparent article
BE1024456B1 (en) * 2016-02-03 2018-03-01 Glaxosmithkline Biologicals Sa NEW DEVICE
JP2020085770A (en) * 2018-11-29 2020-06-04 株式会社日立ビルシステム Scattered light detection device and nondestructive inspection device using the same
JPWO2021106244A1 (en) * 2019-11-27 2021-12-02 シンクロア株式会社 Optical unit
WO2021106244A1 (en) * 2019-11-27 2021-06-03 シンクロア株式会社 Optical unit
KR20220100970A (en) * 2019-11-27 2022-07-18 신쿠로아 가부시키가이샤 optical unit
WO2021125333A1 (en) 2019-12-20 2021-06-24 昭和電工株式会社 Method for evaluating orientation of nanowire in transparent material, method for managing steps in which said method is used, and method for producing resin cured article
KR20220097514A (en) 2019-12-20 2022-07-07 쇼와 덴코 가부시키가이샤 A method for evaluating the orientation of nanowires in a transparent material, a process control method using the same, and a method for manufacturing a cured resin product
JPWO2021125333A1 (en) * 2019-12-20 2021-06-24
CN114868008A (en) * 2019-12-20 2022-08-05 昭和电工株式会社 Method for evaluating orientation of nanowires in transparent material, process control method using the evaluation method, and method for producing cured resin
US11899038B2 (en) 2019-12-20 2024-02-13 Resonac Corporation Acceleration sensor, acceleration evaluation method using same, and load provided with acceleration sensor
JP2022069005A (en) * 2020-10-23 2022-05-11 レーザーテック株式会社 Measurement device and measurement method

Similar Documents

Publication Publication Date Title
JPH10332533A (en) Birefringence evaluation system
CA2261469C (en) Method and apparatus for measurement of absolute biaxial birefringence in monolayer and multilayer films, sheets and shapes
Zhou et al. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging
US8908180B2 (en) Device and method for polarimetric measurement with microscopic resolution, polarimetry accessory for a microscope, ellipsomicroscope and ellipsometric contrast microscope
KR101441876B1 (en) Method for measuring optical anisotropy parameter and measurement apparatus
JP5198980B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
WO1998055844A1 (en) Full field photoelastic stress analysis
US9989454B2 (en) Method and apparatus for measuring parameters of optical anisotropy
TW479127B (en) Method and device for measuring thickness of test object
JP4663529B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
CN101281091A (en) Phase difference measuring apparatus using light splitter
JP3425923B2 (en) Evaluation method and evaluation device for anisotropic multilayer thin film structure
CN101726844B (en) Interferometric Phase Contrast Microscopy
JP3365474B2 (en) Polarizing imaging device
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP2014074650A (en) Inspection equipment for optical element and inspection method for optical element
JP5041508B2 (en) Optical characteristic measuring apparatus and method
JPH08248372A (en) Inspection method of flat panel display
US20110122409A1 (en) Object characteristic measurement method and system
JP2017009338A (en) Measurement method of optical characteristic and measurement instrument of optical characteristic
JP5991226B2 (en) Polarization analyzer for evaluating depolarization effect
US6710882B2 (en) Anisotropy analyzing method and an anisotropy analyzing apparatus
KR102517637B1 (en) Polarization analysis apparatus and method for lens quality inspection, and polarization analysis system using the same
JPH02118406A (en) Liquid crystal cell gap measuring device
JP5935085B1 (en) Spectrometer