[go: up one dir, main page]

JPS61265515A - Method for measuring processing accuracy - Google Patents

Method for measuring processing accuracy

Info

Publication number
JPS61265515A
JPS61265515A JP10866485A JP10866485A JPS61265515A JP S61265515 A JPS61265515 A JP S61265515A JP 10866485 A JP10866485 A JP 10866485A JP 10866485 A JP10866485 A JP 10866485A JP S61265515 A JPS61265515 A JP S61265515A
Authority
JP
Japan
Prior art keywords
pattern
grating
pmma
film
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10866485A
Other languages
Japanese (ja)
Inventor
Shinya Hasegawa
晋也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10866485A priority Critical patent/JPS61265515A/en
Publication of JPS61265515A publication Critical patent/JPS61265515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To make it possible to measure the processing accuracy of 0.1mum or less of a pattern, by guiding light, which was deflected to the lateral direction of the pattern, to the pattern by using a grating to measure the power of scattered light. CONSTITUTION:Polymethyl methacrylic acid (PMMA) with a refractive index of 1.491 is applied to a quartz glass substrate 2 in a thickness of about 0.8mum to form a film 1. Next, PMMA is processed into a linear pattern with a line width of about 1.2mum and, thereafter, a grating 4 with a cycle of about 1mum is formed to the surface of PMMA. Helium/neon laser beam deflected to the lateral direction of the pattern is guided to PMMA in air through the grating 4 and the power P1 of scattered beam from the slit 6 placed on PMMA is measured. Next, the slit 6 is moved by about 4mm toward the grating 4 to measure the power P2 of scattered light from the slit 6. From the ratio of powers P1, P2, the distance between measuring points and the correlation between the shape of the film and the refractive index thereof, the disturbance of the pattern side wall is calculated to make it possible to measure processing accuracy of 0.1mum or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微細加工によ〕形成されたパターンの加工精度
測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring the machining accuracy of a pattern formed by microfabrication.

〔従来の技術〕[Conventional technology]

従来、微細加工により得られたパターンの加工精度を測
定するには、光学顕微鏡あるいは走査形電子顕微鏡によ
りパターンを観察することにより行われてきた。
Conventionally, the processing accuracy of a pattern obtained by microfabrication has been measured by observing the pattern using an optical microscope or a scanning electron microscope.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この方法では0.1μm以下の加工精度全測定
することは困難で6つ次。
However, with this method, it is difficult to measure the entire machining accuracy of 0.1 μm or less.

本発明の目的は、上記のような欠点全除去した加工精度
測定方法を提供することにある。
An object of the present invention is to provide a machining accuracy measuring method that completely eliminates the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、基板上の屈折率と加工線幅が既知
である、・母ターニングされた可透光性材質膜にグレー
ティングを形成し、グレーティングを通して、パターン
の幅方向に偏光した光を導波せしめ、被膜から出る散乱
光の電力値を2箇所の測定点で各々別個に測定し、この
各々の電力値の比と測定点間の距離と膜の形状、屈折率
の間の相関関係からパターン側壁の乱れを求めることを
特徴とする加工精度測定方法である。
That is, in the present invention, the refractive index and processed line width on the substrate are known, the grating is formed on a turned transparent material film, and the light polarized in the width direction of the pattern is guided through the grating. The power value of the scattered light emitted from the wave and coating was measured separately at two measurement points, and the correlation between the ratio of each power value, the distance between the measurement points, the shape of the film, and the refractive index was calculated. This is a processing accuracy measurement method characterized by determining the disturbance of pattern sidewalls.

〔発明の原理〕[Principle of the invention]

以下に本発明全図面全参照しながら説明する。 The present invention will be explained below with reference to all the drawings.

第1図に示すように、屈折率n1で線幅Wに加工された
膜1が基板2と屈折率noの物質(例えば空気あるいは
液体)3との間に挾まれている場合において、まず、膜
1の表面にグレーティング4を形成する。次に、グレー
テイング4全通して、膜1の幅方向に偏光した光5を膜
1中に導波させ、膜1上に置かれたスリット6から出射
する散乱光7の電力PI k測定する。次に、スリット
6を距離りだけ移動させスリット6から出射する散乱光
7の電力Pzk測定する。このとき、パターン側壁の乱
れaは、 で与えられる。したがって、Pi lP2 k測定し、
式(1)ヲ解くことによってパターン側壁の乱れ&を求
めることができる。
As shown in FIG. 1, when a film 1 processed to have a line width W with a refractive index n1 is sandwiched between a substrate 2 and a substance (for example, air or liquid) 3 with a refractive index no, first, A grating 4 is formed on the surface of the film 1. Next, the light 5 polarized in the width direction of the film 1 is guided into the film 1 through the entire grating 4, and the power PI k of the scattered light 7 emitted from the slit 6 placed on the film 1 is measured. . Next, the slit 6 is moved by a distance and the power Pzk of the scattered light 7 emitted from the slit 6 is measured. At this time, the disturbance a of the pattern sidewall is given by: Therefore, we measure Pi lP2 k,
By solving equation (1), the pattern sidewall disturbance & can be determined.

〔実施例〕〔Example〕

以下、本発明の実施例を示す。石英ガラス全基板2とし
、その上に膜1として屈折率1.491のポリメチルメ
タアクリル酸(PMMA)’を膜厚0.8μmK塗布、
した。次に、PMMA ’に線幅1,2μmの線状パタ
ーンに加工後、PMMAの表面に周期1μmのグレーテ
ィング4を形成した。空気(屈折率1.000 )中よ
り、グレーテイング4全通して、パターンの幅方向に偏
光したヘリウム・ネオンレーデ光f、PMMA中に導波
させて、PMMA上に置かれたスリット6から出射する
散乱光の電力PI k測定したところ、その値は18μ
Wであった。次に、スリット6をグレーティングの方l
\4B移動させて、スリット6から出射する散乱光の電
力P2を測定したところ、その値は16μWであった。
Examples of the present invention will be shown below. A quartz glass entire substrate 2 is used, and a film 1 of polymethyl methacrylic acid (PMMA) with a refractive index of 1.491 is applied thereto to a thickness of 0.8 μm.
did. Next, after processing PMMA' into a linear pattern with a line width of 1 to 2 μm, a grating 4 with a pitch of 1 μm was formed on the surface of the PMMA. From air (refractive index 1.000), helium/neon led light f polarized in the width direction of the pattern is passed through the grating 4 and guided into the PMMA, and is emitted from the slit 6 placed on the PMMA. When the power of scattered light PI k was measured, its value was 18μ
It was W. Next, insert the slit 6 toward the grating.
When the power P2 of the scattered light emitted from the slit 6 was measured after moving by \4B, the value was 16 μW.

Pt、Pzヲ式(1)に代入し、aを求めることによっ
てPMMAパターンの加工精度は0.03μmであるこ
とが判った。
By substituting Pt and Pz into equation (1) and finding a, it was found that the processing accuracy of the PMMA pattern was 0.03 μm.

〔発明の効果〕〔Effect of the invention〕

従って、本発明によれば、グレーティングを用いてパタ
ーンに、その幅方向に偏光した光を導波し、散乱光の電
力を測定するのみで、パターンの加工精度を高精度に求
めることができる効果を有するものである。
Therefore, according to the present invention, the processing accuracy of a pattern can be determined with high precision by simply guiding polarized light in the width direction of the pattern using a grating and measuring the power of the scattered light. It has the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は膜の加工後の加工精度を測定する方法を表す模
式図である。 l・・・膜、2・・・基板、3・・屈折率nQの物質、
4・・・グレーティング、5・・・膜(ツヤターン)の
幅方向に偏光した光、6・・・スリット、7・・・散乱
光。
FIG. 1 is a schematic diagram showing a method for measuring processing accuracy after processing a film. l...film, 2...substrate, 3...substance with refractive index nQ,
4... Grating, 5... Light polarized in the width direction of the film (glossy turn), 6... Slit, 7... Scattered light.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上の屈折率と加工線幅が既知である、パター
ニングされた可透光性材質膜にグレーティングを形成し
、グレーティングを通して、パターンの幅方向に偏光し
た光を導波せしめ、該膜から出射する散乱光の電力値を
2箇所の測定点で各々別個に測定し、各々の電力値の比
と測定点間の距離と膜の形状、屈折率の間の相関関係か
らパターン側壁の乱れを求めることを特徴とする加工精
度測定方法。
(1) A grating is formed on a patterned transparent material film with a known refractive index and processed line width on a substrate, and light polarized in the width direction of the pattern is guided through the grating, and the film is The power value of the scattered light emitted from the is measured separately at two measurement points, and the disturbance of the pattern sidewall is determined from the correlation between the ratio of each power value, the distance between the measurement points, the film shape, and the refractive index. A machining accuracy measurement method characterized by determining .
JP10866485A 1985-05-21 1985-05-21 Method for measuring processing accuracy Pending JPS61265515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10866485A JPS61265515A (en) 1985-05-21 1985-05-21 Method for measuring processing accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10866485A JPS61265515A (en) 1985-05-21 1985-05-21 Method for measuring processing accuracy

Publications (1)

Publication Number Publication Date
JPS61265515A true JPS61265515A (en) 1986-11-25

Family

ID=14490547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10866485A Pending JPS61265515A (en) 1985-05-21 1985-05-21 Method for measuring processing accuracy

Country Status (1)

Country Link
JP (1) JPS61265515A (en)

Similar Documents

Publication Publication Date Title
JP3074357B2 (en) Micro surface observation device
US6961490B2 (en) Waveguide plate and process for its production and microtitre plate
US20070229853A1 (en) Nanometer contact detection method and apparatus for precision machining
JP2002052908A (en) Pneumatic tire and its tread abrasion loss measuring method
US5481360A (en) Optical device for measuring surface shape
US6177285B1 (en) Process for determining the crystal orientation in a wafer
JPS61265515A (en) Method for measuring processing accuracy
JPS61265514A (en) Method for measuring processing accuracy
JPS61153509A (en) Measuring method of work precision
JPS61264208A (en) Measuring method for processing accuracy
JPS61153512A (en) Measuring method of work precision
JPS61153510A (en) Measuring method of work precision
JPS61266906A (en) Measuring method for processing accuracy
JP2000230811A (en) Shape measuring method for film roll
JPS57104803A (en) Displacement measuring apparatus
JPS61153511A (en) Measuring method of work precision
JPH063128A (en) Optical type surface shape measuring apparatus
JPS614905A (en) Measuring method of line width
JPS614906A (en) Measuring method of line width
JPS60236006A (en) Measuring method of line width
JPS60233506A (en) Line width measuring method
JPS60236005A (en) Measuring method of line width
JPH0922864A (en) Position detection method for semiconductor substrate and semiconductor substrate and photomask
JPS62299739A (en) Method and apparatus for measuring polarized beat length of high birefringence single mode optical fiber
JPH0815148B2 (en) Etching depth measuring method