[go: up one dir, main page]

JPH08103786A - Aerobic treatment of organic wastewater - Google Patents

Aerobic treatment of organic wastewater

Info

Publication number
JPH08103786A
JPH08103786A JP24318694A JP24318694A JPH08103786A JP H08103786 A JPH08103786 A JP H08103786A JP 24318694 A JP24318694 A JP 24318694A JP 24318694 A JP24318694 A JP 24318694A JP H08103786 A JPH08103786 A JP H08103786A
Authority
JP
Japan
Prior art keywords
sludge
liquid
treatment
aeration tank
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24318694A
Other languages
Japanese (ja)
Inventor
Masahide Shibata
雅秀 柴田
Hidenari Yasui
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP24318694A priority Critical patent/JPH08103786A/en
Publication of JPH08103786A publication Critical patent/JPH08103786A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

(57)【要約】 【目的】 穏やかな条件で汚泥を可溶化処理することに
より低コストで、しかも負荷および処理効率を低下させ
ることなく、余剰汚泥の生成を抑制することが可能であ
り、場合によっては余剰汚泥の発生をゼロにすることも
可能な有機性排液の好気性処理方法を提案する。 【構成】 仕切板31により区画された曝気槽11の上
流部分32に有機性排液13を導入し、曝気槽11内の
活性汚泥および返送汚泥14と混合して好気性処理を行
い、上流部分32の混合液を引抜き、この引抜液22を
オゾン処理槽21に導入して汚泥をオゾン処理し、オゾ
ン処理液25は曝気槽11の下流部分33に戻して好気
性処理を行う。
(57) [Summary] [Purpose] Excess sludge generation can be suppressed at low cost by solubilizing sludge under mild conditions and without reducing load and treatment efficiency. We propose an aerobic treatment method for organic wastewater that can reduce the generation of excess sludge to zero. [Structure] The organic waste liquid 13 is introduced into an upstream portion 32 of the aeration tank 11 partitioned by a partition plate 31, and mixed with activated sludge and return sludge 14 in the aeration tank 11 to perform aerobic treatment, and the upstream portion. The mixed solution of 32 is drawn out, the drawn solution 22 is introduced into the ozone treatment tank 21 to treat the sludge with ozone, and the ozone treated solution 25 is returned to the downstream portion 33 of the aeration tank 11 for aerobic treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、余剰汚泥の生成を制御
する有機性排液の好気性処理方法、特に穏やかな条件で
汚泥を可溶化処理して余剰汚泥の生成を抑制する有機性
排液の処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aerobic treatment method of organic waste liquid for controlling the production of excess sludge, and particularly to an organic waste treatment for solubilizing sludge under mild conditions to suppress the production of excess sludge. The present invention relates to a liquid treatment method.

【0002】[0002]

【従来の技術】活性汚泥処理法などのように、好気性微
生物の作用を利用して、有機性排液を好気条件で処理す
る好気性処理方法では、難脱水性の余剰汚泥が大量に生
成し、その処理は困難である。従来、このような余剰汚
泥は投棄処分されていたが、その処分場の確保が困難と
なり、汚泥の減容化が必要となっている。
2. Description of the Related Art An aerobic treatment method for treating organic wastewater under aerobic conditions by utilizing the action of aerobic microorganisms, such as an activated sludge treatment method, produces a large amount of hardly dehydratable excess sludge. It is difficult to generate and process. Conventionally, such excess sludge has been disposed of, but it is difficult to secure a disposal site for it, and it is necessary to reduce the volume of sludge.

【0003】好気性処理法の一つとして完全酸化法があ
る。この方法は、汚泥負荷を低くして、通常の方法と同
様に好気性処理する方法であり、汚泥の増殖量に対し汚
泥の自己消化量が多くなるため余剰汚泥を極めて少なく
できる。しかしこの方法では、槽負荷を低くする必要が
あり、排液量が多い場合には実用的ではない。
As one of the aerobic treatment methods, there is a complete oxidation method. This method is a method of performing aerobic treatment in the same manner as a normal method by reducing the sludge load, and since the amount of self-digestion of sludge increases relative to the amount of sludge growth, excess sludge can be extremely reduced. However, this method requires a low tank load and is not practical when the amount of drainage is large.

【0004】これに対して、通常の好気性処理を行い、
生成する余剰汚泥を減容化する方法が行われている。こ
のような汚泥の減容化法として、嫌気性消化法および好
気性消化法が一般的である。これらは有機性排液の好気
性処理装置とは別に、汚泥の嫌気性消化装置または好気
性消化装置を設け、嫌気性または好気性条件で汚泥の消
化を行う方法である。
On the other hand, a usual aerobic treatment is carried out,
A method is used to reduce the volume of excess sludge produced. Anaerobic digestion methods and aerobic digestion methods are generally used as such sludge volume reduction methods. In these methods, a sludge anaerobic digestion apparatus or an aerobic digestion apparatus is provided separately from an aerobic treatment apparatus for organic wastewater, and sludge is digested under anaerobic or aerobic conditions.

【0005】しかし、これらの方法では、処理汚泥の約
50%が分解されるにすぎず、残りは消化汚泥として排
出される。この消化汚泥は生物的に不活性な物質であっ
て、これ以上の減容化はできず、焼却または廃棄せざる
を得ない。
However, in these methods, only about 50% of the treated sludge is decomposed, and the rest is discharged as digested sludge. Since this digested sludge is a biologically inactive substance, it cannot be reduced in volume any more and must be incinerated or discarded.

【0006】また別の余剰汚泥減容化の方法として、余
剰汚泥をオゾン処理等の物理化学的処理を行ったのち、
好気性消化装置に導いて、好気性消化を行う方法(特公
昭57−19719号)、あるいは余剰汚泥にアルカリ
を添加して加熱することにより加水分解して可溶化し、
分解液を中和後好気性処理装置に戻すようにした余剰汚
泥の処理方法が提案されている(特公昭49−1181
3号)。しかしこのような従来方法は、減容化率が低
く、またオゾン処理や加熱処理の方法が十分に検討され
ていないため処理条件は厳くなっており、これが工程管
理を難しくしているほか、コスト高を招いていた。
As another method for reducing the volume of excess sludge, the excess sludge is subjected to physicochemical treatment such as ozone treatment,
A method of conducting aerobic digestion by introducing it to an aerobic digester (Japanese Patent Publication No. 57-19719), or by adding an alkali to excess sludge and heating to hydrolyze and solubilize it.
A method for treating excess sludge by neutralizing the decomposed liquid and returning it to the aerobic treatment device has been proposed (Japanese Patent Publication No. Sho 49-1181).
No. 3). However, such a conventional method has a low volume reduction rate, and the treatment conditions have become strict because methods of ozone treatment and heat treatment have not been sufficiently examined, which makes process control difficult, and High cost was invited.

【0007】また特開平6−206088号には、被処
理液中のBODの同化により増殖する汚泥量よりも多い
量の活性汚泥を好気性処理系から引抜き、この引抜汚泥
をオゾン処理したのち好気性処理系に導入する有機性排
液の好気性処理方法が記載されている。図3はその処理
フローであり、1は好気性処理系、2はオゾン処理系、
11は曝気槽、12は汚泥分離部、21はオゾン処理槽
であり、曝気槽11内の槽内液をオゾン処理した後曝気
槽11に戻すようになっている。
Further, in Japanese Patent Laid-Open No. 6-206088, an amount of activated sludge larger than the amount of sludge grown by assimilation of BOD in the liquid to be treated is withdrawn from the aerobic treatment system, and the extracted sludge is subjected to ozone treatment. A method for aerobic treatment of organic effluent introduced into a gas treatment system is described. FIG. 3 shows the processing flow, 1 is an aerobic treatment system, 2 is an ozone treatment system,
Reference numeral 11 is an aeration tank, 12 is a sludge separation unit, and 21 is an ozone treatment tank. The tank liquid in the aeration tank 11 is ozone-treated and then returned to the aeration tank 11.

【0008】図3のフローに従って有機性排液を処理す
るには、まず被処理液13を曝気槽11に導入し、返送
汚泥14および曝気槽11内の活性汚泥と混合し、空気
供給路16から供給される空気を散気装置15から散気
して好気性処理を行う。好気性処理液は連絡路17から
汚泥分離部12に導入して固液分離する。分離液は処理
液18として排出し、分離汚泥19はその一部を返送汚
泥14として曝気槽11に返送する。余剰汚泥20が生
じる場合は系外へ排出する。
To treat the organic waste liquid according to the flow of FIG. 3, first, the liquid to be treated 13 is introduced into the aeration tank 11, mixed with the return sludge 14 and the activated sludge in the aeration tank 11, and the air supply passage 16 is provided. Air supplied from the air diffuser 15 is diffused to perform aerobic treatment. The aerobic treatment liquid is introduced into the sludge separation unit 12 from the communication path 17 and solid-liquid separated. The separated liquid is discharged as the treatment liquid 18, and a part of the separated sludge 19 is returned to the aeration tank 11 as the returned sludge 14. When the excess sludge 20 is generated, it is discharged to the outside of the system.

【0009】オゾン処理系2では、曝気槽11の槽内液
を引抜き、この引抜汚泥22をオゾン処理槽21に導入
し、オゾン処理槽21の下部からオゾン24を供給し
て、引抜汚泥22をオゾン24と接触させてオゾン処理
し、汚泥をBOD化する。オゾン処理汚泥25は曝気槽
11に戻して好気性処理する。
In the ozone treatment system 2, the liquid in the tank of the aeration tank 11 is drawn out, this drawn sludge 22 is introduced into the ozone treatment tank 21, and ozone 24 is supplied from the lower part of the ozone treatment tank 21 to remove the drawn sludge 22. The sludge is converted to BOD by contacting it with ozone 24 and performing ozone treatment. The ozone-treated sludge 25 is returned to the aeration tank 11 for aerobic treatment.

【0010】上記方法では、増殖汚泥よりも多い引抜汚
泥22をオゾン処理することにより、余剰汚泥の発生量
をゼロにすることもできる。しかしこのような従来の方
法では、曝気槽11内の液が完全混合の状態になってい
るが、このような完全混合状態の汚泥はオゾン処理その
他の可溶化処理が困難であり、汚泥をBOD化するには
オゾン等の注入率あるいは加熱温度を高くする必要があ
る。
In the above method, the amount of excess sludge generated can be reduced to zero by subjecting the drawn-out sludge 22, which is larger than the multiplied sludge, to ozone treatment. However, in such a conventional method, the liquid in the aeration tank 11 is in a completely mixed state. However, sludge in such a completely mixed state is difficult to be subjected to ozone treatment or other solubilization treatment, and the sludge is subjected to BOD. To achieve this, it is necessary to raise the injection rate of ozone or the like or the heating temperature.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、穏や
かな条件で汚泥を可溶化処理することにより低コスト
で、しかも負荷および処理効率を低下させることなく、
余剰汚泥の生成を抑制することが可能であり、場合によ
っては余剰汚泥の発生をゼロにすることも可能な有機性
排液の好気性処理方法を提案することである。
DISCLOSURE OF THE INVENTION An object of the present invention is to solubilize sludge under mild conditions at low cost, without lowering load and treatment efficiency.
The object of the present invention is to propose a method for aerobic treatment of organic waste liquid which can suppress the generation of excess sludge and can even reduce the generation of excess sludge in some cases.

【0012】[0012]

【課題を解決するための手段】本発明は、曝気部と固液
分離部とを備えた好気性処理系において、好気性微生物
を含む活性汚泥の存在下に有機性排液を好気性処理する
工程と、固液分離部で固液分離した分離汚泥の一部を返
送汚泥として曝気部に返送する工程と、曝気部から活性
汚泥および返送汚泥を含む混合液の一部を引抜き、この
引抜液を可溶化処理したのち、可溶化処理液を曝気部に
導入する工程とを有する有機性排液の好気性処理方法で
あって、曝気部としてプラグフロー型の曝気槽を用い、
このプラグフロー型曝気槽の上流部分から混合液の一部
を引抜き、可溶化処理して曝気部に導入することを特徴
とする有機性排液の好気性処理方法である。
The present invention, in an aerobic treatment system having an aeration section and a solid-liquid separation section, aerobically treats organic waste liquid in the presence of activated sludge containing aerobic microorganisms. Process and step of returning part of the separated sludge solid-liquid separated in the solid-liquid separation section to the aeration section as return sludge, and withdrawing a part of the mixed liquid containing activated sludge and return sludge from the aeration section A method of aerobically treating an organic drainage solution, which comprises a step of introducing a solubilization treatment solution into an aeration section after using a plug flow type aeration tank as the aeration section,
This is an aerobic treatment method for an organic waste liquid, characterized in that a part of the mixed liquid is drawn out from the upstream portion of the plug flow type aeration tank, solubilized and introduced into the aeration portion.

【0013】本発明において処理の対象となる有機性排
液は、通常の好気性生物処理法により処理される有機物
を含有する排液であるが、難分解性の有機物または無機
物が含有されていてもよい。このような有機性排液とし
ては、下水、し尿、食品工場排水その他の産業排液など
があげられる。
The organic effluent to be treated in the present invention is an effluent containing an organic substance which is treated by a usual aerobic biological treatment method, but it contains a hardly decomposable organic substance or an inorganic substance. Good. Examples of such organic effluents include sewage, night soil, food factory effluents and other industrial effluents.

【0014】有機性排液の好気性処理方法では、好気性
微生物を含む活性汚泥を好気性処理系に一定量保持し、
ここに有機性排液を導入して好気性下に接触させ、好気
性微生物の酸化作用により被処理液中のBODを分解す
る。このとき好気性処理系の曝気部としてプラグフロー
型の曝気槽を用いて好気性処理を行う。これにより被処
理液中のBODは同化されて、活性汚泥は増殖する。
In the method for aerobic treatment of organic waste liquid, a certain amount of activated sludge containing aerobic microorganisms is held in the aerobic treatment system,
An organic waste liquid is introduced into this and brought into contact with it under aerobic conditions, and BOD in the liquid to be treated is decomposed by the oxidizing action of aerobic microorganisms. At this time, an aerobic treatment is performed using a plug flow type aeration tank as the aeration section of the aerobic treatment system. As a result, the BOD in the liquid to be treated is assimilated and the activated sludge grows.

【0015】従来の一般的な方法では、好気性処理系に
一定量の活性汚泥を保持するために、BODの同化によ
り増殖する汚泥量と同量の活性汚泥を余剰汚泥として排
出しており、排出された余剰汚泥について減容化が行わ
れている。従って余剰汚泥を加水分解等により分解して
好気性処理系に戻しても、余剰汚泥は発生する。増殖す
る汚泥量より多い活性汚泥を引抜いて可溶化する特開平
6−206088号の方法においても、引抜汚泥は完全
混合汚泥であるため、可溶化条件が厳しくなっている。
In the conventional general method, in order to retain a certain amount of activated sludge in the aerobic treatment system, the same amount of activated sludge as that propagated by assimilation of BOD is discharged as excess sludge, The volume of the excess sludge discharged has been reduced. Therefore, even if the excess sludge is decomposed by hydrolysis or the like and returned to the aerobic treatment system, the excess sludge is generated. Even in the method of Japanese Patent Laid-Open No. 6-206088, in which a large amount of activated sludge is extracted and solubilized, the extracted sludge is a completely mixed sludge, and the solubilization conditions are severe.

【0016】これに対して本発明では、被処理液中の浮
遊活性汚泥の一部、好ましくは被処理液中のBODの同
化により増殖する汚泥量よりも多い浮遊活性汚泥をプラ
グフロー(一方向流)型曝気槽の上流部分から引抜き、
これを後述の方法により可溶化処理した後好気性処理系
に導入して好気性生物処理することにより、穏やかな条
件で引抜汚泥をBOD化し、活性汚泥の見かけ上の増殖
を抑制する。これにより余剰汚泥の量が減少し、条件に
よっては余剰汚泥の発生量をゼロにすることができる。
On the other hand, in the present invention, a part of floating activated sludge in the liquid to be treated, preferably floating activated sludge larger than the amount of sludge grown by assimilation of BOD in the liquid to be treated, is subjected to plug flow (one direction). Flow) type aeration tank
This is solubilized by the method described below and then introduced into an aerobic treatment system for aerobic biological treatment to convert the drawn-out sludge into BOD under mild conditions and suppress the apparent growth of activated sludge. As a result, the amount of excess sludge is reduced, and depending on the conditions, the amount of excess sludge generated can be reduced to zero.

【0017】本発明における好気性処理系は、有機性排
液を好気性微生物を含む活性汚泥の存在下に好気性生物
処理する処理系である。このような処理系としては、有
機性排液を曝気槽で活性汚泥と混合して曝気し、この混
合液を固液分離装置で固液分離し、分離汚泥の一部を曝
気槽に返送する標準活性汚泥処理法による処理系が一般
的であるが、これを変形した他の処理系でもよい。
The aerobic treatment system in the present invention is a treatment system for treating an organic effluent in the presence of activated sludge containing aerobic microorganisms. As such a treatment system, an organic waste liquid is mixed with activated sludge in an aeration tank and aerated, the mixed liquid is subjected to solid-liquid separation by a solid-liquid separation device, and a part of the separated sludge is returned to the aeration tank. A treatment system based on the standard activated sludge treatment method is generally used, but other treatment systems obtained by modifying this may be used.

【0018】本発明では、プラグフロー型曝気槽の上流
部分から活性汚泥を含む混合液の一部を引抜いて可溶化
処理し、この可溶化処理液を好気性処理する。可溶化の
手段としては、オゾン等による酸化処理、加熱処理、ア
ルカリ等による加水分解など、汚泥を生物分解性に変換
できる手段であればよいが、オゾン処理が好ましい。上
記のようにプラグフロー型曝気槽の上流部分から混合液
を引抜いて可溶化処理することにより、完全混合型の曝
気槽から引抜いた混合液または余剰汚泥などを可溶化処
理する場合に比べて、穏やかな条件で可溶化処理しても
同等の汚泥減容率を得ることができる。また同じ条件で
可溶化処理すると汚泥減容率をさらに高くすることがで
きる。この理由は明らかではないが、曝気槽の上流部分
は下流部分に比べて負荷が高く、好気性微生物は対数増
殖期にあり、この対数増殖期の微生物の表面構造は可溶
化処理により変化を受けやすいためであると推定され
る。
In the present invention, a part of the mixed liquid containing activated sludge is extracted from the upstream portion of the plug flow type aeration tank and solubilized, and the solubilized liquid is aerobically treated. The solubilization means may be any means capable of converting sludge into biodegradable one, such as oxidation treatment with ozone or the like, heat treatment, hydrolysis with alkali or the like, and ozone treatment is preferable. By extracting the mixed solution from the upstream portion of the plug flow type aeration tank as described above and performing the solubilization treatment, compared to the case of performing the solubilization treatment on the mixed liquid or excess sludge extracted from the complete mixing type aeration tank, Even if the solubilization treatment is performed under mild conditions, the same sludge volume reduction rate can be obtained. If the solubilization treatment is performed under the same conditions, the sludge volume reduction rate can be further increased. The reason for this is not clear, but the upstream part of the aeration tank has a higher load than the downstream part, aerobic microorganisms are in the logarithmic growth phase, and the surface structure of the microorganisms in this logarithmic growth phase is changed by the solubilization treatment. It is presumed that this is because it is easy.

【0019】可溶化の条件は、オゾン処理の場合オゾン
注入率を0.002〜0.1g−O 3/g−SS、好ま
しくは0.005〜0.06g−O3/g−SSとす
る。
The solubilization conditions are ozone in the case of ozone treatment.
Injection rate 0.002-0.1g-O 3/ G-SS, preferred
Specifically 0.005-0.06g-O3/ G-SS
You.

【0020】曝気槽をプラグフロー型とするには、2
つ以上の独立した槽を直列に設ける;1つの曝気槽を
有機性排液が流れる方向に対して垂直方向に2つ以上に
区画する;1つの曝気槽を有機性排液が流れる方向に
対して平行方向に2つ以上に区画して細長くする;細
長い曝気槽を使用するなどの方法が採用できる。これら
の方法により、曝気槽内での上流部分と下流部分との液
の混合が起きにくくなる。1つの曝気槽を区画するには
板状の仕切板などが使用できる。
To make the aeration tank a plug flow type, 2
Two or more independent tanks are installed in series; one aeration tank is divided into two or more in the direction perpendicular to the direction in which the organic drainage flows; one aeration tank in the direction in which the organic drainage flows It is divided into two or more parts in the parallel direction to be elongated; a method such as using an elongated aeration tank can be adopted. By these methods, it becomes difficult for the liquid to mix in the upstream portion and the downstream portion in the aeration tank. A plate-shaped partition plate or the like can be used to partition one aeration tank.

【0021】図1は本発明における汚泥減容化の原理を
説明するための模式図である。図において、1は好気性
処理系、2は可溶化処理系である。好気性処理系1は、
活性汚泥処理装置のように、有機性排液を活性汚泥と接
触させて好気的に分解する処理系であり、曝気槽(好気
性処理槽)と固液分離部とが別に設けられる場合がある
が、これらを含めた全体の処理系として図示されてい
る。可溶化処理系2は、曝気槽の上流部分から引抜いた
引抜液中の汚泥を可溶化し、BODに変換する装置であ
る。
FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction in the present invention. In the figure, 1 is an aerobic treatment system and 2 is a solubilization treatment system. Aerobic processing system 1
Like an activated sludge treatment device, it is a treatment system that aerobically decomposes organic waste liquid by contacting it with activated sludge, and an aeration tank (aerobic treatment tank) and a solid-liquid separation unit may be provided separately. However, it is shown as an overall processing system including these. The solubilization treatment system 2 is a device that solubilizes sludge in the drawing liquid drawn from the upstream portion of the aeration tank and converts it into BOD.

【0022】図1の好気性処理系1には、好気性処理を
行うために一定量の活性汚泥3aが保持されている。こ
のような好気性処理系1に被処理液4を導入して好気性
処理を行うと、被処理液4に含まれるBODは活性汚泥
3aに同化され、その増殖により新たに生成汚泥3bが
生成する。一方、系内の活性汚泥3aは自己分解によ
り、自己分解分3cが消失する。従って定常状態では、
生成汚泥3bと自己分解分3cとの差が増殖汚泥3dと
して増殖する。
The aerobic treatment system 1 of FIG. 1 holds a certain amount of activated sludge 3a for aerobic treatment. When the liquid to be treated 4 is introduced into the aerobic treatment system 1 and subjected to aerobic treatment, the BOD contained in the liquid to be treated 4 is assimilated into the activated sludge 3a, and a new sludge 3b is generated due to the multiplication thereof. To do. On the other hand, the activated sludge 3a in the system is self-decomposed, and the self-decomposed portion 3c disappears. So in steady state,
The difference between the generated sludge 3b and the self-decomposed content 3c grows as the grown sludge 3d.

【0023】従来の減容化法では、ここで発生する増殖
汚泥3dを余剰汚泥として系外に排出し、この余剰汚泥
について減容化を行っていたので、その50%程度がさ
らに消化汚泥として排出されていた。または前記特公昭
49−11813号では余剰汚泥として排出されている
増殖汚泥3dを加水分解して可溶化し、これを好気性処
理系1に戻しているが、この処理法では加水分解液とし
て加わるBODが新たに生成汚泥を生成し、処理の継続
により、余剰汚泥が発生する。
In the conventional volume reduction method, the breeding sludge 3d generated here is discharged outside the system as excess sludge, and the volume of this excess sludge is reduced, so about 50% of the excess sludge is further converted to digested sludge. Had been discharged. Alternatively, in Japanese Patent Publication No. 49-11813, the breeding sludge 3d discharged as excess sludge is hydrolyzed to be solubilized and returned to the aerobic treatment system 1. In this treatment method, it is added as a hydrolysis liquid. BOD newly generates generated sludge, and excess sludge is generated by continuing the treatment.

【0024】従来余剰汚泥として排出されていた増殖汚
泥3dを可溶化処理系2で処理する場合を、図1に破線
5で示しているが、増殖汚泥3dを可溶化処理して好気
性処理系1に戻すと、可溶化処理により生成するBOD
が汚泥に転換して、別の生成汚泥3eが生成し、この分
が実質的な汚泥増殖分となり、余剰汚泥として排出され
なければならない。このように増殖汚泥3dを可溶化処
理して好気性処理系に戻す場合の汚泥減容化率は増殖汚
泥3dの30〜40重量%であり、嫌気性または好気性
消化の場合よりも低い。
A case where the sewage treatment system 2 is used to treat the breeding sludge 3d which has been conventionally discharged as surplus sludge is shown by a broken line 5 in FIG. BOD generated by solubilization when returned to 1
Is converted into sludge and another generated sludge 3e is generated, and this amount becomes a substantial sludge growth amount and must be discharged as excess sludge. Thus, the sludge volume reduction rate when solubilizing the grown sludge 3d and returning it to the aerobic treatment system is 30 to 40% by weight of the grown sludge 3d, which is lower than in the case of anaerobic or aerobic digestion.

【0025】これに対し、増殖汚泥3dよりも多い量の
引抜汚泥3fを、好気性処理系1のプラグフロー型曝気
槽の上流部分から引抜き、可溶化処理系2で可溶化処理
してBODに転換し、可溶化処理液6を好気性処理系1
の曝気槽に戻すことにより、穏やかな条件で可溶化を行
うことができ、可溶化処理で生成したBODから別の生
成汚泥3gが生成する。この場合、引抜汚泥3fと生成
汚泥3gとの差が無機化部分3hとなる。
On the other hand, a larger amount of the extracted sludge 3f than the propagated sludge 3d is extracted from the upstream portion of the plug flow type aeration tank of the aerobic treatment system 1, solubilized by the solubilization treatment system 2 and converted into BOD. Convert and solubilize treatment liquid 6 to aerobic treatment system 1
By returning to the aeration tank of No. 3, the solubilization can be performed under mild conditions, and another 3 g of produced sludge is produced from the BOD produced by the solubilization treatment. In this case, the difference between the drawn sludge 3f and the produced sludge 3g becomes the mineralized portion 3h.

【0026】ここで増殖汚泥3dよりも多い量の引抜汚
泥3fを可溶化処理してBODに転換することにより、
増殖汚泥3dのみをオゾン分解または加水分解する場合
よりも、無機化部分が多くなり、汚泥減容化率は高くな
る。増殖汚泥3dと無機化部分3hとが等しくなるよう
に引抜汚泥3fの量を決めると、余剰汚泥は実質的にゼ
ロになる。増殖汚泥3dが無機化部分3hより多い場合
は、その差が実質的な増加部分3iとなり、余剰汚泥7
として系外に排出される。8は好気性処理系1の処理液
である。
Here, a larger amount of the extracted sludge 3f than the propagated sludge 3d is solubilized and converted into BOD.
Compared with the case where only the propagated sludge 3d is subjected to ozonolysis or hydrolysis, the mineralized portion is increased and the sludge volume reduction rate is increased. When the amount of drawn sludge 3f is determined so that the multiplied sludge 3d and the mineralized portion 3h are equal, the excess sludge becomes substantially zero. When the amount of the grown sludge 3d is larger than that of the mineralized portion 3h, the difference becomes the substantially increased portion 3i, and the excess sludge 7
Is discharged outside the system. Reference numeral 8 is a treatment liquid of the aerobic treatment system 1.

【0027】上記好気性処理系1における曝気槽容量を
V、その活性汚泥濃度をX、汚泥収率をY、被処理液流
量(処理液流量)をQ、被処理液の有機物濃度をCi、
処理液の有機物濃度をCe、生物処理された有機物濃度
を(Ci−Ce)、汚泥自己分解定数をKd、余剰汚泥
排出量をq、可溶化処理槽への引抜量をQ′、可溶化処
理された汚泥が活性汚泥に再変換された割合をkとする
と、物質収支は次の〔1〕式で表される。
In the aerobic treatment system 1, the aeration tank capacity is V, the activated sludge concentration is X, the sludge yield is Y, the treated liquid flow rate (treatment liquid flow rate) is Q, the organic matter concentration of the treated liquid is Ci,
The concentration of organic matter in the treated liquid is Ce, the concentration of biologically treated organic matter is (Ci-Ce), the sludge self-decomposition constant is Kd, the excess sludge discharge amount is q, the amount drawn into the solubilization treatment tank is Q ', and the solubilization treatment is performed. The mass balance is expressed by the following equation [1], where k is the ratio of the converted sludge reconverted to activated sludge.

【数1】 V dX/dt=Y Q(Ci-Ce)-V Kd X-q X-Q′X+k Q′X 〔1〕[Equation 1] V dX / dt = Y Q (Ci-Ce) -V Kd X-q X-Q′X + k Q′X [1]

【0028】〔1〕式において、V dX/dtは好気
性処理系1における活性汚泥3aの変化量、Y Q(C
i−Ce)は生成汚泥3bの量、V Kd Xは自己分解
分3cの量、qXは余剰汚泥7の排出量、Q′Xは引抜
汚泥3fの量、k Q′Xは生成汚泥3gの量を示して
いる。
In the equation [1], V dX / dt is the change amount of the activated sludge 3a in the aerobic treatment system 1, and Y Q (C
i-Ce) is the amount of produced sludge 3b, V Kd X is the amount of self-decomposition 3c, qX is the amount of excess sludge 7 discharged, Q'X is the amount of extracted sludge 3f, and k Q'X is the amount of produced sludge 3g. The amount is shown.

【0029】ここでQ (Ci−Ce)/V=LV(槽
負荷)、q/V=1/SRT(余剰汚泥滞留時間比)、
Q′/V=θ(可溶化処理系への活性汚泥の循環比)、
(1−k)=δ(無機化率)とおくと、定常状態では、
〔1〕式は次の〔2〕式のように簡略化される。
Here, Q (Ci-Ce) / V = LV (tank load), q / V = 1 / SRT (excess sludge retention time ratio),
Q '/ V = θ (circulation ratio of activated sludge to the solubilization treatment system),
If (1-k) = δ (mineralization rate) is set, in the steady state,
The formula [1] is simplified as the following formula [2].

【数2】 Y LV/X=Kd+1/SRT+δθ 〔2〕## EQU00002 ## Y LV / X = Kd + 1 / SRT + .delta..theta. [2]

【0030】可溶化処理系2が存在しない通常の好気性
処理系では、〔2〕式の第3項(δθ)がないので、汚
泥負荷を一定としたときSRTで余剰汚泥量(X/SR
T)が決定される。これに対して可溶化処理系を組合せ
た処理系では、〔2〕式から明らかなように、第3項の
値により余剰汚泥が減容化する。そして第3項の値が第
2項の値に匹敵するような条件下では、余剰汚泥を排出
しなくても(1/SRT=0)、汚泥負荷を通常の値に
設定することが可能である。
In the usual aerobic treatment system in which the solubilization treatment system 2 does not exist, the third term (δθ) in the equation [2] does not exist, so that when the sludge load is constant, the excess sludge amount (X / SR
T) is determined. On the other hand, in the treatment system in which the solubilization treatment system is combined, as is apparent from the equation [2], the excess sludge is reduced in volume by the value of the third term. Under the condition that the value of the third term is comparable to the value of the second term, the sludge load can be set to a normal value without discharging the excess sludge (1 / SRT = 0). is there.

【0031】[0031]

【実施例】以下、本発明の実施例について説明する。図
2は実施例の有機性排液の好気性処理方法を示すフロー
シートであり、曝気槽を有機性排液の流れの方向に対し
て垂直方向に区画してプラグフロー型とし、可溶化処理
としてオゾン処理を行う例を示している。図において、
図3と同一符号は同一または相当部分を示す。好気性処
理系1は曝気槽11、固液分離装置12、ポンプP1
およびこれらに付随する流路によって構成されている。
オゾン処理系2は可溶化のためのオゾン処理槽21、ポ
ンプP2およびこれらに付随する流路によって構成され
ている。曝気槽11は仕切板31により上流部分32と
下流部分33とに区画され、プラグフロー型に構成され
ている。
Embodiments of the present invention will be described below. FIG. 2 is a flow sheet showing an aerobic treatment method for an organic waste liquid according to an embodiment, in which the aeration tank is partitioned in the direction perpendicular to the direction of the flow of the organic waste liquid to be a plug flow type, and the solubilization treatment is performed. As an example, an ozone treatment is shown. In the figure,
The same reference numerals as those in FIG. 3 indicate the same or corresponding parts. The aerobic treatment system 1 includes an aeration tank 11, a solid-liquid separation device 12, a pump P 1 ,
And the flow paths associated therewith.
The ozone treatment system 2 is composed of an ozone treatment tank 21 for solubilization, a pump P 2 and a flow path associated with these. The aeration tank 11 is partitioned into an upstream portion 32 and a downstream portion 33 by a partition plate 31, and is configured as a plug flow type.

【0032】図2の処理方法は、好気性処理系1におい
て、被処理液13を曝気槽11の上流部分32の始端部
に導入し、返送汚泥14および曝気槽11内の活性汚泥
と混合し、空気供給路16a,16bから供給される空
気を散気装置15a,15bから散気して、上流部分3
2および下流部分33で好気性処理を行う。この場合、
曝気槽11内は仕切板31により区画されているので、
散気装置15a,15bから空気を散気しても上流部分
32の槽内液(混合液)と下流部分の混合液とは混合し
にくい。このため上流部分32のBOD負荷は下流部分
33に比べて高くなり、活性汚泥は対数増殖状態に維持
される。上流部分32のBOD負荷は、通常0.5kg
−BOD/kg−MLSS・day以上、好ましくは1
〜3kg−BOD/kg−MLSS・dayとするのが
望ましい。このようにして好気性処理を行うことによ
り、有機物は生物酸化反応によって分解される。上流部
分32の混合液は、下流部分33の混合液が末端部分か
ら固液分離装置12に導入されるのに伴って流路34か
ら下流部分33に移動する。
In the treatment method of FIG. 2, in the aerobic treatment system 1, the liquid to be treated 13 is introduced into the starting end of the upstream portion 32 of the aeration tank 11 and mixed with the return sludge 14 and the activated sludge in the aeration tank 11. , The air supplied from the air supply paths 16a and 16b is diffused from the air diffusers 15a and 15b, and the upstream portion 3
2 and the downstream part 33 are subjected to aerobic treatment. in this case,
Since the inside of the aeration tank 11 is partitioned by the partition plate 31,
Even if air is diffused from the air diffusers 15a and 15b, it is difficult to mix the in-tank liquid (mixed liquid) in the upstream portion 32 and the mixed liquid in the downstream portion. Therefore, the BOD load of the upstream portion 32 becomes higher than that of the downstream portion 33, and the activated sludge is maintained in a logarithmic growth state. The BOD load of the upstream portion 32 is usually 0.5 kg
-BOD / kg-MLSS · day or more, preferably 1
It is desirable to be set to 3 kg-BOD / kg-MLSS · day. By carrying out the aerobic treatment in this manner, organic substances are decomposed by a biooxidation reaction. The mixed liquid in the upstream portion 32 moves from the flow path 34 to the downstream portion 33 as the mixed liquid in the downstream portion 33 is introduced into the solid-liquid separation device 12 from the end portion.

【0033】下流部分33の好気性処理液の一部は、連
絡路17から固液分離装置12に導き、固液分離を行
う。分離液は処理液18として排出し、分離汚泥19は
その一部を返送汚泥14としてポンプP1により曝気槽
11の上流部分32に返送する。
A part of the aerobic treatment liquid in the downstream portion 33 is introduced into the solid-liquid separation device 12 from the communication path 17 and solid-liquid separation is performed. The separated liquid is discharged as the treatment liquid 18, and a part of the separated sludge 19 is returned to the upstream portion 32 of the aeration tank 11 by the pump P 1 as the returned sludge 14.

【0034】オゾン処理系2では、曝気槽11の上流部
分32の任意の位置から混合液の一部をポンプP2によ
り引抜き、この引抜液22をオゾン処理槽21の上部に
導入し、オゾン処理槽21の下部からオゾン24を供給
し、引抜液22をオゾン24と接触させてオゾン処理を
行い、引抜液中の活性汚泥をBOD化する。オゾン処理
液25は曝気槽11の下流部分33の任意の位置、好ま
しくは下流部分33の始端側に戻され負荷として好気性
処理される。オゾン排ガスは排オゾン路23から排出す
る。
In the ozone treatment system 2, a part of the mixed liquid is drawn out by the pump P 2 from an arbitrary position in the upstream portion 32 of the aeration tank 11, and the drawn liquid 22 is introduced into the upper part of the ozone treatment tank 21 to carry out the ozone treatment. Ozone 24 is supplied from the lower part of the tank 21, the extraction liquid 22 is brought into contact with the ozone 24, and ozone treatment is performed to convert the activated sludge in the extraction liquid into BOD. The ozone treatment liquid 25 is returned to an arbitrary position in the downstream portion 33 of the aeration tank 11, preferably to the starting end side of the downstream portion 33, and aerobically treated as a load. The ozone exhaust gas is discharged from the exhaust ozone passage 23.

【0035】オゾン処理槽21に供給するオゾンの量
(オゾン注入率)は、0.002〜0.1g−O3/g
−SS、好ましくは0.005〜0.06g−O3/g
−SSとするのが望ましい。上記のように上流部分32
から混合液を引抜いてオゾン処理することにより、図3
のような完全混合型の曝気槽内から混合液を引抜いてオ
ゾン処理する場合に比べて、同等の汚泥減容率を得るた
めのオゾン注入率は小さくなり、これにより穏やかな条
件下で低コストで処理を行うことができる。
The amount of ozone supplied to the ozone treatment tank 21 (ozone injection rate) is 0.002 to 0.1 g-O 3 / g.
-SS, preferably 0.005~0.06g-O 3 / g
-SS is desirable. Upstream portion 32 as described above
Figure 3
The ozone injection rate to obtain the same sludge volume reduction rate is smaller than that in the case where ozone is treated by extracting the mixed solution from a completely mixed aeration tank like the one described above. Can be processed with.

【0036】図2の場合、前記〔1〕式におけるVは曝
気槽11の容量、XはVに対する曝気槽11および固液
分離装置12に保持された全汚泥の濃度、Q′は曝気槽
11内または固液分離装置12における濃縮汚泥の汚泥
濃度をXに換算したときの容量として算出される。これ
により、図1に示すように、好気性処理系1として、そ
れぞれの値を決めることができる。
In the case of FIG. 2, V in the formula [1] is the capacity of the aeration tank 11, X is the concentration of the total sludge held in the aeration tank 11 and the solid-liquid separation device 12 with respect to V, and Q'is the aeration tank 11. It is calculated as the capacity when the sludge concentration of the concentrated sludge in the inside or the solid-liquid separation device 12 is converted into X. Thereby, as shown in FIG. 1, each value can be determined as the aerobic treatment system 1.

【0037】図2において、増殖汚泥より多い引抜汚泥
となるように引抜液をオゾン処理することにより、汚泥
の減容化が可能であるが、余剰汚泥20がゼロでない場
合は、その余剰汚泥20は系外に排出する。増殖汚泥と
無機化部分とが同じになるように引抜液量を決めると、
余剰汚泥の発生量はゼロになる。この場合でも、砂など
の無機物質が蓄積される系では、若干の汚泥を排出する
こともできる。
In FIG. 2, it is possible to reduce the volume of the sludge by treating the extracted liquid with ozone so that the amount of the extracted sludge is larger than that of the multiplied sludge. However, when the excess sludge 20 is not zero, the excess sludge 20 Is discharged out of the system. When the amount of drawn liquid is determined so that the sludge and mineralized part are the same,
The amount of excess sludge generated will be zero. Even in this case, some sludge can be discharged in a system in which an inorganic substance such as sand is accumulated.

【0038】通常、オゾン処理により難分解性のCOD
成分が微量に生成するが、このような難分解性のCOD
成分は、曝気槽11の上流部分および/または下流部分
にスポンジなどの担体を投入し、この担体に汚泥を担持
させてSRTを長くするなどの方法により分解すること
ができる。また、オゾン処理する引抜液22の量が多く
なると、生物処理性能が低下する場合もあるが、このよ
うなときには汚泥を担持するための担体を曝気槽11の
上流部分および/または下流部分に設け、一定量の汚泥
量を保持することにより、生物処理性能を高く維持する
ことができる。
COD which is usually hardly decomposed by ozone treatment
A small amount of components are produced, but such persistent COD
The components can be decomposed by, for example, introducing a carrier such as a sponge into the upstream portion and / or the downstream portion of the aeration tank 11 and supporting sludge on the carrier to increase the SRT. Further, when the amount of the withdrawal liquid 22 to be ozone-treated increases, the biological treatment performance may deteriorate. In such a case, however, a carrier for supporting sludge is provided in the upstream portion and / or the downstream portion of the aeration tank 11. By maintaining a certain amount of sludge, the biological treatment performance can be maintained high.

【0039】図2ではオゾン処理液25は曝気槽11の
下流部分33に戻しているが、上流部分32に戻すこと
もできるし、別の好気性処理系に導入して好気性処理を
行うこともできる。また、図2では曝気槽11を2個の
部分に区画しているが、3個以上の部分に区画すること
もできる。この場合、最も上流部分の混合液を引抜いて
オゾン処理し、下流側に戻すのが好ましい。さらに、図
2のような曝気槽11の代わりに、独立した曝気槽を複
数使用してもよいし、被処理液13の導入口から連絡路
17の方向に対して槽内が細長くなっているか、または
細長くなるように区画した曝気槽などを使用することも
できる。
Although the ozone treatment liquid 25 is returned to the downstream portion 33 of the aeration tank 11 in FIG. 2, it can be returned to the upstream portion 32 or may be introduced into another aerobic treatment system to perform aerobic treatment. You can also Further, although the aeration tank 11 is divided into two parts in FIG. 2, it may be divided into three or more parts. In this case, it is preferable to draw out the mixed solution in the most upstream part, subject it to ozone treatment, and return it to the downstream side. Further, a plurality of independent aeration tanks may be used instead of the aeration tank 11 as shown in FIG. 2, and whether the inside of the tank is elongated in the direction from the inlet of the liquid to be treated 13 to the communication path 17. Alternatively, it is also possible to use an aeration tank or the like which is divided so as to be elongated.

【0040】次に試験例について説明する。 試験例1 図2の方法に従って、有機性排液の好気性処理を行っ
た。有機性排液としては、重量比で1:1のペプトン・
イーストエキスからなる合成排水(BOD200mg/
l)を用いた。処理条件および結果を表1に示す。
Next, a test example will be described. Test Example 1 According to the method shown in FIG. 2, the organic waste liquid was aerobically treated. For organic drainage, 1: 1 by weight of peptone
Synthetic wastewater consisting of yeast extract (BOD 200 mg /
1) was used. The processing conditions and results are shown in Table 1.

【0041】比較例1 図3の方法に従って、試験例1と同様の有機性排液を処
理した。処理条件および結果を表1に示す。
Comparative Example 1 The same organic waste liquid as in Test Example 1 was treated according to the method shown in FIG. The processing conditions and results are shown in Table 1.

【0042】[0042]

【表1】 *1 全保有汚泥量に対する割合[Table 1] * 1 Percentage of total sludge volume

【0043】表1の結果から、試験例1の場合オゾン注
入率を0.02g−O3/g−SSに下げてもBOD当
りの汚泥転換率は0.05g−SS/g−BODであ
り、比較例1の0.17g−SSに比べて小さく、汚泥
減容率が大きいことがわかる。
From the results in Table 1, in the case of Test Example 1, the sludge conversion rate per BOD was 0.05 g-SS / g-BOD even when the ozone injection rate was lowered to 0.02 g-O 3 / g-SS. It can be seen that the sludge volume reduction rate is large compared to 0.17 g-SS of Comparative Example 1 and is large.

【0044】[0044]

【発明の効果】本発明の有機性排液の好気性処理方法
は、プラグフロー型曝気槽の上流部分から混合液を引抜
いて可溶化処理するようにしたので穏やかな条件で可溶
化処理して低コストで、しかも負荷および処理効率を低
下させることなく、余剰汚泥を減容化し、場合によって
は余剰汚泥の発生をゼロにすることも可能である。
According to the method for aerobic treatment of organic waste liquid of the present invention, since the mixed solution is extracted from the upstream portion of the plug flow type aeration tank and subjected to the solubilization treatment, the solubilization treatment is performed under mild conditions. It is also possible to reduce the volume of surplus sludge and reduce the generation of surplus sludge to zero in some cases at a low cost and without lowering the load and treatment efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における汚泥減容化の原理を説明するた
めの模式図である。
FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction in the present invention.

【図2】実施例の有機性排液の好気性処理方法を示すフ
ローシートである。
FIG. 2 is a flow sheet showing an aerobic treatment method for organic waste liquid according to an embodiment.

【図3】従来の有機性排液の好気性処理方法を示すフロ
ーシートである。
FIG. 3 is a flow sheet showing a conventional method for aerobic treatment of organic waste liquid.

【符号の説明】[Explanation of symbols]

1 好気性処理系 2 オゾン処理系 3a 活性汚泥 3b,3e,3g 生成汚泥 3c 自己分解分 3d 増殖汚泥 3f 引抜汚泥 3h 無機化部分 3i 増加部分 4 被処理液 6 可溶化処理液 7 余剰汚泥 8 処理液 11 曝気槽 12 固液分離装置 13 被処理液 14 返送汚泥 15,15a,15b 散気装置 16,16a,16b 空気供給路 17 連絡路 18 処理液 19 分離汚泥 20 余剰汚泥 21 オゾン処理槽 22 引抜液 23 排オゾン路 24 オゾン 25 オゾン処理液 31 仕切板 32 上流部分 33 下流部分 34 流路 1 Aerobic treatment system 2 Ozone treatment system 3a Activated sludge 3b, 3e, 3g Produced sludge 3c Self-decomposition 3d Proliferation sludge 3f Extracted sludge 3h Mineralized portion 3i Increased portion 4 Treated liquid 6 Solubilized treatment liquid 7 Excess sludge 8 treatment Liquid 11 Aeration tank 12 Solid-liquid separator 13 Liquid to be treated 14 Returned sludge 15, 15a, 15b Air diffuser 16, 16a, 16b Air supply passage 17 Connection passage 18 Treatment liquid 19 Separation sludge 20 Excess sludge 21 Ozone treatment tank 22 Extraction Liquid 23 Waste ozone passage 24 Ozone 25 Ozonated liquid 31 Partition plate 32 Upstream part 33 Downstream part 34 Flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 曝気部と固液分離部とを備えた好気性処
理系において、好気性微生物を含む活性汚泥の存在下に
有機性排液を好気性処理する工程と、固液分離部で固液
分離した分離汚泥の一部を返送汚泥として曝気部に返送
する工程と、曝気部から活性汚泥および返送汚泥を含む
混合液の一部を引抜き、この引抜液を可溶化処理したの
ち、可溶化処理液を曝気部に導入する工程とを有する有
機性排液の好気性処理方法であって、 曝気部としてプラグフロー型の曝気槽を用い、このプラ
グフロー型曝気槽の上流部分から混合液の一部を引抜
き、可溶化処理して曝気部に導入することを特徴とする
有機性排液の好気性処理方法。
1. A step of aerobically treating an organic waste liquid in the presence of activated sludge containing aerobic microorganisms in an aerobic treatment system comprising an aeration section and a solid-liquid separation section, and a solid-liquid separation section. The step of returning a part of the solid-liquid separated sludge to the aeration section as return sludge, and withdrawing a part of the mixed solution containing activated sludge and return sludge from the aeration section, solubilizing the extracted solution, and then removing An aerobic treatment method for an organic waste liquid, which comprises a step of introducing a solubilization treatment liquid into an aeration section, wherein a plug flow type aeration tank is used as the aeration section, and a mixed liquid is supplied from an upstream portion of the plug flow type aeration tank. An aerobic treatment method for an organic waste liquid, which comprises extracting a part of the water, solubilizing it, and introducing it into the aeration section.
JP24318694A 1994-10-06 1994-10-06 Aerobic treatment of organic wastewater Pending JPH08103786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24318694A JPH08103786A (en) 1994-10-06 1994-10-06 Aerobic treatment of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24318694A JPH08103786A (en) 1994-10-06 1994-10-06 Aerobic treatment of organic wastewater

Publications (1)

Publication Number Publication Date
JPH08103786A true JPH08103786A (en) 1996-04-23

Family

ID=17100110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24318694A Pending JPH08103786A (en) 1994-10-06 1994-10-06 Aerobic treatment of organic wastewater

Country Status (1)

Country Link
JP (1) JPH08103786A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142494A (en) * 1997-05-30 1999-02-16 Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai Treatment of waste water by ozone and ozone treating device
JP2001191097A (en) * 1999-10-25 2001-07-17 Sumitomo Precision Prod Co Ltd Waste water treating method
WO2001062676A1 (en) * 2000-02-24 2001-08-30 Ebara Corporation Method for treating organic wastewater
JP2002018471A (en) * 2000-07-05 2002-01-22 Japan Sewage Works Agency Organic wastewater treatment method
JP2005305441A (en) * 1997-05-30 2005-11-04 Mitsubishi Electric Corp Waste water ozonization method and apparatus therefor
JP2022024230A (en) * 2020-07-08 2022-02-09 俊治 角野 Sludge accumulation prevention liquid transfer device in sludge-containing liquid storage tank

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142494A (en) * 1997-05-30 1999-02-16 Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai Treatment of waste water by ozone and ozone treating device
JP2005305441A (en) * 1997-05-30 2005-11-04 Mitsubishi Electric Corp Waste water ozonization method and apparatus therefor
JP2001191097A (en) * 1999-10-25 2001-07-17 Sumitomo Precision Prod Co Ltd Waste water treating method
WO2001062676A1 (en) * 2000-02-24 2001-08-30 Ebara Corporation Method for treating organic wastewater
JP2002018471A (en) * 2000-07-05 2002-01-22 Japan Sewage Works Agency Organic wastewater treatment method
JP2022024230A (en) * 2020-07-08 2022-02-09 俊治 角野 Sludge accumulation prevention liquid transfer device in sludge-containing liquid storage tank

Similar Documents

Publication Publication Date Title
JP3351047B2 (en) Treatment method of biological sludge
JP3521535B2 (en) Aerobic biological treatment system for organic wastewater
JP2973761B2 (en) Aerobic treatment of organic wastewater
JPH08103786A (en) Aerobic treatment of organic wastewater
JP3248233B2 (en) Activated sludge treatment method
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP3591086B2 (en) Biological treatment of organic wastewater
JPH07116685A (en) Aerobic biotreatment method for organic wastewater
JP3959843B2 (en) Biological treatment method for organic drainage
JP3900796B2 (en) Method and apparatus for treating organic wastewater
JP3407405B2 (en) Aerobic treatment of organic wastewater
JP3493769B2 (en) Aerobic treatment of organic wastewater
JPS6324000Y2 (en)
JP3483081B2 (en) Organic wastewater treatment method and treatment device
JP3493783B2 (en) Aerobic treatment of organic wastewater
JP4581174B2 (en) Biological treatment method
JPH0788495A (en) Aerobic treatment of organic wastewater
JP3525458B2 (en) Aerobic treatment of organic wastewater
JP3271322B2 (en) Treatment of wastewater containing dimethyl sulfoxide
JP2001029983A (en) Method and apparatus for treating food wastewater
JP3400622B2 (en) Method and apparatus for treating organic sewage
JP3447037B2 (en) Aerobic digestion of activated sludge
JP2003053377A (en) Method for treating organic waste water and treating device
JP3414007B2 (en) Aerobic treatment of organic wastewater
JPH08276197A (en) Organic waste treatment method