JP3493769B2 - Aerobic treatment of organic wastewater - Google Patents
Aerobic treatment of organic wastewaterInfo
- Publication number
- JP3493769B2 JP3493769B2 JP29869594A JP29869594A JP3493769B2 JP 3493769 B2 JP3493769 B2 JP 3493769B2 JP 29869594 A JP29869594 A JP 29869594A JP 29869594 A JP29869594 A JP 29869594A JP 3493769 B2 JP3493769 B2 JP 3493769B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- ozone
- treatment
- liquid
- aeration tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、有機性排液を好気性微
生物を含む生物汚泥の存在下に生物処理する方法、特に
好気性生物処理系における余剰汚泥を減容化することが
できる有機性排液の生物処理方法に関する。
【0002】
【従来の技術】活性汚泥処理法などのように、好気性微
生物の作用を利用して、有機性排液を好気条件で処理す
る好気性生物処理方法は、処理コストが安く、処理性能
も優れているため、一般に広く利用されているが、難脱
水性の余剰汚泥が大量に生成する。この余剰汚泥は処理
BOD量の約30〜60%にも達し、その処理は困難で
ある。従来、このような余剰汚泥は投棄処分されていた
が、その処分場の確保が困難となり、汚泥の減容化が必
要となっている。
【0003】汚泥を減容化するために特開平6−206
088号には、好気性処理系から引抜いた活性汚泥をオ
ゾンにより酸化分解した後、好気的に生物処理する有機
性排液の好気性処理方法が記載されており、オゾン処理
により余剰汚泥の減容化の程度が向上し、場合によって
は余剰汚泥の発生をゼロにすることができることが開示
されている。この方法は汚泥をオゾン処理して酸化分解
することによりBOD化し、これを好気性処理して汚泥
の減容化を行うものである。
【0004】
【発明が解決しようとする課題】ところがこのような方
法で処理を行うと、オゾン処理による減容化を行わない
場合に比べて、処理水CODが高くなる傾向にある。そ
の原因はオゾン処理によりBOD化される際、一部難生
物分解性成分が生成し、これが好気性処理において生物
分解されないまま処理水中に流出してCODとして検出
されるものと考えられる。このような難生物分解性成分
は、被処理液のBODが低い場合はわずかであるが、被
処理液BODが100mg/l以上の場合はCODの増
加が10mg/l以上となる場合があり、後処理として
の凝集沈殿処理や活性炭処理の負荷を高くするという問
題点がある。
【0005】本発明の目的は、上記のような問題点を解
決するため、汚泥の減容化を行うとともに、処理水質の
悪化を防止することができる有機性排液の好気性処理方
法を提案することである。
【0006】
【課題を解決するための手段】本発明は、有機性排液を
曝気槽において、好気性微生物を含む生物汚泥の存在下
に好気性生物処理する方法であって、BODが100m
g/l以上の有機性排液を曝気槽に導入して、好気性微
生物を含む生物汚泥の存在下に好気性生物処理する好気
性生物処理工程と、曝気槽の混合液を固液分離し、分離
液を処理液として排出し、分離汚泥の少なくとも一部を
曝気槽に返送する固液分離工程と、曝気槽内の混合液ま
たは分離汚泥の一部を引き抜いてオゾン処理するオゾン
処理工程と、オゾン処理汚泥を貯留して、オゾン処理で
生成した難生物分解性成分を易生物分解性に変質させる
とともに、残留オゾンを分解したのち曝気槽に返送する
返送工程とを有することを特徴とする有機性排液の好気
性処理方法である。
【0007】本発明において処理の対象となる有機性排
液は、BODが100mg/l以上の有機性排液であ
り、通常の好気性生物処理法により処理される有機物を
含有する排液であるが、難生物分解性の有機物または無
機物が含有されていてもよい。このような有機性排液と
しては、下水、し尿、食品工場排水その他の産業排液な
どがあげられる。
【0008】本発明における好気性生物処理は、有機性
排液を好気性微生物を含む生物汚泥の存在下に好気性生
物処理を行う。このような処理としては、有機性排液を
曝気槽で活性汚泥と混合して曝気し、混合液を固液分離
装置で固液分離し、分離汚泥の一部を曝気槽に返送する
標準活性汚泥処理法における好気性生物処理が一般的で
あるが、これを変形した他の処理でもよい。
【0009】本発明では、このような好気性生物処理に
おける処理系から生物汚泥の一部を引抜き、この引抜汚
泥をオゾン処理する。生物汚泥を引抜く場合、固液分離
装置で分離された分離汚泥の一部を引抜くのが好ましい
が、曝気槽から混合液の状態で引抜いてもよい。分離汚
泥から引抜く場合、余剰汚泥として排出される部分の一
部または全部を引抜汚泥として引抜くことができるが、
余剰汚泥に加えて、返送汚泥として曝気槽に返送される
汚泥の一部をさらに引抜いてオゾン処理するのが好まし
く、この場合余剰汚泥の発生量をより少なくすることが
でき、条件によっては余剰汚泥の発生量をゼロにするこ
ともできる。この点については、後で詳しく述べる。
【0010】オゾン処理はpH5以下の酸性領域で行う
と酸化分解効率が高くなる。このときのpHの調整は、
硫酸、塩酸または硝酸などの無機酸をpH調整剤として
生物汚泥に添加するか、生物汚泥を酸発酵処理して調整
するか、あるいはこれらを組合せて行うのが好ましい。
pH調整剤を添加する場合、pHは3〜4に調整するの
が好ましく、酸発酵処理を行う場合、pHは4〜5とな
るように行うのが好ましい。
【0011】オゾン処理は、引抜汚泥または酸発酵処理
液をそのまま、または必要により遠心分離機などで濃縮
した後pH5以下に調整し、オゾンと接触させることに
より行うことができる。接触方法としては、オゾン処理
槽に汚泥を導入してオゾンを吹込む方法、機械攪拌によ
る方法、充填層を利用する方法などが採用できる。オゾ
ンとしてはオゾンガスの他、オゾン含有空気、オゾン化
空気などのオゾン含有ガスが使用できる。オゾンの使用
量は0.002〜0.05g−O3/g−VSS、好ま
しくは0.005〜0.03g−O3/g−VSSとす
るのが望ましい。オゾン処理により生物汚泥は酸化分解
されて、BOD成分に変換される。
【0012】オゾン処理するオゾン処理装置としては、
汚泥含有液中の汚泥にオゾンを接触させて酸化反応させ
るためのオゾン処理槽、およびオゾン処理液を曝気槽に
返送する手段を有している装置であればどのような構成
の装置でも使用することができる。オゾン処理槽内で汚
泥が沈降しやすい場合、または浮上する汚泥に比べて沈
降する汚泥が多い場合には、汚泥含有液とオゾン含有ガ
スとは並流で接触させるようにするのが好ましく、これ
により汚泥とオゾンとの接触効率がよくなる。一方、オ
ゾン処理槽内で汚泥が浮上しやすい場合、または沈降す
る汚泥に比べて浮上する汚泥が多い場合には、向流で接
触させるようにするのが好ましく、これにより接触効率
がよくなる。
【0013】オゾン処理槽にオゾン含有ガスを吹込んで
オゾン処理を行うと発泡が生じるが、この発泡によるト
ラブルを防止するために、オゾン処理槽内に消泡用の液
散布手段を設けることができる。液散布手段としては、
オゾン処理槽内の汚泥を含む槽内液を引抜いて、この引
抜液を消泡用水としてオゾン処理槽内の液面に散布する
ように構成された装置が好ましい。
【0014】またオゾン処理槽として、槽の下部に液相
の汚泥含有液にオゾン含有ガスを吹込んで気液接触させ
る液相接触域が形成され、その上部に発泡した泡沫とオ
ゾン含有ガスとを接触させる泡沫接触域が形成されるよ
うに構成されたオゾン処理槽を使用すると、オゾン処理
効率はさらに高くなる。液相接触域の高さは0.2〜3
m、好ましくは0.5〜1.5mとする。泡沫接触域の
高さは液相接触域の汚泥含有液の液面より1m以上の高
さであればよいが、好ましくは1〜10m、さらに好ま
しくは2〜5mの高さとする。
【0015】泡沫接触域には泡沫保持部材を充填するこ
とができ、これによりオゾン処理槽の内径が大きくて泡
が保持されにくい場合、または生物汚泥の濃度が低くて
汚泥含有液が発泡しにくい性状である場合などでも、泡
沫を効率よく保持することができ、オゾン処理効率を高
くすることができる。泡沫保持部材としては、泡沫を保
持できる構造のものであればよいが、ハニカム状、格子
状などの仕切板構造のものが好ましい。
【0016】オゾン処理槽内の泡沫接触域の上部に前記
液散布装置を設けて、工業用水、最終処理液、オゾン処
理槽からの引抜液、または引抜液と被処理液との混合液
などを泡沫層に向けて散布することができ、これにより
過剰な発泡を抑制して、泡沫接触域を所定の高さに維持
することができる。この場合、引抜液または引抜液と被
処理液との混合液を使用すると、槽内液の汚泥濃度が低
下せず、またノズル等の閉塞が発生しないので好まし
い。オゾン処理槽の泡沫接触域は泡沫で満たされるだけ
なので、槽内を被処理液で満たす装置に比べてオゾン処
理槽の強度は小さくてもよくなり、それだけ低コストの
オゾン処理装置となる。
【0017】オゾン処理槽では汚泥がオゾンと反応して
酸化分解され、BOD成分に変換される。このとき一部
難生物分解性成分が生成し、これをそのまま曝気槽に返
送して好気性生物処理を行っても生物分解され難いが、
本発明ではオゾン処理汚泥を貯留することにより汚泥を
変質させ、易生物分解性にする。オゾン処理汚泥はオゾ
ン処理終了後も徐々に変質し、生物反応が関与しない場
合でも溶解性CODが増加し、難生物分解性成分が減少
する。またオゾン処理汚泥中の残留オゾンも貯留中に分
解する。
【0018】貯留は任意の場所において行うことがで
き、例えばオゾン処理汚泥用の貯留槽を設けてもよい
が、被処理液貯槽に導入して、被処理液と混合した状態
で貯留すると、新たな装置を設ける必要がないので好ま
しい。貯留時間は3時間ないし2日間程度、好ましくは
12時間ないし2日間程度とするのが好適である。
【0019】オゾン処理した後貯留して変質させた汚泥
は、好気性生物処理工程の曝気槽に導入して好気性生物
処理を行う。これによりオゾン処理によってBOD化し
た易生物分解性成分、ならびに一旦難分解性成分になっ
た後、貯留により変質して生成した易生物分解成分は容
易に生物分解されて除去される。これによりCODの流
出は防止され、高処理水質が得られるとともに、系全体
から排出される汚泥の量が低減する。オゾン処理汚泥中
の残留オゾンは貯留中に分解するから、活性汚泥中の生
物に対する阻害性はなくなる。
【0020】この場合、オゾン処理する汚泥の量を多く
するほど汚泥の減容率は高くなる。ただし、オゾン処理
した汚泥中の有機物を生物分解する際に汚泥が増殖する
ので、単に余剰汚泥をオゾン処理しただけでは余剰汚泥
をゼロにすることはできないが、増殖する汚泥量が見か
け上ゼロになるように過剰の汚泥を引抜いてオゾン処理
する場合には、系全体から生じる余剰汚泥の量をゼロに
することもできる。この場合、オゾン処理する汚泥の量
が多くなると、生物処理性能が低下する場合があるが、
このようなときには、汚泥を担持するための担体を曝気
槽内に設け、一定量の汚泥量を保持することにより、生
物処理性能を高く維持することができる。
【0021】好気性処理工程では、オゾン処理に供給す
る汚泥の供給量および系外に排出する余剰汚泥の排出量
を制御して、曝気槽内の生物汚泥のVSS/SS比およ
びMLVSSを所定値に維持することにより、生物処理
性能を低下させることなく、余剰汚泥の減容化を行うと
ともに、曝気槽内の生物汚泥の沈降性および脱水性を改
善することもできる。これにより、固液分離装置におけ
る分離操作が容易となり、また生成する余剰汚泥の脱水
処理も容易になる。すなわち、曝気槽内の生物汚泥のV
SS/SS比を0.2〜0.7、好ましくは0.3〜
0.6、MLVSSを500〜10000mg/l、好
ましくは1000〜5000mg/lに維持するように
制御することにより、汚泥の沈降性および脱水性を改善
することができる。一般的傾向としてVSS/SS比が
小さくなるほど汚泥の比重が高くなり、沈降性、脱水性
がよくなる。
【0022】本発明における汚泥減容化の原理を図を用
いて説明する。図1は汚泥減容化の原理を説明するため
の模式図である。図において、1は好気性生物処理系、
2はオゾン処理系である。好気性生物処理系1は、活性
汚泥処理装置のように、有機性排液を生物汚泥と接触さ
せて好気的に分解する処理系であり、曝気槽と固液分離
装置とが別々に設けられるが、これらを含めた全体の処
理系として図示されている。オゾン処理系2は混合液ま
たは濃縮液の状態で引抜かれる引抜汚泥にオゾン含有ガ
スを反応させ、酸化分解してBODに変換するオゾン処
理槽と、オゾン処理汚泥を貯留する貯留槽とを有する
が、これらを含めた全体の処理系として図示されてい
る。
【0023】図1の好気性生物処理系1には、好気性生
物処理を行うために一定量の生物汚泥3aが保持されて
いる。このような好気性生物処理系1に被処理液4を導
入して好気性生物処理を行うと、被処理液4に含まれる
BODは生物汚泥3aに同化され、その増殖により新た
に生成汚泥3bが生成する。一方、系内の生物汚泥3a
は自己分解により、自己分解分3cが消失する。従って
定常状態では、生成汚泥3bと自己分解分3cの差が増
殖汚泥3dとして増殖する。
【0024】増殖汚泥3dを余剰汚泥としてオゾン処理
系2で処理する場合を、図1に破線5で示しているが、
増殖汚泥3dをオゾン処理して好気性生物処理系1に戻
すと、オゾン処理により生成するBODが汚泥に転換し
て、別の生成汚泥3eが生成し、この分が実質的な汚泥
増殖分となり、余剰汚泥として排出されなければならな
い。これに対し、増殖汚泥3dよりも多い量の引抜汚泥
3fを好気性生物処理系1から引抜き、オゾン処理系2
でオゾン処理してBODに転換し、オゾン処理汚泥6を
好気性生物処理系1に戻すことにより、オゾン分解で生
成したBODから別の生成汚泥3gが生成する。この場
合、引抜汚泥3fと生成汚泥3gの差が無機化部分3h
となる。
【0025】ここで増殖汚泥3dよりも多い量の引抜汚
泥3fをオゾン処理してBODに転換することにより、
増殖汚泥3dのみをオゾン分解する場合よりも、無機化
部分が多くなり、汚泥減容化率は高くなる。増殖汚泥3
dと無機化部分hが等しくなるように、引抜汚泥3fの
量を決めると、余剰汚泥は実質的にゼロになる。増殖汚
泥3dが無機化部分3hより多い場合は、その差が実質
的な増加部分3iとなり、余剰汚泥7として系外に排出
される。8は好気性生物処理系1の処理液である。
【0026】上記好気性生物処理系1における曝気槽容
量をV、その生物汚泥濃度をX、汚泥収率をY、被処理
液流量(処理液流量)をQ、被処理液の有機物濃度をC
i、処理液の有機物濃度をCe、生物処理された有機物
濃度を(Ci−Ce)、汚泥自己分解定数をKd、余剰
汚泥排出量をq、オゾン処理槽への引抜量をQ′、オゾ
ン処理された汚泥が生物汚泥に再変換された割合をkと
すると、物質収支は次の〔1〕式で表される。
【数1】
V dX/dt=Y Q (Ci−Ce) −V Kd X−q X−Q′X+k Q′X 〔1〕
【0027】〔1〕式において、V dX/dtは好気性生物
処理系1における生物汚泥3aの変化量、Y Q (Ci−Ce)
は生成汚泥3bの量、V Kd Xは自己分解分3cの量、q
Xは余剰汚泥7の排出量、Q′Xは引抜汚泥3fの量、k
Q′Xは生成汚泥3gの量を示している。ここでQ (Ci−C
e)/V=LV(槽負荷)、q/V=1/SRT(余剰汚泥滞留時
間比)、Q′/V=θ(オゾン処理系への生物汚泥の循環
比)、(1−k)=δ(無機化率)とおくと、定常状態
では、〔1〕式は次の〔2〕式のように簡略化される。
【数2】
Y LV/X=Kd+1/SRT+δθ 〔2〕
【0028】オゾン処理系2が存在しない通常の好気性
生物処理系では、〔2〕式の第3項(δθ)がないの
で、汚泥負荷を一定としたとき第2項で余剰汚泥(X/S
RT)が決定される。これに対してオゾン処理を組合せた
処理系では、〔2〕式から明らかなように、第3項の値
により余剰汚泥が減容化する。そして第3項の値が第2
項の値に匹敵するような条件下では、余剰汚泥を排出し
なくても(1/SRT=0)、汚泥負荷を通常の値に設定
することが可能である。
【0029】前記〔2〕式の第3項のパラメータは無機
化率δと循環比θであるが、このうちδは汚泥に対する
オゾン注入率が0.01g−O3/g−VSS以上で
は、0.5付近の定常値になるため、この領域では汚泥
の見かけの減容化率はθに比例して決定される。一方、
循環比θは、0.5day-1程度までは汚泥活性に影響
を与えない。このことは1日あたり、好気性生物処理系
1に保持された生物汚泥3aの1/2以下を引抜汚泥3
fとしてオゾン処理系2に循環しても、好気性生物処理
系1の汚泥活性が維持されることを意味している。
【0030】従って、循環比θの上限は0.5day-1
とされる。θがゼロの場合は完全酸化方式となるが、こ
の場合低汚泥負荷であるとともに、減容効果も小さい。
また引抜汚泥3fが増殖汚泥3dと同量の場合は、従来
法と同様な値の減容率となる。通常の好気性生物処理で
は、SRTは10日、汚泥引抜率は0.1day-1であ
る。本発明において、増殖汚泥3dより多い引抜汚泥3
fを循環すると、循環比θの下限は0.1day-1を超
える値とされるが、0.2day-1以上とするのが好ま
しく、特に0.3day-1とすると、余剰汚泥が発生し
ない100%減容化が可能となる。
【0031】
【実施例】次に本発明の実施例について説明する。図2
および図3はそれぞれ別の実施例の好気性処理装置を示
すフローシートであり、図2は曝気槽内の混合液をオゾ
ン処理する例、図3は固液分離装置の分離汚泥をオゾン
処理する例を示している。図2において、好気性生物処
理系1は曝気槽11および固液分離装置12から構成さ
れている。曝気槽11には被処理液路13および返送汚
泥路14が連絡し、また底部には散気装置15が設けら
れて、空気供給路16が連絡している。曝気槽11から
固液分離装置12に連絡路17が連絡している。固液分
離装置12には、処理液路18および分離汚泥排出路1
9が連絡し、分離汚泥排出路19から返送汚泥路14が
分岐している。20は必要により設けられる余剰汚泥排
出路である。
【0032】オゾン処理系2はオゾン処理槽21を有す
るオゾン処理装置および貯留槽22から構成され、オゾ
ン処理槽21には、汚泥引抜路23および排オゾン路2
4が上部に連絡している。汚泥引抜路23には、無機酸
供給路25が連絡している。またオゾン処理槽21の下
部にはオゾン供給路26およびオゾン処理汚泥路27が
連絡している。オゾン処理汚泥路27は、貯留槽22に
連絡しており、貯留槽22から貯留汚泥路28が曝気槽
11に連絡している。
【0033】図2の処理装置による有機性排液の好気性
生物処理方法は、被処理液路13から有機性排液を曝気
槽11に導入し、返送汚泥路14から返送される返送汚
泥および曝気槽11内の活性汚泥と混合し、空気供給路
16から供給される空気を散気装置15から散気して好
気性生物処理を行う。これにより、排液中の有機物は生
物酸化反応によって分解される。曝気槽11内の混合液
(反応液)の一部は連絡路17を通して固液分離装置1
2に導入し、沈降分離により分離液と分離汚泥とに分離
する。分離液は処理液として処理液路18から系外に排
出し、分離汚泥は分離汚泥排出路19から取出し、その
一部は返送汚泥として返送汚泥路14から曝気槽11に
返送し、残部は余剰汚泥として余剰汚泥排出路20から
系外に排出する。
【0034】曝気槽11内の混合液の一部を引抜汚泥と
して汚泥引抜路23から引抜き、この引抜汚泥に無機酸
供給路25から無機酸を加えてpHを5以下に調整した
後、オゾン処理槽21に導入する。オゾン処理槽21で
は、汚泥にオゾン供給路26から供給されるオゾンを接
触させてオゾン処理を行い、汚泥をBOD化する。この
場合、オゾン注入率は0.005〜0.02g−O3/
g−VSS程度でよい。オゾン排ガスは排オゾン路24
から系外に排出する。
【0035】オゾン処理液はオゾン処理汚泥路27から
貯留槽22に導入して貯留し、汚泥を変質させて難生物
分解性成分を易生物分解性に変換する。貯留汚泥は貯留
汚泥路28から曝気槽11に戻し、負荷として好気性生
物処理する。このように貯留汚泥を曝気槽11に戻して
好気性生物処理することにより、オゾン処理により変換
されたBOD成分および貯留により変換された易生物分
解性成分が微生物に資化され、分解除去される。これに
より好気性生物処理系1から生じる余剰汚泥が減容化す
る。
【0036】図3では、固液分離装置12で分離された
分離汚泥の一部を分離汚泥引抜路9からオゾン処理槽2
1に導入するように構成されている。オゾン処理汚泥路
27は被処理液貯留槽22aに連絡している。29は被
処理液供給路である。
【0037】図3の装置による処理方法は、被処理液供
給路29から被処理液貯留槽22aに被処理液を供給し
て貯留した後、被処理液路13から曝気槽11に導入し
て好気性生物処理を行う。そして固液分離装置12で分
離された分離汚泥の一部をオゾン処理槽21に導入して
オゾン処理を行う。オゾン処理汚泥はオゾン処理汚泥路
27から被処理液貯留槽22aに導入して被処理液とと
もに貯留したのち、被処理汚泥路13から曝気槽11に
返送する。図3のように分離汚泥をオゾン処理すれば、
汚泥濃度の高い態でオゾン処理を行うため、オゾン処理
効率が高くなり、またオゾン処理汚泥を被処理液貯留槽
で貯留することにより、装置を有効に利用することがで
きる。
【0038】図4は曝気槽内の混合液をオゾン注入量
0.05g−O3/g−VSSでオゾン処理したオゾン
処理汚泥と、オゾン処理しない汚泥に、生物呼吸阻害剤
としてNaN3を1mg/l添加し、4℃で静置したと
きの混合液中の溶解性全有機炭素(S・TOC/MLV
SS)の変化を示すグラフである。図4から、生物呼吸
阻害剤により生物反応が関与しない条件下でも、オゾン
処理汚泥のTOCの溶出が起こり、汚泥が変質している
ことが認められ、難生物分解性成分が易生物分解性成分
に変換していることが理解できる。
【0039】実施例1、比較例1、2
ペプトン:イーストエキス=1:1の合成排水(TOC
=200mg/l)を図3の装置により、好気性処理を
行った。処理条件はTOC槽負荷0.6g−C/liter・
day、MLSS3000〜4000mg/l、オゾン注
入率0.05g−O3/g−VSS、オゾン処理汚泥量
は1日あたり保有汚泥量の30%である。オゾン処理汚
泥は、実施例1では被処理液貯留槽に導入しHRT1日
間で貯留して曝気槽に返送し、比較例1では貯留するこ
となく直接曝気槽に返送した。比較例2はオゾン処理し
ない例である。処理結果を表1に示す。
【0040】
【表1】【0041】以上の結果より、オゾン処理汚泥を直接曝
気槽に返送した比較例は処理水CODが高くなるが、貯
留した実施例1はオゾン処理しない比較例2と同程度の
処理水CODが得られ、しかも汚泥の減容化が行われて
いることがわかる。
【0042】
【発明の効果】本発明によれば、BODが100mg/
l以上の有機性排液を好気性生物処理する場合、曝気槽
内の混合液または分離汚泥の一部をオゾン処理し、オゾ
ン処理汚泥を貯留して、オゾン処理で生成した難生物分
解性成分を易生物分解性に変質させるとともに、残留オ
ゾンを分解したのち曝気槽に返送するようにしたので、
汚泥の減容化を行うことができるとともに、オゾン処理
により生成する難生物分解性成分を易生物分解性成分に
変換して生物分解を行うことができ、かつ残留オゾンの
処理も可能で、これにより処理水質の悪化を防止して高
処理水質を得ることが可能である。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biologically treating an organic effluent in the presence of biological sludge containing aerobic microorganisms, and more particularly, to a method for treating waste water in an aerobic biological treatment system. The present invention relates to a biological treatment method for organic wastewater capable of reducing sludge volume. [0002] An aerobic biological treatment method for treating an organic effluent under aerobic conditions by utilizing the action of aerobic microorganisms, such as an activated sludge treatment method, has a low treatment cost. Because of its excellent processing performance, it is widely used in general, but generates a large amount of hardly dewaterable surplus sludge. This surplus sludge reaches about 30 to 60% of the amount of the treated BOD, and its treatment is difficult. Conventionally, such excess sludge has been dumped and disposed of. However, it is difficult to secure a disposal site and sludge volume reduction is required. In order to reduce the volume of sludge, Japanese Patent Laid-Open Publication No.
No. 088 describes a method for aerobically treating an organic effluent which is subjected to oxidative decomposition of activated sludge withdrawn from an aerobic treatment system with ozone and then aerobic biological treatment. It is disclosed that the degree of volume reduction is improved and, in some cases, the generation of excess sludge can be reduced to zero. In this method, sludge is treated with ozone and oxidatively decomposed into BOD, which is aerobicly treated to reduce the volume of sludge. However, when the treatment is performed by such a method, the COD of the treated water tends to be higher than when the volume is not reduced by the ozone treatment. It is considered that the cause is that, when converted into BOD by the ozone treatment, a part of the hardly biodegradable component is generated, which flows out into the treated water without being biodegraded in the aerobic treatment and is detected as COD. Such a hardly biodegradable component is slight when the BOD of the liquid to be treated is low, but when the BOD of the liquid to be treated is 100 mg / l or more, the increase in COD may be 10 mg / l or more, There is a problem that the load of the coagulation sedimentation treatment or the activated carbon treatment as the post-treatment is increased. An object of the present invention is to propose an aerobic treatment method for organic wastewater which can reduce the volume of sludge and prevent deterioration of treated water quality in order to solve the above problems. It is to be. [0006] The present invention is a method for aerobic biological treatment of organic wastewater in an aeration tank in the presence of biological sludge containing aerobic microorganisms, wherein the BOD is 100 m.
g / l or more of an organic effluent is introduced into an aeration tank, and an aerobic biological treatment step of performing aerobic biological treatment in the presence of biological sludge containing aerobic microorganisms; A solid-liquid separation step of discharging the separated liquid as a treatment liquid and returning at least a part of the separated sludge to the aeration tank, and an ozone treatment step of extracting and ozone-treating a part of the mixed liquid or the separated sludge in the aeration tank. , Storing ozone-treated sludge ,
Transforms the produced biodegradable components into biodegradable.
And an aerobic treatment method for organic wastewater, comprising a return step of decomposing residual ozone and returning the ozone to an aeration tank. The organic effluent to be treated in the present invention is an organic effluent having a BOD of 100 mg / l or more.
Alternatively, the effluent contains an organic substance that is treated by an ordinary aerobic biological treatment method, but may contain a hardly biodegradable organic substance or inorganic substance. Such organic effluents include sewage, night soil, food factory effluents and other industrial effluents. In the aerobic biological treatment of the present invention, the organic effluent is subjected to aerobic biological treatment in the presence of biological sludge containing aerobic microorganisms. In such treatment, the organic wastewater is mixed with activated sludge in an aeration tank and aerated, the mixed liquid is separated into solid and liquid by a solid-liquid separator, and a part of the separated sludge is returned to the aeration tank. Aerobic biological treatment in the sludge treatment method is general, but other treatments modified from this may be used. In the present invention, a part of the biological sludge is extracted from the treatment system in such aerobic biological treatment, and the extracted sludge is subjected to ozone treatment. When extracting biological sludge, it is preferable to extract a part of the separated sludge separated by the solid-liquid separator, but it may also be possible to extract the mixed sludge from the aeration tank. When extracting from the separated sludge, part or all of the part discharged as excess sludge can be extracted as extracted sludge,
In addition to excess sludge, it is preferable that a part of the sludge returned to the aeration tank as return sludge is further extracted and subjected to ozonation. In this case, the amount of excess sludge can be reduced, and depending on conditions, excess sludge may be used. Can be reduced to zero. This will be described in detail later. When the ozone treatment is performed in an acidic region having a pH of 5 or less, the efficiency of oxidative decomposition increases. The pH adjustment at this time is as follows:
It is preferable to add an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid to the biological sludge as a pH adjuster, adjust the biological sludge by acid fermentation treatment, or combine them.
When a pH adjuster is added, the pH is preferably adjusted to 3 to 4, and when an acid fermentation treatment is performed, the pH is preferably adjusted to 4 to 5. The ozone treatment can be carried out by adjusting the pH of the extracted sludge or acid fermentation treatment solution to 5 or less as it is or, if necessary, concentrating it with a centrifugal separator or the like, and bringing it into contact with ozone. As a contact method, a method of introducing sludge into the ozone treatment tank and blowing ozone, a method of mechanical stirring, a method of using a packed bed, and the like can be adopted. As ozone, ozone-containing gas such as ozone-containing air and ozonized air can be used in addition to ozone gas. The amount of ozone 0.002~0.05g-O 3 / g-VSS , preferably it is desirable to 0.005~0.03g-O 3 / g-VSS . The biological sludge is oxidatively decomposed by the ozone treatment and is converted into a BOD component. As an ozone treatment apparatus for ozone treatment,
Any device having an ozone treatment tank for contacting ozone with sludge in the sludge-containing liquid to cause an oxidation reaction and a device having a means for returning the ozone treatment liquid to the aeration tank can be used. be able to. If the sludge is likely to settle in the ozonation tank, or if there is more sludge to settle than the floating sludge, it is preferable that the sludge-containing liquid and the ozone-containing gas are brought into contact in parallel, Thereby, the contact efficiency between sludge and ozone is improved. On the other hand, when the sludge is likely to float in the ozone treatment tank, or when the amount of the sludge that floats is larger than that of the settling sludge, it is preferable that the sludge is brought into contact with the countercurrent, thereby improving the contact efficiency. When the ozone treatment is performed by blowing the ozone-containing gas into the ozone treatment tank, foaming occurs. To prevent troubles caused by the foaming, a liquid spraying means for defoaming can be provided in the ozone treatment tank. . As a liquid spraying means,
It is preferable to use an apparatus configured to withdraw the liquid in the tank including the sludge in the ozonation tank and to spray the extracted liquid as defoaming water on the liquid surface in the ozonation tank. As an ozone treatment tank, a liquid-phase contact area is formed at the lower part of the tank where an ozone-containing gas is blown into a liquid-phase sludge-containing liquid to make gas-liquid contact, and the foamed foam and the ozone-containing gas are formed at the upper part. The use of an ozonation tank configured to form a foam contact area to be contacted further increases ozonation efficiency. Liquid phase contact area height is 0.2-3
m, preferably 0.5 to 1.5 m. The height of the foam contact area may be at least 1 m above the liquid level of the sludge-containing liquid in the liquid phase contact area, but is preferably 1 to 10 m, more preferably 2 to 5 m. The foam contact area can be filled with a foam holding member, so that the inside diameter of the ozone treatment tank is large and it is difficult to hold the foam, or the concentration of biological sludge is low and the sludge-containing liquid is hard to foam. Even in the case of properties, foams can be efficiently retained, and ozone treatment efficiency can be increased. The foam holding member may have any structure as long as it can hold the foam, but preferably has a honeycomb-shaped or lattice-shaped partition plate structure. The above-mentioned liquid spraying device is provided above the foam contact area in the ozone treatment tank, and is used to supply industrial water, a final treatment liquid, a withdrawal liquid from the ozone treatment tank, or a mixture of the withdrawal liquid and the liquid to be treated. Spraying can be performed toward the foam layer, thereby suppressing excessive foaming and maintaining the foam contact area at a predetermined height. In this case, it is preferable to use a drawing liquid or a liquid mixture of the drawing liquid and the liquid to be treated, because the sludge concentration of the liquid in the tank does not decrease and the nozzle or the like does not block. Since the foam contact area of the ozone treatment tank is only filled with foam, the strength of the ozone treatment tank may be smaller than that of an apparatus that fills the inside of the tank with the liquid to be treated, and the cost of the ozone treatment apparatus is reduced accordingly. In the ozone treatment tank, sludge reacts with ozone to be oxidatively decomposed and converted into BOD components. At this time, some biodegradable components are generated, and it is difficult to biodegrade even if it is returned to the aeration tank as it is and subjected to aerobic biological treatment,
In the present invention, the sludge is degraded by storing the ozone-treated sludge to make it easily biodegradable. Ozonized sludge gradually changes in quality even after the end of ozone treatment, and even when biological reactions are not involved, soluble COD increases and hardly biodegradable components decrease. Also, residual ozone in the ozonized sludge is decomposed during storage. The storage can be carried out at an arbitrary place. For example, a storage tank for ozone-treated sludge may be provided. This is preferable because there is no need to provide a simple device. The storage time is about 3 hours to 2 days, preferably about 12 hours to 2 days. The sludge that has been stored and altered after the ozone treatment is introduced into an aeration tank in an aerobic biological treatment step to perform aerobic biological treatment. As a result, the easily biodegradable component that has been converted into BOD by the ozone treatment and the once hardly decomposable component are easily degraded by storage, and the easily biodegradable component is easily biodegraded and removed. Thereby, the outflow of COD is prevented, high treated water quality is obtained, and the amount of sludge discharged from the entire system is reduced. The residual ozone in the ozonated sludge is decomposed during storage, and therefore has no harmful effect on the organisms in the activated sludge. In this case, as the amount of the sludge to be subjected to the ozone treatment is increased, the volume reduction rate of the sludge is increased. However, sludge multiplies when biodegrading the organic matter in the ozone-treated sludge.Thus, simply treating the excess sludge with ozone cannot reduce the excess sludge to zero, but the amount of sludge that grows is apparently zero. When the excess sludge is withdrawn and subjected to ozone treatment, the amount of excess sludge generated from the entire system can be reduced to zero. In this case, when the amount of the sludge to be ozone-treated increases, the biological treatment performance may decrease,
In such a case, the biological treatment performance can be maintained high by providing a carrier for supporting sludge in the aeration tank and maintaining a fixed amount of sludge. In the aerobic treatment step, the VSS / SS ratio and MLVSS of the biological sludge in the aeration tank are controlled to predetermined values by controlling the amount of sludge supplied to the ozone treatment and the amount of excess sludge discharged outside the system. By keeping the volume of the wastewater, the volume of the excess sludge can be reduced without lowering the biological treatment performance, and the sedimentation and dehydration of the biological sludge in the aeration tank can be improved. This facilitates the separation operation in the solid-liquid separation device, and also facilitates the dewatering of the generated excess sludge. That is, V of biological sludge in the aeration tank
SS / SS ratio of 0.2 to 0.7, preferably 0.3 to
0.6, the sedimentation and dewatering of sludge can be improved by controlling the MLVSS to be maintained at 500 to 10000 mg / l, preferably 1000 to 5000 mg / l. As a general tendency, as the VSS / SS ratio decreases, the specific gravity of the sludge increases, and the sedimentation and dewatering properties improve. The principle of sludge volume reduction in the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction. In the figure, 1 is an aerobic biological treatment system,
2 is an ozone treatment system. The aerobic biological treatment system 1 is a treatment system in which an organic effluent is brought into contact with biological sludge to decompose aerobically, such as an activated sludge treatment device, and an aeration tank and a solid-liquid separation device are separately provided. However, it is illustrated as an entire processing system including these. The ozone treatment system 2 has an ozone treatment tank that reacts an ozone-containing gas with the extracted sludge that is extracted in the state of a mixed liquid or a concentrated liquid, and oxidatively decomposes it into BOD, and a storage tank that stores the ozonized sludge. Are shown as an entire processing system including these. The aerobic biological treatment system 1 of FIG. 1 holds a certain amount of biological sludge 3a for performing aerobic biological treatment. When the liquid 4 to be treated is introduced into the aerobic biological treatment system 1 and subjected to the aerobic biological treatment, the BOD contained in the liquid 4 to be treated is assimilated into the biological sludge 3a, and the sludge 3b is newly generated by the multiplication thereof. Is generated. On the other hand, biological sludge 3a in the system
The self-decomposition part 3c disappears by self-decomposition. Therefore, in a steady state, the difference between the generated sludge 3b and the self-decomposed component 3c multiplies as multiplication sludge 3d. The case where the sludge 3d is treated as excess sludge in the ozone treatment system 2 is shown by a broken line 5 in FIG.
When the proliferating sludge 3d is returned to the aerobic biological treatment system 1 by ozone treatment, the BOD produced by the ozone treatment is converted into sludge, and another produced sludge 3e is produced, which becomes a substantial sludge propagation component. Must be discharged as excess sludge. On the other hand, a larger amount of the extracted sludge 3f than the multiplication sludge 3d is extracted from the aerobic biological treatment system 1 and the ozone treatment system 2
To convert it to BOD and return the ozone-treated sludge 6 to the aerobic biological treatment system 1, whereby another 3 g of generated sludge is generated from the BOD generated by ozonolysis. In this case, the difference between the extracted sludge 3f and the generated sludge 3g is the mineralized portion 3h.
It becomes. Here, a larger amount of the extracted sludge 3f than the multiplied sludge 3d is converted to BOD by ozone treatment.
As compared with the case where only the proliferation sludge 3d is decomposed by ozonolysis, the mineralized portion increases and the sludge volume reduction rate increases. Proliferating sludge 3
When the amount of the extracted sludge 3f is determined so that d and the mineralized portion h become equal, the excess sludge becomes substantially zero. When the amount of the proliferating sludge 3d is larger than that of the mineralized portion 3h, the difference becomes a substantial increase portion 3i, and is discharged out of the system as excess sludge 7. Reference numeral 8 denotes a treatment liquid of the aerobic biological treatment system 1. In the aerobic biological treatment system 1, the capacity of the aeration tank is V, the biological sludge concentration is X, the sludge yield is Y, the flow rate of the liquid to be treated (the flow rate of the treatment liquid) is Q, and the organic matter concentration of the liquid to be treated is C.
i, the organic matter concentration of the treatment liquid is Ce, the biologically treated organic matter concentration is (Ci-Ce), the sludge self-decomposition constant is Kd, the surplus sludge discharge amount is q, the extraction amount to the ozone treatment tank is Q ′, and the ozone treatment is performed. Assuming that the rate of the converted sludge converted into biological sludge is k, the material balance is expressed by the following equation [1]. V dX / dt = YQ (Ci−Ce) −V Kd X−q X−Q′X + k Q′X [1] In the formula [1], V dX / dt is an aerobic biological treatment. Amount of change in biological sludge 3a in system 1, YQ (Ci-Ce)
Is the amount of generated sludge 3b, V Kd X is the amount of autolysis 3c, q
X is the amount of surplus sludge 7 discharged, Q'X is the amount of extracted sludge 3f, k
Q'X indicates the amount of 3 g of generated sludge. Where Q (Ci−C
e) / V = LV (tank load), q / V = 1 / SRT (excess sludge residence time ratio), Q '/ V = θ (circulation ratio of biological sludge to ozone treatment system), (1-k) = Δ (inorganization ratio), in a steady state, the equation [1] is simplified as the following equation [2]. YLV / X = Kd + 1 / SRT + δθ [2] In a normal aerobic biological treatment system without the ozone treatment system 2, there is no third term (δθ) in the equation (2), so sludge When the load is constant, the excess sludge (X / S
RT) is determined. On the other hand, in the treatment system combined with the ozone treatment, as apparent from the equation (2), the volume of the excess sludge is reduced by the value of the third term. And the value of the third term is the second
Under conditions comparable to the value of the term, it is possible to set the sludge load to a normal value without discharging excess sludge (1 / SRT = 0). The parameters of the third term of the above equation [2] are the mineralization ratio δ and the circulation ratio θ. Of these, δ is the ratio of ozone injection to sludge of 0.01 g-O 3 / g-VSS or more. Since the steady value is around 0.5, the apparent volume reduction ratio of the sludge is determined in this region in proportion to θ. on the other hand,
The circulation ratio θ does not affect the sludge activity up to about 0.5 day −1 . This means that less than 1/2 of the biological sludge 3a held in the aerobic biological treatment system 1 is extracted per day.
It means that the sludge activity of the aerobic biological treatment system 1 is maintained even if the sludge is circulated to the ozone treatment system 2 as f. Therefore, the upper limit of the circulation ratio θ is 0.5 day −1
It is said. When θ is zero, a complete oxidation method is used. In this case, the sludge load is low and the volume reduction effect is small.
When the amount of the extracted sludge 3f is the same as the amount of the proliferating sludge 3d, the volume reduction rate becomes the same value as the conventional method. In a typical aerobic biological treatment, the SRT is 10 days and the sludge withdrawal rate is 0.1 day -1 . In the present invention, the extracted sludge 3 which is larger than the multiplication sludge 3d
When circulating f, the lower limit of the circulation ratio θ is a value greater than 0.1Day -1, may preferably be 0.2Day -1 or more, when a particular 0.3Day -1, excess sludge does not occur 100% volume reduction is possible. Next, embodiments of the present invention will be described. FIG.
And FIG. 3 are flow sheets each showing an aerobic treatment apparatus of another embodiment. FIG. 2 is an example in which a mixed solution in an aeration tank is ozone-treated, and FIG. 3 is an ozone treatment of separated sludge in a solid-liquid separation apparatus. An example is shown. In FIG. 2, the aerobic biological treatment system 1 includes an aeration tank 11 and a solid-liquid separation device 12. A liquid passage 13 to be treated and a return sludge passage 14 communicate with the aeration tank 11, and an air diffuser 15 is provided at the bottom, and an air supply passage 16 communicates therewith. A communication path 17 communicates from the aeration tank 11 to the solid-liquid separation device 12. The solid-liquid separator 12 includes a treatment liquid passage 18 and a separated sludge discharge passage 1.
9, the return sludge passage 14 branches off from the separated sludge discharge passage 19. Reference numeral 20 denotes a surplus sludge discharge passage provided as needed. The ozone treatment system 2 comprises an ozone treatment device having an ozone treatment tank 21 and a storage tank 22. The ozone treatment tank 21 has a sludge extraction passage 23 and an exhaust ozone passage 2.
4 is in contact with the top. The sludge extraction path 23 is connected to an inorganic acid supply path 25. Further, an ozone supply passage 26 and an ozone treatment sludge passage 27 communicate with a lower portion of the ozone treatment tank 21. The ozone-treated sludge passage 27 communicates with the storage tank 22, and a storage sludge passage 28 from the storage tank 22 communicates with the aeration tank 11. In the aerobic biological treatment method for organic effluent by the processing apparatus shown in FIG. 2, the organic effluent is introduced into the aeration tank 11 from the liquid passage 13 to be treated, and the return sludge returned from the return sludge passage 14 It mixes with the activated sludge in the aeration tank 11 and diffuses the air supplied from the air supply path 16 from the diffuser 15 to perform aerobic biological treatment. Thereby, the organic matter in the wastewater is decomposed by the biological oxidation reaction. A part of the mixed liquid (reaction liquid) in the aeration tank 11 is passed through the communication path 17 to the solid-liquid separation device 1.
And separated into a separated liquid and a separated sludge by sedimentation. The separated liquid is discharged out of the system as a processing liquid from the processing liquid path 18, the separated sludge is taken out from the separated sludge discharge path 19, a part of the separated sludge is returned from the returned sludge path 14 to the aeration tank 11 as returned sludge, and the remaining part is surplus. The sludge is discharged from the excess sludge discharge passage 20 to the outside of the system. A part of the mixed solution in the aeration tank 11 is withdrawn as sludge from the sludge withdrawal passage 23, and the pH of the extracted sludge is adjusted to 5 or less by adding an inorganic acid from the inorganic acid supply passage 25, followed by ozone treatment. It is introduced into the tank 21. In the ozone treatment tank 21, the sludge is brought into contact with ozone supplied from the ozone supply passage 26 to perform ozone treatment, thereby converting the sludge into BOD. In this case, the ozone injection rate is 0.005~0.02g-O 3 /
It may be about g-VSS. Ozone exhaust gas is exhausted ozone passage 24
From the system. The ozonated liquid is introduced into the storage tank 22 from the ozonated sludge passage 27 and stored therein, and the sludge is altered to convert the hardly biodegradable components into easily biodegradable ones. The stored sludge is returned from the storage sludge passage 28 to the aeration tank 11 and subjected to aerobic biological treatment as a load. By returning the stored sludge to the aeration tank 11 for aerobic biological treatment, the BOD component converted by the ozone treatment and the easily biodegradable component converted by the storage are assimilated into microorganisms and decomposed and removed. . Thereby, the volume of excess sludge generated from the aerobic biological treatment system 1 is reduced. In FIG. 3, a part of the separated sludge separated by the solid-liquid separation device 12 is removed from the ozone treatment tank 2 through the separated sludge extraction passage 9.
1 is introduced. The ozonized sludge passage 27 communicates with the liquid to be treated storage tank 22a. 29 is a liquid supply passage to be processed. In the processing method using the apparatus shown in FIG. 3, the processing liquid is supplied from the processing liquid supply path 29 to the processing liquid storage tank 22a, stored, and then introduced into the aeration tank 11 from the processing liquid path 13. Perform aerobic biological treatment. Then, a part of the separated sludge separated by the solid-liquid separation device 12 is introduced into the ozone treatment tank 21 to perform ozone treatment. The ozone-treated sludge is introduced from the ozone-treated sludge passage 27 into the to-be-treated liquid storage tank 22a and stored together with the to-be-treated liquid, and then returned from the to-be-treated sludge passage 13 to the aeration tank 11. If the separated sludge is treated with ozone as shown in FIG.
Since the ozone treatment is performed in a state where the sludge concentration is high, the ozone treatment efficiency is increased, and the apparatus can be effectively used by storing the ozone-treated sludge in the treatment liquid storage tank. FIG. 4 shows that the mixed solution in the aeration tank was treated with ozone at an ozone injection amount of 0.05 g-O 3 / g-VSS, and the sludge without ozone was treated with 1 mg of NaN 3 as a biological respiration inhibitor. / L, and the total amount of soluble organic carbon (S.TOC / MLV) in the mixture when allowed to stand at 4 ° C.
6 is a graph showing a change in SS). From FIG. 4, it can be seen that the TOC of the ozone-treated sludge elutes and the sludge is degraded even under the condition where the biological respiration inhibitor does not involve any biological reaction, and the sludge is degraded. It can be understood that it is converted to. Example 1 and Comparative Examples 1 and 2 Peptone: yeast extract = 1: 1 synthetic wastewater (TOC)
= 200 mg / l) was subjected to aerobic treatment by the apparatus of FIG. The processing conditions were as follows: TOC tank load 0.6 g-C / liter.
day, MLSS 3000-4000 mg / l, ozone injection rate 0.05 g-O 3 / g-VSS, ozone treated sludge amount is 30% of the retained sludge amount per day. In Example 1, the ozone-treated sludge was introduced into a liquid storage tank to be treated, stored for one day in HRT, and returned to the aeration tank. In Comparative Example 1, the sludge was returned directly to the aeration tank without storage. Comparative Example 2 is an example without ozone treatment. Table 1 shows the processing results. [Table 1] From the above results, in the comparative example in which the ozone-treated sludge was returned directly to the aeration tank, the treated water COD was high, but in the stored example 1, the treated water COD was about the same as in the comparative example 2 in which the ozone treatment was not performed. It can be seen that the volume of sludge is reduced. According to the present invention, the BOD is 100 mg /
When an aerobic biological treatment is applied to more than 1 liter of the organic effluent, a part of the mixed liquid or separated sludge in the aeration tank is ozone-treated, the ozone-treated sludge is stored , and the hard-living organisms generated by the ozone treatment are removed.
Converts degradable components to readily biodegradable,
After disassembling the zon, it was returned to the aeration tank,
It is possible to reduce the volume of sludge, convert the hardly biodegradable components generated by the ozone treatment into easily biodegradable components and perform biodegradation, and reduce residual ozone.
Treatment is also possible, thereby preventing deterioration of treated water quality and obtaining high treated water quality.
【図面の簡単な説明】
【図1】汚泥減容化の原理を説明するための模式図であ
る。
【図2】実施例の好気性処理装置を示す系統図である。
【図3】他の実施例の好気性処理装置を示す系統図であ
る。
【図4】混合液中の溶解性全有機炭素の変化を示すグラ
フである。
【符号の説明】
1 好気性処理系
2 オゾン処理系
3a 活性汚泥
3b,3e,3g 生成汚泥
3c 自己分解分
3d 増殖汚泥
3f 引抜汚泥
3h 無機化部分
3i 増加部分
4 被処理液
6 オゾン処理汚泥
7 余剰汚泥
8 処理液
11 曝気槽
12 固液分離装置
13 被処理液路
14 返送汚泥路
15 散気装置
16 空気供給路
17 連絡路
18 処理液路
19 分離汚泥排出路
20 余剰汚泥排出路
21 オゾン処理槽
22 貯留槽
22a 被処理液貯留槽
23 汚泥引抜路
24 排オゾン路
25 無機酸供給路
26 オゾン供給路
27 オゾン処理汚泥路
28 貯留汚泥路
29 原液導入路BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction. FIG. 2 is a system diagram showing an aerobic treatment device of an embodiment. FIG. 3 is a system diagram showing an aerobic treatment device of another embodiment. FIG. 4 is a graph showing changes in total soluble organic carbon in a mixed solution. [Description of Signs] 1 Aerobic treatment system 2 Ozonation treatment system 3a Activated sludge 3b, 3e, 3g Generated sludge 3c Self-decomposition part 3d Proliferation sludge 3f Extraction sludge 3h Mineralized part 3i Increased part 4 Liquid to be treated 6 Ozone treated sludge 7 Excess sludge 8 Processing liquid 11 Aeration tank 12 Solid-liquid separator 13 Liquid path to be processed 14 Returned sludge path 15 Air diffuser 16 Air supply path 17 Communication path 18 Processing liquid path 19 Separated sludge discharge path 20 Excess sludge discharge path 21 Ozone treatment Tank 22 Storage tank 22a Liquid to be treated storage tank 23 Sludge extraction path 24 Waste ozone path 25 Inorganic acid supply path 26 Ozone supply path 27 Ozone treated sludge path 28 Storage sludge path 29 Stock solution introduction path
フロントページの続き (56)参考文献 特開 平6−206088(JP,A) 特開 平3−21396(JP,A) 特開 平4−322790(JP,A) 特開 平4−131193(JP,A) 特開 昭56−168879(JP,A) 特開 昭55−8835(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 11/00 - 11/20 Continuation of the front page (56) References JP-A-6-206088 (JP, A) JP-A-3-21396 (JP, A) JP-A-4-322790 (JP, A) JP-A-4-131193 (JP) , A) JP-A-56-168879 (JP, A) JP-A-55-8883 (JP, A) (58) Fields studied (Int. Cl. 7 , DB name) C02F 3/12 C02F 11/00- 11/20
Claims (1)
生物を含む生物汚泥の存在下に好気性生物処理する方法
であって、BODが100mg/l以上の 有機性排液を曝気槽に導
入して、好気性微生物を含む生物汚泥の存在下に好気性
生物処理する好気性生物処理工程と、 曝気槽の混合液を固液分離し、分離液を処理液として排
出し、分離汚泥の少なくとも一部を曝気槽に返送する固
液分離工程と、 曝気槽内の混合液または分離汚泥の一部を引き抜いてオ
ゾン処理するオゾン処理工程と、 オゾン処理汚泥を貯留して、オゾン処理で生成した難生
物分解性成分を易生物分解性に変質させるとともに、残
留オゾンを分解したのち曝気槽に返送する返送工程とを
有することを特徴とする有機性排液の好気性処理方法。(1) A method for aerobic biological treatment of an organic wastewater in an aeration tank in the presence of biological sludge containing aerobic microorganisms, wherein the BOD is 100 mg / l or more. An aerobic biological treatment step of introducing an organic wastewater into the aeration tank to aerobic biological treatment in the presence of biological sludge containing aerobic microorganisms, and solid-liquid separation of the mixture in the aeration tank, and separating the separated liquid. A solid-liquid separation step of discharging as a treatment liquid and returning at least a part of the separated sludge to the aeration tank; an ozone treatment step of extracting a part of the mixed liquid or the separated sludge in the aeration tank and performing ozone treatment; Infertility generated by ozone treatment
Converts biodegradable components to biodegradable,
An aerobic treatment method for an organic wastewater, comprising: a return step of decomposing distillate ozone and returning it to an aeration tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29869594A JP3493769B2 (en) | 1994-12-01 | 1994-12-01 | Aerobic treatment of organic wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29869594A JP3493769B2 (en) | 1994-12-01 | 1994-12-01 | Aerobic treatment of organic wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08155482A JPH08155482A (en) | 1996-06-18 |
JP3493769B2 true JP3493769B2 (en) | 2004-02-03 |
Family
ID=17863092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29869594A Expired - Fee Related JP3493769B2 (en) | 1994-12-01 | 1994-12-01 | Aerobic treatment of organic wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3493769B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3521535B2 (en) * | 1995-04-11 | 2004-04-19 | 栗田工業株式会社 | Aerobic biological treatment system for organic wastewater |
JP4410163B2 (en) * | 1997-05-30 | 2010-02-03 | 三菱電機株式会社 | Waste water ozone treatment method and ozone treatment apparatus |
JP3763439B2 (en) * | 1997-05-30 | 2006-04-05 | 三菱電機株式会社 | Waste water ozone treatment method and ozone treatment apparatus |
JPH11347596A (en) * | 1998-06-05 | 1999-12-21 | Mitsubishi Electric Corp | Apparatus for treating drainage |
JP3838628B2 (en) * | 2001-10-26 | 2006-10-25 | 株式会社荏原製作所 | Organic wastewater treatment method and treatment apparatus |
JP4495051B2 (en) * | 2005-08-23 | 2010-06-30 | 株式会社神鋼環境ソリューション | Activated sludge treatment method and activated sludge treatment apparatus therefor |
JP6430083B1 (en) * | 2018-04-03 | 2018-11-28 | 三菱電機株式会社 | Sludge discharge control device, water treatment system, and sludge discharge control method |
-
1994
- 1994-12-01 JP JP29869594A patent/JP3493769B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08155482A (en) | 1996-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3521535B2 (en) | Aerobic biological treatment system for organic wastewater | |
EP1993957A2 (en) | Method and system for nitrifying and denitrifying wastewater | |
JP3575312B2 (en) | Organic wastewater treatment method | |
JP2973761B2 (en) | Aerobic treatment of organic wastewater | |
JPH09122682A (en) | Method for treating waste water | |
JP3493769B2 (en) | Aerobic treatment of organic wastewater | |
JPH04363197A (en) | Waste water treatment by activated sludge method | |
KR100419888B1 (en) | Activated sludge process with high biomass concentration using a downflow sludge blanket filtration | |
KR20020079029A (en) | A zero-sludge -discharging membrane bioreactor(Z-MBR) activated sludge process | |
JP3551526B2 (en) | Aerobic treatment of organic wastewater | |
JP3383504B2 (en) | Organic wastewater treatment method and treatment device | |
JP3921693B2 (en) | Organic wastewater treatment method | |
EP1293484A1 (en) | Process and an apparatus for biological treatment of aqueous organic wastes | |
JPH10296283A (en) | Carrier separating method for biological reaction tank using carrier combinedly | |
JP3311925B2 (en) | Organic wastewater treatment method | |
JP3525458B2 (en) | Aerobic treatment of organic wastewater | |
JPH08103786A (en) | Aerobic treatment of organic wastewater | |
JP3373137B2 (en) | Organic wastewater biological treatment method | |
JPH0788495A (en) | Aerobic treatment of organic wastewater | |
JP3493783B2 (en) | Aerobic treatment of organic wastewater | |
JP3414007B2 (en) | Aerobic treatment of organic wastewater | |
JP3271326B2 (en) | Biological phosphorus removal method and apparatus | |
JP2007061786A (en) | Aerobic treatment method of organic drainage | |
JPH10211497A (en) | Method for biological treatment of organic wastewater | |
JP3400622B2 (en) | Method and apparatus for treating organic sewage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091121 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101121 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101121 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131121 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |